
Proceedings of ACIVS 2002 (Advanced Concepts for Intelligent Vision Systems), Ghent, Belgium, September 9-11, 2002

STEPWISE ALGORITHM FOR FINDING UNKNOWN NUMBER OF CLUSTERS

Ismo Kärkkäinen and Pasi Fränti

Ismo.Karkkainen@cs.joensuu.fi, Pasi.Franti@cs.joensuu.fi
University of Joensuu, Department of Computer Science, P.O. Box 111, FIN-80101 Joensuu, FINLAND

Abstract

We consider a criterion-based approach to solve dynamic
clustering problems. We propose two novel improvements for
reducing the work load to find the correct clustering. The first
idea is to use stepwise clustering algorithm that utilizes the
previous solution when solving the next clustering with different
(one more or one less) number of clusters. The second idea is to
use a heuristic stopping criterion in the algorithm that solves a
single clustering. The stopping criterion estimates potential
further improvement on the basis of the improvement achieved so
far. The iteration will automatically stop if the estimated
improvement stays below a predefined threshold value. By
experiments we have found out that any threshold value 0.1 % or
less results in the correct clustering with a confidence of more
than 99%. Their effect on the run time and clustering quality is
studied.

1. INTRODUCTION

Clustering is an important problem that must often be
solved as a part of more complicated tasks in pattern
recognition, image analysis and other fields of science and
engineering [1, 2, 3]. Clustering aims at solving two main
problems: how many clusters there are in the data set and
where they are located. We define the problem here as
static clustering if the number of clusters is known
beforehand, and as dynamic clustering if the number of
clusters must also be solved. Clustering is also needed for
designing a codebook in vector quantization [4].
Static clustering problem can be solved by methods such as
Generalized Lloyd algorithm (GLA) [5], simulated
annealing [6], deterministic annealing [7,8], genetic
algorithm [9, 10], agglomerative methods [11], and local
search [12, 13] among many others. The Randomized
Local Search (RLS) [12] is a simple and effective method
for solving the problem iteratively. It is based on trial-and-
error approach, where the location of the clusters are
tentatively changed using random swapping. Thus, it
corrects the location of misplaced cluster one by one. The
ease of implementation makes it possible to tailor the RLS
algorithm for various clustering applications with different
distance metrics and evaluation criteria. For example,
stochastic complexity [14, 15] has been successfully
applied with the RLS method as the evaluation function for
the classification of bacteria in [16].

Dynamic clustering problem can be solved using heuristic
methods to determine the number of clusters. For example,
competitive agglomeration [17] decreases the number of
clusters until there are no clusters smaller than a predefined
threshold value. The drawback is that the threshold value
must be experimentally determined. Divisive clustering,
such as the X-means in [18], uses an opposite, top-down
approach for generating the clustering. The method starts
with a single cluster, and new clusters are then created by
dividing existing clusters. The splitting continues until
a predefined stopping criterion is met. The divisive
approach typically requires much less computation than the
agglomerative clustering methods but are far less used
because of inferior clustering results.
Criterion-based approach, on the other hand, divides the
problem in two parts. First a suitable evaluation function is
defined, which includes the number of clusters as
parameter. Static clustering problems are then solved for all
reasonable numbers of clusters by using any existing
clustering algorithm. The resulting solutions are compared
using the evaluation function, and the final result is the
clustering that minimizes the evaluation function. Criteria
such as Davies-Bouldin index [19], variance-ratio F-test
[20], stochastic complexity [15], or minimum description
length [21] can be applied as the evaluation function
among many others [22]. The advantage of the criterion-
based approach is that the existing solutions for the static
clustering can be utilized as such.
In this paper, we consider the criterion-based approach, and
generalize the RLS method to the dynamic clustering
problem where the number of clusters is unknown. We
propose two variants: (1) brute force algorithm, and (2)
stepwise algorithm. The brute force algorithm applies the
RLS method independently to every reasonable number of
clusters. It guarantees that the optimal solution will be
found if the evaluation criterion is properly designed, and if
the RLS method is iterated sufficiently long.
The brute force algorithm is general but not very efficient.
For example, we can solve static clustering problem for
a data set with 5000 data vectors and 32 clusters in about
40-50 seconds on a 500 MHz Pentium-III machine.
However, to solve the dynamic clustering problem when
the number of clusters is varied from 1 to 50, the total run

