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ABSTRACT 

A high dynamic range (HDR) image uses a large bit depth up to 
32-bit per pixel per color channel. Due to hardware limitation, it 
can neither be captured by conventional camera in a single 
photo, nor be displayed on a conventional monitor. In this 
thesis, a software solution of HDR imaging is introduced from 
the synthesis to the display of high quality HDR images. 

Contrary to conventional imaging method, HDR imaging 
uses multiple exposures. Therefore, the variance of the same 
pixel in different images is non-linear and difficult to measure. 
To solve this, a new inter-pixel relationship function (IRF) is 
proposed using both spatial and temporal correlations. It is 
widely used in many HDR imaging components. 

Multiple input images produce a new ghosting artifact due to 
moving object. A real time de-ghosting method is first proposed 
using bi-directional comparison and IRF based moving object 
detection and patching. It is lightweight in terms of both time 
complexity and physical memory consumption, which makes it 
suitable for mobile devices. We further extend it by merging the 
IRF with a histogram intensity mapping and adopting a new 
threshold model based on statistical study. The extended de-
ghosting scheme is more robust in the scenarios where the 
moving object occupies larger areas. 

Noise in the input images will be kept in the synthesized 
HDR image. A 2D de-noising factor is proposed for the 
synthesis of 32-bit HDR image, and a noise reduced tone-
mapping is proposed to map the 32-bit HDR image back to 8-bit 
for the display based on information content weighting (ICW). 
Both methods have low time complexity. 

It is also important to measure if the input images are from 
the same scene, as huge artifacts may appear if a wrong image is 
involved in the synthesis process. We proposed a structure 
similarly based metric which is robust to the images with 
different exposures. We also proposed a metric for the 
measurement of two 32-bit HDR images based on their 
histograms of radiance maps. 
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1  Introduction 

When a scene with high light contrast is captured by a camera, 
either the dark area or the bright area will be saturated in the 
output image, as shown in Fig. 1.1. This is due to the limitation 
of the camera sensor, and has been existed since the first camera 
was invented. To solve this, high dynamic range (HDR) imaging 
has been invented by recovering the real world scene using 
multiple conventional low dynamic range (LDR) images [1, 2, 3, 4, 
5, 6]. 
 

 
Fig. 1.1 Problem in capturing high dynamic range scene, where (Top) is the real world 
scene perceived by human eyes, and (Bottom) are the images captured by camera using 
different exposure times (Δt). Both over-exposed saturation (red square) and under-
exposed saturation (blue square) are present, even in the ‘best exposed’ image (Bottom 
Middle). The ‘real world scene’ image was synthesized through HDR imaging by 
using the bottom 3 images. 
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1.1 DYNAMIC RANGE 

The dynamic range (DR) of a scene is defined as the range from 
the lowest light intensity to the highest light intensity in the 
scene. It is named as scene contrast too. In real world, the full 
range of light intensities that can be perceived by human vision 
system spans from as low as star light to as high as the sun 
shine. The human vision system is capable of perceiving light 
over a range of 5 orders of magnitude simultaneously. On top of 
that, the pupil adapts very fast to the changes in lighting 
conditions, which result to a concurrently perception of nearly 
10 orders of magnitude [1, 7]. In comparison to this biological 
sensor, modern cameras can only capture a small dynamic range 
of about two orders of magnitude in a single exposure, as shown 
in Fig. 1.2. Thus, information is lost in the very bright and very 
dark areas, named saturated areas.  
 

 
Fig. 1.2 The domain of human vision compare to the range of conventional LDR 
images. The image capturing process lose information due to sensor limitation, while 
HDR imaging recover the lost dynamic range through reverse engineering by merging 
multiple shots with different exposures. 

1.2 HIGH DYNAMIC RANGE ACQUISITION 

In order to recover the real world scene, various HDR synthesis 
methods have been proposed with different acquisition methods, 
as listed in Table 1.1.  

It is possible to capture an HDR image using a single shot 
with the modification of camera hardware. Capturing image 
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gradients rather than actual pixel intensities was shown to 
increase the dynamic range at the cost of computationally 
expensive Poisson solver [8]. As far as I know, the gradient 
camera is still a theoretical solution. In assorted pixels method, 
multiple neighboring pixels with fixed pattern filter are used to 
capture at different exposures [9, 10]. Each pixel in the final 
HDR image was reconstructed by 2-4 neighboring pixels, which 
results a loss of camera resolution. To overcome this problem, 
an alternative design uses an aligned spatial light modulator 
with programming imaging [11, 12]. However, such a design is 
difficult to implement with extra hardware expenses. 
 
Table 1.1 Typical acquisition approaches for capturing high dynamic range images. 

Acquisition Methods HDR Synthesis Methods 

Single image capture 
Gradient camera 
Assorted pixels 
Dynamic range adaptive imaging 

Single device multiple image capture 
Exposure bracketing (HDR video) 
Generalized mosaics 

Multi-device capture 
Split aperture imaging 
Optical splitting trees 

 
The second acquisition approach uses single camera with 

multiple shots. Among all the methods, exposure bracketing [1, 
2, 13, 14, 15, 16] is most widely used as no hardware 
modification is required. Within a short period of time, multiple 
shots with different exposures are captured to minimize the 
change of the lighting condition as well as object movement. 
Then, intensity mapping is estimated using image correlation 
and an HDR radiance map is recovered by using the best 
exposure information in different input images. Similar 
approach was adopted to generate HDR video too [17, 18, 19, 
20]. In addition to exposure bracketing, a static filter with 
varying transitivity, named generalized mosaicing [21], was 
proposed to be mount in front of the camera sensor to mimic the 
exposure bracketing effect. 

Third acquisition approach uses multiple devices to capture 
the same scene with the help of prisms [22] or beam-splitters [23, 
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24, 25]. While these approaches allow dynamic content to be 
recorded, the additional optical elements split the emitting light 
and make it difficult to capture the low light scenes in their best 
exposures. 

1.3 HIGH DYNAMIC RANGE DISPLAY 

Similar to image capturing system, the same hardware 
limitation exists in display system, where the HDR contents 
cannot be displayed on the conventional LDR display devices, 
such as monitors, printers and projectors. 

Nowadays, most HDR images are converted back into LDR 
images using HDR tone-mapping before being presented on 
conventional display devices. There are two major categories of 
HDR tone-mapping algorithms, global operators [26, 27, 28] and 
local operators [29, 30, 31, 32]. Global operators are optimized 
on the whole image without local adjustment based on 
neighboring information. It is fast with no intensity inversing, 
meaning the brighter pixels in the HDR image remains brighter 
or equal in the tone-mapping result. A good application is HDR 
video [33]. The tradeoffs of the global operators are the 
degradation of visual quality, such as lack of local contrast and 
lose of small details. In order to improve the visual quality, local 
operators use the neighboring information for every pixel to 
preserve the fine details. These operators are usually 
computationally expensive, and come with halo artifacts [29, 34] 
in some scenarios. 

Besides software solution, research based on hardware 
solutions has been carried out to display the original HDR 
content. A dual modulation display system [35] was invented by 
adding dynamic backlight using light-emitting diode (LED) to 
the conventional liquid crystal display (LCD), where the LCD 
provides color, resolution and normal contrast, while the 
programmable LED provides additional rear-illumination. 
Similar ideas have also been applied to increase the dynamic 
range of printer [36] and microscopy [37]. Another approach 
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focused on HDR projection by reallocating the light inside a 
conventional projector using an analog micro-mirror array in 
the optical path [38]. The light reallocation does not only 
increase the dynamic range of the projector display, but also 
reduces the device heat due to dumpling excessive background 
light out instead of physically enclosed in the device. 

1.4 WORKFLOW OF SOFTWARE SOLUTION OF HDR IMAGING 

In this thesis, we focus on the software solution of HDR 
imaging. Therefore, exposure bracketing is used for HDR 
acquisition, and HDR tone-mapping is adopted for displaying. 
This solution is most widely used nowadays in consumer 
industry due to their capabilities of directly applying on existing 
hardware, which reduces the total cost. 

As shown in Fig. 1.3, a typical software solution of HDR 
imaging is not only one or two, but series of technologies that 
transforms the captured LDR images (usually 8-bit per color 
channel) into HDR images (usually 32-bit per color channel), 
and then display them on existing conventional display devices. 
The modules in amber color in Fig. 1.3 are the research topics 
covered in this thesis. The modules in green color are 
technologies used in our software solution of HDR imaging 
system, which are not covered in this thesis. 

Nevertheless, most consumer-level smart phones, such as 
iPhone 5, Samsung Galaxy S3, and HTC 1X1

                                                      
1 Information and datasheet can be found at  

, embedded HDR 
acquisition using exposure bracketing and display using 
exposure fusion [39, 40, 41, 42, 43, 44, 45], a combined fast process 
of HDR synthesis and HDR tone-mapping. We use exposure 
fusion for our mobile HDR solution, which is not covered in this 
thesis. 

iPhone 5: http://www.apple.com/iphone/ 
Galaxy S3: http://www.samsung.com/global/galaxys3/ 
1X: http://www.htc.com/www/smartphones/htc-one-x/ 



 

6 
 

 
Fig. 1.3 A typical workflow of software solution for high dynamic range imaging. 

1.5 STRUCTURE OF THE THESIS 

The rest of the thesis is organised as follows. Intensity mapping 
is discussed in Chapter 2. HDR de-ghosting is studied in 
Chapter 3. Bracketing image de-noising and tone-mapping de-
noising are summarized in Chapter 4. Image difference metrics 
for the exposure bracketing images and the HDR images are 
presented in Chapter 5. A summary of the contributions is given 
in Chapter 6 and conclusions drawn in Chapter 7. 
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2  Intensity Mapping 

Exposure bracketing is a photography technique to capture the 
same scene with multiple shots using various exposure settings. 
It allows high dynamic range contents to be stored at different 
exposure levels [46, 47, 48, 49].  
 

 
Fig. 2.1 A sequence of exposure bracketing images from the highest exposure (top left) 
to the lowest exposure (bottom right). The image of high exposure captured the detail of 
dark area with the saturation in the bright area, while the image of low exposure 
captured the bright area with the saturation in the dark area. 

 
HDR images are usually synthesized by recovering the 

radiance map using the correlations among these bracketing 
images. Among all the correlations, intensity mapping is the 
most important feature defined as 
 
 𝜓𝑖,𝑗(𝑍𝑖(𝑝)) = 𝑍𝑗(𝑝) (2. 1)  
 
where  𝑍𝑖 and 𝑍𝑗 are the intensity value of the same co-located 
pixel 𝑝 at different exposures of 𝑖 and 𝑗, and 𝜓𝑖,𝑗 is the intensity 
mapping from image 𝑖 to image 𝑗. It is noted that the intensity 
mapping is a directional function (𝜓𝑖,𝑗 ≠ 𝜓𝑗,𝑖 ). The intensity 
mapping function (IMF) is not only hardware dependant, but also 
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will change according to different capturing settings. And in 
most cases, it is not a linear function. 

The intensity mapping is the key to many HDR applications, 
such as image in-painting with exposure bracketing images, 
HDR image synthesis, and HDR de-ghosting. 

2.1 BACKGROUND 

When taking a photo, each pixel in the digitized output image 
will contain a pixel value known as intensity. However, this 
value is rarely true measurement of the real radiance of that 
pixel [14]. Instead, it is the output of a mapping function, known 
as camera response function (CRF) [1, 2, 50], which maps the real 
world radiance to a pixel value within the display range.  

Intuitively, CRF is a good candidate for intensity mapping. It 
is a characteristic of the camera and the exposures and, thus, is 
not scene dependant and is commonly estimated from the 
exposure bracketing images. A popular CRF estimation is 
proposed in [2] by minimizing the quadratic objective function 
 

 
𝒪 = ∑ ∑ [𝑔�𝑍𝑖,𝑝� − 𝑙𝑛𝐸𝑝 − 𝑙𝑛Δ𝑡𝑖]2𝑁

𝑖=1
𝑃
𝑝=1 +

𝜆 ∑ 𝑔"(𝑧)2𝑧=𝑍𝑚𝑎𝑥−1
𝑧=𝑍𝑚𝑖𝑛+1   (2. 2)  

 
where 𝑔 is the log reverse CRF function, 𝑍𝑖𝑗 is the known pixel 
value at pixel location 𝑝  (total 𝑃  pixels) in the input image 𝑖 
(total 𝑁  images), 𝐸  denotes the radiance value, Δ𝑡  denotes the 
exposure time, and 𝜆 represents a weight for the smoothness 
term. The CRF estimation is computationally expensive, and not 
very robust to noise, moving object or camera movement. Using 
CRF, the intensity mapping can be represented as 
 

 𝜓𝑖,𝑗(𝑍𝑖(𝑝)) = 𝑔−1(𝑔�𝑍𝑖(𝑝)� − 𝑙𝑛 Δ𝑡𝑖 + 𝑙𝑛 Δ𝑡𝑗) (2. 3)  
 

where the exposure time must be known in advance. 
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Another important approach uses a histogram based IMF[51], 
which determines the intensity mapping by using cumulative 
histogram. An IMF (𝜓) is defined as  

 
 𝜓𝑖,𝑗(𝑍(𝑝)) = 𝐻𝑗−1(𝐻𝑖(𝑍(𝑝)) (2. 4)  

 
where  𝐻(𝑧) = ∫ ℎ(𝑥)𝑑𝑥𝑧

0   is the cumulative histogram of the  
original histogram ℎ. Compared to the CRF-based approach, the 
histogram based intensity mapping does not require exposure 
time information, and does not require hard image alignment. A 
drawback is that it only makes use of the pixel statistic 
information, but not any spatial correlation. 

2.2 INTER-PIXEL RELATIONSHIP FUNCTION 

The inter-pixel relationship function (IRF) is proposed in [P1], and 
the idea is illustrated in Fig. 2.2. If the intensity at A’ and B’ are 
the same at one exposure time in the reference, they shall be the 
same at the other exposure times (not for saturated pixels). This 
is according to photography reciprocity [52]: when exposure 
time changes, the pixel values change correspondingly. 
However, during the image capturing process, sensor noise, 
sampling noise and compression noise are commonly generated. 
Thus, it is more accurate to find all the pixels with the same 
intensity in the reference image and calculate their co-location 
values in the test image using mean average. The IRF is defined 
as 

 

 𝜓𝑖,𝑗(𝑍𝑖(𝑝)) =
∑ 𝑍𝑗(𝑥)𝑥∈Ω(𝑍𝑖(𝑝))

|Ω(𝑍𝑖(𝑝))|  (2. 5)  

 
where |Ω(𝑍𝑖(𝑝))|  is the cardinality of the spatially co-located 
pixels set Ω�𝑍𝑖(𝑝)�: {𝑥|𝑍𝑖(𝑥) = 𝑍𝑖(𝑝)}. 
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Fig. 2.2 Three differently exposed images with degraded image due to camera shake. 
The pixel value of B can be copied from A as their co-location A’ and B’ have the same 
intensity in the reference image. 

The IRF has three useful characteristics inherited from the 
physical camera response. (1) The IRF is a monotonically 
increasing function. (2) The pixels located at left end (dark 
pixels), as shown in Fig. 2.3, and right end (bright pixels) are 
highly compressed due to dynamic range limit. (3) When 
choosing different reference images, shorter exposure time leads 
to smaller slope at the left end and bigger slope at the right end. 

 

 
Fig. 2.3 An example of IRF function. Multiple IRF curves are presented with different 
images (captured at different exposure time) to the same reference image. 
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2.3 INPAINTING WITH EXPOSURE BRACKETING IMAGES 

Images of same scene can be captured with different exposures 
and combined with computing power to synthesize image that 
overcomes limitation of conventional cameras. However, useful 
data can be lost due to camera shake, especially when capturing 
by a hand held device, which generates noticeable artifact in the 
synthesized image. In other words, different from the traditional 
image in-painting [53, 54, 55, 56] and scene completion [57], 
which generate only photorealistic patches, the degraded image 
in-painting in digital photography requires true luminance 
value of real world scene. Therefore, the challenge of patching is 
to find useful relations between missing pixels and the 
remaining pixels. 

In [P1], an IRF is proposed to in-paint the missing area with a 
dual patching, where dual reference images are used. In order to 
increase the accuracy, the reference image is selected to have the 
smallest exposure difference with the degraded image. However, 
the dynamic range lost caused by the characteristic 2, described 
in chapter 2.2, is still inevitable. 

If the reference image has shorter exposure time than the 
degraded image, then as can be seen from the characteristic 3, 
the dark pixels in the reference image are mapped from a large 
contrast to a small one. In other words, it is a compressing 
process mapping multiple values to one, which in turn makes 
the IRF in this area more reliable. On the contrary, a highly 
compressed bright pixel in the reference image is mapped into 
multiple values in the degraded image, which causes inaccuracy 
due to the dynamic range lost. Thus, multiple reference images, 
with longer and shorter exposure time respectively, can be 
adopted to recover the lost dynamic range and enhance the 
patching accuracy. The missing pixel intensity is calculated by 

 

 𝑍𝑡(𝑝) =
𝜓𝑖,𝑡(𝑍𝑖(𝑝)) ∙ 𝜔𝑖,𝑡�𝑍𝑖(𝑝)� + 𝜓𝑗,𝑡�𝑍𝑗(𝑝)� ∙ 𝜔𝑗,𝑡 �𝑍𝑗(𝑝)�

𝜔𝑖,𝑡�𝑍𝑖(𝑝)� + 𝜔𝑗,𝑡 �𝑍𝑗(𝑝)�
 (2. 6)  
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where image 𝑖 and 𝑗 are the two reference images, image 𝑡 is the 
degraded image to be patched, and 𝜔 is the weighting function 
defined as 

 

 𝜔𝑖,𝑡(𝑧) = � log(𝑧 + 1) ,    Δ𝑡i ≥ Δ𝑡t
log(256 − 𝑧) , Δ𝑡i < Δ𝑡t

�, 𝑧 ∈ [0,255] (2. 7)  

 
which is plotted in Fig. 2.4.  
 

 
Fig. 2.4 Plot of the weighing function ω. 

The missing area in an exposure bracketing image set can be 
recovered using the proposed intensity mapping. Compare with 
other methods, the exemplar-based in-painting [54] works well 
on simple texture, such as the table top. However, obvious 
errors can be seen at complex contents, like the baby’s face and 
the title of the book as shown in Fig. 2.5 (b), due to short of 
reference. The CRF-based method [58] recovers the contents by 
the luminance shift from the reference pixels, where obvious 
artifact can be seen at the border. The method proposed in [P1] 
recovers the original scene effectively in terms of speed and 
quality. We tabulate the peak signal-to-noise ratio (PSNR) of each 
method in Table 2.1. The test was set up similar to Fig. 2.5 (a), 
where part of the image is missing due to camera movement, 
but can be patched using two references (a brighter reference 
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and a darker reference). This scenario is common in HDR 
imaging. The result was averaged from ten test sets. 

 
Table 2.1 Typical acquisition approaches for capturing high dynamic range images. 

Method Inpainting [54] CRF based [58] IRF dual patching [P1] 

PSNR (dB) 11.75 20.54 33.66 

 
 

 
Fig. 2.5 Patching results of a degraded image from an exposure bracketing set shown 
in Fig. 2.2. (a) Original degraded image, (b) fixed image using exemplar-based in-
painting [54], (c) fixed image using CRF [58], (d) fixed image using the proposed 
method, (e) HDR image synthesized with degraded image, and (f) HDR image 
synthesized with patched image [P1]. 

The structure of the proposed method, intensity mapping 
plus dual patching, is extended to patch-based in-painting in 



 

14 
 

our later research works [59, 60]. It is proven to be an important 
tool for HDR de-ghosting [61, 62, 63]. 

2.4 BLIND EXPOSURE VALUE ESTIMATION 

The exposure time is an important feature in synthesizing HDR 
images [1, 2, 50]. However, this information can be easily lost 
during copy or editing. Some methods have been introduced to 
recover the missing exposures. A radiometric model [14] was 
introduced to estimate the exposure ratio with an initial value 
set by user and an iterative process to fine-tune it. The results 
vary due to different initial settings and the order of the 
polynomial model used in the estimation. Another rough 
approximation was obtained by using IMF [51] between two 
images. However, as realized by the authors themselves, there 
are a lot of restrictions and assumptions involved. Thus, they 
used the approximated exposure ratio as the initial value to the 
radiometric model [14] in their experiments. 

In [P3], we present an accurate algorithm to recover the rate 
in between the different exposure ratios by using IRF [P1] and 
CRF [2]. For any pair of differently exposed images, each co-
located pixels represent the same intensity. Thus, if they are not 
saturated, their reverse CRF mapping difference shall be a 
constant that represents the radiance difference of their 
exposure ratio. The exposure ratio is defined using exposure 
value (EV) interval as 𝐸𝑉𝑖 = 𝑙𝑜𝑔2(Δ𝑡𝑖/Δ𝑡𝑖+1) . For any three 
images in an exposure set (𝑖, 𝑖 + 1, 𝑖 + 2), we select one image (𝑖) 
as reference. The function CRF (𝑔 ) is calculated using the 
reference image and the first test image, while the pixel 
correlations are calculated using IRF between the reference 
image and the second image. As such, the EV unit in between 
the second test image and the reference image calculated by 

 

 𝛿𝑖+2,𝑖+1,𝑖 =
∑ [𝑔𝑖,𝑖+1(𝑧) − 𝑔𝑖,𝑖+1 �𝜑𝑖,𝑖+2(𝑧)�]�̀�𝑖,𝑖+2
𝑧=�́�𝑖,𝑖+2

�̀�𝑖,𝑖+2 − �́�𝑖,𝑖+2 + 1
 (2. 8)  

 



15 
 

where �̀� and �́� are two constants that defines the valid region 
boundaries as 

 

 �
�́�𝑖,𝑗 = max(𝛼,𝜑𝑖,𝑗

−1(𝛼))
�̀�𝑖,𝑗 = min (𝛽,𝜑𝑖,𝑗

−1(𝛽))
� (2. 9)  

 
where α and β are two constants defines the saturation value. 
When the first and second test images are the same, a base EV 
unit is estimated. The unknown exposure ratio is then calculated 
by 

 

 𝑘𝑖,𝑖+2 = �
𝛿𝑖+2,𝑖+1,𝑖

𝛿𝑖+1,𝑖+1,𝑖
� ∙ 𝑘𝑖,𝑖+1 (2. 10)  

 
If there is no prior exposure knowledge, assumptions of the 

exposure ratio between the first two LDR images are given, as 
shown in the experiments in Table 2.2. The estimated EV 
internals have small errors of 5-10%, which will not generate 
obvious distortion in the final HDR image. If the initial EV was 
not given correctly, as shown in EXP3, all the estimated EV will 
have the same proportion to the given initial EV, which results 
in synthesizing a near-identical HDR image (Chapter 5.2). 
 