 S00-1

Proceedings of ACIVS 2002 (Advanced Concepts for Intelligent Vision Systems), Ghent, Belgium, September 9-11, 2002

time would be about 40 minutes. We propose two methods
to speed-up the brute force method.
The first speed-up idea is the stepwise algorithm. It is
based on the idea that if we have already found a solution
for m clusters, then this solution can be utilized when
searching for the solution of m + 1 clusters. It is expected
that these two solutions do not differ greatly from each
other and, therefore, fewer iterations would be needed. The
proposed method starts by finding solution for m = 2, and
then repeating the process until a predefined number
m=Mmax. At each step, one new cluster is added and the
RLS algorithm is then applied. In principle, any other
iterative clustering algorithm could also be applied within
the method. We consider three possible algorithms: the
GLA, LBG-U, and the RLS.
The second speed-up idea idea is to use a heuristic stopping
criterion instead of a fixed number of iterations in the RLS
algorithm. The stopping criterion estimates the potential
further improvement on the basis of the improvement
achieved so far. The iteration will stop if the estimated
improvement stays below a predefined threshold value (e.g.
0.1 %). With the brute force algorithm, the RLS is iterated
about 179-209 times, on average, and with the stepwise
method only about 64-84 iterations. More importantly, the
method removes the need for manual tuning of the number
of iterations.

2. STATIC CLUSTERING PROBLEM

Static clustering problem can be defined as follows. Given
a data set X of N vectors xi, partition the data set into M
disjoint classes so that similar vectors are grouped together
and dissimilar vectors belong to different classes. Partition
P defines the classification by giving each vector an index
pi of the class to which the vector is assigned to. Each class
is represented by its representative vector cj, which is here
defined as the centroid of the cluster.
We assume that the vectors of the data set are normalized
and that they are in metric space, so that we can use
Euclidean distance to estimate the distances between the
vectors. This allows us to estimate the goodness of solution
of M clusters by calculating the distances from vectors to
their cluster centroids. We also assume that all clusters are
spherical, so all we need to do is to measure the distance to
the centroid when calculating the distance to a cluster.
A well-known clustering algorithm for minimizing MSE is
the Generalized Lloyd algorithm [6], also known as the
LBG. It is simple to implement and can be applied to any
initial solution. It proceeds by changing the representation
between centroid and mapping descriptions of the
clustering using two optimization steps until the solution

does not improve anymore. It has been shown that the
algorithm converges to a local or global optimum.
Another virtually as simple clustering method is the
randomized local search (RLS), which has been shown to
outperform most of the comparative algorithms [12]. The
RLS proceeds from a given initial solution by replacing
a randomly selected centroid with a random data vector,
and then fine-tuning the solution using the GLA. The initial
solution is a random set of centroids. Our experiments
indicate that it is better to apply only a few of GLA-
iterations than to allow the GLA to converge to the local
optimum [23]. Pseudocode for the RLS is presented in
Fig. 1.

RLS(X, C, P, M) return C, P
FOR all i � [1, N] DO
 � �p di

k M
i k�

� �

arg min ,
1

x c ;

FOR a � 1 TO NumberOfIterations DO
 Cnew �C;
 j � random(1, M); i � random(1, M);
 cj

new � xi;
 Cnew, Pnew � GLA(X, Cnew, M);
 IF MSE(X, Cnew, Pnew) < MSE(X, C, P)
 THEN C � Cnew; P � Pnew;
END FOR
Return C, P;

Fig. 1: Pseudocode for randomized local search.

3. DYNAMIC CLUSTERING PROBLEM

We consider the dynamic clustering problem, where also
the number of clusters must be solved. We recall first two
suitable criteria for evaluating the clustering in Section 3.1.
The brute force algorithm (BF) for finding the best
clustering is then introduced in Section 3.2, and the
stepwise clustering algorithm (Step) in Section 3.3. Three
stopping criterion are then proposed in Section 3.4.

3.1. Evaluation criteria

MSE has the flaw that it does not take into account the
number of clusters. It has the property that the greater the
number of clusters is, the lower values we get; the limit
being the case where the number of clusters equals the
number of data vectors and the MSE-value will be zero.
Therefore, we cannot use MSE to determine the number of
clusters.
We consider two criteria: Davies-Bouldin index (Davies
and Bouldin [19]), which has been used in [22, 23, 24], and
variance-ratio F-test [20]. Davies-Bouldin index (DBI)
measures for each cluster the ratio of the intracluster
distortion relative to the inter cluster distance of the nearest

 S00-2

Proceedings of ACIVS 2002 (Advanced Concepts for Intelligent Vision Systems), Ghent, Belgium, September 9-11, 2002

cluster. This is denoted here as the mixture of the two
clusters j and k, and is calculated as:

),(,
kj

kj
kj ccd

MAEMAE
R

�

� (1)

Here d is the distance between the cluster centroids, and
MAEj and MAEk are the mean absolute errors within the
clusters j and k. The higher the intracluster distortion and
the closer their centroids, the higher is the index R.
The mixture of a cluster j is defined as the maximum
mixture between cluster j and all other clusters. The overall
DBI-value is then calculated as the average mixtures of the
clusters:

�
�

�

�

M

j
kj

kj
R

M
DBI

1
,max1 (2) Nu

The second criterion we use is based on a statistical
ANOVA test procedure [20], which we have modified
slightly. We omit checking the obtained values against
F-distribution and use the values directly instead. We refer
this criterion as F-test.
In brief, the idea is to evaluate all potential clusterings with
an evaluation criteria, and determine the one with the
minimum value. This procedure is demonstrated for the
data set 3 (see Section 4) using the F-test in Fig. 2 as
a function of the number of clusters. In this example, there
is clear downward peak in the graph. It is noted, that the
individual clustering obtained might be suboptimal and,
therefore, it is not guaranteed that the method will always
find the correct number of clusters.

3.2. The Brute Force (BF) algorithm

The simplest search strategy is to go through a specified
range of number of clusters, and find the best solution for
every possible number. The solutions are then evaluated
and the one that minimizes the chosen evaluation function
is the final result of the clustering. This search strategy can
use any clustering algorithm to find the individual solutions
but we will use the RLS due to its benefits discussed in
Section 2. The algorithm is expected to find the correct
number of clusters, provided that the chosen evaluation

function can distinguish it. The main drawback of the
algorithm is that it is time-consuming to generate all
possible clusterings in the range �Mmin, Mmax�.

0.00010

0.00012

0.00014

0.00016

0.00018

0.00020

0.00022

0.00024

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
mber of clusters

va
ria

nc
e-

ra
tio

 F
-te

st

Fig. 2: Values of variance-ratio F-test as a function of the

number of clusters.

3.3. Stepwise algorithm

We next describe how to speed up the brute force algorithm
without sacrificing its thoroughness. Since we can freely
decide the initial solution that is passed on to the RLS, we
can utilize the previous solution. If, for example, we have
gained a good solution with m clusters, then this solution
can be used as a starting point for finding the solution with
m+1 clusters. We perform this by adding a new cluster
centroid, performing repartitioning of the data vectors, and
then starting the RLS iterations from this solution.
We expect that the clusters in the solution with m+1
clusters are located mainly in the same places as in the
solution with m clusters. This is demonstrated in Fig. 3 as
a sequence of clusterings with different number of groups.
Cluster centroids are shown as white circles. The clustering
results are similar for the three middlemost images. Thus,
the hypothesis is that fewer number of iterations are needed
for optimizing the solution because most of the clusters are
already in their correct location.
The stepwise algorithm involves two main design
questions: whether we should add or remove clusters, and
how the clusters are modified. The first design question can
be divided into two approaches. In the first approach
(denoted as Step+), we start with a solution of Mmin clusters

......