Table 2.2 EV correction with given initial exposure ratio 

  EV1 EV2 EV3 EV4 

EXP1 Original 1 1 1 1 

[P3] 1 (given) 0.92 0.94 0.88 

EXP2 Original 1.66 1.66 1.66 1.66 

[P3] 1.66 (given) 1.63 1.62 1.58 

EXP3 Original 1 1 1 1 

[P3] 1.58 (given) 1.53 1.54 1.51 
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3  De-ghosting 

When synthesizing HDR image using exposure bracketing 
images, ghosting artifacts usually appear due to moving object 
[64, 65, 66, 67], such as moving people and trees waving in the 
wind. To solve this, de-ghosting is applied before the HDR 
synthesis. 

There are three major challenges in the de-ghosting process. 
Firstly, LDR images are taken with different exposures and 
cannot be compared directly. It is difficult to find a good 
criterion to bring different exposed images to the same 
comparable scale. Secondly, moving object pixels are classified 
by a threshold, but other factors, such as capturing parameters 
(ISO, shutter speed), capturing hardware and light conditions, 
affect the pixel co-relationship and militate against the selection 
of a static threshold. The third challenge is how to recover the 
missing dynamic range information. 

3.1 IMAGE REGISTRATION 

Before jump into de-ghosting, there is another important pre-
processing step: image registration [68, 69, 70]. It is required if the 
images are captured using hand held devices. Otherwise, blur 
will appear in the synthesized HDR image. Luckily, when 
capturing multiple images in burst mode, misalignment are 
commonly seen as rotation and translation only. Thus, in most 
cases, only image alignment is required in HDR imaging. 

Fig. 3.1 gives a simple comparison between image alignment 
and de-ghosting, which both cause blur in the synthesized HDR 
image. Blur due to mis-alignment is a global effect, while 
ghosting artifact due to moving object is content based. Thus, it 
is more difficult to do de-ghosting than alignment. 
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We have made some study on image alignment methods for 
HDR imaging, as shown in Table 3.1. Some of the ideas are used 
in the final HDR imaging application. 

 
Table 3.1 Comparison of image alignment methods 

Method 
 

[71] [17] [72] [58] [73] [74] [75] [76] 

Using feature 
Median 
value 

Pixel Pixel 
Median 
value 

Pixel 
Key 
points 

Corner Histogram 

Support 
extreme DR 

 √ √      

No CRF 
 

  √ √  √ √ √ 

Fast feature 
matching 

√     √ √ √ 

 

3.2 REVIEW OF DE-GHOSTING METHODS 

Different from traditional motion detection[77, 78, 79, 80] in 
video processing, the input images (frames) are not at the same 
exposure level. Thus, special processes are needed. 

Original mis-aligned images 

Aligned images 

 Alignment  De-ghosting 

Images with moving object 

Moving object removed 

Fig. 3.1 Comparison with alignment (left) and de-ghosting (right). 
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An iterative approach was proposed in [81] by detecting the 
probability of a pixel belonging to a moving object or 
background, which minimized the assumption on the input 
image sequence. However, it is difficult to remove the moving 
object completely, and the algorithm is computationally 
expensive. Local entropy was proposed in [82] by matching the 
structure of the distribution of the local pixel value. It is a 
relative fast process, as there is no need for response curve 
estimation. However, as realized by the authors themselves, it 
cannot detect even large intensity differences when two co-
located areas have similar local structure. Grosch [58] proposed 
a method using camera response function (CRF). It is suitable for 
the scenario when CRF is known, and can therefore perform a 
very fast detection process. Otherwise, with moving object, it is 
very difficult to estimate CRF accurately. A pre-classification 
process is adopted to solve this problem in [83]. Gallo et al. [84] 
used a similar idea with an assumption that log exposure can be 
mapped to a straight line, which in practice may not be the case 
due to different capturing hardware.  

3.3 REALTIME DE-GHOSTING FRAMEWORK 

A real-time de-ghosting method is proposed in [P4], which 
includes detecting of moving object pixels and patching them 
using only the background pixels. Its major benefit is that it is 
fast and requires little computational resources, including 
processing power and physical memory. In all cases, the de-
ghosting process involves only two images: a test image and the 
reference image. Because of this, the de-ghosting process is 
capable of working concurrently with the image capturing 
process, as shown in Fig. 3.2. The main function modules are the 
IRF estimation [P1], bi-directional comparison, moving object 
classification and moving object correction. 
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Fig. 3.2 Framework of the proposed real-time de-ghosting method. 

 

 
Fig. 3.3 Original input LDR images (top), and the zoom-in HDR images composed 
using uni-direction method (bottom left) and bi-directional method [P4] (bottom right). 

The reciprocity law fails at underexposed and saturated 
pixels [52], as they are cut-off values due to the limitation of the 
dynamic range of the camera. Thus, the IRF values of those 
regions are unreliable. To solve this, bi-directional comparison is 
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proposed to mapping only from the more reliable pixel to the 
less reliable pixel as 

 

 Γ𝑖,𝑗(𝑝) = �
�Z𝑗(𝑝) − 𝜓𝑖,𝑗(𝑍𝑖(𝑝))�,  ω(𝑍𝑖(𝑝)) ≥ ω(𝑍𝑗(𝑝))
�𝜓𝑗,𝑖(Z𝑗(𝑝)) − 𝑍𝑖(𝑝)�, ω�𝑍𝑖(𝑝)� < ω(𝑍𝑗(𝑝))

� (3. 1)  

 
where 𝜔  is a triangle weighting function [2], and Γ(p)  is the 
error estimator at pixel 𝑝 . The error estimator simulates the 
distance between the two co-located pixels despite the 
saturation area in the reference image. An example is given in 
Fig. 3.3. 
 

 
Fig. 3.4 Original LDR images (top), and the zoom-in HDR images synthesized 
without outline re-evaluation (bottom left) and with outline re-evaluation [P4] 
(bottom right). 

It is worth noticing that a simple but powerful outline re-
evaluation filter can be adapted to the system before patching 
using IRF. The outline artifacts usually appear at the boundaries 
due to a similar value between moving object and the 
background, which makes it difficult to detect. The idea of the 
re-evaluation filter is to use a tight threshold and re-detect the 
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boundary pixels. An example of the outline re-evaluation filter 
is shown in Fig. 3.4. 

 

 
Fig. 3.5 HDR image synthesized from (top) five exposure bracketing images, using (a) 
FDRTools1, (b) Photomatix2, (c) Qtpfsgui3

Similar to [58], once the error estimator is calculated, the 
moving object pixels are classified using empirical fixed 
threshold and patched using IRF. Experiments show a 

, and (d) [P4]. 

                                                      
1 FDRTools is available at http://www.fdrtools.com/ 
2 Photomatix is available at http://www.hdrsoft.com/ 
3 Qtpfsgui is available at http://qtpfsgui.sourceforge.net/ 
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significant improvement in the visual quality comparing to the 
off-the-shelf applications, such as Photoshop. 

Our real-time de-ghosting framework has been tested on 
smart phones, where computation resources are limited. 
Combine with sub-sampling in Chapter 3.5, the processing time 
of the whole de-ghosting process for three 8MB (resolution 
3264x2488) input images is only 700ms on Samsung Galaxy S3. 

 

 
Fig. 3.6 An example of the failed case due to extreme large intensity changes, where 
(top) are the input image sequence, and (bottom) is the synthesized HDR image. 

The tradeoff of this fast processing is the fixed threshold, 
which fails in some extreme scenarios, such as an example of a 
night scene shown in Fig. 3.6. 
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3.4 ROBUST DE-GHOSTING 

The real-time de-ghosting method introduced in Chapter 3.3 is a 
useful solution for mobile applications, where processing power 
and memory are the most important concerns. On the other 
hand, when quality is the key requirement, such as an offline 
HDR synthesis using PC, a more robust de-ghosting method 
should be used. In [P5], an improved de-ghosting method is 
proposed using double-credit intensity mapping which suits for 
more scenarios and gives better visual quality. 
 

 
Fig. 3.7 An example of double-credit IMF estimation. Two input images with different 
exposures (Top); extraction of reference points (Bottom-left); guidance curve and the 
fine-tuned double-credit IMF (Bottom-right). 

Histogram-based intensity mapping [51] uses the statistic 
information of the intensity distribution. However, such a 
process loses position information. On the other hand, the 
proposed IRF [P1] uses spatial correlation which preserves the 
position information, but can be distorted by large moving 
objects. Thus, a double-credit de-ghosting method is used, 
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which combines the advantages of both statistic information and 
spatial correlation, and generates HDR image with high visual 
quality. 

The final double-credit IMF is estimated using the following 
steps. First, reference points are detected as the points with the 
same value in the histogram-based IMF as well as the spatial 
correlated IRF. A guidance curve is an approximation by 
extending the reference points with Bezier curve approximation 
[84, 85]. The guidance curve is a monotonic increasing function 
that cut across the identified reference points. It provides the 
initial value for the final IMF, and is useful to filter out large 
intensity changes due to moving object. The final double-credit 
IMF is then fine-tuned by calculating the spatial correlation 
using only the reliable pixels as 

 

 𝜓(𝑧) =
∑ 𝑍(𝑝)𝑝∈Ω(𝑧) + 𝜓𝐺(𝑧) ∙ 𝛽

|Ω(𝑧)| + 𝛽
, 𝑧 = 0, … ,255 (3. 2)  

 
where Ω(𝑧) is the set of pixels with the same intensity of 𝑧 in the 
reference image, |Ω(𝑧)| represents the cardinality of this set, 𝑍 
denotes the pixel of the test image, 𝜓𝐺(𝑧) is the guidance curve 
and 𝛽 is a predefined weight to the guidance curve. 

In order to robustly detect moving objects in different 
lighting conditions, an empirical fixed threshold is no longer 
feasible. In [P5], a data driven training is conducted based on 
images captured from tripod cameras with no moving object in 
the scene. The training is aimed to find a threshold model 
suitable for different scenarios. A threshold vector is calculated 
based on pixel intensities (from 0 to 255) to classify 95% of the 
pixels as background. An example is shown at the bottom graph 
of Fig. 3.8. The image database includes more than 300 images 
from different cameras including Nikon D3, D300, Canon EOS-
1, IXUS850, IXUS900, and images downloaded from Internet. 
The images have been captured using different capturing 
parameters at different lighting conditions to ensure extensive 
coverage. The adaptive threshold model is concluded as 
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 𝑇(𝑧,𝑀) =

⎩
⎪
⎨

⎪
⎧

𝑎,                                          0 ≤ 𝑧 ≤ 𝑑

𝑎 +
𝑏 − 𝑎
𝑀 − 𝑑

∙ (𝑧 − 𝑑), 𝑑 < 𝑧 ≤ 𝑀

𝑏 +
𝑐 − 𝑏

255 −𝑀
∙ (𝑧 − 𝑀), 𝑀 < 𝑧 ≤ 255

� (3. 3)  

 
where 𝑧  represents the original RGB value, 𝑀  represents the 
optimum bi-directional comparison central point, and a, b, c, d 
are the key parameters derived from the variance vector (V) 
generated during the fine-tuning of the double-credit IMF 
estimations. We use the following: 
 

 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑎 = 0.8 ∙ �1

𝑑 ∑ 𝑉(𝑧)𝑑
𝑧=1

𝑏 = 0.8 ∙ �1
𝑑 ∑ 𝑉(𝑧)𝑀+𝑑/2

𝑧=𝑀−𝑑/2

𝑐 = 5
𝑑 = 30

� (3. 4)  

 

 
Fig. 3.8 The top graph plots the forward IMF and the reverse IMF of two static images. 
The bottom graph plots the thresholds, with which 95% of the pixels are classified as 
background. The forward IMF gives better performance on the left side of the central 
point M, and the reverse IMF minimizes the threshold value on the right. 
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Table 3.2 SNR comparison of different intensity mapping functions 

SNR Histogram Spatial Double-credit [P5] 

SET1 20.32 dB 21.79 dB 27.50 dB 

SET2 28.49 dB 18.39 dB 33.05 dB 

 
The proposed double-credit IMF is compared with the 

histogram based mapping [51] and spatial correlation based 
mapping [P1] using two sets of images, of which each contains 
30 bracketing image pairs. In SET1, the moving object (small 
size) appears only in one image. In SET2, the moving object 
appears in both images at different positions. An average 
improvement of 7 dB is achieved, see Table 3.2, and no ghosting 
artifacts appears in the visual quality test when comparing with 
the leading commercial software in Fig. 3.9 and Fig. 3.10. 

There is an extreme case where the proposed method will 
fail. When the moving object is in a saturated area in the 
reference image, there is no information to patch during the 
synthesis. In this case, the result of the proposed de-ghosting 
algorithm may contain grey color patches. A hybrid patching 
algorithm was proposed in [59, 60] to handle these saturated 
pixels using block patching. 

 
Fig. 3.9 De-ghosting visual comparison in a day scene with (top) input images, using 
(bottom-left) Photomatix, (bottom-middle) Photoshop1

 

, and (bottom-right) [P5]. 

 

                                                      
1 Photoshop is one of the leading image processing software, and can 
be found at http://www.photoshop.com/. 
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Fig. 3.10 De-ghosting visual comparison in a night scene with (top) input images, 
using (bottom-left) Photomatix, (bottom-middle) Photoshop and (bottom-right) [P5]. 

3.5 MOTION DETECTION FOR SUB-SAMPLED IMAGES 

Modern smart phones, such as iPhone 5 and Galaxy S3, are 
capable of capturing images with resolution up to 8MB. Thus, 
sub-sampling based fast movement detection is proposed in [P6] 
to save computational resources for the de-ghosting algorithm 
to be running on the mobile devices. 
 

  
Fig. 3.11 A sub-sampling based movement detection scheme 

An example with a sub-sampling factor of 4 is selected to 
illustrate the proposed fast movement detection scheme in Fig. 



29 
 

3.11. The pixels that are labeled with 1 are checked at the first 
round, and they are marked by the blue color if they are 
detected as moving object pixels. The neighboring pixels of a 
blue pixel, labeled with 1, are then checked by using a sub-
sampling method. In Fig. 3.11, all neighboring pixels that are 
labeled by 2 are checked in the second round. They are also 
marked by the blur color if they are moving object pixels. Finally, 
the eight neighboring pixels of a blue pixel labeled by 2, i.e., 
those pixels are labeled by 3, are checked in the final round.  

Only 1/16 of all pixels are detected in the first round. Since 
only a small portion of pixels in an LDR image belongs to 
moving objects, the second and third rounds of detections are 
only conducted for a small amount of pixels in the LDR image. 
As such, the complexity of the improved movement detection 
scheme is significantly reduced. Meanwhile, since many pixels 
are in the neighborhoods of two pixels, a flag is attached to each 
pixel to indicate whether it has been detected. With the flag, 
each pixel will only be processed once. 

Experiments show that the overall number of processed 
pixels is reduced by up to 58.61%. 
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4  HDR De-noising 

4.1 DE-NOISING OF LDR IMAGES 

Image noise is usually caused by the capturing device. Common 
sources for noise are photon shot noise, dark current noise, and 
readout noise[87]. Noise may also come from special hardware, 
such as fixed pattern noise in charge-coupled device (CCD) camera 
[88, 89] and thermal noise and flicker noise in complementary metal–
oxide–semiconductor (CMOS) device [90]. 

Lots of research studies have been conducted to tackle the 
single image de-noising problem. Simple local filters, such as 
Gaussian mean filter and median filter[91] bring in blur in the de-
noised image. Edge preserved filters, such as bilateral filter[92], 
are developed to keep the sharp edges. Studies have been 
carried out on the anisotropic diffusion based techniques[93] and 
wavelet-based techniques[94]. Patch-based image de-noising 
find similar patch information inside the original image and 
stack them together to remove the noise while keep the edges, 
such as non-local mean [95, 96], BM3D[97], PLOW [98, 99]. 

When multiple images of the same scene are available, it is 
possible to merge the information from the multiple inputs. The 
simplest approach is the frame average[100], which theoretically 
reduces the noise variance by N (number of input images). 
However, when the multiple images are not captured using the 
same exposure, frame average fails due to un-aligned exposures. 
To solve this, noise-reduced HDR synthesis is studied. 

4.2 NOISE-REDUCED HDR SYNTHESIS USING 2D-DENOISING 
FACTOR 

The presence of noise in an HDR synthesis poses a serious 
degradation to the HDR image especially when the input 
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images are captured at low light condition or with high 
sensitivity settings. Various methods have been proposed to 
tackle this problem. We further classify them into three 
categories: 1) weighted frame average based preprocessing 
method; 2) intensity weighting based direct HDR synthesis 
method; 3) exposure time based HDR composition method. 
 

 
Fig. 4.1 Different approaches in noise-reduced HDR synthesis: (I) spatial-based edge 
preservation, (II) temporal based weighted frame average, (III) temporal-based 
intensity weighting, (IV) temporal-based exposure time weighting, and (proposed) 
temporal-based adaptive exposedness de-noising factor [P8]. The input image sequence 
can have more than 3 images. 

The weighted frame average based methods, as shown in Fig. 
4.1 (II), are based on an observation that brighter images contain 
less noise than the darker ones, as the brighter images have 
stronger signal and result in higher signal-to-noise ratios (SNRs). 
In order to average different exposed images, a calibration of the 
co-located pixels is required. CRF is used in [87] to recover the 
full radiance map for weighted averaging. IMF is used in [101] 
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to correct the dark image on LDR domain. These methods are 
capable of reducing noise in dark images at the cost of extra 
memory and computation time. 

To reduce those costs, the intensity weighting based methods 
are designed to work directly in the HDR synthesis, as shown in 
Fig. 4.1 (III). A well-exposed pixel is assigned higher weight 
than an over/under-exposed pixel in both CRF estimation and 
HDR composition [87, 102, 103]. These methods are 
computational efficient and work well at extreme bright and 
dark area. But they are not as effective in the areas in between 
the result of weighted frame average methods. 

Another approach attempts to use exposure times as 
additional weight [104] during the HDR composition, as shown 
in Fig. 4.1 (IV). However, the link between the estimation of the 
CRF and the proposed additional weight is missing. Color shift 
is another problem due to high weight at saturated pixels. 

In [P8], we propose a two-dimensional (2D) denoising factor 
to assign higher weight to pixel with less noise based on both 
pixel luminance and image exposure. It is controlled by two 
coefficients. It preserves edges and fine details without blurring 
artifact. In addition, both memory and computation time are 
significantly reduced compare to other denoising methods. 
 

 
Fig. 4.2 The proposed luminance based weighting compares to other weighting 
functions: broad hat [1], MN [14], Ward [1] and Debevec [2]. 

The first dimension of the proposed denoising factor assigns 
a high weight to a pixel with a large luminance. Several 
methods have been proposed using different normalized 
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weighting functions, as shown in Fig. 4.2. Given an assumption 
that the noise distribution is independent of the measurement 
pixel value z, it is argued in [14] that a luminance based 
weighting function (MN weight) 𝜔 = 𝑓(𝑧)/𝑓′(𝑧)  achieves the 
best signal to noise ratio, where 𝑓(𝑧) is the radiometric response 
function. In [87], the MN weight is modified by replacing pixel 
value with luminance value. A broad hat function ℎ(𝑧) = 1 −
( 2𝑧
255

− 1)12  was used to restrict the saturated pixels that may 
cause color cast.  

 

 
Fig. 4.3 A family of weightings in the first dimension calculated by using (left) 
different α with β=200, and (right) different β with α=2. 

 
Since the radiometric response function is usually monotonic 

increasing, we approximate the luminance based weight by a 
controllable hat function and a Hermite interpolation. Thus, we 
can significantly reduce processing time on response function 
recovery by defining a new weighting factor as 

 

 𝜔(𝑧) =

⎩
⎪
⎨

⎪
⎧ 1 − �

z
β − 1�

α
,                                  0 ≤ 𝑧 < β

1 − 3�1 −
255 − z
255 − β�

2

+ 2 �1 −
255 − 𝑧
255 − 𝛽�

3

, β ≤ z < 255

� (4. 1)  

 
where the two key coefficient are the denoising strength 
coefficient 𝛼 and the saturation control coefficient 𝛽. The smaller 
the value of 𝛼, the hat function will become steeper and this will 
result in better denoising effect. A large 𝛼 gives high weights to 
pixels with small value (luminance), which remains noise in the 
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synthesized HDR image. A family of the proposed weighting 
function is plotted in Fig. 4.3. In our experiments, 𝛼 = 2  is 
chosen. Our tests indicate that 𝛼 = 12 generetes similar results 
as [87]. The saturation control coefficient limits the near 
saturated pixels to avoid color cast due to gamut limitations (an 
empirical value 𝛽 = 200 is used here). 
 

 
Fig. 4.4 An example of the proposed 2D denoising factor with 3 input images. 

The second component of the proposed denoising factor is 
based on exposure time. More photons reach the camera sensor 
with a longer exposure time (Δ𝑡 ), which results in a more 
accurate reading. Thus, the proposed 2D weighting factor is 
designed to multiply the geometrically normalized exposure 
times with the luminance based denoising factor as 

 

 𝑊�𝑧,Δ𝑡𝑗� = �
Δ𝑡𝑗

�∏ Δ𝑡𝑝𝑃
𝑝=1

𝑃
∙ 𝜔(𝑧) (4. 2)  

 
where  𝑗 denotes the jth image among the 𝑃 input images. The 
geometrical normalization avoids overwhelming big weights 
cause by images with very large exposure time. Thus, a 
modified objective function for estimating the CRF function is 
derived from [2] as 
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���𝑊�𝑧,Δ𝑡𝑗� ∙ �𝑔�𝑍𝑖,𝑝� − 𝑙𝑛𝐸𝑝 − 𝑙𝑛Δ𝑡𝑖��

2
𝑃

𝑗=1

𝑁

𝑖=1

+ 𝜆 � [𝑊(𝑧, max(Δ𝑡1, … ,Δ𝑡𝑃)) ∙ 𝑔"(𝑧)]2
𝑧=𝑍𝑚𝑎𝑥−1

𝑧=𝑍𝑚𝑖𝑛+1

 
(4. 3)  

 

 
Fig. 4.5 Visual quality comparison for 2D de-noising factor 
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The proposed denoising method is tested by comparing it 
with three HDR synthesis methods, as shown in Fig. 4.5. The 
noise is significantly reduced compared to [2] with the same 
processing time. No blur artifact is generated as in [105] due to 
pure spatial averaging. Comparing with [87], the quality of the 
proposed is about the same. It is achieved with only 1/5 of the 
processing time, since no intermediate steps for approximating 
response function is required. 

4.3 NOISE REDUCED TONE-MAPPING 

Tone-mapping is usually the last step in the software solution of 
HDR imaging to display the HDR content on LDR display 
devices. In general, the tone-mapping is designed by using 
either global operator [26, 27, 28] or local operator [29, 30, 31, 32, 
106]. The benefits of global operator are fast, easy to implement 
and no lighting inverse. Although some studies [107, 108] show 
that global operators can produce good results in some 
scenarios, many research studies are conducted based on 
sophisticated local operators for better local contrast and fine 
details. 

A popular local tone mapping approach is based on the 
Retinex theory [109] that an image (I) is regarded as a product of 
two components (𝐼 = 𝐿 ∙ 𝑅): an illuminance component (L) which 
contains large luminance variance, and a reflectance component (R) 
which contains intrinsic information. Guassian filtering method 
for decomposition was proposed in [110], and was soon be 
replace by bilateral filtering [29, 111] due to its better edge 
preservation. However, halo artifact is usually seen in the 
compressed image due to edges leaking to the reflectance 
component. Thus, better edge-preserving methods are proposed. 
A weighted least square (WLS) framework is proposed in [34] with 
progressive detail layer decomposition. Other methods focused 
on the smoothness constraint [32, 112] and the localized data 
term [113] for better visual quality and fast processing. 



 

38 
 

However, despite these improvements the main problem still 
remains: when the original HDR image contains noise, it 
remains in the tone-mapping result. There are two ways of de-
noising for HDR tone-mapping. One is to direct apply a single 
image de-noising method [95, 96] after the tone-mapping 
algorithm. This approach is more time costly. The other 
approach is to do noise reduction during the tone-mapping 
process, as proposed in [P7]. 

The process of the tone-mapping in [P7] is illustrated in Fig. 
4.6, where the input HDR image is decomposed into a base layer 
and a detail layer [34]. The base layer contains all the high 
dynamic range content, and the detail layer contains the local 
contrast information. Noise is easily classified into detail layer 
as they share the same attributes as the small details, such as 
introducing small gradient and slightly increasing of local 
variance near the noise pixels. 

 

 

HDR 
Image 

Base layer Detail layer 

Composition 

Fig. 4.6 Proposed HDR tone mapping process in [P7] 
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In [P7], a base layer information content weighting (ICW) and a 
detail layer ICW are proposed to reduce the noise in two steps. 
In edge-preserving decomposition, the data term defines the 
fidelity between the based layer and the original luminance. It is 
proposed in an L2 norm for easy calculation. First, the base layer 
ICW is introduced to be used on the data term as 

 

 

min
B(p)

�𝜔𝑏�𝐼(𝑝)� ∙��𝐵(𝑝) − 𝐼(𝑝)�2
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+ 𝜆��Φ�
𝜕𝐵(𝑝)
𝜕𝑥

,𝑎𝑥(𝑝)� + Φ�
𝜕𝐵(𝑝)
𝜕𝑦

,𝑎𝑦(𝑝)��
𝑝

� 
(4. 4)  

 
where 𝜔𝑏 is the spatial varying ICW based on perceptual of HVS, 𝑎𝑥 
and 𝑎𝑦  are the smoothness coefficient, 𝐼  denotes the log HDR 
luminance, 𝐵  denotes the target base layer. Without the base layer 
ICW, the above equation is exactly the tone mapping using WLS edge-
stopping filter [34]. Inspired by the information theory [114, 115, 
116], the base layer ICW is defined as 

 

 𝜔𝑏(𝑝) =
1
2
∙ log (1 +

𝜎2(𝑝)
𝜎𝑐2

) (4. 5)  

 
where 𝜎(𝑝) is the local variance at pixel 𝑝, and 𝜎𝑐2represents the 
channel noising power, which is determined by the saliency 
coefficient (𝑐) as 

 
 𝜎𝑐2 = Γ⃑(c ∙ P) (4. 6)  

 
where Γ(p) = {σ2(p), pϵP}, and Γ⃑ denotes the ascending sort of Γ. 
For example, c = 0.5 indicates the median value of Γ.  
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Fig. 4.7 Visual comparison of different saliency coefficients on (left column) clean 
image and (right column) noise image. 
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The saliency coefficient is an important factor that controls 
the saliency of the base layer ICW. A small saliency coefficient 
indicates a small channel noise, and results a high fidelity 
between base layer and the original image. A large saliency 
coefficient indicates a large channel noise, and results a smooth 
base layer. If the saliency coefficient is too big, the base layer can 
be over smoothed. A visual comparison of different saliency 
coefficient is illustrated in Fig. 4.7. In our implementation, 
c = 0.3 is chosen as a balanced value. However, if the noise level 
of the input HDR image is very high, a bigger saliency 
coefficient generates better denoising result. 

During the decomposition process, the ICW helps to push the 
out of the base layer. Therefore, when the detail layer is 
subtracted from the clean base layer, more noise appears. Thus, 
a detail layer ICW is adopted as  

 
 𝐷(𝑝) = 𝜔𝑑(𝑝) ∙ �𝐼(𝑝) − 𝐵(𝑝)� (4. 7)  

 
where 𝜔𝑑  is the detail layer ICW derived from information 
fidelity criteria [114, 115, 116] as 

 

 𝜔𝑑(𝑝) =
1
𝛼
∙ log2(1 + 𝛽 ∙ (

𝜎𝐵∙𝐼(𝑝)
𝜎𝐵2(𝑝) )𝛾) (4. 8)  

 
where 𝜎𝐵2 denotes the local variance of the base layer in a small 
window, 𝜎𝐵∙𝐼 denotes the covariance between the base layer and 
the original luminance, 𝛽  and 𝛾  are two constants control the 
effectiveness of the weighting function, and 𝛼 is a normalization 
factor which full fill the constraints of 𝜔𝑑(𝑝)𝜖[0,1]. If 𝜔𝑑(𝑝) is 
bigger than 1, the detail layer is amplified. It is commonly used 
in detail enhancement, with the risk of amplifying the noise at 
the same time. An example of the effectiveness of the detail 
layer ICW is given in Fig. 4.8. 

The de-noising level is controlled by the different selection of 
two smooth coefficients 𝛽 and 𝛾, as shown in Fig. 4.8. It is worth 
noticing that the required details may be hidden by the heavy 
noise. In that case, when removing the noise, the details are 
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smoothed out too. Thus, balanced smooth coefficients are 
carefully chosen. 

 

 
Fig. 4.8 Detail layer with (left) normal decomposition and (right) ICW-based de-
noising factor 

 

 
Fig. 4.9 Detail layer with different de-noising levels. The de-noising effect is increased 
from left to right, and from top to bottom. 

We compared our solution with the approach of applying 
single image de-noising after tone mapping. We choose BM3D 
[97], which is one of the leading de-noising algorithms. The 
implementation was downloaded from the website provided by 
original authors1

                                                      
1 Matlab code of BM3D is downloaded from 
http://www.cs.tut.fi/~foi/GCF-BM3D/ 

. The interface is a Matlab function, but the core 
is implemented in C. In order to test against the full capability of 
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BM3D, the noise level sigma is varied from 15 to 70, in order to 
find the best PSNR for BM3D. 

Gaussian white noise is added to the original clean HDR 
image with different signal-to-noise ratio vary from 10dB to 
25dB. Three tone mapping solutions are tested using WLS, 
WLS+BM3D, and the proposed ICW. As shown in Table 4.1, on 
average, the result of the proposed ICW is 1dB less than the 
result of WLS+BM3D solution, but the processing time is 
significantly reduced. The big difference occurs when the noise 
level of the input image is high. The BM3D method is able to use 
the information from the neighboring blocks at the tradeoff of 
the processing time. 

In some experiments, the proposed ICW-based solution 
outperforms the combination of WLS + BM3D, when the noise 
level of the input image is not high. A possible explanation is 
that the proposed ICW works directly on the full radiance map 
of HDR image, while BM3D works on the result of WLS, which 
contains less information due to compression. 

 

 
Fig. 4.10 Visual comparison with WLS+BM3D. (a) Clean image and a zoom-in object. 
The input image of (b-e) are added with different noise level at (b) SNR=10dB, (c) 
SNR=15dB, (d) SNR=20dB, and (e) SNR=25dB. In (b-e), the (top row) is WLS, the 
(middle row) is WLS+BM3D, and the (bottom row) is ICW proposed in [P7]. 

Visual comparison was conducted with five leading tone 
mapping algorithms based on different approaches. We selected 
the state-of-the-art global operator (2008) [108], and used the 
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implementation in Luminance HDR 1

 

. The other four local 
operators were selected from a scale-decomposition-based 
solution (2005) [117], a bilateral-based decomposition (2007) 
[111], a slide-window-based direct luminance compression 
(2010) [118], and an edge-preserved decomposition (2008) [34]. 
All implementations were downloaded from the website of 
original authors. Visual comparison show good improvement in 
terms of noise reduction. 

Table 4.1 Comparison with WLS+BM3D using quality metrics. 

HDR image 
noise level 

Method WLS WLS+BM3D [P7] 

SNR=10 
PSNR 24.65 29.94 28.08 
SSIM 0.3949 0.8994 0.6869 

SNR=15 
PSNR 28.82 32.95 32.60 
SSIM 0.6194 0.9209 0.8913 

SNR=20 
PSNR 33.13 36.25 35.47 
SSIM 0.8230 0.9643 0.9456 

SNR=25 
PSNR 36.82 38.53 37.88 
SSIM 0.9330 0.9804 0.9710 

Average Execution Time 
(Resolution 1200x800) 

3 s 35 s 7 s 

 
For simplicity, we applied the same method directly on the R, 

G, B color channels respectively, and therefore, color shift can be 
seen in some tone mapping result. Future work will focus on 
how to find in a better HDR color space for the least color 
distortions. Pioneer work about HDR color space is proposed in 
[119]. 

 

                                                      
1 Luminance HDR 2.3.1 is available at http://qtpfsgui.sourceforge.net/. 
It was previously named Qtpfsgui. 

http://qtpfsgui.sourceforge.net/�
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Fig. 4.11 Tone mapping visual comparison: (a) global tone curve [108], (b) scale-
decomposition [117], (c) bilateral filtering decomposition [111], (d) direct luminance 
compression [118], (e) edge-preserved decomposition[34], and (f) noise reduced tone 
mapping based on ICW in [P7].  
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5  Image Difference 
Metrics 

5.1 IMAGE DIFFERENCE METRICS FOR EXPOSURE 
BRACKETING IMAGES 

Quality metrics have been well studied for both image and 
video processing in the LDR domain. In image quality 
assessment, when a pair of images is given, the measurement of 
their similarity is classified as full-reference measurement. Many 
intensity-based indices [120, 121] have been proposed for their 
simplicity and fast processing. The most straightforward 
method is the peak signal to noise ratio (PSNR) calculated from the 
mean square error (MSE). However, PSNR is not accurate in many 
cases as it does not consider human visual system (HVS) [120]. An 
HVS-based structural similarity (SSIM) index [120] was 
proposed and was applied to video coding[122].  
 

 
Fig. 5.1 Images captured with moving people and vehicle using different exposures 
settings: (a) +1 EV, (b) 0 EV, and (c) -1 EV. Although they are captured at the same 
scene within a short period of time, the similarity index (SSIM) between each pair of 
images appears to be low at SSIM(a,b)=0.6685 and SSIM(a,c)=0.4216. 

Although these indices are designed to focus on cases where 
the dynamic ranges and intensities of the two images are almost 
the same, in practical situation where processing of high 
dynamic range imaging requires different level of exposures [2], 
such indices would not serve the scenarios, as shown in Fig. 5.1. 
In fact, it is known that the dynamic range can also be changed 
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due to images or videos with different bit-depth[123]. Moreover, 
the images being compared are assumed to be well registered by 
the intensity-based indices. However, it is unavoidable that 
there are rotations and translations in a set of differently 
exposed LDR images, especially when they are captured for 
outdoor scenes. Thus, in order to test if an image sequence is 
captured at the same scene and can be used for an HDR 
synthesis, it is desirable to provide simple similarity indices that 
are robust to translation, rotation, intensity change and dynamic 
range between two input images. 

In [P2], a structural similarity index for two LDR image by 
using intensity mapping and Richards’ curve [124] is proposed. 
Due to the limitation of image un-alignment, the histogram 
based IMF [51] is used to unify the dynamic ranges or intensities 
of two images from the same scene[125]. On the other hand, 
when there is neither intensity nor dynamic range change 
between two images from the same scene, the accumulated 
histograms of two similar images are almost the same, and the 
structure of the corresponding image is kept even though it is 
mapped by the IMFs. The Richards’ curve is adopted to design a 
switch on the deduction of the mean values from these two 
images. When two images are from the same scene, the 
similarity index value is calculated without the deduction of 
mean values from the corresponding images. As a result, the 
proposed index is robust to small translation and rotation 
between two images. When two images are from different 
scenes, the mean value is deducted from the corresponding 
images before the similarity index value is computed. As such, 
the proposed index is sensitive to two “similar” images from 
different scenes. 

Different from the traditional quality metrics, the proposed 
image difference metrics does not contain any mean-opinion-
scores. As such, it is designed to test if two images are from the 
same scene instead of measuring the image quality. 

The proposed index is then extended by dividing the whole 
image into local windows as in[120]. The similarity of two 
images is detected by checking all pairs of local windows. Such 
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a local similarity index is insensitive to large intensity changes, 
dynamic range changes, translation and small rotations between 
images from the same scene. 

The proposed image difference metrics start with mapping of 
two input images. Similar to the bi-directional comparison in 
[P4], the bi-directional mapping is written as 

 

 Ż1(𝑝) = �
Λ1,2(Z1(p)),  ω(𝑍1(𝑝)) ≥ ω(𝑍2(𝑝))
Z1(p),            ω�𝑍1(𝑝)� < ω(𝑍2(𝑝))

� (5. 1)  

  

 Ż2(𝑝) = �
Λ2,1(Z2(p)),  ω(𝑍2(𝑝)) ≥ ω(𝑍1(𝑝))
Z2(p),            ω�𝑍2(𝑝)� < ω(𝑍1(𝑝))

� (5. 2)  

 
where ω is a triangle weighting function, Z1(p) and Z2(p) are the 
intensity value of the two input images at pixel p, Λ denotes the 
histogram based IMF [51], and Ż(p)  represents an intensity 
unified pixel. This intensity unified pixel is then further 
transformed using Richards’ curve [124] as 

 

 �̈�1(𝑝) = Ż1(𝑝) − �1 − Γ�𝛽�Ż1, Ż2��� ∗ 𝜇Ż1 (5. 3)  

  

 �̈�2(𝑝) = Ż2(𝑝) − �1 − Γ�𝛽�Ż1, Ż2��� ∗ 𝜇Ż2  (5. 4)  

 
where 𝜇Ż1  and 𝜇Ż2  are the mean values of Ż1  and Ż2 , 
respectively, 𝛽�Ż1, Ż2� is the cosine of the angle between the two 
lexicographic order vectors of Ż1  and Ż2 , and Γ(z)  is the 
Richards’ curve defined as 

 

 Γ(𝑧) =
1

1 + exp (𝜍1(𝜍2 − 𝑧))
 (5. 5)  

 
where 𝜍1  and 𝜍2  are the growth rate and the threshold of 
maximum growth. Both Γ and 𝛽 are used to detect the similarity 
of two images. On one hand, when two images are from the 
same scene, the existence of intensity changes, small translation 
and rotation between them would appear in the value of Γ 
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wherein the value will be almost equal to 1. On the other hand, 
when two images are from different scenes, the value of Γ 
approaches 0. 

The similarity index is defined as 
 

 Ss(𝑍1,𝑍2) =
2𝜇Ż1𝜇Ż2 + 𝜀1
𝜇Ż1
2 + 𝜇Ż2

2 + 𝜀1
∙
∑ 2�̈�1(𝑝)�̈�2(𝑝)𝑝 + 𝜀2
∑ �̈�12(𝑝) + �̈�22(𝑝)𝑝 + 𝜀2

 (5. 6)  

 
where 𝜀1 and 𝜀2 are two small positive constants and they are 
adopted to improve the robustness of the proposed index when 
the local signal to noise ratio is very low. Similar to SSIM index 
[120], the proposed similarity index is applied locally rather 
than globally, and the final index is the summation of all the 
local indices as 

 
 Ssb(𝑍1,𝑍2) = 1

𝑝
∑ 𝑆𝑠(𝑝
𝑖=1 𝑍1,𝑍2). (5. 7)  

 
Experiments show similar result when the input images are 

of the same exposure level, while the proposed similarity index 
has great improvement when dealing with exposure bracketing 
images. Table 5.1 shows the metrics comparison based on the 
images in Fig. 5.1. 

 
Table 5.1 Metrics comparison using images in Fig. 5.1. The similarity indices mark 
from 0 (least similar) to 1 (identical). 

Image Pair (1,2) (1,3) 

SSIM [120] 0.6685 0.4216 

𝑆𝑠 [P2] 0.9828 0.9780 

𝑆𝑠𝑏 [P2] 0.9681 0.9504 

 
Table 5.2 Metrics comparison using images in Fig. 5.2. The similarity indices mark 
from 0 (least similar) to 1 (identical). 

Image Pair (1,2) (1,3) (1,4) (1,5) (1,6) 

SSIM [120] 0.5064 0.4750 0.4791 0.3803 0.3048 

𝑆𝑠 [P2] 0.9787 0.9357 0.9879 0.9674 0.9845 

𝑆𝑠𝑏 [P2] 0.9220 0.8547 0.9414 0.8875 0.8706 
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Another example is given with the input images captured 

using hand held camera, shown in Fig. 5.2. The image sequence 
contains camera movement, moving object, and exposure 
changes. The propose image difference metrics show the 
robustness in Table 5.2. 

 

  
Fig. 5.2 Sequence of images contain camera movement, moving object, and exposure 
difference of EV interval of 2/3. Images are marked as 1 to 6 from left to right, top to 
bottom. 

5.2 IMAGE DIFFERENCE METRICS FOR HDR RADIANCE MAP 

Due to lack of strict link between physical light radiance and 
image radiance map, HDR images with the same scene can be 
very different in terms of their direct peak signal-to-noise ratio 
(PSNR), as shown in Fig. 5.3. 
 

 
Fig. 5.3 Histogram in log radiance domain of (top) original HDR image, (mid) shifted 
HDR image, and (bottom) scale-invariant HDR image. 

Near-identical HDR images are defined in [P3] as the images 
that carry the same scene information, but are shifted or have 
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different scale in the log radiance domain. These images are 
classified as 

 
 H = �HDRIq: Rq�log (Rq) = aq ∙ log(R0) + bq� (5. 8)  

 
where 𝑅  is the radiance of the HDR image, 0 represents the 
reference image defined as original, q represents the test image, 
aq is the scale factor, and bq is the shift factor. If the HDR image 
is composed from an LDR image set and the exposure info is 
known, the scale factor can be estimated as 

 

 aq =
log�𝑘𝑞,1,2�
log�𝑘0,1,2�

 (5. 9)  

 
where k1,2 represents the exposure ratio between the first two 
images in the bracketing LDR image set. If the scale factor 
equals to 1, we call this HDR image shift-identical to the 
reference HDR image, and the shift factor is calculated as 

 
 bq = log (Δ𝑡0,1) − log(Δ𝑡q,1) (5. 10)  

 
where Δt denotes the exposure time of the first LDR image in 
the sequence. If the scale factor does not equal to 1, we name it 
scale-identical, where the value of the shift factor is related to 
the scale factor and the image radiance. 

When comparing the similarity of two HDR images, they are 
assumed to be near-identical. Thus, the scale factor is estimated 
using 

 

 aq =
max(ℎ|𝜙0(ℎ) > 𝜀) − min(ℎ|𝜙0(ℎ) > 𝜀)
max�ℎ�𝜙𝑞(ℎ) > 𝜀� − min�ℎ�𝜙𝑞(ℎ) > 𝜀�

 (5. 11)  

 
where  𝜙 is the histogram function and 𝜀 is a small number for 
the robustness to noise. The shift factor is calculated by 
correlating two HDR radiance maps using a sliding window. 
The biggest coefficient represents the best fit as 
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 bq =
𝜅(ℎ) − 𝐻

𝐻
∙ (𝑀 −𝑚) (5. 12)  

 
where 𝐻 is the total number of bins in plotting the histogram, 𝑀 
and 𝑚 are the maximum and minimum of the input radiance 
map, 𝜅(ℎ) = �ℎ�𝜎(ℎ) = max�𝜎(𝑖)�, 𝑖 = 1,2, … ,2𝐻� , and 𝜎  is the 
correlation coefficient function corresponding to the starting bin 
number of the sliding window. Finally, the proposed HDR 
metrics is calculated as 

 

 PSNRHDR = 10 ∙ 𝑙𝑜𝑔10(
𝑃 ∙ Φ2

∑ [aq ∙ log�𝑅𝑞,𝑝� + bq − log�𝑅0,𝑝�]2𝑃
𝑝=1

) (5. 13)  

 
 where Φ is a constant. 
 

Table 5.3 Compose HDR images with the following parameters in six experiments. 