m=1 m=14 m=15 m=16 m=30

Step+ Step-

Fig. 3: Location of different number centroids (white dots) in the data.
S00-3

Proceedings of ACIVS 2002 (Advanced Concepts for Intelligent Vision Systems), Ghent, Belgium, September 9-11, 2002

and add new clusters one at a time in the main loop. In the
second approach (denoted as Step-), we start with a solution
of Mmax clusters and remove the clusters one at a time. With
brute force algorithm, it does not matter whether we
increase or decrease the number of clusters in the loop; the
result will be the same as the solutions are generated
independently from each other. In the stepwise approach,
however, the direction can have an effect on the expected
number of iterations needed.
The second design question is to define how we add or
remove the clusters. We derive the method directly from
the original RLS algorithm and perform the change
randomly. This is argued by the fact that the correct place
of the clusters must be optimized by a series of random
swap operations anyway. Thus, the Step+ algorithm inserts
new cluster into a random location. The Step- algorithm
removes a randomly chosen cluster. Pseudocode for the
Step- algorithm is shown in Figure 4.

Step-(X, Mmin, Mmax) return C, P

C, P � RandomSolution(X, Mmax);
Cbest, Pbest � RLS(X, C, P, Mmax);
FOR m � Mmax – 1 DOWNTO Mmin DO
 C � Remove random centroid
 C,P � RLS(X, C, P, m);
 IF f(X, C, P) < f(X, Cbest, Pbest) THEN
 Cbest � C; Pbest � P;
END FOR
return Cbest, Pbest;

Fig. 4: Stepwise algorithm Step- for
decreasing number of clusters.

3.4. Stopping criterion

In general, it is not clear how many iterations we need to
perform the RLS in order to find the correct clustering.
This question arises both in the brute force and in the
stepwise-algorithms. In the stepwise-algorithm the question
is even more important because the aim is to decrease the
number of iterations and yet obtain the correct number of
clusters. We consider next few simple heuristics that can be
used for estimating whether it is still worthwhile to
continue improving the solution by the RLS. If we had an
algorithm that always improves the solution in each
iteration this would not be needed as we could check
against the previous value and stop if difference were small
enough. Since this is not the case (most likely the best
solution remains the same) we can take this into account in
the first criterion.
We call the first heuristic T-times, as it stops after the
solution has been iterated T times since the last
improvement to solution occurred. For example, if T is 3
and the previous improvement occurred in the iteration

number 100, we will stop in iteration 300 if there will
appear no further improvement. We also need a minimum
number of iterations that must be performed so that we do
not stop right at the beginning. Let fi be the value of the
solution after iteration i, i.e. the f-value for the currently
best C and P, and let k be the current iteration number.
Stopping condition is:

� �0/min ���� kTk ffTk (3)

Second heuristic is called as 50-50 ratio, as it stops when
the improvement for the latter half (fk/2 - fk) divided by the
improvement that occurred in the first half (f1 - fk/2) falls
below certain limit. Taking first and second halves is
a consequence of the fact that the solution doesn’t improve
in every iteration. The following formula gives the
appearance of smoothly decreasing error:

2/1

2/
min

k

kk
ff

ff
LTk

�

�

��� (4)

Here L is the predefined threshold value. As with the first
heuristic, we need to specify the minimum number of
iterations, otherwise we might stop immediately. Fig. 5
shows howthe values relate to the number of iterations.

1 k/2 k 3k/2

f1

fk/2

fk

f3k/2

Ev
al

ua
tio

n
fu

nc
tio

n
va

lu
e

Iteration number

Starting point

Halfway

Current

Estimated

Fig. 5: Values used with stopping criteria.

Third heuristic is called as Estimate, as it tries to estimate
the future improvement of f relative to the improvement so
far. The estimated value is shown in Fig. 5 as f3k/2. We
calculate the estimated value by assuming that the relative
slowdown of the improvement of the solution from k
iterations to 3k/2 iterations when compared to the
slowdown from k/2 iterations to k iterations is the same as
that for ranges from k/2 to k and 1 to k/2. The estimated
value is:

� �
� �

2/1

2
2/

2/1

2/
2/2/3

k

kk

k

kk
kkk ff

ff
ff

ff
fff

�

�

�

�

�

��� (5)