 𝚫𝒕𝟏(𝒔) 𝚫𝑬𝑽𝟏 𝚫𝑬𝑽𝟐 𝚫𝑬𝑽𝟑 𝚫𝑬𝑽𝟒 

Original 0.02 1 1 1 1 

EXP1 0.50 1.00 0.98 0.99 0.96 

EXP2 0.50 1.58 1.53 1.54 1.51 

EXP3 0.50 0.32 0.93 0.49 1.58 

EXP4 0.02 1.32 1.42 0.58 0.74 

EXP5 0.50 0.15 0.17 3.22 3.60 

EXP6 0.03 0.26 0.32 1.00 3.32 

 
 

 
Fig. 5.4 Chart of PSNR from EXP1-6 from Table 5.1, where PSNR1 is the result of 
direct pixel-by-pixel comparison and PSNR2 is the result of [P3]. 
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An example is shown with HDR images synthesized with 

different parameters, as shown in Table 5.3. They are then 
compared with original HDR image using direct comparison 
and the proposed metrics. Results are illustrated in Fig. 5.4. In 
EXP1 and EXP2, despite the difference of initial exposure time 
( Δ𝑡1 ) and small distortion of EV intervals ( Δ𝐸𝑉i =
log2(Δ𝑡i+1 Δ𝑡i⁄ ) ), the relative relations among Δ𝐸𝑉1  to Δ𝐸𝑉4 
remains constant. The composed HDR images are verified to 
have high similarity in comparison to the original image, while 
the direct comparison shows a very low PSNR value in Fig. 5.4. 
In EXP3-6, random numbers are given for all parameters. The 
proposed metrics find the distortion and shown a drop of PSNR 
at average of 20dB. On the contrary, the direct comparison 
method was able to recognize the distortions. 
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6  Summary of 
Contributions 

6.1 CONTRIBUTION OF THE THESIS 

[P1]: A new intensity mapping, named inter-pixel 
relationship function (IRF), was proposed to map in between 
two images with different exposures by using their spatial 
correlations. The IRF has a variety of applications related to 
HDR imaging. In this paper, a dual patching is demonstrated 
using IRF with 10dB improvement compared to single 
directional patching using camera response function (CRF). 

 
[P2]: In this paper, a structural similarity index is proposed 

for identifying if two images are captured from the same scene 
and can be used for HDR synthesis. Different from traditional 
quality metrics, the proposed method is robust to different 
dynamic range, small moving object, as well as possibly small 
rotation and translation. Therefore, it is useful to find exposure 
bracketing sequence from a large image database for batch 
processing. 

 
[P3]: In this paper, we introduce the concept of near-identical 

HDR images, which carry the same scene information with 
different radiance representations. The same set of near-
identical HDR images can be transformed to each other with 
linear functions in log radiance domain, which is useful in 
displaying HDR images and HDR tone mapping. By using the 
log histogram of the radiance map, we manage to derive the 
scale and shift parameters for the near-identical HDR images, 
which will help to get an accurate assessment using PSNR.  A 
simple application of how to compose near-identical HDR 
images using IRF [P1] is also presented in the paper. 
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[P4]: A real-time framework to detect and remove the ghost 

artifact is proposed based on IRF and bi-directional comparison. 
The algorithm delivers robust ghost removal in O(n) time, 
which makes it a good candidate for mobile application. 

 
[P5]: A robust de-ghosting algorithm is proposed to solve an 

extreme scenario where a moving object occupies a large area 
and distort the spatial correlation. The distorted spatial 
correlation is corrected by using pixel intensity distribution. A 
statistical threshold model is trained from the image database, 
and the key parameters are determined on the fly. Experiments 
show that the proposed algorithm achieves good visual quality 
in both day-time and night-time lighting conditions. 

 
[P6]: In this paper, a sub-sampling based moving object 

detection is proposed to shorten the de-ghosting processing time 
for images with large resolution. Experiments show that the 
detection speed can be increased by 50%. Combining with this 
sub-sampling scheme, the real-time de-ghosting framework 
proposed in [P4] is capable of running on mobile device to de-
ghost on three 8MB image within 700ms. 

 
[P7]: A noise reduced tone-mapping is proposed to suppress 

the noise from the input HDR image. The de-noising process is 
embedded in the tone-mapping process based on the 
information content weighting. Therefore, it requires very little 
additional processing time. The experiments show a significant 
improvement in the visual quality of final tone-mapping image 
in terms of noise reduction. 

 
[P8]: A 2D de-noising factor is proposed to generate noise 

reduced HDR image from a set of noise LDR images. Contrary 
to existing solutions that operates in the HDR radiance domain, 
the proposed de-noising factor works directly on the pixels of 
input LDR images, which reduces the processing time to 20% of 
the radiance-based method. 
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6.2 SUMMARY OF RESULTS 

The publications [P1-P8] have covered a large portion of the 
HDR imaging value chain, as shown in Fig. 1.3. 

Technologies described in [P1, P4-6] are implemented in our 
PC application and mobile application. An example of three 
input images with moving object is shown in Fig. 6.1. Results 
from two state-of-the-art algorithms, the entropy-based de-
ghosting algorithm [82] and the patch-based iterative de-
ghosting algorithm [126], are shown in Fig. 6.2 and Fig. 6.3 
respectively. The former is good in the background sky but fails 
in the foreground people, while the latter performs the opposite 
way. 

We also compare with two leading image processing 
applications, Photoshop and Photomatix. The results are 
illustrated in Fig. 6.4 and Fig. 6.5, where the ghosting artifacts 
are clearly visible. Our proposed method, as shown in Fig. 6.6, 
generates clear image without ghosting artifacts. 

Expect the entropy-based algorithm [82], which requires to be 
running on MacOS, all the rest four are tested on the same 
laptop. Our proposed method uses the shortest processing time 
of 1.5 seconds. The others vary from 2.5 seconds to 350 seconds. 
 

 
Fig. 6.1 Three input images captured with moving object at different exposure levels 
with 2EV appart from each other. The image resolution is 2144x1424. No camera 
movement is involved. 
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Fig. 6.2 HDR image synthesized using entropy-based de-ghosting algorithm proposed 
in [82]. Obvious ghosting artifacts are seen in red and green blocks. The 
implementation was downloaded from original author’s website in the binary of 
PhotoSphere1

 

. The processing time was around 5 seconds on a Mac Pro desktop. An 
HDR image was synthesized from the binary app, and it was then been compressed 
using Photomatix through tone mapping. 

                                                      
1 PhotoSphere is a MacOS based binary implemented by the original 
authors. It is downloaded from http://www.anyhere.com/. 
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Fig. 6.3 HDR image synthesized using patch-based iterative approach in [126]. The 
de-ghosting performs well at foreground object in the red and green blocks. However, it 
fails at sky region. Obvious halo artifacts are seen around the palm tree leaves, and 
ghosting artifacts are seen in the blue block. The implementation was downloaded from 
original author’s website1

                                                      
1 Source code was downloaded from author’s project webpage at 
http://ece.ucsb.edu/~psen/hdr. 

 in the format of Matlab interface calling C routines. The 
whole processing cost 350 seconds. 
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Fig. 6.4 HDR image synthesized using Photoshop CS5. The sky in the blue block is 
well kept, while some under the palm tree are distorted. The foreground people are 
heavily distorted as seen in the red and green block. The processing cost around 7 
seconds on a Dell Precision M6700 laptop. 
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Fig. 6.5 HDR image synthesized using Photomatix Pro 4.2. The sky in the blue block 
performs well, while the foreground people suffer from ghosting artifacts, as seen in the 
red and green blocks. The processing time is around 2.5 seconds on a Dell Precision 
M6700 laptop. 
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Fig. 6.6 HDR image synthesized using our algorithm. A clear and sharp image is 
presented for both foreground people and background sky. The processing time is 1.5 
seconds on a Dell Precision M6700 laptop. 

 
State-of-the-art tone mapping algorithms usually focus on 

detail preservation and local contrast enhancement. We make 
use of information content weightings and proposed a noise-
reduced tone mapping in [P7]. White Gaussian noise 
(SNR=20dB) is added in the original HDR image. 
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Fig. 6.7 Tone mapping using tone curve [108]. Implementation is found in Luminance 
HDR. 

 
Fig. 6.8 Tone mapping using subbands decomposition [117]. Implementation is found 
from authors' website1

                                                      
1 Matlab source code is provided at 
http://www.mit.edu/~yzli/hdr_companding.htm 

. 
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Fig. 6.9 Tone mapping using edge-preserved decomposition [34]. Implementation is 
found from authors' website1

 

. 

Fig. 6.10 Noise reduced tone mapping proposed in [P7]. 

We compare with three leading tone mapping algorithms: 
global tone curve [108] as shown in Fig. 6.7, subbands 
decomposition [117] as shown in Fig. 6.8, and edge-preserved 

                                                      
1 Matlab source code is provided at 
http://www.cs.huji.ac.il/~danix/epd/  
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decomposition [34] as shown in Fig. 6.9. Result of the proposed 
method is shown in Fig. 6.10. 
 

It is important to test if a sequence of images is from the same 
scene, and can be used for HDR synthesis. A useful application 
is the batch processing for generating HDR images from a large 
database. Fig. 6.11 shows five pair of images captured from the 
same scene with different exposures. The proposed method 
from [P2] demonstrates the robustness to the exposure change. 
 

 
Fig. 6.11 Five image pairs captured at the same scene with different exposures. The 
exposure value differences for the five pair of images are (1) 2/3EV, (2) 4/3EV, (3) 2EV, 
(4) 8/3EV, and (5) 10/3EV. 

 
Table 6.1 Comparison of similarity indices using image pairs from Fig. 6.11 

Image Pair (1) (2) (3) (4) (5) 

SSIM [120] 0.8638 0.5502 0.3229 0.1985 0.1067 

𝑆𝑠 [P2] 0.9999 0.9999 0.9999 0.9999 0.9999 

𝑆𝑠𝑏 [P2] 0.9994 0.9972 0.9917 0.9845 0.9855 

 
Another five pairs of images are shown in Fig. 6.12, where 

pair 1 shows two images with moving objects and slightly 
exposure difference, and pair 2 and 3 are captured using hand-
held camera with camera movement. The proposed image 
differnce metrics [P2] is robust to all these changes. Pair 4 and 5 
are from two different scenes but looks similar. The proposed 
indices are able to identify the differences, as shown in Table 6.2. 
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Fig. 6.12 Five image pairs of different scenarios: (1) moving object in the image; (2) 
camera movement; (3) camera movement; (4) similar scene; and (5) similar scene. 
Pairs of (1)-(3) are suitable for HDR synthesis, while (4)-(5) are not. 

 
Table 6.2 Comparison of similarity indices using image pairs from Fig. 6.12 

Image Pair (1) (2) (3) (4) (5) 

SSIM [120] 0.4750 0.5688 0.6454 0.4730 0.4725 

𝑆𝑠 [P2] 0.9357 0.9199 0.9634 0.6466 0.7193 

𝑆𝑠𝑏 [P2] 0.8547 0.9153 0.8932 0.4802 0.5030 
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7  Conclusion 

In this thesis, we have studied a high quality software solution 
for HDR imaging, including intensity mapping, de-ghosting, 
noise-reduced HDR synthesis, noise-reduced tone mapping and 
simple image difference metrics. 

 De-ghosting is an important step to remove artifacts caused 
by moving object. A real-time solution is proposed for the 
application of mobile devices. An extended robust solution is 
proposed for handling moving object covering large area. Both 
solutions require moving object detection and correction by 
using intensity mapping. In the future, a model of how to detect 
moving object without hard threshold shall be studied. 

We have proposed to incorporate de-noising during the 
process of HDR synthesis and tone mapping respectively. The 
major advantage is computational efficiency. A 2D de-noising 
factor based on signal-to-noise ratio is proposed in the noise-
reduced HDR synthesis. An information content based de-
noising factor is proposed based on human visual system in the 
noise-reduced tone mapping. Both two de-noising steps operate 
in the RGB domain. In future work, better HDR luminance color 
space [119] shall be considered. 

An image difference metrics for measuring whether a pair of 
images is from the same scene is proposed to identify correct 
image sequence from a large image database for the synthesis of 
HDR images. It is robust to limited distortions, including small 
image un-alignment, small moving object and large luminance 
change due to exposure difference. Another metrics measures 
the similarity of two HDR images using histogram-based 
transform. This is still a very preliminary work for difference 
measures. In the future more sophisticated dynamic range 
independent quality metrics [127, 128] can be studied, which can 
measure images with different bit depth. 
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ABSTRACT

A novel method of high quality image inpainting for recovering original scene of degraded image using reference images of

different exposures is proposed. It consists of a new inter-pixel relationship function and the respective refinement to synthesize

missing pixel from existing spatially co-related pixels, and a dual patching to minimize the noise caused by dynamic range lost.

Experiment on the method was conducted and the results demonstrate the reliability of the proposed method.

1. INTRODUCTION

Images of same scene can be captured with different exposures and combined with computing power to synthesize image that

overcomes limitation of conventional cameras. However, useful data can be lost due to camera shake, especially when capturing

by a hand held device, which generates noticeable artifact in the synthesized image. In other words, different from the traditional

image inpainting [1] [2] and image completion [3], which generate only photorealistic patches, the degraded image inpainting

in digital photography requires true luminance value of real world scene. Therefore, the challenge of patching is to find useful

relations between missing pixels and the remaining pixels. The Camera Response Function (CRF) based fixing method [4]

[5] uses only inter-image relationship. Unfortunately, the patched pixel is just a luminance shift from the reference pixel, and

cannot represent the pixel value at the correct exposure of the degraded image. Motivated by these observations, we propose a

new method using refined Inter-pixel Relationship Function (IRF) with both inter-image and intra-image correlations to recover

the real scene luminance reliably, and a dual patching to reduce the dynamic range lost that further enhance the inpainting

accuracy.

2. INTER-PIXEL RELATIONSHIP FUNCTION

As shown in Fig. 1, the pixel A’ and B’ have the same intensity in the reference image. According to photography reciprocity,

when the exposure time changes, the pixel values of A’ and B’ change correspondingly. Intuitively, the missing value of B

can be copied from A in the degraded image. However, during the image capturing process, sensor noise, sampling noise and

compression noise are commonly generated. Thus, it is more accurate to find all the pixels with the same intensity as B’ in the

reference image (Ẑ) and calculate their co-location values in the degraded image (Z) using mean average. We define the IRF as

ψc(Ẑc(x, y)) =

∑
(x́,ý)∈Ω(̂Zc(x,y))

Zc(x́, ý)∣∣∣Ω(Ẑc(x, y))
∣∣∣ , (1)

where c is the color channel, and
∣∣∣Ω(Ẑc(x, y))

∣∣∣ is the cardinality of the spatially co-related pixels set Ω(Ẑc(x, y)), which is

defined as

Ω(Ẑc(x, y)) =
{
(x́, ý) | Ẑc(x́, ý) = Ẑc(�x, �y)

}
. (2)

The IRF has three useful characteristics inherited from the physical camera response. Char1: The IRF is a monotonically

increasing function. Char2: The pixels located at left end (dark pixels) and right end (bright pixels) are highly compressed due

to dynamic range limit. Char3: When choosing different reference images, shorter exposure time leads to smaller slope at the

left end and bigger slop at the right end.



Fig. 1.

Fig. 2.

An ”empty value” problem is raised in the raw IRF when the reference image does not span the whole dynamic range as

shown in Fig. 2. Using Char1, the refinement has two steps. First, a median filter is adopted starting from the middle of the

valid values towards left and right separately. The median filter corrects the monotonic errors, and recovers the empty values

between the valid values. The second step extends two ends of the curve by using the neighborhood slope. The refined IRF is

defined as

Ψc(z) = Extend(Median(ψc(z))), z ∈ [0, 255] (3)

3. DUAL PATCHING

In order to increase the accuracy, the reference image is selected to have the smallest exposure difference with the degraded

image. However, the dynamic range lost caused by Char2 is still inevitable.

If the reference image has shorter exposure time than the degraded image, then as can be seen from Char3, the dark pixels in

the reference image are mapped from a big dynamic range to a small one. In other words, it is a compressing process mapping

multiple values to one, which in turn makes the IRF in this area reliable. On the contrary, a highly compressed bright pixel in

the reference image is mapped into multiple values in the degraded image, which causes inaccuracy due to the dynamic range

lost. Thus, multiple reference images, with longer and shorter exposure time respectively, can be adopted to recover the lost

dynamic range and enhance the patching accuracy. The missing pixel intensity is calculated by

Pc =
Ψ̇c(Ż) ·W (max(ŻR, ŻG, ŻB)) + Ψ̈c(Z̈) ·W (max(Z̈R, Z̈G, Z̈B))

W (max(ŻR, ŻG, ŻB)) +W (max(Z̈R, Z̈G, Z̈B))
(4)

where Ż and Z̈) are the intensities of two reference images at the same co-location, c is the color channel (c = R,G,B) and

W is the weighting function defined as

W (z) =

{
log(z + 1), EV (Ref) > EV (Degrade)
log(256− z), EV (Ref) < EV (Degrade)

, z ∈ [0, 255] (5)



4. RESULT

As shown in Fig. 3, the degraded area destroys the integrity of the original image composition. Clearly, the exemplar-based

inpainting [2] algorithm works well on simple texture, such as the table top. However, obvious errors can be seen at complex

contents, like the baby’s face and the title of the book, due to short of reference. The CRF method [4] recovers the contents

by the luminance shift from the reference pixels, where obvious artifact can be seen at the border. Our algorithm restores the

original scene effectively. We tabulate the Peak Signal-to-Noise Ratio (PSNR) of each method in Table 1.

Fig. 3.

Table 1.
Method Exemplar-based inpainting [2] CRF method [4] Our method

PSNR (dB) 11.75 20.54 33.66

In addition, we test our algorithm in the High Dynamic Range (HDR) image synthesis [6]. The border artifact generated by

the degraded image in Fig. 3(e) is completely removed after patching using our algorithm in Fig. 3(f).

5. CONCLUSION

This Letter describes a new image inpainting method to patch the degraded image in an exposure set. As it uses all the relations

of the valid pixels with refined IRF and reconstructs the missing area by dual patching, it demonstrates better quality than other

algorithms. Experimental results with the HDR image synthesis further verify the efficiency of the proposed method.
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ABSTRACT

In this paper, a structural similarity index is first proposed for two
images with possibly different dynamic ranges and intensities as
well as possibly small rotation and translation. The proposed index
is then extended by dividing two images into local windows, and
the similarity is detected by checking all pairs of local windows.
It is shown by experimental results that the proposed indices are
more robust to large intensity and dynamic range changes of two
images from the same scene than the structural similarity (SSIM)
index in [4].

1. INTRODUCTION.

Many real scenes possess significant higher dynamic ranges than
the dynamic range that can be captured by digital cameras. In
those scenes, a single shot low dynamic range (LDR) image usu-
ally turns out to be underexposed and/or overexposed in certain
regions of the image. Because of this reason, a single shot does
not have full dynamic range and one way to overcome this is to
capture a set of differently exposed LDR images [1, 2, 3]. Such a
technology is called “high dynamic range (HDR) imaging” which
is becoming more and more popular. In fact, there are already
many commercial HDR software, such as, Photomatix, Photoshop
CS5, and so on. Several companies, such as, Pentax, Canon, Sony
and Apple, have provided cameras/handphones to support HDR
imaging. It can be expected that there are more and more LDR
images with different exposures. As such, the quality metrics of
differently exposed images will become an important R&D topic
in the field of image processing.

The quality metrics have been well studied for both image and
video processing. Many intensity-based indices were proposed to
assess the similarity of a pair of images. Their similarity is de-
termined by comparing the corresponding pixel intensities [4, 5].
Due to their simplicity, they are adopted in different applications.
For example, the structural similarity (SSIM) index [4] was re-
cently applied to video coding [6]. Although these indices are de-
signed to focus on cases where the dynamic ranges and intensities
of the two images are almost the same, in practical situation where
processing of high dynamic range imaging requires different level
of exposures, such indices would not work optimum [3]. In fact, it
is known that the dynamic range can also be changed due to images
or videos with different bit-depth [7]. Moreover, the images being
compared are assumed to be well registered by the intensity-based
indices. In addition, it is unavoidable that there are rotations and
translations in a set of differently exposed LDR images, especially
when they are captured for outdoor scenes. It is thus desirable
to provide simple similarity indices that are robust to translation,
rotation, intensity change and dynamic range between two input
images.

In this paper, we first propose a structural similarity index
for two LDR images by using intensity mapping functions (IMFs)
and the Richards’ curve [11]. The IMFs between two images are
identified by using their accumulated histograms [9]. It can be
shown that when there exists either intensity or dynamic range
change between two images, the IMFs can be used to unify the
dynamic ranges or intensities of two images from the same scene
[10]. On the other hand, when there is neither intensity nor dy-
namic range change between two images from the same scene,
the accumulated histograms of two similar images are almost the
same, and the structure of the corresponding image is kept even
though it is mapped by the IMFs. Due to the function of IMFs,
the proposed index is robust to the dynamic range and intensity
changes between two images. The Richards’ curve [11] is adopted
to design a switch on the deduction of the mean values from these
two images. When two images are from the same scene, the sim-
ilarity index value is calculated without the deduction of mean
values from the corresponding images. As a result, the proposed
index is robust to small translation and rotation between two im-
ages. When two images are from different scenes, the mean value
is deducted from the corresponding images before the similarity
index value is computed. As such, the proposed index is sensitive
to two “similar” images from different scenes. The proposed index
is then extended by dividing the whole image into local windows
as in [4]. The similarity of two images is detected by checking all
pairs of local windows. Such a local similarity index is insensitive
to large intensity changes, dynamic range changes, translation and
small rotations between images from the same scene.

The rest of this paper is organized as follow. The proposed
similarity indices are presented in Section 2. Experimental results
are provided in Section 3 to illustrate the efficiency of the proposed
indices. Finally, concluding remarks are listed in Section 4.

2. IMF BASED STRUCTURAL SIMILARITY INDICES

2.1. Mapping of Two Input Images

Assume that two images being compared are denoted as Z1 and
Z2, respectively. Λ1,2(z) and Λ2,1(z) are the intensity mapping
functions (IMFs) from Z1 to Z2 and vice versa, respectively. Z1

and Z2 are first mapped by using the IMFs Λ1,2(z) and Λ2,1(z) as

Z̃1(p) =

{
Λ1,2(Z1(p)); if Z1(p) is more reliable
Z1(p); otherwise

, (1)

Z̃2(p) =

{
Λ2,1(Z2(p)); if Z2(p) is more reliable
Z2(p); otherwise

, (2)

where p(= (x, y)) represents a pixel point. The relative reliability
is defined according to two typical scenarios as follows:

1) Both Z1 and Z2 are two LDR images that are captured from



the same scene with different exposure times. Pixel Z1(p) is more
reliable if w(Z1(p)) ≥ w(Z2(p)) where the weighting function
w(z) is a triangular function as [3]:

w(z) =

{
(z + 1)/128; if z ≤ 127
(256− z)/128; otherwise

.

2) Both Z1 and Z2 are LDR images that are captured from the
same scene at different bit depths [7]. Z1(p) is more reliable if the
bit depth of image Z1 is higher than that of image Z2.