 S00-4

Proceedings of ACIVS 2002 (Advanced Concepts for Intelligent Vision Systems), Ghent, Belgium, September 9-11, 2002

We calculate the ratio of the estimated future improvement
and the total improvement (f1 - fk) in order to make the
heuristic independent of the range of values of the criterion
function f. We must perform some minimum number of
iterations in order not to stop right away. The heuristic is:

� �k

k

ff
fLTk
�

���

1

2/3
min (6)

The numerator estimates how much the solution would
improve if the number of iterations would increase by half,
presuming that the rate of improvement decreases at the
same rate as it decreased between first half and second half.
The denominator normalizes the value so that we get the
relative improvement estimation in respect to the total
improvement obtained so far. Thus we do not need to take
into account the range of values of the evaluation function.

4. TEST RESULTS

We use the four data sets shown in Fig. 6 with varying
complexity in terms of spatial data distributions. The test
sets have 5000 data vectors randomly scattered around 15
predefined clusters with a varying degree of overlap
between the clusters.

Data set 1 Data set 2

Data set 3 Data set 4

Fig. 6: Two-dimensional data sets.

We first study the parameter setup of the proposed method
by finding out how many iterations the proposed algorithms
need to be run in order to find out the correct number of
clusters. This describes the minimum amount of work that

must be performed. We perform clustering for all four data
sets using the different clustering algorithms, evaluation
and stopping criteria.

4.1. Fixed number of iterations

In order to estimate the minimum work load, we first study
the work load required by the brute force algorithm (BF)
when manually fixing the number of iterations.
The results are summarized in Figures 7 and 8 for the data
set 3 by showing the percentage the algorithm found out the
correct number of clusters. In the case of F-test, the brute
force algorithm requires approximately 100 iterations to
consistently reach the correct answer (Fig. 7).

0

20

40

60

80

100

10 30 50 70 90 110
Iterations

Brute force
Step-
Step+

Fig. 7: The percentage the algorithms found out the

correct answer, as a function of the number of iterations.

The stepwise algorithm does not start from scratch as BF
but it uses the previous solution as a starting point. The
quality of the result may therefore depend on the search
range of the number of clusters applied. This might have an
effect on the quality of the result in case if only a small
number of iterations is applied, and when the search range
is limited. However, Fig. 8 indicates that the results are
virtually the same regardless of the range and direction of
the search. For example, the choice between Step+ and
Step- do not have any significant effect on the result. To
sum up, there are no significant differences between the
three algorithms (BF, Step+ and Step-) when a fixed number
of iterations were applied.

4.2. Using stopping criteria with brute force

In the previous chapter we studied the minimum work load
required by the different algorithms. In practice, the correct
clustering is not known beforehand and the number of
iterations cannot be manually tuned. The use of a proper
stopping criterion is therefore important for minimizing the
work load. The aim is to get the correct clustering with the

 S00-5

Proceedings of ACIVS 2002 (Advanced Concepts for Intelligent Vision Systems), Ghent, Belgium, September 9-11, 2002

smallest number of iterations as possible. The results in
Table 1 can be used for estimating the lower limit of this
work load.

0

20

40

60

80

100

10 30 50 70 90 110
Iterations

10->20
2->30

0

20

40

60

80

100

10 30 50 70 90 110
Iterations

20->10
45->15
30->2

Fig. 8: The percentage the algorithms found out the

correct answer, as a function of the number of iterations.
The results are for the Step+ (top) and Step- (bottom)

algorithms with different search ranges using F-test with
data set 3.

Table 1: The minimum number of iterations required to
find out the correct answer with 100% of the cases.

 F-test DBI
 BF Step+ Step- BF Step+ Step-
Data set 1 130 60 60 90 100 70
Data set 2 70 60 70 1200 900 800
Data set 3 70 80 70 N/A N/A N/A

The brute force and stepwise algorithms were tested using
the three stopping criteria presented in Section 3.4 (T-times,
50-50 ratio, Estimate). The threshold parameter was
experimentally set to T=3 for T-times, and L=0.001 for the
other two criteria. These criteria require also some
minimum number of iterations before the stopping criterion
is allowed to take effect. We studied the performance of the
criterion by varying the minimum number of iterations
from 10 to 90. The results are summarized in Table 2 as the
average number iterations applied with the first parameter

setup that were able to produce the correct clustering in all
runs.
The results show that the number of iterations remains
reasonably low when F-test is used as the evaluation
function. For example, the BF was iterated only 122-162
times (on average) in the case of the 50-50 ratio test, and
179-209 times in the case of the Estimate in order to get the
correct clustering. The corresponding numbers for the
Stepwise are 88-183 (with 50-50 ratio test) and 81-121
(with Estimate). The average number of iterations behaves
basically in the same way with the stepwise algorithms as
with the brute force algorithm. The T-times performed less
consistent in these tests as it keeps iterating unnecessarily
long with the more difficult test sets (Set 3 and 4).
With DBI the results are not as good as with the F-test. The
correct results is found only in the case of the data set 2,
and even then, the algorithm sometimes iterates
unnecessarily long. The average value of the stepwise
algorithms is affected by a single large iteration count,
where for 28 clusters the RLS algorithm performed
244,053 iterations. As the threshold value was set to T=3, it
means that the last improvement has occurred at the 81,351
iteration, after which there has been no improvement
whatsoever. In the case of the data set 3, on the other hand,
the methods were unable to keep the algorithm iterating
long enough in order to find the correct number of clusters
for the data set 3.

Table 2: Average number of iterations applied when using
a stopping criterion (for data set 3).

 T-times 50-50
ratio

Estimate

Brute force 881 122 209
Step+ 282 88 92
Step- 497 1078 65

4.3. Behavior of the stopping criteria

Despite the fact that the minimum number of iterations in
Table 2 may be half of what is required in comparison to
Table 1, the average number of iterations may yet be much
higher. The stopping criteria try to determine when the
solution has ceased to improve, not when enough work has
been done to find the correct number of clusters. Another
reason is that not all cluster counts require the same amount
of iterations. The less there are clusters, the less iterations
are needed. After the correct number of clusters has been
passed, the number of iterations increases noticeably. This
is illustrated in Fig. 9. For T-times there is a general rising
trend after the correct number of clusters has been
exceeded. Similar trend can also be observed for Estimate.

 S00-6

Proceedings of ACIVS 2002 (Advanced Concepts for Intelligent Vision Systems), Ghent, Belgium, September 9-11, 2002

The graphs in Fig. 9 show marked jaggedness. This is due
to the random nature of the underlying algorithm. Since the
RLS does not necessarily improve the solution in every
iteration, it is possible that a noticeable drop happens just
before the stopping criterion would stop the iterations and
the limit is increased. With T-times this means that the
number of iterations can grow to be extremely large.
Regardless of the stopping criterion used, the differences in
average values of the error functions are small despite the
number of iterations used. In all cases the solutions are
equal to three significant digits. We can therefore conclude
that finding the optimal solution and the correct number of
clusters are practically the same thing. In other words, if we
iterate long enough to find the correct number of clusters,
we have also found the optimal solution. Therefore, further
iteration for the solution with the correct number of clusters
does not seem to be necessary.

0
500

1000
1500
2000
2500
3000

2 5 8 11 14 17 20 23 26 29
Number of clusters

T-times
50-50 ratio
Estimate

Fig. 9: Average number of iterations as function of the

number of clusters.

4.4. Comparison with the existing algorithms

We next compare the following approaches:
�� Stepwise with GLA
�� Stepwise with LBG-U
�� Stepwise with RLS (the proposed method)
�� Competitive agglomeration (CA)
�� Brute Force (BF)