The main objective of IMFs is to unify the intensities and
dynamic ranges of Z1 and Z2 which was verified in [10]. Z̃1 and
Z̃2 are further mapped to Z̆1 and Z̆2 as

Z̆1(p) = Z̃1(p)− (1− Γ(β(Z̃1, Z̃2))) ∗ μZ̃1
, (3)

Z̆2(p) = Z̃2(p)− (1− Γ(β(Z̃1, Z̃2))) ∗ μZ̃2
, (4)

where μZ̃1
and μZ̃2

are the mean values of Z̃1 and Z̃2, respec-
tively. Γ(z) is the Richards’ curve [11]:

Γ(z) =
1

1 + exp(ζ1(ζ2 − z))
, (5)

ζ1 and ζ2 are the growth rate and the threshold of maximum growth.
β(Z̃1, Z̃2) is the cosine of the angle between the two lexicographic

order vectors of Z̃1 and Z̃2. Both Γ and β are used to detect the
similarity of two images. On one hand, when two images are
from the same scene, the existence of intensity changes, small
translation and rotation between them would appear in the value
of Γ wherein the value will be almost equal to 1. On the other
hand, when two image are from different scenes, the value of Γ
approaches 0.

2.2. The Proposed Similarity Indices

Consider a pair of images in the spatial domain, Zi = {zi(p)|1 ≤
x ≤ N1, 1 ≤ y ≤ N2} (i = 1, 2). An intensity based similarity
index is defined as

Ss(Z1,Z2) =
2μZ̃1

μZ̃2
+ ε1

μ2
Z̃1

+ μ2
Z̃2

+ ε1

∑
p

2Z̆1(p)Z̆2(p) + ε2

∑
p

[Z̆2
1 (p) + Z̆2

2 (p)] + ε2
,

(6)
where ε1 and ε2 are two small positive constants and they are
adopted to improve the robustness of the proposed index when the
local signal to noise ratios are very low.

Besides the robustness with respective to intensity changes,
translation and rotation, an image similarity index should also be
sensitive to two images that are captured from two different scenes.
In other words, it is also important not to classify two different
images into the same group. The global structure of two images
from different scenes could be very similar. Although the global
structure of two images from different scenes could be very simi-
lar, but it can be observed that the local structures of two images
from different scene are different. Based on this observation, the
proposed index Ss(Z1,Z2) is applied locally rather than globally
for image quality assessment which is similar to the SSIM index
[4]. For simplicity, we assume that the number of local windows is
P and the contents of Z1 and Z2 at the ith window are denoted as
Z1,i and Z2,i, respectively. The value of Ss(Z1,i,Z2,i) are com-
puted for all pixels in the ith local window by using Equation (6).

The corresponding local similarity index, Sb
s(Z1,Z2), is defined

as the mean of all Ss(Z1,i,Z2,i)’s, i.e.,

Sb
s(Z1,Z2) =

1

P

P∑
i=1

Ss(Z1,i,Z2,i). (7)

3. EXPERIMENTAL RESULTS

In this section, we shall first show that the IMFs do not change
the structure of the input images. The value of Γ(β(Z̃1, Z̃2)) in
Equations (3) and (4) is fixed as 0. The tested images are from
the VQEG [12] and they contain different quantization noises as
shown in Fig. 1. Five pairs of image are tested with one image is
fixed as the first image. It is shown from Table 1 that the values of
SSIM and Sb

s(Z1,Z2) are almost the same.

Fig. 1. An image sequence from the VQEG

Table 1. Comparison of SSIM and Sb
s(Z1,Z2) for the image

sequence in Fig. 1

Pair 1 2 3 4 5

SSIM 0.9478 0.9083 0.8771 0.8582 0.8103

Sb
s(Z1,Z2) 0.9477 0.9085 0.8778 0.8584 0.8125

We then compare the SSIM [4], Ss(Z1,Z2) and Sb
s(Z1, Z2)

in the case that the exposures of two input images are different
[3]. Suppose that LZi and UZi are the lower and upper bounds of
image Zi, respectively. Define a constant � as mini=1,2{UZi −
LZi}. The values of ε1, ε2, ζ1, and ζ2 are empirically determined
as (0.01 ∗�)2N1N2/P , (0.03 ∗�)2N1N2/P , 1024, and 0.975
respectively. Two static scenes are chosen, namely Fusionopolis
and Memorial. The Fusionopolis contains both the indoor and
outdoor scenes of a building but there are no moving objects in
this sequence as shown in Fig. 2. The other, “Memorial”, includes
the indoor scene of a church [3]. The experimental results are
shown in Tables 2 and 3, respectively. We now study two scenes
with moving objects. The “Pantry” is captured in a pantry and the
human subject moves his head in the sequence as demonstrated
in Fig. 3. The other, “Street”, is captured outdoor and there are
several moving cars and people in the sequence as illustrated in
Fig. 4. The experimental results for these two image sequences



are illustrated in Tables 4 and 5, respectively. It is shown in Tables
2-5 that the gaps between 1 and Ss(Z1,Z2) and Sb

s(Z1,Z2) are
usually smaller than the gap between 1 and the SSIM [4]. Thus,
Ss(Z1,Z2) and Sb

s(Z1,Z2) are usually more robust when two
images are captured from the same scene, especially when there
are no moving objects in the scene. We also test the combined per-
turbation of intensity, translation and rotation by testing “Pantry”
with camera movement as shown in Fig. 5. The rotation and
translation values are also unknown. The experimental results are
demonstrated in Table 6. Obviously, Ss(Z1,Z2) and Sb

s(Z1,Z2)
are more robust than the SSIM [4] with respect to rotation and
translation.

Table 2. “Memorial” with nonlinear intensity change

Δt1
Δt2

2 4 8 16 32

SSIM 0.863 0.6979 0.512 0.3756 0.3112

Ss(Z1,Z2) 0.9983 0.9985 0.9986 0.999 0.9992

Sb
s(Z1,Z2) 0.9973 0.9975 0.997 0.9972 0.9971

Fig. 2. Sequence of “Fusionopolis” with different exposures

Table 3. “Fusionopolis” with nonlinear intensity change

Δt1
Δt2

2 4 8 16 32

SSIM 0.8638 0.5502 0.3229 0.1985 0.1067

Ss(Z1,Z2) 0.9999 0.9999 0.9999 0.9999 0.9999

Sb
s(Z1,Z2) 0.9994 0.9972 0.9917 0.9845 0.9855

Finally, we compare these three indices in the case that the
exposures of two input images are same. We consider the case that
there are rotation and translation between two input images. We
test five pairs of images with scenes that are depicting typical daily
life which is shown in Fig. 6. The rotation and translation values
are unknown. The rotation is very small while the translation
could be large. It is demonstrated in Table 7 that the proposed
indices are applicable to a pair of conventional images with the
same exposure. We also study five pairs of images that are are
captured from different scenes but look somewhat similar as in Fig.
7. The experimental results are shown in Table 8. Both the SSIM
and Sb

s(Z1,Z2) are sensitive to images from different scenes.

Fig. 3. Sequence of “Pantry” with different exposures

Table 4. “Pantry” with nonlinear intensity change

Δt1
Δt2

1.6 1.62 1.63 1.64 1.65

SSIM 0.8737 0.7605 0.5348 0.4031 0.4389

Ss(Z1,Z2) 0.9983 0.9968 0.9945 0.9948 0.9931

Sb
s(Z1,Z2) 0.994 0.9777 0.9689 0.9571 0.9617

4. CONCLUSION

In this paper, an intensity based similarity index which uses inten-
sity mapping functions (IMFs) between two images is proposed.
The concept is extended by dividing the images into local windows
and checking the local windows. The proposed indices are robust
to intensity and dynamic range changes as well as translation and
rotation of two images from the same scene. They are also sensi-
tive to two “similar” images from different scenes.
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Fig. 4. Sequence of “Street” with different exposures

Table 5. “Street” with nonlinear intensity change

Δt1
Δt2

1.6 1.62 1.63 1.64 1.65

SSIM 0.6685 0.4216 0.4193 0.2589 0.2799

Ss(Z1,Z2) 0.9828 0.978 0.9399 0.9555 0.9833

Sb
s(Z1,Z2) 0.9681 0.9504 0.9331 0.9085 0.9499

Fig. 5. Sequence of “Pantry” with camera movement and different

exposures

Table 6. “Pantry” with both intensity change and camera

movement

Δt1
Δt2

1.6 1.62 1.63 1.64 1.65

SSIM 0.5064 0.475 0.4791 0.3803 0.3048

Ss(Z1,Z2) 0.9787 0.9357 0.9879 0.9674 0.9845

Sb
s(Z1,Z2) 0.922 0.8547 0.9414 0.8875 0.8706

Fig. 6. Five pairs of images from the same scenes

Table 7. Five pairs of images with camera movement

Pair 1 2 3 4 5

SSIM 0.8584 0.5688 0.6454 0.7545 0.5069

Ss(Z1,Z2) 0.9757 0.9199 0.9634 0.979 0.9864

Sb
s(Z1,Z2) 0.9622 0.9153 0.8932 0.8695 0.939

Fig. 7. Five pairs of images from different scenes

Table 8. Five pairs of images from different scenes

Pair 1 2 3 4 5

SSIM 0.4855 0.473 0.4725 0.7 0.4535

Ss(Z1,Z2) 0.7327 0.6466 0.7193 0.5059 0.3576

Sb
s(Z1,Z2) 0.4627 0.4802 0.503 0.6309 0.3672
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ABSTRACT
In high dynamic range (HDR) imaging, one essential problem

is to verify whether two images are from the same scene. We

name such a pair of HDR images as near-identical images.

Even though the images carrying the same information, their

similarity cannot be detected by pixel-wise comparisons. To

solve this problem, we propose a new radiance alignment by

using their log histogram similarity. We also develop a new

algorithm to compose near-identical HDR image from unpro-

cessed images without any prior information about their ex-

posures. According to experiments, our detection method is

able to identify near-identical HDR images effectively, and

our synthesis algorithm is able to recover the correct expo-

sure ratios and compose near-identical images.

Index Terms— High dynamic range, near-identical, im-

age synthesis, image comparison

1. INTRODUCTION

In order to overcome dynamic range limitation of typical

low dynamic range (LDR) images, a radiance map is defined

to represent the whole range of visible light intensities and

stored as a high dynamic range (HDR) image. Nowadays, the

radiance map is commonly recovered from a set of differently

exposed LDR images [1][4][5][6]. Due to the differences in

synthesis algorithms and input parameters, the same set of

LDR images can generate different HDR images carrying the

same scene information with unequal radiance presentation.

We classify them as near-identical. On the other hand, some

HDR images are generated by estimated exposure times,

which are not accurate. Although they look identical with

human eyes, many pixels carry inaccurate values. Thus, it

is important to detect whether two images are near-identical,

and also to recover the missing exposures to prevent the

generating of inaccurate HDR images.

Similar HDR images can be produced in many ways. For

example, if we capture two sets of LDR images at the same

scene with the same camera settings except a change in film

speed (ISO), two identical image sets (when ISO noise is

small) with different exposures will be generated. The HDR

images composed by using these two input sets carry the same

scene information. However, they are near-identical images

with shift in the radiance domain. In another example, if the

original exposure ratio of the input LDR images has been

changed proportionally, such as changing the exposure time

from [1/2s, 1/4s, 1/8s] to [1/2s, 1/8s, 1/24s], the two syn-

thesized HDR image are near-identical with scale-invariant.

This situation is worse when exact exposure information is

not available. If the exposure values are given randomly, the

camera response function (CRF) [1][3][4][5] is not estimated

exactly, and the composed HDR images do not carry the same

scene information. However, since the differences are usu-

ally gradual color changes at particular intensity values, it

can hardly be detected by human eyes. As we can see, the

near-identical images and not identical images can not be dif-

ferentiated by human eyes. More difficultly, if we compare

those images pixel-by-pixel as LDR image comparison usu-

ally does, none of them can be recognized as being the same.

On the other side, some methods have been introduced to

recover the missing exposures. A radiometric model [6] was

introduced to estimate the exposure ratio with an initial value

set by user and an iterative process to fine-tune it. The results

vary due to different initial settings and the order of the poly-

nomial model used. Another rough approximation was ob-

tained by using intensity mapping function (IMF) [2] between

two images. However, as realized by the authors themselves,

there are a lot of restrictions and assumptions involved. Thus,

they used the approximated exposure ratio as the initial value

to the radiometric model [6] in their experiments.

In this paper, we propose two new methods to detect and

compose the near-identical HDR images without exposure

information respectively. Our detection method verifies the

similarity of two HDR images based on a radiance alignment.

Instead of finding individual exposure ratio, we present an

accurate algorithm to recover the rate in between the differ-

ent exposure ratios by using inter-pixel relationship function
(IRF) [7] in the image composition. We verify that the syn-

thesized images carry the same scene information in the ex-

periments.



2. NEAR-IDENTICAL HDR IMAGE

2.1. Definition of Near-Identical HDR Image

If two HDR images are exactly identical, their peak signal-
to-noise ratio (PSNR) calculated from pixel-by-pixel com-

parison shall be infinite, or at least a very large number when

tolerating small noises due to compression or sampling. How-

ever, it is not true for two near-identical images, as they store

the same information at different locations. The fundamental

factor of such mismatch is due to lack of strict link between

physical light radiance and image radiance map. For intu-

itive understanding, we plot histograms of three near-identical

HDR images in log radiance domain, as shown in Fig. 1.

Fig. 1. Histogram in log radiance domain of (top) original

HDR image, (mid) shifted HDR image, and (bottom) scale-

invariant HDR image.

We define near-identical HDR images as images that carry

the same scene information, but are shifted or have different

scale in the log radiance domain. In other words, we classify

them as

Π = {HDRIq : Rq|log(Rq) = aq·log(R0) + bq}, (1)

where R is the radiance of the HDR image, 0 represents the

reference image defined as original, q represents the test im-

age, aq is the scale factor, and bq is the shift factor. If the

HDR image is composed from an LDR image set and the ex-

posure info is known, the scale factor can be estimated as

aq = log(kq,1,2)/log(k0,1,2), where k1,2 represents the ex-

posure ratio between the first two images in the LDR image

set. If the scale factor equals to 1, we call this HDR image

shift-identical to the reference HDR image, and the shift fac-

tor is calculated as bq = log(Δt0,1) − (Δtq,1), where Δt1
denotes the exposure time of the first LDR image. If the scale

factor does not equal to 1, we name it scale-identical, where

the value of the shift factor is related to the scale factor and

the image radiance.

Near-identical HDR images are usually synthesized from

the same set of LDR images using different algorithms or dif-

ferent parameters. For example, when we use the CRF based

method [1][4] to generate HDR images, an assumption of

CRF (g) is usually given as g(Zmid) = 0, which does not

have any physical meaning. In practice, Zmid is equal to 128.

However, we can replace it to any other pixel values, such

as 60, 100 or 200. Such changes lead to a shift in CRF and

eventually cause the shift in radiance.

Not only different algorithms can generate near-identical

HDR images, but more commonly, the change of input expo-

sure time leads to the same consequence. For instance, the ex-

posure times of a set of three LDR images are [1/125s, 1/250s,

1/500s]. If we replace them to [1/2s, 1/4s, 1/8s], where the ra-

tios between the images are the same as the original values,

the synthesized HDR image is shift-identical to the original

HDR image. If we replace them to [1/2s, 1/8s, 1/32s], where

the ratios between the images are changed proportionally, the

synthesized image is scale-identical.

In all the above cases, the HDR images recovered from the

same LDR image set carry the same scene information, and

can be displayed identically on LDR monitor with some pa-

rameters change in viewing software. Furthermore, the tone

mapping result of the shift-identical HDR image is usually

the same as the result from the original image for most tone

mapping algorithms. Even the scale-identical HDR image can

have the same tone mapping result if the range info is not used

in the tone mapping algorithm.

2.2. Detecting Two Near-Identical HDR Images

The histogram of the log radiance is calculated from the min-

imum log radiance (m) to the maximum log radiance (M ) in

both images, with m and M being defined as⎧⎨⎩ m = min
p

(log(Rq,p), log(R0,p))

M = max
p

(log(Rq,p), log(R0,p))
, p = 1, 2, ..., P, (2)

where Rq denote the radiance value of HDR image q, and

P denotes the total number of pixels in all color channels.

The total number of bins (H) in plotting the histogram is an

adjustable parameter, where we use H = 1000 in our experi-

ments. The scale factor is then calculated by

aq =
max(h|ψ0(h) > ε) − min(h|ψ0(h) > ε)
max(h|ψq(h) > ε) − min(h|ψq(h) > ε)

, (3)

where ψ is the histogram function, and ε is a small number

of pixels for noise reduction. We use ε = P/H/30 in our

experiments.

We choose one image as a reference image and the other

as a test image. If the scale factor does not equal to 1, the

test image will first be multiplied by the scale factor, and then

its histogram is recalculated in the new scale. After that, we

fill in the test histogram with an all zero vector (length of

H) at both sides. Correlation coefficients are computed in

between the test histogram and the reference histogram by

sliding a window (of size H) one bin at a time on the padded

test histogram for 2H comparisons. The biggest coefficient

represents the best fit of the two HDR images. The shift factor

is calculated as

bq =
κ(h) − H

H
· (M − m), (4)



where κ(h) = {h|σ(h) = max(σ(i)), i = 1, 2, ..., 2H}, and

σ is the correlation coefficient function corresponding to the

starting bin number of the sliding window.

Fig. 2 gives an example of the radiance alignment, where

the highest correlation is detected at bin 850 indicating the

distance for shifting the test image is 150 units.

Fig. 2. Histogram of (a) reference image, (b) test image, and

(c) test image after scaling, where X axis is bin number, and

Y axis is number of pixels. (d) is the correlation results from

scaled test image to the reference image with shift of one bin

each time, where X axis is the starting bin number of the slid-

ing window, and Y axis is the correlation coeffient.

The PSNR of the two HDR images is calculated as

PSNR = 10·log10

⎛⎜⎜⎜⎜⎜⎝
P ·Φ2

P∑
p=1

[log(R̂q,p) − log(R0,p)]2

⎞⎟⎟⎟⎟⎟⎠ , (5)

where R̂q is the aligned radiance map calculted by Equa-

tion (1), and Φ is a constant and it is chosen as Φ =
log(2127) − log( 0.5

256 ·2−128). Two HDR images are said to

be near-identical if their PSNR is greater than a predefined

threshold. The threshold is set as 70dB in this paper.

3. SYNTHESIZE WITHOUT EXPOSURE INFO

As mentioned earlier, the exposure ratios between input im-

ages are essential in composing HDR images. Here, we re-

cover the exposure ratio by using their EV relations. Since

the EV interval is defined by EVi = log2(Δti/Δti+1), it re-

flects the exposure ratio directly. EV unit is defined as the EV

difference between two images proportional to the real EV in-

terval. For any three images in an exposure set, we select one

image as reference. The EV unit in between the second test

image and the reference image is calculated by

δr,t,t̂ =

Z̀r,t̂,c∑
z=Źr,t̂,c

[gr,t,c(z) − gr,t,c(ϕr,t̂,c(z))]

Z̀r,t̂,c − Źr,t̂,c + 1
, (6)

where r and t represent the reference image and the first test

image in creating the CRF [1][4] mapping g, t̂ is the second

test image used in IRF [7] mapping ϕ, and valid region bound-

aries are defined as{
Źr,t̂,c = max(α,ϕ−1

r,t̂,c
(α))

Z̀r,t̂,c = min(β, ϕ−1
r,t̂,c

(β))
. (7)

where α and β are two constants, and they are chosen as 10

and 250 respectively. For simplicity, we only use R channel

in our experiments for this calculation. When the first and

second test images are the same, a base EV unit is estimated.

The unknown exposure ratio is then calculated by

k̃i,i−1 =
(

δi−2,i−1,i

δi−2,i−1,i−1
− 1

)
· k̃i−1,i−2, i = 3, ..., n. (8)

If there is no prior exposure knowledge, assumptions of

the exposure time of the first LDR image and the exposure

ratio between the first two LDR images are given to synthe-

size a near-identical HDR image using our algorithm. If the

assumption of initial exposure time is correct, a shift-identical

HDR image is created. If both assumptions are not accurate,

a scale-identical HDR image is composed.

4. EXPERIMENTAL RESULTS

Six experiments (EXP1-6) are shown in Table 1, based on a

set of five LDR images captured using bracket function with

EV interval of 1. In the first two experiments, the HDR im-

ages are synthesized using our composing algorithm with dif-

ferent initial assumptions, as if we do not know the exposure

info. We assume that the initial exposure time (Δt1) equals

to 0.5s and the initial EV interval (EV1) equals to 1 in EXP1.

Table 1. Compose HDR image without exposure info by us-

ing (EXP1-2) initial assumptions and EV recovered using our

algorithm (bold), and (EXP3-6) all random exposure values.

Δt1(s) EV1 EV2 EV3 EV4

Original 0.02 1 1 1 1

EXP1 0.50 1.00 0.98 0.99 0.96
EXP2 0.50 1.58 1.53 1.54 1.51
EXP3 0.50 0.32 0.93 0.49 1.58

EXP4 0.02 1.32 1.42 0.58 0.74

EXP5 0.50 0.15 0.17 3.22 3.60

EXP6 0.03 0.26 0.32 1 3.32



Since the assumption of the initial EV interval is correct, as

we can see, the rest of the EV intervals computed from our

algorithm are almost the same as the original camera setting.

Thus, a shift-identical HDR image is synthesized. In EXP2,

We change the assumption of the initial EV interval to 1.58,

which is different from the camera setting. The computed

EV intervals proportionally equal to the original values, and a

scale-identical HDR image is generated.

Fig. 3. Chart of PSNR from EXP1-6, where PSNR1 and

PSNR2 are calculated using direct pixel-by-pixel comparison

and our detection method respectively.

We then perform direct pixel-by-pixel comparison and our

comparison using near-identical detection algorithm on the

generated HDR images. As plotted in Fig. 3, the pixel-wise

comparisons indicate that both test sets are different by hav-

ing very small PSNR values of around 35dB, whereas our de-

tection method verifies the similarity of the images by giving

PSNR value greater than 80dB. We further test the robustness

of our detection algorithm by using artificial random expo-

sures in the next four experiments. When the initial exposure

time is close to the original setting, as shown in EXP4 and

EXP6, the direct comparison gives relative high PSNR. In

contrary to this, our detection method detects bigger PSNR

values in EXP3 and EXP4 compare to those in EXP5 and

EXP6, which connects to the changes of the exposure ratios

correctly.