The Stepwise GLA combines the Step- approach with the
GLA [5] as follows. It generates Mmax=30 random clusters,
and then proceeds to decrease the number of clusters by
removing each cluster in turn. There are M different
choices for the cluster removal, and every of them are
iterated by the GLA until convergence. As a result, we
obtain a set of candidate solutions, of which we keep the
best one for the initial solution for next cluster removal.
The Stepwise with LBG-U is implemented in the same
manner as the Stepwise GLA but the LBG-U algorithm [13]
is used instead. The LBG-U is also similar to that of the
RLS but it uses deterministic choice for replacing the

location of the cluster, whereas the RLS uses random
choice. This also means that we do not need to repeat the
RLS for every possible cluster removal but we can simply
start from random starting point as the algorithm will
anyway optimize the cluster locations. With the GLA and
LBG-U, however, the repeats are done as there are no
randomness in this part and all possibilities can be
explored.
The competitive agglomeration [17] uses competitive
learning for optimizing the location of the clusters. The
algorithm starts with a predefined number of initial
clusters, and then removes all clusters that are smaller than
a predefined threshold value �. The process continues until
there are no more clusters to be removed and the solution
has converged to optimum. The initial number of clusters is
set to 100, and the threshold value was experimentally
determined by varying it from 10-6 to 10-1.

Table 3: The number of times the correct clustering
was found (among 100 repeats) by the three Stepwise
variants, Brute force, and by Competitive
agglomeration.

 DBI
 Stepwise

GLA
Stepwise
LBG-U

Stepwise
RLS

Brute
Force

CA

Data set 1 14 % 94 % 98 % 95 % 70 %
Data set 2 19 % 53 % 96 % 100 % 8 %
Data set 3 28 % 72 % 76 % 82 % 0 %
Data set 4 31 % 36 % 33 % 52 % 0 %
Iris data 0 % 0 % 0 % 0 % 5 %

 F-test
 Stepwise

GLA
Stepwise
LBG-U

Stepwise
RLS

Brute
Force

Data set 1 22 % 94 % 98 % 98 %
Data set 2 30 % 74 % 100 % 98 %
Data set 3 39 % 80 % 100 % 100 %
Data set 4 51 % 92 % 100 % 100 %
Iris data 100 % 100 % 100 % 100 %

The results for the data sets 1 to 4, and for the Iris data set
[25] are summarized in Table 3. When F-test is used as the
criterion, the proposed method (Stepwise RLS) finds the
correct clustering almost in all cases. The Stepwise with
LBG-U works fine most of the times but the Stepwise GLA
gives significantly worse success rate with all data sets.
When DBI is used, the results are worse with all variants.
The relative performance of the different methods is similar
to that of the F-test. The CA, on the other hand, fails to find
the correct clustering except in the case of the more
difficult data sets. It tends to remove too many clusters no
matter of the parameter setup. The results in Fig. 10 show
that, besides the LBG-U, the algorithms performance is
consistent on the change in the dimensionality.

 S00-7

Proceedings of ACIVS 2002 (Advanced Concepts for Intelligent Vision Systems), Ghent, Belgium, September 9-11, 2002

0
10
20
30
40
50
60
70
80
90

100

2 3 4 5 6

%

GLA
LBGU
RLS
CA

Fig. 10: Comparison of the algorithms as a function of the
data set with varying dimension (from 2 to 6).

5. CONCLUSIONS

We have introduced stepwise clustering algorithm for
finding the correct clustering in a case when the number of
groups is unknown. The method generates solutions for all
cluster counts within a given search range.
According to the experiments, the work load can be
reduced down to about 200 iterations per cluster count with
the Brute Force approach. With the stepwise algorithm, the
algorithm iterates only about 65-85 times on average. The
results indicate that there is obvious dependency between
the number of iterations and the spatial complexity of the
data set (clusters overlap). The choice of the evaluation
function seems also to be important.

6. REFERENCES

[1] Everitt BS, Cluster Analysis, 3rd Edition. Edward Arnold /
Halsted Press, London, 1992.

[2] Kaufman L, Rousseeuw PJ, Finding Groups in Data: An
Introduction to Cluster Analysis. John Wiley Sons, New
York, 1990.

[3] Dubes R, Jain A, Algorithms that Cluster Data. Prentice-Hall,
Englewood Cliffs, NJ, 1987.

[4] Reeves C, Modern Heuristic Techniques for Combinatorical
Optimization Problems. McGraw - Hill, 1995.

[5] Linde Y, Buzo A, Gray RM, An algorithm for vector
quantizer design. IEEE Transactions on Communications
1980; 28(1): 84-95.