Table 2. EV correction with known initial exposure ratio

LDR image 1 2 3 4 5

True bracketing

EV interval

1 1 1 1 N.A.

Exposure time

(s)

1 1/2 1/3 1/6 1/13

EV interval by

exposure time

1 0.59 1 1.12 N.A.

EV interval by

our algorithm

1 (given) 0.92 0.94 0.88 N.A.

Table 2 demonstrates that our ratio recovery algorithm can

efficiently fix the not accurate exposure time caused by hu-

man or camera errors. Five images are captured using bracket

function with EV interval of 1, and the exposure time is auto-

matically given by the camera. Obviously, the calculated EV

difference is not the same as the actual settings, especially

with the third LDR image, where the difference is higher than

40%. However, our algorithm is able to correct the EV inter-

vals with the given initial ratio.

5. CONCLUSION

In this paper, we introduce a new concept of near-identical

HDR images, which carry the same scene information with

different radiance representations. The same set of near-

identical HDR images can be transformed to each other with

linear functions in log radiance domain, which is useful in

displaying HDR images and HDR tone mapping. We also

propose a method to detect whether two HDR images carry

the same scene information and an algorithm to synthesize

near-identical HDR images without exposure information.

Experiments show the effectiveness of our algorithms.
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Abstract—It is known that high dynamic range image can be
recovered by a set of conventional images shooting at the same
scene but with different exposure levels. However, ghost artifacts
are commonly seen due to the movement of the object between
different captures. In this paper, we propose a real-time algorithm
to detect and remove the ghost artifact based on four simple
procedures: 1) Inter-pixel Relationship Function estimation for
mapping differently exposed images into the same exposure level;
2) bi-directional comparison for further enhancing the detection
accuracy, especially at the underexposed and saturated areas;
3) moving object classification with edge artifacts removal; 4)
moving object correction for fixing the missing dynamic range.
The new algorithm delivers robust ghost removal in O(n) time.
To further reduce the processing time, the ghost removal process
can be executed in parallel with the photo capturing process.

I. INTRODUCTION

A High Dynamic Range (HDR) image stores a greater range

of tonal detail than a conventional camera can capture in a

single photo. The HDR image can be recovered from a set

of differently exposed Low Dynamic Range (LDR) images

[1][2][3][4], and good results have been reported in case of

static scene. However, when an object, such as a walking

person, changes its position in different LDR images, the ghost

artifact is generated during the HDR image synthesis. Various

methods [5][6][7][8] have addressed this problem, and the

biggest challenge is how to detect the moving object since

all the images are in different exposure levels, and cannot be

compared directly [9].

Khan et al [5] and Pedoen and Heikkilä [6] tackle the prob-

lem by calculating the probability of a pixel belonging to the

background or the moving object iteratively. Those methods

are computationally expensive since they need multiple rounds

of slow iterative processes. Faster solutions aim at detecting

the moving object directly, and the key is to find the common

attributes in connecting the images captured with different

exposures. Grosch [7] links the differently exposed images

using the Camera Response Function (CRF) and replaces the

moving object with the CRF mapping values from the refer-

ence image. As a trade-off, it introduces noise due to inaccurate

camera response estimation, mainly caused by the compression

at underexposed and saturated pixels. Furthermore, although

the moving object pixels are fixed by the CRF, they are only

luminance shift from the reference image, and as such the

dynamic range of the moving object is still lost. Entropy based

statistical process [8] uses local histogram around a small

region of each pixel to distinguish the moving object from the

background. However, as realized by the authors themselves,

the algorithm fails when two images have similar structures. In

other words, even big intensity difference will not be detected

if the entropy of the co-located pixels are similar in the two

images. There are also some commercial software [10][11][12]

available in the market, which include ghost removal functions

in the package. However, the results are not very satisfying,

and obvious ghost artifacts can still be seen.

The objective of this paper is to propose a new algorithm

that provides ghost free synthesis of HDR image and actual

real-time implementation. Specifically, the main contribution is

the computational inexpensive ghost removal process, consist-

ing of Inter-pixel Relationship Function (IRF) estimation, bi-

directional comparison, moving object classification and mov-

ing object correction, as shown in Fig. 1. The first three steps

detect the moving object using both co-location connections in

between images and the spatial co-relations inside the target

image. They remove the edge artifact and increase the detection

accuracy, especially at underexposed and saturated pixels. The

moving object correction recovers the missing dynamic range

by fixing the moving object pixels using IRF before HDR

composing.

Besides the synthesis quality, the computational complexity

of each step is also minimized to O(n). In addition, the

whole moving object detection and correction process works

independently in between two images. Thus, the ghost removal

process of the kth LDR image can be executed in parallel with

the capturing of the (k+1)th image, which can further reduce

the processing time.

The rest of the paper is organized as follows. In Section 2,

a new framework of moving object detection and correction

is formulated. In Section 3, the composition of HDR image is

described. Experimental results and conclusion are presented

in Section 4 and Section 5 respectively.

II. MOVING OBJECT DETECTION AND CORRECTION

Normally, the luminance of each pixel in the synthesized

HDR image is reconstructed by the co-located pixels in the

whole set of LDR images with a certain weighting scheme.

However, when a moving object appears, the pixels at the

978–1–4244–5046–6/10/$26.00 c© 2010 IEEE ICIEA 2010



Fig. 1. System diagram of the proposed real-time HDR image synthesis

same co-location represent different objects, and an unexpected

luminance value is computed which then causes ghost artifact.

In order to remove the ghosts, a reference image is selected to

be the background image. All other LDR images are compared

with the reference image to recognize the pixels belonging

to the moving object. Those pixels in each LDR image are

replaced by the background pixels before the HDR synthesis

will take place.

The details of the procedures are discussed in the following

subsections.

A. Inter-pixel Relationship Function Estimation

The Inter-pixel Relationship Function (IRF) is designed to

map differently exposed images to the same exposure level. In

one image, if two pixels, neither under-exposed nor saturated,

have the same intensity value, their represented locations on

the light sensor receive the same amount of photons. We call

them spatially co-related. When the exposure time changes,

the number of photons that fall into the same light sensor

changes accordingly, which result in a change of intensity

values, known as reciprocity law. The co-location intensity

values of these two pixels will be equal to each other in the

new exposure. In a static scene, we can find all the spatially co-

related pixels throughout the dynamic range and map them to a

new exposure. Hence, with the assumption that the size of the

moving object is relatively small compared to the background,

the IRF is defined by

Φk,c(Ẑc(x, y)) =

∑
(u,v)∈Ω(Ẑc(x,y))

Zk,c(u, v)

Ω(Ẑc(x, y))
, (1)

where k is the LDR image number, c is the color channel, Zk

and Ẑ represent the intensity values of the kth image and the

reference image, respectively, |Ω(Ẑc(x, y))| is the cardinality

of the set Ω(Ẑc(x, y)) and Ω(Ẑc(x, y)) is the set of spatially

co-related pixels in the reference image:

Ω(Ẑc(x, y)) =
{

(u, v)|Ẑc(u, v) = Ẑc(x, y)
}

. (2)

The pixel values are smoothed by IRF using all the spatially

co-related pixels. This minimizes the negative effect of the

sensor noise, compressing noise, sampling noise and moving

object interference generated during the capturing process. The

IRF estimation requires only O(n) time. It is also independent

from CRF and can be computed using any two images. As a

result, the moving object detection can be processed in parallel

with the next image capture.

B. Bi-directional Comparison

The reciprocity law fails at underexposed and saturated

pixels, as they are cut-off values due to the limitation of the

dynamic range of the camera. Thus, the IRF values of those

regions are unreliable.

As shown in Fig. 2, three zones are defined in the ref-

erence image as dark zone [Zmin, Zmin + δ), normal zone
[Zmin+δ, Zmax−δ] and bright zone (Zmax−δ, Zmax], where

δ is a small predefined number (δ = 5 in our experiments)

and [Zmin, Zmax] represents the full dynamic range of the

conventional image. A difference matrix is calculated only for

the reliable IRF values as

Γk,c(x, y) =
{ |Zk,c(x, y) − Φk,c(x, y)|, Ẑc(x, y) ∈ Ψ

0, Ẑc(x, y) /∈ Ψ
,

(3)

where Ψ represents the normal zone interval.

In order to cover the underexposed (dark zone) and sat-

urated (bright zone) pixels, a second direction of reverse

mapping and comparison is performed. The reverse IRF Φ̂k,c

is used to map the kth image to the same exposure of the

reference image, and the reverse difference matrix Γ̂k,c is

derived afterwards. The complete difference map of the kth

image is then calculated by the maximum value of all the

channels in both directions:

Γk(x, y) = max
{

Γk,c(x, y), Γ̂k,c(x, y)
}

, c = R,G, B. (4)

The long exposure image will cover the dark zone of the

short exposure image, and the short exposure image will cover

the bright zone of the long exposure image. If a pixel does not

belong to normal zone in either of the two images, its value

is insignificant in the HDR synthesis and it is not expected to

cause ghost artifact. The bi-directional comparison enhances



Fig. 2. Graph of the Inter-pixel Relationship Function (IRF) mapping from
the reference image to other exposure levels.

the detection accuracy, especially for the underexposed and

saturated pixels at the cost of O(n) computation.

C. Moving Object Classification

The moving object pixels can be classified using the com-

plete difference map:

Πk = {(x, y)|Γk(x, y) > ε} , (5)

where ε is a threshold. As a nominal bound, ε needs to be kept

small. However, in order to tolerate the value changes due to

the different camera response at different exposure levels, it

cannot be too small. We use ε = 0.1 in our experiments.

In digital photography, images are stored in pixels and each

pixel value is sampled within the dynamic range. Therefore,

the border of two objects where the transition of the intensity

happens, has mid intensity in between the adjacent pixels

caused by digitizing. For this reason, the outline of a moving

object, width of 1 pixel, can be detected erroneously with the

given threshold in Equation (5). Unfortunately, those pixels

contribute highly to the edge ghost artifacts. Thus, the outline

of the pre-classified moving object is re-evaluated using a

smaller threshold,

Πk = {(x, y)|Dk(x, y) > ε/m, if∃(x ± 1, y ± 1) ∈ Πk}∪Πk,
(6)

where we use m = 4 in our experiments.

The outline re-evaluation takes at most O(n) time because

it is computed only on the contour of the pre-classified moving

object.

D. Moving Object Correction

The classified moving object must be removed before

HDR synthesis to prevent ghost artifacts. However, such a

process loses the dynamic range information, especially when

a moving object pixel is captured with right exposure. To fix

the lost dynamic range, we use IRF to correct the moving

object pixels in all LDR images as follows:

Ik,c(x, y) =
{

Zk,c(x, y), (x, y) /∈ Πk

Φk,c(Zk,c(x, y)), (x, y) ∈ Πk
, (7)

As described before, the IRF (Φk,c) is computed using

both co-location relations between the images and spatial co-

relations inside the target LDR image. In other words, the pixel

values of the moving object are fixed using the spatially related

pixels in the target LDR image with the required exposure.

It helps to preserve the dynamic range of each pixel in its

corresponding exposure with a small time cost less than O(n)
time.

E. Composing HDR Image

The final HDR image is synthesized using the corrected

LDR images. Since all the images have been classified and

corrected in the ghost removal process, the HDR synthesis is

performed in the same way as in a static scene. In addition,

the sample pixels for CRF estimation are guaranteed to be

from the same object, which reduces the possible interference

brought from the moving object. Similar to [1][2][4], the image

radiance map is calculated in each color channel by

Ec(x, y) =

K∑
k=1

ω(Ik,c(x, y)) · (g−1(Ik,c(x, y))
t(k)

)

K∑
k=1

ω(Ik,c(x, y))

, (8)

where g is the CRF mapping function, t is the exposure time,

ω is a triangle weighting function, and K denotes the total

number of LDR images.

III. EXPERIMENTAL RESULT

Fig. 3 shows the HDR images composed from a set of

five LDR images, in which a baby is waving his hand. The

saturated area, which reflects the sun light as boxed in the

bottom left image, are synthesized wrongly using uni-direction

comparison. In contrast, bi-directional comparison recovers

those areas.

The edge artifact, as shown in the bottom left image of

Fig. 4, is the contour of the human’s head. It is completely

removed after the enhanced moving object classification, the

outline re-evaluation.

We plotted the moving object detection result with different

algorithms in Fig. 5. In the entropy approach [8], the histogram

of the correspondent window (m) was calculated for each pixel

in the image (n), which has the computational complexity of

O(mn). If the local pattern of the moving object was similar

to the background, such as the hair and face in Fig. 5(a),

even obvious colour difference cannot be detected. Grosch [7]

estimated the reference image using CRF curve, and O(mn)
is needed for decoding the estimated radiance value to pixel

value. Wrong detection can be made at the underexposed and

overexposed pixels, such as the shoulder in Fig. 5(b), where

the CRF noise was propagated. Our algorithm provides better

quality and a faster solution at O(n) in each of the processing



Fig. 3. Original LDR images (top), and the HDR images composed with
uni-direction (bottom left) and bi-direction (bottom right) comparison result

Fig. 4. Original LDR images (top), and the HDR images synthesized without
outline re-evaluation in moving object classification process (bottom left) and
with outline re-evaluation (bottom right)

steps. At the same time, it detects the moving object more

reliably.

In Fig. 6, we compared the HDR images synthesized from

a set of five photos of a baby playing on a playground

using three different software, FDRTools [10], Photomatix

[11], and Qtpfsgui [12]. Among them, Photomatix delivers

the best result with some background appears in the hair, and

Qtpfsgui, performing worst, shows the busy baby with very

blurred ghosting artifacts. The experiments suggest that our

algorithm deliver better ghost free HDR image than any of the

commercial software compared.

Fig. 5. Moving object detection result using (a) entropy approach, (b) CRF
estimation and (c) our method, from LDR images of (1) exposure time 1/40s
and (2) exposure time 1/25s.

Fig. 6. HDR images synthesized by five LDR images (top) with ghost removal
function enabled using (a) FDRTools, (b) Photomatix, (c) Qtpfsgui, and (d)
our method.

IV. CONCLUSION

In this paper, a real-time ghost removal algorithm is

presented using four important steps, IRF estimation, bi-

directional comparison, moving object classification and mov-

ing object correction. With this scheme, the ghost removal pro-

cess minimizes the time complexity to O(n) and the dynamic

range of the moving object is preserved well. In addition,

the ghost removal process is independent from CRF and can

be executed in parallel with the image capturing process.



Therefore, our algorithm has the potential to be embedded into

image capturing devices where computation power is low.
As indicated earlier, the IRF estimation is based on the

assumption that the moving object is relatively small compared

to the image. Thus, it is very challenging to provide a solution

when moving object occupies very large part of the image.

Same concern was noted in [1] where each color channels

are considered separately. It is also challenging to provide a

solution where all color channels can be considered at the same

time. We will study them in our future research.
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ABSTRACT

Ghosting artifacts are usually caused by moving object when

composing a high dynamic range image from multiple dif-

ferently exposed conventional images. In this paper, a robust

de-ghosting algorithm is proposed based on a double-credit

intensity mapping function (IMF) and an adaptive threshold

model derived from statistical training. The double-credit

IMF is estimated using both pixel intensity distribution and

spatial correlation. A statistical threshold model is trained

from the image database, and the key parameters are deter-

mined on the fly with variance vector calculated during the

IMF estimation to adapt to different scenarios. Optimal bi-

directional comparison is used for further improves the detec-

tion accuracy. The experiments show the effectiveness of the

proposed de-ghosting method.

Index Terms— High dynamic range, de-ghosting, inten-

sity mapping function, adaptive threshold

1. INTRODUCTION

A high dynamic range (HDR) image is commonly generated

from a set of differently exposed low dynamic range (LDR)

images to overcome the dynamic range limitation of existing

camera sensors. However, ghosting artifacts usually appear

due to moving object, such as moving people, trees waving in

the wind, etc. To solve this, de-ghosting is applied before the

HDR synthesis. Typical de-ghosting process includes detect-

ing of moving object pixels, removing them and synthesizing

new pixels using only the background pixels.

There are three major challenges in the de-ghosting pro-

cess. Firstly, LDR images are taken with different exposures

and cannot be compared directly. It is difficult to find a good

criterion to bring different exposed images to the same com-

parable scale. Secondly, moving object pixels are classified

by a threshold, but other factors, such as capturing parame-

ters (ISO, shutter speed), capturing hardware and light condi-

tions, affect the pixel co-relationship and militate against the

selection of a static threshold. The third challenge is how to

recover the missing dynamic range information.

Various methods were proposed to tackle these problems.

An iterative approach was proposed in [1] by detecting the

probability of a pixel belonging to moving object or back-

ground. The algorithm was time consuming. Local entropy

was proposed in [2] by matching local pixel value distri-

butions. However, as realized by the authors themselves,

it cannot detect even large intensity differences when two

co-located areas have similar local structure. Grosch [3]

proposed a method using camera response function (CRF).

However, with moving object, it is very difficult to estimate

CRF accurately. Gallo et al. [4] used a similar idea with

assumption that log exposure can be mapped to a 45 degree

straight line, which in practice may be different due to differ-

ent capturing hardware. In order to minimize the influence of

moving object and capturing device, Li et al. [5] proposed a

method using intensity mapping function (IMF). The calcu-

lation of IMF [6] involves only two images without exposure

information. However, if the moving object changes statisti-

cal information of the image, the IMF will not be accurate.

All the above methods [1-5] used empirical thresholds, and

only the method in [5] uses multiple images to compensate

the missing dynamic range with IMF. Again, if the IMF

is not accurate, color differences will be still visible in the

synthesized HDR image.

In this paper, we propose a de-ghosting algorithm to solve

these problems. To accurately map two differently exposed

images, a double-credit IMF estimation is introduced to use

both pixel intensity distribution and spatial correlation infor-

mation. A new threshold model is derived statistically and

the key parameters are determined directly from the variance

vector calculated during the IMF estimation. The missing dy-

namic range information is then patched using the double-

credit IMF.

2. HDR DE-GHOSTING

2.1. Double-credit IMF Estimation

Histogram is commonly used to calculate IMF [6], which

maps the pixel value from one image to the other (with dif-

ferent exposure) based on the intensity distribution. However,

such a process loses position information. On the other hand,

IMF calculated by spatial correlation [7] preserves position

information, but can easily be distorted by moving objects.

In order to generate an accurate IMF, a double-credit IMF is



proposed here by combining intensity distribution with spatial

correlation.

First, reference points are detected as the points whose

histogram IMF (φH ) and spatial correlation IMF (φS) differ

less than a given threshold δ,

|φH(z)− φS(z)| < δ, z = 0, ..., 255. (1)

We use δ = 5 in our experiments.

Then, a guidance curve (φG) is derived by connecting the

reference points. The most effective way is to find the point

(peak point) with the biggest distance to the 45 degree line.

The values in between the origin and the peak point are inter-

polated using straight line, and the values in between the peak

point to the target point (255, 255) are derived using quadratic

Bezier curve as,

φG(z) =

{ y0

x0
· z, z ≤ x0

B( 255−z
255−x0

), z > x0
(2)

where P0(x0, y0) is the peak point, P2 is the target point, P1

is (255, 255− |x0 − y0|) when mapping bright image to dark

image or (255 − |x0 − y0|, 255) otherwise, and B is defined

as B(t) = (1− t)2 ·P0 +2(1− t) · t ·P1 + t2 ·P2, t ∈ [0, 1].
The guidance curve is only an approximation, based on

which the final double-credit IMF (Φ) will be fine-tuned by

calculating the spatial correlation using only the reliable pix-

els as,

Φ(z) =
Σi∈Ω(z)Zt(i) + φG(z) · β

|Ω(z)|+ β
, z = 0, ..., 255, (3)

where Ω(z) is the set of pixels with the same intensity of z
in the reference image, |Ω(z)| represents the cardinality of

this set, Zt denotes the pixel value of test image, β = 40 is

the initial weight given to the guidance curve, and the reliable

pixels are defined by

{i | |φG(z)− Zt(i)| < tG, i ∈ Ω(z)}. (4)

Here, we use tG = 10 to filter out potential moving object

pixels. At the same time, a variance vector is derived together

with the fine tune step. It will be used to calculate the key

parameters for the threshold model.

An example of estimating double-credit IMF is shown in

Fig. 1. We can see that both statistical information and spatial

information are well utilized in the final IMF. The process in-

volves scanning image three times for calculating histogram

IMF, spatial correlation IMF, and then fine- tuning the result.

In fact, each image can be sub-sampled into multiple classi-

fications, and each scan can be simplified by using only one

classification. Based on our database of 312 images, experi-

ments show that if a classification contains around 6000-8000

pixels, it can represent the original intensity correlations well.

Thus, in our de-ghosting process, if the image resolution is

larger than 240x100, we divide it into three classifications by

sub-sampling at 3k, 3k + 1, and 3k + 2 (k = 1, 2, ...).

Fig. 1. An example of double-credit IMF estimation. Two in-

put images with different exposures (Top); extraction of refer-

ence points (Bottom-left); guidance curve and the fine-tuned

double-credit IMF (Bottom-right).

2.2. Optimum Bi-directional Comparison

A moving object can be detected by mapping the reference

image to the test image or vice versa. Bi-directional com-

parison is introduced to map only the more reliable pixel in

two mapping directions [5]. The reliability is represented in

a weighting function by calculating the difference to a cen-

tral point, where was fixed as 128 in [5]. Here, an optimum

bi-directional reliability weighting is proposed to be deter-

mined by the IMF curve. An example is shown in Fig. 2,

where the central point is in the middle of the two peak pixels

(xpeak1, xpeak2) calculated as,

M = xpeak1 · γ + xpeak2 · (1− γ). (5)

Here γ = 0.75 if xpeak1 is more close to 128, otherwise,

γ = 0.25. Bi-direction reliability weighting is then calculated

as,

ω(z) = |z −M |. (6)

2.3. A Statistical Threshold Model

A data driven training is conducted based on images captured

from tripod cameras with no moving object in the scene. The

training is aimed to find a threshold model suitable for dif-

ferent scenarios. A threshold vector is calculated based on

pixel intensities (from 0 to 255) to classify 95% of the pixels

as background. An example is shown at the bottom graph of

Fig. 2. The image database includes more than 300 images

from different cameras including Nikon D3, D300, Canon

EOS-1, IXUS850, IXUS900, and images downloaded from



Fig. 2. The top graph plots the forward IMF and the reverse

IMF of two static images. The bottom graph plots the thresh-

olds, with which 95% of the pixels are classified as back-

ground. The forward IMF gives better performance on the

left side of the central point M, and the reverse IMF mini-

mizes the threshold value on the right.

Internet. The images have been captured using different cap-

turing parameters at different lighting conditions to ensure ex-

tensive coverage.

From the training, we conclude the followings. First,

some capturing hardware generate large noise at low inten-

sity area. Second, the threshold can be minimized using bi-

directional comparison, where the biggest threshold appears

around the peak point of IMF. Third, in the same bracketing

sequence, brighter image pair requires a smaller threshold

than dark image pair. Obviously, a fixed threshold is not

enough to generate effective result, and thus, we calculate an

adaptive threshold model as

T (z,M) =

⎧⎨⎩
a, 0 ≤ z ≤ 30
a+ b−a

M−30 · (z − 30), 30 < z ≤ M

b+ c−b
255−M · (z −M), M < z ≤ 255

,

(7)

where z represents an intensity value, M represents the op-

timum bi-directional comparison central point, and a, b, c
are the key parameters derived from the variance vector (V )

generated during the fine-tuning of the double-credit IMF es-

timation. We use a = 0.8 ·
√

1
30

∑30
z=1 V (z), b = 0.8 ·√

1
30

∑M+15
z=M−15 V (z), and c = 5.

2.4. Moving Object Detection

The moving object pixels, to be inpainted before HDR syn-

thesis [5], are classified as,

{i | �(Zr(i), Zt(i)) > T̃ (Zr(i), Zt(i))}, (8)

where Zr denotes the pixel intensity of the reference image,

and the comparison function and the threshold are defined as

�(z1, z2) =
{ |Φ(z1)− z2|, ω(z1) > ω(z2)

|Φ̂(z2)− z1|, ω(z1) ≤ ω(z2)
, (9)

and

T̃ (z1, z2) =

{
T (z1,M), ω(z1) > ω(z2)
T (z2,M), ω(z1) ≤ ω(z2)

, (10)

where Φ is the IMF mapping from z1 to z2, and Φ̂ is the re-

verse IMF mapping from z2 to z1.

3. EXPERIMENTAL RESULTS

We compare the mean of signal-to-noise ratio (SNR) of the

IMF calculated using histogram [6], spatial correlation [7]

and the proposed method from 60 image pairs with known

IMF, as shown in Table 1. In SET1, the moving object (small

size) appears only in one image. In SET2, it appears in both

images at different positions. The proposed double-credit

IMF shows an average of 7 dB improvement.

Table 1. SNR comparison.

SNR Histogram Spatial Proposed
SET1 20.32 dB 21.79 dB 27.50 dB

SET2 28.49 dB 18.39 dB 33.05 dB

To evaluate the performance of the proposed de-ghosting

algorithm, different scenarios with and without moving object

are tested together with the state of the art commercial soft-

ware, such as PhotoMatix and Photoshop. A daylight scene

with a moving subject is shown in Fig. 3. The challenge of

this sequence is the dark hair, where the pixel values are small.

It is difficult to differentiate the dark hair from the dark back-

ground in the small exposure shot. Both Photomatix and Pho-

toshop show obvious artifacts in this region. A night scene is

shown in Fig. 4, and the challenge here is the multiple light

sources. When an object is highlighted by direct light source,

the pixel intensities near the light source change very fast. It is

common that parts of the object are detected as moving object

and the rest are mis-detected as background. The de-ghosting

results of Photomatix and Photoshop show obvious artifacts

due to this reason. Compared to these, the proposed method

generates high quality ghost-free HDR images.

4. CONCLUSION

In this paper, a robust de-ghosting method is proposed with

double-credit IMF estimation and adaptive threshold model.

The double-credit IMF combines both intensity distribution

and spatial correlation information, which improves the ac-

curacy of the mapping function. The threshold model derived



Fig. 3. Daylight scene de-ghosting with (Top) input images, using (a) PhotoMatix, (b) Photoshop, and (c) the proposed method.

Fig. 4. Night scene de-ghosting with (Top) input images, using (a) PhotoMatix, (b) Photoshop, and (c) the proposed method.

from statistical training is also reliable by testing against more

than 300 pairs of images. The key parameters of the threshold

model is derived on the fly from the variance vector calculated

during the double-credit IMF estimation. The optimum bi-

directional comparison further improves the accuracy in de-

tecting moving object. The experimental results verify the

robustness of the proposed algorithm.
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ABSTRACT

When a high dynamic range image is synthesized by using a set
of differently exposed low dynamic range (LDR) images, it is
important to detect moving objects so as to remove ghosting from
the final HDR image. A pixel level movement detection scheme
was recently proposed in [7]. It included a pixel level similarity in-
dex for differently exposed LDR images, an adaptive threshold for
the classification of pixels and an approach that utilizes intensity
mapping (IMF) function for patching invalid regions. In this paper,
we first propose a new adaptive threshold and a new patching
approach to improve the scheme in [7]. Then, a sub-sampling
method is introduced to simplify the improved movement detec-
tion scheme. Experimental results show that the improved move-
ment detection scheme indeed outperforms the scheme in [7]. In
addition, the speed is significantly improved by the proposed fast
movement detection scheme.

1. INTRODUCTION.

There are many real scenes which have higher dynamic ranges than
those that can be captured by digital cameras. In such scenes, a
single shot low dynamic range (LDR) image usually turns out to be
underexposed and/or overexposed in certain regions of the image.
Because of this reason, a single shot does not have full dynamic
range and one way to overcome this is to capture a set of differently
exposed LDR images [1, 2]. There are two alternatives to integrate
the desired information of all input images into one image. One is
to synthesize a high dynamic range (HDR) image [3]. The HDR
image is then compressed via a tone mapping such that it can be
displayed by conventional digital devices [4]. Both HDR and LDR
images are produced and it is applicable to devices with different
dynamic ranges. The other is to fuse the LDR images directly
into an LDR image which is much simpler [5]. The alternative
is more suitable for real time applications, especially for those
handheld devices with limited computational resource, such as
mobile phones or digital cameras.

When an HDR/LDR image is synthesized for an outdoor scene
by using multiple differently exposed LDR images, there are two
challenging problems to be addressed. One is to detect moving ob-
jects in order to remove ghosting artifacts from the final HDR/LDR
image. The other is to align the LDR images such that the synthe-
sized HDR/LDR image is not blurred [6]. As with the popular
HDR acquisition approach in [3], all input LDR images are as-
sumed to be perfectly aligned, possibly using the registration algo-
rithm in [6]. To remove ghosting artifacts due to moving objects in
the scene, the pixels of all LDR images are required to be properly
classified into valid or invalid, and only valid pixels are used to
generate the HDR/LDR image. Recently, a pixel level movement
detection scheme was proposed in [7]. This scheme was shown

to remove ghosting artifacts significantly better than existing com-
mercial software [8] which is also demonstrated in Fig. 1. The
paper has three major contributions. The first contribution is a new
pixel level similarity index for differently exposed LDR images.
The second is an adaptive threshold for the classification of pixels
into valid or invalid. The threshold is adaptive to the values of a
pixel to be detected and its reference pixel and the exposure times
of two images. The third is an intensity mapping function (IMF)
based approach for patching invalid pixels in a detected image by
using the co-located pixels in the reference image. Since the IMFs
are computed by using all pixels of these two images, the IMF
based patching approach can be regarded as a global one. All
pixels are exhaustively detected by using the scheme in [7] which
makes the scheme complex, especially for real time applications
on digital cameras and mobile phones. It is thus desirable to reduce
the complexity of the scheme in [7].

Fig. 1. Comparison of different movement detection schemes.

In this paper, we first improve the movement detection scheme
in [7], particularly on the latter two contributions. Besides being
adaptive to the values of two co-located pixels and the exposure
times of two images, the new threshold is also adaptive to the
ISO value and the average exposure value of all LDR images.
The patching scheme is also improved by involving local informa-
tion of under-exposed/saturated pixels in the reference image and
introducing a cross-image smoothing method for invalid pixels.
Experimental results show that by using the improved movement
detection scheme, the performance is indeed improved. We then
propose a sub-sampling based method to simplify the improved
movement detection scheme. The proposed method is based on
an observation that small portions of differently exposed images
belong to moving objects. Instead of detecting moving objects
by checking all pixels as in [7], a sub-sampling based method is
presented to detect moving objects by only checking part of pixels.
If a pixel is detected as a background one, its neighboring pixels
are skipped. Otherwise, its neighboring pixels are further checked
by using a sub-sampling method. Experimental results verify that



the complexity of the movement detection scheme in [7] can be
significantly reduced.

The rest of this paper is organized as follows. An improved
movement detection scheme is provided in Section 2. A sub-
sampling based method is proposed in Section 3 to simplify the im-
proved movement detection method. Experimental results are pro-
vided in Section 4 to show the efficiency of the proposed scheme.
Concluding remarks are given in Section 5.

2. AN IMPROVED MOVEMENT DETECTION SCHEME

Let Zk,l(p) denote the intensity of the lth color channel at position
p when the kth LDR image is captured, i.e., p is a spatial position,
l indexes over color channels of red, green and blue, and k indexes
over exposure time Δtk. Such a set of LDR images is known

as a Wyckoff set [1]. Let Ẑk be the reference image of Zk for
the classification of pixels in Zk as valid or invalid. An image is
selected as the initial reference image for the movement detection.
For simplicity, the image is denoted as k0 and its value is set as the
middle one. All pixels in Zk0 are marked as valid. Let p denote a
coordinate (x, y). A pixel Zk(p)(k �= k0) is marked as valid if it

is similar to its co-located pixel Ẑk(p) [7], i.e.,

S(Zk(p), Ẑk(p)) > Thrk(p). (1)

Otherwise, it is marked as invalid.

2.1. A Bi-directional Similarity Index

The function S(Zk(p), Ẑk(p)) in Equation (1) is given by

S(Zk(p), Ẑk(p)) =

3∑
l=1

2Φk,l(p)Ψk,l(p) + 1

3∑
l=1

[Φ2
k,l(p) + Ψ2

k,l(p)] + 1

, (2)

where Φk,l(p) and Ψk,l(p) are constructed by using a bi-directional
mapping method as [7]

Φk,l(p) =

{
Λl,π(k),k(Ẑk,l(p)); if w(Zk,l(p)) ≤ w(Ẑk,l(p))
Zk,l(p); otherwise

,

Ψk,l(p) =

{
Λl,k,π(k)(Zk,l(p)); if w(Zk,l(p)) > w(Ẑk,l(p))

Ẑk,l(p); otherwise
.

Here, the weighting function w(z) is defined as [3], and π(k)

corresponds to the exposure time of image Ẑk [7], Λl,k,π(k) and
Λl,π(k),k are two IMFs [9], Λl,k,π(k) maps intensity values in Zk,l

into Ẑk,l and Λl,π(k),k vice versa.

2.2. An Improved Adaptive Threshold

The value of Thrk(p) in Equation (1) is adaptive to the values of

Zk(p), Ẑk(p), Δtk and Δtπ(k), the ISO value G for capturing the
images and the average exposure value of all LDR images ĒV . It
is given as

Thrk,π(k)(p) =
2(1− ξk,π(k)(p))

1 + (1− ξk,π(k)(p))2
, (3)

where the value of ξk,π(k)(p) is computed as

ξk,π(k)(p) = (
1

32
+ max

1≤l≤3
{ε(Zk,l(p)), ε(Ẑk,l(p))})

h(
ΔtMa

Δtmk,π(k)

,
ΔtMk,π(k)

Δtmk,π(k)

, ĒV ,G),

the intensity factor ε(z) is defined as

ε(z) =

{
1
8
(1− 2z

255
)(

z
10

)32 ; if z < 128
0; otherwise

,

ΔtMa is the maximal value of all exposure times. ΔtMi,j and Δtmi,j
are the maximal and minimal values of two exposure times Δti
and Δtj , respectively. ĒV is the average exposure value of all
LDR images and is defined as log2(100ω

2/(GΔt̄)). Here, ω and
Δt̄ are the aperture value and the geometrical mean value of all
exposure times, respectively. The function h(x1, x2, x3, x4) is
defined as

h(x1, x2, x3, x4) = x
1
32
1 max{1, 1

log2(x2)
}( 10

x3
)
1
4 (

x4

100
)

1
32 .

2.3. An Improved Patching Scheme

As the correlation among two successive images is the strongest,

Ẑk0+1 and Ẑk0−1 are chosen as Zk0 . Ẑk(|k−k0| > 1) is updated
by

Ẑk(p) =

{
	Zπ(k)(p); if Zπ(k)(p) is invalid
Zπ(k)(p); otherwise

.

It is very important to properly select the values of 	Zπ(k)(p)

to fill in the invalid regions of Zπ(k). A new pixel, 	Zπ(k)(p), is

synthesized by using Ẑπ(k),l(p) and Λπ(π(k)),π(k),l(z)(1 ≤ l ≤
3) as

	Zπ(k),l(p) = Λl,π(π(k)),π(k)(Ẑπ(k),l(p)) ; 1 ≤ l ≤ 3. (4)

If none of Ẑπ(k),l(p)(1 ≤ l ≤ 3) is saturated or under-exposed,
	Zπ(k)(p) is then used to replace Zπ(k)(p). Otherwise, 	Zπ(k)(p) is
first filtered by a locally weighted averaging filter as

	Zπ(k),l(p) =

	Zπ(k),l(p) +
∑

p′∈Ω(p,ρ)

gπ(k),l(p
′)Ẑk,l(p

′)

1 +
∑

p′∈Ω(p,ρ)

gπ(k),l(p′)
, (5)

where Ω(p, ρ) = {p′ = (x′, y′)||x − x′| ≤ ρ, |y − y′| ≤ ρ}
with ρ being a predefined parameter. gπ(k),l(p

′) is the weighting

factor of Ẑk,l(p). Since a pixel p′ nearby a moving region has
a high possibility to belong to a moving object, gπ(k),l(p

′) is a
monotonically increasing function of the distance between pixels
p and p′. Meanwhile, it is a monotonically decreasing function of

the absolute difference between Ẑπ(k),l(p
′) and Ẑπ(k),l(p). In this

paper, the value of ρ is selected as 7, and gπ(k),l(p
′) is chosen as

gπ(k),l(p
′) = ‖p′ − p‖2 exp−4( ̂Zπ(k),l(p

′)− ̂Zπ(k),l(p))
2

Vπ(k)(p
′),



Vπ(k)(p
′) =

{
1; if Zπ(k)(p

′) is valid or updated
0; otherwise

.

	Zπ(k)(p) is then used to replace Zπ(k)(p). After all pixels are
updated, all invalid pixels are finally smoothed by using its eight
neighboring pixels as

Ẑk,l(p) =

γπ(k),l(p)Ẑk,l(p) +
∑
p′

Γπ(k),l(p
′)Ẑk,l(p

′)

γπ(k),l(p) +
∑
p′

Γπ(k),l(p′)
(6)

Γπ(k),l(p
′) = exp

−(
16( ̂Zπ(k),l(p

′)− ̂Zπ(k),l(p))

2
�log2( ̂Zπ(k),l(p)+1)+0.5� )2

, (7)

where the value of γπ(k),l(p) is 1 if Ẑπ(k)(p) is under-exposed
or saturated, otherwise 8. �a� is the largest integer less than a.
It is shown from Equations (6) and (7) that the weighting fac-

tor Γπ(k)(p
′) is determined by Ẑπ(k)(p

′) instead of 	Zπ(k)(p
′).

This is based on an observation that 	Zπ(k)(p
′) is less reliable than

Ẑπ(k)(p
′). The proposed smoothing method can thus be called “a

cross-image smoothing method”.

3. A SUB-SAMPLING BASED FAST MOVEMENT
DETECTION SCHEME

The improved movement detection scheme is simplified by using
a sub-sampling based method in this section.

Fig. 2. A sub-sampling based movement detection scheme.

An example with a sub-sampling factor being selected as 4(=
23−1) is adopted to illustrate the proposed fast movement detec-
tion scheme. The example is shown in Fig. 2. The pixels that
are labeled with 1 are checked at the first round, and they are
marked by the blur color if they are invalid. The neighboring
pixels of a blue pixel labeled with 1 are then checked by using
a sub-sampling method. In other words, all neighboring pixels
that are labeled by 2 are checked at the second round. They are
also marked by the blur color if they are invalid. Finally, the
eight neighboring pixels of a blue pixel labeled by 2, i.e., those
pixels are labeled by 3, are checked in the final round. Only 1/16
of all pixels are detected at the first round. Since only a small
portion of pixels in an LDR image belongs to moving objects, the
second and third rounds of detections are only conducted for a
small amount of pixels in the LDR image. As such, the complexity
of the improved movement detection scheme can be significantly
reduced. Meanwhile, since many pixels are in the neighborhoods

of two pixels, a flag is attached to each pixel so as to indicate
whether it has been detected. With the flag, each pixel will only be
detected once.

Besides simplifying the proposed movement detection scheme,
another important issue is to design a parallel simplified method.
This can be achieved by selecting the sub-sampling factor as a
power of 3. An example is demonstrated in Fig. 3 with the sub-
sampling factor being chosen as 9. All pixels that are marked by
1 are detected at the first round. The neighboring pixels of a blur
pixel labeled by 1 are further detected by using a sub-sampling
method. It is demonstrated in Fig. 3 that the sub-sampling method
can run in parallel.

Fig. 3. A parallel sub-sampling based movement detection

scheme.

4. EXPERIMENTAL RESULTS

In this section, we first compare the improved movement detection
scheme with the one in [7] by testing two sets of differently ex-
posed images. The first set is composed of 3 differently exposed
images as demonstrated in Fig. 4. The second set is composed of
five images as illustrated in Fig. 5. The initial reference images
are selected as the second image and the first image for the first
set and the second set, respectively. It is shown in Figs. 6 and 7
that the improved scheme can be adopted to produce better HDR
images.

Fig. 4. A set of three differently exposed LDR images with waving

leafs.

We then test the proposed fast movement detection scheme
with the sub-sampling factor being selected as 4. Both image
sequences in Figs. 4 and 5 are tested. 47.18% and 76.37% of
pixels are detected for two input images of the former, respectively.



Fig. 5. A set of five differently exposed LDR images with a

moving subject.

Fig. 6. The final LDR images for the first set.

24.04%, 35.69%, 50.92% and 54.89% of pixels are checked for
four input images of the latter, respectively. Besides these two
sequences, another LDR image sequence that is shown in Figs.
8 is also tested. 39.66%, 41.35%, 51.14%, 55.4% and 77.22%
of pixels are detected for five images of the sequence in Fig. 8,
respectively. Overall, the number of detected pixels is reduced by
up to 58.61%. It should be noted that the speed could be further
improved by choosing a larger sub-sampling factor such as 8 or 9.

5. CONCLUSION

An improved movement detection scheme has been provided by
introducing a new adaptive threshold and a new patching approach.
A sub-sampling based method has also been proposed to simplify
the improved movement detection scheme. By using the move-
ment detection scheme introduced in this paper, the quality of the
final high dynamic range images is improved. The speed is also

Fig. 7. The final LDR images for the second set.

Fig. 8. A set of six differently exposed LDR images with a moving

subject.

significantly increased by the proposed fast movement detection
scheme.
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In this paper, we proposed a noise reduced tone mapping method based on information content weighting, where the perceptually
unimportant pixels are smoothed during the decomposition in two steps. First, a base layer information content weighting is
introduced to give high fidelity to the data term based on the ratio of the local pixel power and the overall noise power. Then, the
detail layer is subtract based on the mutual information between the original image luminance and the clean base layer. Experiments
show the effectiveness in terms of noise reduction and visual quality improvement. Compare to the state-of-the-art weighted-least-
squares tone mapping, the proposed method spends 10-15% more in processing time and improves the quality by 1-4dB on the
average. The proposed method can also be used for the noise reduction of conventional low dynamic range images.

Index Terms—high dynamic range, tone mapping, edge-preserving decomposition, de-noising

I. INTRODUCTION

DYNAMIC range of a real world scene is defined as

the ratio between the largest and the smallest light

intensities in the scene. Due to hardware limitation, an image

captured using conventional camera is not enough to keep the

full dynamic range. Therefore, a high dynamic range (HDR)

image is usually reconstructed using either new designed sen-

sors [1], [2] or synthesized using multiple differently exposed

images [3]. Unfortunately, an HDR image cannot be shown

directly on a conventional display device due to hardware

limitations. Although HDR-solution-based monitor [4] and

projector [5] have been proposed, they are still not widely

used due to quality and cost issues. Thus, compression from

an HDR image into a display-able image are studied known

as HDR tone mapping.

Studies show that the perceptual of human visual system

(HVS) is more sensitive to the high frequency components

than the low frequency components [6]. Thus, in order to keep

the high dynamic range content in a low dynamic range image,

the low frequency components are compressed while the high

frequency components are retained. Previous tone mapping

methods can be classified into two major categories: global

operators and local operators.

The global operators map the intensity values of a large

range into a small range in a spatially invariant way [7]. In

order to increase the scene contrast, most of these operators

are non-linear [8]. There are two major advantages of the

global operators. First, the relative contrast is well preserved,

which means the brightness correlation of any two pixels in

the HDR image will not be reversed in the tone mapping

result. Second, they are simple and computational efficient,

and therefore, they are good candidates for generating HDR

video sequences [9]. The problem of the global operators is

that they are spatially invariant, which makes them difficult to

keep small local structures.

To improve the visual quality, local operators are studied

using not only the tone curve, but also spatially related

neighbouring pixels. Reinhard et al. [10] treated the tone

mapping process as a traditional photo development process.

They proposed an auto dodge-and-burning operator using

circularly symmetric Gaussian function with a locally adaptive

scale factor. Another approach divided the input image into

small overlapping windows [11]. Then, it reduced the overall

contrast by suppressing contrast in each window, while keep

the relations among the windows by using a guidance map.

Both two methods directly attenuate the image luminance map,

which avoid the problems associated with layer decomposi-

tion. However, their quality is highly relied on the choosing

of the parameters.

Following the HVS model, most tone mapping methods

decompose an HDR image into multiple layers and process

them separately. Gradient-decomposition-based method ma-

nipulated the gradient field by attenuating the magnitudes of

large gradients [12]. The compressed image was obtained by

solving a Poisson equation on the modified gradient field. An-

other major approach used luminance decomposition based on

Retinex theory [13], where an image was regarded as a product

of an illuminance component and a reflectance component.