[6] Zeger K, Gersho A, Stochastic relaxation algorithm for
improved vector quantiser design. Electronics Letters 1989;
25(14): 896-898.

[7] Rose K, Gurewitz E, Fox G, A deterministic annealing
approach to clustering. Pattern Recognition Letters 1990; 11:
589-594.

[8] Hoffmann T, Buhmann J, Pairwise Data Clustering by
Deterministic Annealing. IEEE Transactions on Pattern
Analysis and Machine Intelligence 1997; 19(1): 1-14

[9] Fränti P, Kivijärvi J, Kaukoranta T, Nevalainen O, Genetic
algorithms for large scale clustering problems. The Computer
Journal 1997; 40(9): 547-554.

[10] Fränti P, Genetic algorithm with deterministic crossover for
vector quantization. Pattern Recognition Letters 2000; 21(1):
61-68.

[11] Ward JH, Hierarchical grouping to optimize an objective
function. J. Amer. Statist.Assoc. 1963; 58: 236-244.

[12] Fränti P, Kivijärvi J, Randomized local search algorithm for
the clustering problem. Pattern Analysis and Applications
2000; 3(4): 358-369.

[13] Fritzke B, The LBG-U method for vector quantization � an
improvement over LBG inspired from neural networks.
Neural Processing Letters 1997; 5(1): 35-45.

[14] Rissanen J, Stochastic Complexity. Journal of Royal
Statistical Society B 1987; 49(3): 223-239.

[15] Gyllenberg M, Koski T, Verlaan M, Classification of binary
vectors by stochastic complexity. Journal of Multivariate
Analysis 1997; 63(1): 47-72.

[16] Fränti P, Gyllenberg HH, Gyllenberg M, Kivijärvi J, Koski T,
Lund T, Nevalainen O, Minimizing stochastic complexity
using local search and GLA and with applications to
classification of bacteria. Biosystems 2000; 57(1): 37-48.

[17] Frigui H, Krishnapuram R, Clustering by Competitive
Agglomeration. Pattern Recognition 1997; 30(7): 1109-1119.

[18] Pelleg D, Moore A, X-means: Extending K-means with
Efficient estimation of the Number of Clusters. Proc. 17th
International Conf. on Machine Learning. Morgan
Kaufmann, San Francisco CA 2000; pp. 727-734.

[19] Davies DL, Bouldin DW, A cluster separation measure. IEEE
Transactions on Pattern Analysis and Machine Intelligence
1979; 1(2): 224-227.

[20] Ito PK, Robustness of ANOVA and MANOVA Test
Procedures. In: Krishnaiah PR (ed). Handbook of Statistics
1: Analysis of Variance. North-Holland Publishing
Company, 1980, pp 199-236.

[21] Bischof H, Leonardis A, Selb A, MDL Principle for robust
vector quantization. Pattern Analysis and Applications 1999;
2(1): 59-72.

[22] Bezdek JC, Pal NR, Some new indexes of cluster validity.
IEEE Transactions on Systems, Man and Cybernetics 1998;
28(3): 302-315.

[23] Kärkkäinen I, Fränti P, Minimization of the value of Davies-
Bouldin index. In Proceedings of the IASTED International
Conference on Signal Processing and Communications
(SPC’2000). IASTED/ACTA Press, 2000, pp 426-432.

[24] Sarkar M, Yegnanarayana B, Khemani D, A clustering
algorithm using an evolutionary programming-based
approach. Pattern Recognition Letters 1997; 18(10):
975-986.

[25] Duda RO, Hart PE, Pattern Classification and Scene
Analysis. (Q327.D83) John Wiley & Sons, New York, page
218, 1973.

 S00-8

	INTRODUCTION
	STATIC CLUSTERING PROBLEM
	DYNAMIC CLUSTERING PROBLEM
	Evaluation criteria
	The Brute Force (BF) algorithm
	Stepwise algorithm
	Stopping criterion

	TEST RESULTS
	Fixed number of iterations
	Using stopping criteria with brute force
	Behavior of the stopping criteria
	Comparison with the existing algorithms

	CONCLUSIONS
	REFERENCES