Gaussian filtering method for decomposition was proposed

in [14], and soon be replaced by bilateral filtering [15], [16] for

its better edge preservation. However, halo artifact is usually

seen in the compressed image due to edges leaking to the

reflectance component.

To solve this, more sophisticated edge-preserving operators

are proposed to decompose an HDR image into a base layer

and a detail layer. Farbman et al. [17] proposed a weighted

least squares (WLS) framework with progressive base layer

decomposition. Other methods focused on the smoothness

constraint [18], [19] and the localized data term [6] for better

visual quality and fast processing.

Most tone mapping methods focused on how to keep fine

details. Unfortunately, noise in an HDR image can be easily

treated as the fine detail and retained in the final image. For
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example, the gradient-decomposition-based method magnifies

the small magnitude to review the fine details. Noise, if not

carefully treated, can be magnified and become more obvious

in the tone mapping result.

In order to reduce noise, Lee et al. proposed a scale-

decomposition-based method [20]. It used a discrete Haar

wavelet transform to decompose an HDR image into four

subbands. A noise reduction step was introduced by filtering

the subband with the lowest frequency using bilateral filter,

and smoothing the rest subbands using soft-thresholding. The

problem of using multiscale techniques is that the original

signal may be distorted at the composition stage which gener-

ates the halo artifacts [21], if the parameters are not carefully

selected.

In this paper, we proposed a noise reduced tone mapping al-

gorithm based on edge-preserving operators, as they represent

state-of-the-art quality [6]. The proposed method incorporates

the information content weightings (ICW), and works in two

steps. First, a base layer ICW is introduced for a better

fidelity between the base layer and the original HDR image

based on the information theory of how much information

can be received after passing through a noise channel. It

pushes the noise out of the based layer during the edge-

preserving decomposition. In the second step, the detail layer

is derived using another ICW, where the mutual information

between the input image and the derived clean base image

are given higher weights. The mutual information weighting

is derived from the information fidelity criterion [22]. With

the parameters carefully chosen, the proposed method reduces

the noise significantly without any halo artifacts.

The rest of the paper is organized as follows. Section

II reviews some background in the field of edge-preserving

tone mapping and information fidelity criterion. Section III

describes the proposed noise reduced tone mapping algorithm.

Experimental results, comparison and discussion are provided

in Section IV. And the paper is concluded in Section V.

II. BACKGROUND

A. Edge-Preserving Tone Mapping

In the Retinex theory [13], an image (I) is regarded as

a product of two components (I = L · R): a illuminance

component (L) which contains large luminance variance, and

a reflectance component (R) which contains intrinsic informa-

tion.

The fundamental of the edge-preserving decomposition is

based on the Retinex theory, where an HDR image is decom-

posed into a base layer (B) with large luminance variance

and a detail layer (D) with fine details. Then, the base layer

is compressed, and the detail layer is either kept or enhanced,

before they are re-composed into a low dynamic range image.

The decomposition is an ill-posed problem, and the most

widely used methods are generalized as∫∫ (
(B − I)

2
+ λΦ(B, I)

)
dxdy, (1)

where I denotes the log luminance of the HDR image, λ is

a smoothing coefficient and Φ represents a smooth term. The

first part of the equation is a data term in L2 norm striving

to minimize the distance from the base layer to the original

luminance. The smooth term (Φ) defines the local smoothness

of the base layer during the decomposition. And λ is used to

balance between the data term and the smooth term for a good

tradeoff between fidelity and smoothness. The bigger value of

λ generates smoother illumination in the base layer and richer

contrast in the detail layer. Here, B, D and I are all defined

in log luminance domain, and therefore, the original product

is rewrite as

D = I −B. (2)

Many researches have been conducted on different smooth

terms. In the weighted least squares (WLS) framework [17],

the smooth term is defined as the partial derivatives of the

base layer as

Φ(B, I) =

(
ax(I)(

∂B

∂x
)2 + ay(I)(

∂B

∂y
)2
)
, (3)

where ax and ay are spatially varying weights that control the

smoothness of the partial derivativesS. A similar approach is

introduced by Guarnieri et al. [18] as

Φ(B, I) = ω|∇B|2, (4)

where ω is a spatial varying coefficient that is inversely to gra-

dient norm of the original illuminance. Li et al. proposed an-

other smooth term based on half quadratic regularization [19]

as

Φ(B, I) = (ϕ(bx,∇Ix) + ϕ(by,∇Iy)) , (5)

where ϕ presents the coefficients for the half quadratic regu-

larization.

B. Information Fidelity Criterion

In image quality assessment, when the reference image is

present, the measurement of the fidelity from the test image to

the reference image defines the quality of the test image. There

are many fidelity terms, such as the widely used peak signal-

to-noise ratio (PSNR) based on mean square error (MSE).

However, the correlation between the MSE and the human

perceptual of image quality is not very tight. Therefore, an

information fidelity criterion (IFC) [22] is proposed based on

natural scene statistics [23], which correlates to the sensitivity

of human visual system (HVS).

The IFC is derived from an information-theoretic framework

using Gaussian scale mixtures (GSM) model in the wavelet

domain. Each subband of the wavelet decomposition is mod-

eled as a GSM random field (C), which is a product of two

independent stationary random field as

C = S · U = {Si · Ui : i ∈ I}, (6)

where S is a random filed of positive scalars, U is a random

field of Gaussain scalar with mean zero and variance σ2
U ,

and I denotes the set of spatial indices for the random

field. Similarly, the distortion is modeled as a simple signal

attenuation (G) and an additive Gaussian noise (V ) as

D = G · C + V = {gi · Ci + Vi : i ∈ I}. (7)
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The IFC is defined as the mutual information between the
source and the distorted images as

IFC(CN ;DN |SN = sN ) =
1

2

N∑
i=1

log2

(
1 +

g2i s
2
iσ

2
U

σ2
V

)
, (8)

where sN denotes a realization of SN , and σ2
V denotes the

variance of the additive noise.

Wang et al. [24] further extended the IFC by combining

it with the similarity index (SSIM) [25]. Concurrently, they

also made an interesting discovery that with the information

content weighting, event the widely criticized PSNR can

be converted to a competitive perceptual quality measure-

ment [24]. A saliency-based pooling strategy is proposed with

a saliency map constructed using local variance based on the

information theory of how information is received through a

noise channel [26] as

ω =
1

2
log2

(
1 +

Psource

Pchannel

)
, (9)

where ω represents the amount of the received information,

and Psource and Pchannel denotes the source power and the

channel noise power, respectively.

III. NOISE REDUCED TONE MAPPING

The proposed noise reduced tone mapping is designed

to be working with the state-of-the-art edge-preserving tone

mapping. We choose the weighted least square (WLS) frame-

work [17] in our implementation for its simplicity and fast

processing. The proposed method consists of two weighting

factors: a base layer information content weighting (ICW)

based on local variance and a detail layer ICW based on

information fidelity criteria. Details are given in the following

subsections.

A. Noise Reduced Base Layer Decomposition

In edge-preserving decomposition, the data term defines the

fidelity between the based layer and the original luminance. It

is proposed in an L2 norm for easy calculation. At the same

time, it also represents a mean square difference between two

components, which does not link to the HVS tightly [22], [24].

Although the smooth term helps refine the decomposition, it

is important to add an information content weighting directly

on the data term as∫∫ (
ωb · (B − I)

2
+ λΦ(B, I)

)
dxdy, (10)

where ωb is the spatial varying ICW based on the perceptual

of HVS. The principle is that a higher weight is given to

the pixels that are perceptually more sensitive in assessing

the image quality, and therefore, the base layer will be more

close to the original image. On the contrary, when processing

the pixels that are less sensitive in the human perceptual,

commonly low frequency components, the decomposition is

bias towards the smooth term.

Inspired by Equation 9, the base layer ICW is defined as

ωb(p) =
1

2
log2

(
1 +

σ2(p)

σ2
c

)
, (11)

Fig. 1. The behavior of different saliency coefficient (c) on a clean image
(left column) and a noise image (right column). The noise image is generated
by adding a zero mean Gaussian noise with variance of 0.01. The bigger
the saliency coefficient, the smoother the base layer. c = 0.3 is chosen as a
balanced value in our implementation.

where σ2(p) denotes the local variance at each pixel p with a

small window, and σ2
c is a constant represents the channel

noise power (σ2
c ∈ Γ(p) = {σ2(p), p ∈ P}). Saliency

coefficient (c) defines the level of channel noise as

σ2
c = �Γ(c · P ), (12)

where P denotes the total number of pixels in the image, and
�Γ is the ascending sort of Γ. For example, c = 0.5 represents

the median value of Γ.

The saliency coefficient is an important factor that controls
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the saliency of the base layer ICW. A small saliency coefficient

indicates a small channel noise, and results a high fidelity

between base layer and the original image. A large saliency

coefficient indicates a large channel noise, and results a smooth

base layer. If the saliency coefficient is too big, the base

layer can be over smoothed, as shown in Fig. 1 (e), where

the cloud is completely removed when there is no noise. In

our implementation, c = 0.3 is chosen as a balanced value.

However, if the noise level of the input HDR image is very

high, a bigger saliency coefficient generates better denoising

result.
Combined with the smooth term defined in Equation (3), the

full objective function can be rewritten using matrix notation
as

(B−I)Tωb(B−I)+λ
(
BTDT

x AxDxB +BTDT
y AyDyB

)
, (13)

where Ax and Ay are diagonal matrices containing the

smoothness weights ax and ay , and Dx and Dy denote

discrete differentiation operators. A linear system is derived

by minimizing the objective function as

(Im + λω−1
b Ψ)B = I, (14)

where Ψ = DT
xAxDx+DT

y AyDy , and Im denotes the identity

matrix. The solution of the linear system is the same as the

WLS-based decomposition, and therefore, it shares the similar

frequency response [17]. Thus, we keep the same smoothing

coefficient (λ) values for the HDR tone mapping.

Fig. 2. Comparison of WLS-based (left column) and ICW-based (right
column) decompositions with different smoothing coefficient (λ). The input
image is the same noise image presented in Fig. 1. The smoothing coefficient
corresponds to the global smoothness for coarsening, while the ICW controls
the local smoothness for noise reduction. The values of λ is chosen to be the
same as the WLS-based tone mapping [17].

Although mathematically the base layer ICW can be rep-

resented inside the smoothness term, the real motivation is

to control the fidelity of the data term based on HVS. It

is different from the smoothing coefficient too, as shown

in Fig. 2. The smoothing coefficient controls the overall

smoothness of the whole base layer, while the ICW controls

the local smoothness for noise reduction.

The ICW-based decomposition reduces the base layer noise

effectively compare to the WLS-based decomposition when

λ is small. The bigger λ results a smoother base layer and

noise are regarded as details and pushed to the detail layer.

Thus, in our implementation, the base layer ICW is usually

only adopted during the first decomposition where the λ is

small. However, when noise is very heavy in the input HDR

image, the ICW will be used in more levels of base layer

decompositions for better noise reduction.

B. Noise Reduced Detail Layer Decomposition

Base on the Retinex theory [13], the detail layer is the

difference between the base layer and the original image

luminance, as seen in equation (2). During the subtraction,

noise from the input image will be kept in the detail layer.

The smoother the base layer, the more details, as well as the

more noise, are kept in the detail layer. Thus, the detail layer

ICW (ωd) is proposed to construct a clean detail layer as

D = ωd(p) · (I −B). (15)

The detail layer ICW is defined as the mutual information

from a clean image to a noise image. Here, we regard the

base layer as a clean reference, and therefore, the mutual

information between this clean reference and the original noise

image are derived from

ωd(p) =
1

α
log2

(
1 + β ·

(
σB·I(p)
σ2
B(p)

)γ)
, (16)

where σ2
B(p) denotes the local variance of the base layer in

a small window centred at p, σB·I(p) denotes the covariance

between the base layer and the original luminance, β and γ
are two constants control the effectiveness of the weighting

function, and α is a normalization factor which fulfills the

constraints of ωd ∈ [0, 1]. If ωd is bigger than 1, the detail

layer is amplified. It is commonly used in detail enhancement.

Meanwhile, it comes with the risk of amplify the noise value.

The proposed denoising factor is a simplified information

fidelity criteria from equation (8). Since our clean image,

the base layer, is derived from the original luminance, we

simply assume the ratio of
σ2
U

σ2
V

as a constant. The origi-

nal gi is adopted as the main contribution of detail layer

ICW, which is estimated by linear regression as gi =
Cov(C,D)Cov(C,C)−1 [22]. The si is obtained by localized

sample variance estimation, which has the similar effect as the

base layer ICW. The product of gi and si generates a very strict

mutual information weighting, which leads to a over smoothed

detail layer. In our experiments, we treat si as a constant. An

example of the proposed detail layer ICW is shown in Fig. 3.
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Fig. 3. Detail layer retrieved using (left) WLS-based decomposition, and
(right) ICW-based decomposition. The input image is the same noise image
presented in Fig. 1.

IV. RESULTS AND COMPARISON

A. Compare with WLS

We implemented the proposed ICW-based noise reduced

tone mapping based on the Matlab code of the WLS tone

mapping [17] using Farbman et al.’s original implementation

downloaded from their website. With the new ICW factors, the

processing time is increased by 10-15%. Experimental results

on visual comparison of the luminance channel are shown

in Fig. 4, where Gaussian noise (SNR=15dB) was added in

the clean HDR images. The proposed method improves the

quality of WLS tone mapping by 3dB on the average, as shown

in Table I, where the reference image is generated from the

clean HDR image using original WLS-based method. More

tests have been conducted at different noise levels, and the

proposed ICW-based tone mapping improves the WLS-based

tone mapping method by 1-4dB.

TABLE I
COMPARISON WITH WLS.

Input
image

Quality
metrics

WLS ICW

Lamp
PSNR (dB) 30.08 33.26

SSIM 0.6392 0.9113

Memorial
PSNR (dB) 24.62 27.92

SSIM 0.5601 0.7649

Leaves
PSNR (dB) 26.43 28.10

SSIM 0.7120 0.8186

Desk
PSNR (dB) 30.49 34.74

SSIM 0.6884 0.9398

B. Compare with BM3D

Noise reduction on conventional images has been well

studied. Although these method cannot be used directly on

the HDR image, they can be adopted on the tone mapping

result.

We compared the proposed method with BM3D [27], the

state-of-the-art single image denoising method. The BM3D

algorithm is applied on the tone mapping result from the WLS-

based method. The visual quality of different noise levels

are shown in Fig. 5, and the quality metrics are illustrated

in Table II. In some cases, the proposed ICW method is

very close to BM3D, especially when the noise level is low.

Although in some of our experiments, the ICW outperforms

the BM3D, on average, it is 1dB less than the BM3D in noise

reduction. The major difference occurs when the noise level

is high. The BM3D uses neighbouring blocks to average and

smooth out the noise, while the proposed ICW only uses local

neighbouring information. As a tradeoff, the proposed ICW

executes significantly faster than BM3D using less than 1/5 of

the processing time based on our C implementation.

TABLE II
COMPARISON WITH BM3D

Input noise
(dB)

Quality
metrics

WLS BM3D ICW

SNR=10
PSNR (dB) 24.65 29.94 28.08

SSIM 0.3949 0.8994 0.6869

SNR=15
PSNR (dB) 28.82 32.95 32.60

SSIM 0.6194 0.9209 0.8913

SNR=20
PSNR (dB) 33.13 36.25 35.47

SSIM 0.8230 0.9643 0.9456

SNR=25
PSNR (dB) 36.82 38.53 37.88

SSIM 0.9330 0.9804 0.9710

C. Compare with Other TM Methods

We compared the proposed ICW-based tone mapping

method with other 5 most representative tone mapping algo-

rithms, a global tone mapping operator [9], a subbands-based

scale decomposition [21], a bilateral-filtering-based decom-

position [16], a direct luminance compression [11], and the

edge-preserving WLS [17]. Except the global tone mapping

operator, which is implemented in an open source project

Luminance HDR, the implementation of the other methods

are provided by their authors.

The input HDR image of Fig. 6 is a clean HDR image added

with Gaussian white noise, while the input HDR image of

Fig. 7 is an HDR image synthesized from a sequence of differ-

ently exposed images captured using normal camera. Different

tone mapping algorithms give different visual experiences,

which is very subjective in terms of right or wrong. However,

the noise from the HDR image is kept in the tone mapping

results from all the 5 tone mapping algorithms. Compare to

them, the proposed ICW generates a clean display-able image.

Adapting ICW on color HDR image is different from other

tone mapping methods, where usually only the luminance

channel is calculated, and R, G, B channels are derived pro-

portionally to the luminance channel. In our implementation,

due to lack of HDR color model, all R, G, B color channels

are processed separately, which may cause color shift in some

area.
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Fig. 4. Visual comparison of the luminance component generated using WLS (mid row) and ICW (bottom row). The clean image is specified in the top row

Fig. 5. Visual comparison with WLS+BM3D. (a) Clean image and a zoom-in object. The input image of (b-e) are added with different noise level at (b)
SNR=10dB, (c) SNR=15dB, (d) SNR=20dB, and (e) SNR=25dB. In (b-e), the (top row) is WLS, the (middle row) is WLS+BM3D, and the (bottom row) is
the proposed ICW.

D. Single Image Noise Reduction

Although the proposed ICW is designed to be used for noise

reduced HDR tone mapping, it can also be used directly on

the conventional image. Fig. 8 shows an example, in which

BM3D outperforms the proposed ICW by 1.7dB. When BM3D

is applied on the tone mapping result from WLS, the image has

been compressed. Compare with it, the ICW works directly on

the HDR image, which access to more information. Therefore,

the ICW is close to BM3D. However, when purely on a single

image. The only advantage of ICW is the speed.

V. CONCLUSION

In this paper, we presented a noise reduced tone mapping

method based on information content weighting. The proposed

method works in two steps and reduces the noise on both

base layer and detail layer. The experiments show that the

proposed method effectively reduces the noise compared to the

other state-of-the-art tone mapping algorithms. Additionally,

the processing time of the proposed ICW is very fast.
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Fig. 6. Visual comparison of different tone mapping algorithms: (a) global tone curve [9]; (b) scale decomposition [21]; (c) bilateral filtering decomposition [16];
(d) direct luminance compression [11]; (e) WLS [17]; and (f) proposed ICW

We are continuing efforts into improving the denoising

method on color HDR images by studying color space that

is suitable for HDR images.
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Fig. 7. Connexis, (a) global tone curve [9]; (b) scale decomposition [21]; (c)
bilateral filtering decomposition [16]; (d) direct luminance compression [11];
(e) WLS [17]; and (f) proposed ICW
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Fig. 8. Single image noise reduction. (a) input noise image (Guassian noise
with variance of 0.01); (b) denoising using BM3D (PSNR=28.30dB); and (c)
denoising using ICW (PSNR=26.59dB)
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Figure 1: HDR image generated by using (a) Debevec and Malik 1997, (b) Yao et al. 2010, (c) Akyuz and Reinhard 2007, and (d) the
proposed method which not only generates better result than method (c) but also uses only 1/5 of its processing time.

1 Introduction
The presence of noise in a high dynamic range (HDR) synthesis
poses a serious degradation to the HDR image especially when the
input images are captured at low light condition or with high sen-
sitivity settings. Thus, a two-dimensional (2D) denoising factor is
proposed to assign higher weight to a pixel with less noise based
on both pixel luminance and image exposure. This pure temporal
denoising factor is controlled by two key coefficients and can pre-
serves edge and fine detail without blurring artifact. In addition,
both memory and computation time are significantly reduced com-
pare to other denoising methods.

2 Our Approach
The first dimension of the proposed denoising factor assigns a high
weight to a pixel with a large luminance. Given an assumption
that the noise distribution is independent of the measurement pixel
value z, [Mitsunaga and Nayar 1999] argued that a luminance based
weighting function (MN weight) of ω = f(z)/f ′(z) will achieve
the best signal to noise ratio, where f(z) is the radiometric response
function. [Akyuz and Reinhard 2007] modified the MN weight by
replacing pixel value with luminance value. A broad hat function

h(z) = 1− (2z/255− 1)12 was used to restrict the saturated pix-
els which may cause color cast. Since the radiometric response
function is usually monotonic increasing, we approximate the lu-
minance based weight by a controllable hat function and a Hermite
interpolation. Thus, we can significantly reduce processing time on
response function recovery by defining a new weighting factor as

ω(z) =

{
1 − | zβ − 1|α, 0 ≤ z < β

1 − 3( 255−z
255−β )2 + 2( 255−z

255−β )3, β ≤ z < 255
, (1)

where two key coefficients are the denoising strength coefficient α
and the saturation control coefficient β. It can be seen the smaller
the value of α, the hat function will be steeper and this will result in
better denoising effect. A large α gives high weights to small value
(luminance) pixels, which keeps noise in the synthesized HDR im-
age. We choose α = 2 in the experiments. And test also shows that
α = 12 generates similar result as [Akyuz and Reinhard 2007].
The saturation control coefficient limits the near saturated pixels
to avoid color cast due to gamut limitations (an empirical value
β = 200 is used here).

The second dimension of the proposed denoising factor is based on
exposure time. More photons reach the camera sensor with a longer
exposure time (Δt), which results in a more accurate reading. Thus,
the proposed 2D weighting factor is designed to multiply the ge-
ometrically normalized exposure times with the luminance based
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Figure 2: (Left) The proposed luminance based weighting com-
pares to other weighting functions; (Right) An example of the pro-
posed 2D denoising factor with 3 input images.

denoising factor as

W (z,Δtj) =

√
Δtj/

P

√∏P

p=1

Δtp · ω(z), (2)

where j denotes the jth image in the total P input images. The ge-
ometrical normalization avoids overwhelming big weights caused
by some very large exposure time. Then, the objective function,

O =
∑N

i=1

∑P

j=1
{W (z,Δtj)[Zij) − lnEi − lnΔtj ]}2

+λ
∑z=Zmax−1

z=Zmin+1
[W (z,max(Δt1, ...,ΔtP ))g′′(z)]2,

(3)

is used to calculate camera response function (g) and synthesize the
clean HDR image.

The proposed denoising method is verified by comparing it with
three HDR synthesis methods. The noise is significantly reduced
as compared to [Debevec and Malik 1997] with the same process-
ing time. No blur artifact is generated as [Yao et al. 2010] and
they are achieved due to spatial averaging. Comparing with [Akyuz
and Reinhard 2007], the quality of the proposed is about the same.
However, the proposed is achieved with only 1/5 of the processing
time, since no intermediate steps for approximating response func-
tion is required.
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