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Abstract 

Optimal clustering can be solved using branch-and-bound 
technique. The algorithm has exponential time complexity and, 
therefore, only very small size problem instances can be solved in 
practice. On the other hand, the branch-and-bound technique 
provides useful insight to the problem itself, which can be 
utilized in designing of practical clustering algorithms. In this 
paper, we propose two sub-optimal but polynomial time 
algorithms derived from the branch-and-bound technique. The 
proposed algorithms generate only partial search tree, which are 
solved optimally. The final solution is achieved by a series of 
locally optimal steps. 

1. INTRODUCTION 

Clustering is an important problem that must often be 
solved as a part of more complicated tasks in pattern 
recognition, image analysis and other fields of science and 
engineering [1, 2, 3, 4]. Clustering aims at partition a given 
set of N data vectors into M groups so that similar vectors 
are grouped together and dissimilar vectors to different 
groups. The clustering task is usually formalized as 
a combinatorial optimization problem, in which the goal is 
to find the partition that minimizes a given cost function. 
The clustering problem in its combinatorial form has been 
shown to be NP-complete [5]. No polynomial time 
algorithm is known to find the optimal solution. Therefore, 
we have to content ourselves with sub-optimal solutions 
obtained by heuristic algorithms. Despite known limitations 
implicated by the NP-completeness, solving the optimal 
clustering problem has some theoretical interest that 
provides also new insight to the problem itself. 
Agglomerative clustering is heuristic approach for 
generating the clustering hierarchically. The process starts 
by initializing each data vector as its own cluster. Two 
clusters are merged at each step and the process is repeated 
until the desired number of clusters is obtained. Ward’s 
method [6] selects the cluster pair to be merged so that it 
increases the given objective function value least. In the 
vector quantization context, this is known as the pairwise 
nearest neighbor (PNN) method due to [7]. In the rest of 
this paper, we denote it as the PNN method. 

A branch-and-bound technique has been proposed in [8] 
based on the merging approach described above. It is easy 
to see that any clustering can be produced by a series of 
merge operations. Every merge reduces the number of 
clusters by one. It therefore takes exactly N-M steps to 
generate a clustering with M groups from the set of N data 
vectors. Optimal clustering can be found by considering all 
possible merge sequences and finding the one that 
minimizes the optimization function. This can be 
implemented as a branch-and-bound technique, which uses 
search tree for finding the optimal clustering. The relation 
of the branch-and-bound technique and the PNN method is 
demonstrated in Fig. 1. 
The complexity of the branch-and-bound technique, 
however, is exponential and the practical usability is 
therefore strongly limited to small size problem instances 
only. In this paper, we propose two sub-optimal variants 
that do not guarantee the optimality of the result but they 
work in polynomial time. 
The first algorithm, Piecewise optimization, divides the 
problem into a series of smaller sub problems that are 
solved optimally. The input at each stage of the algorithm is 
N clusters (whole data set in the beginning), and the output 
is the optimal clustering to N-Z clusters, where Z is 
a parameter of the algorithm. The result is then input to the 
same procedure, and the process is repeated until the 
desired number of M clusters is reached. 
The second algorithm, Look-ahead optimization, generates 
complete search tree to the level Z and searches for the 
optimal clustering of N-Z clusters. Instead of moving to the 
local optimum at the level Z, it proceeds only one level in 
the tree along the path towards to the direction of the local 
optimum. After this, a completely new search tree is 
generated starting from the level N-1. The process is 
repeated N-M times. 

2. CLUSTERING BY BRANCH-AND-BOUND 

Next we give formal description of the clustering problem, 
and recall the PNN method. The branch-and-bound 
technique is then given as a method to generate minimum 
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redundancy search tree. A bounding criterion is also 
discussed. 
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Fig. 1. Illustration of the PNN as a search tree. 

2.1. Definition of clustering problem 

The clustering problem is defined here as follows. Given 
a set of N data vectors X={x1, x2, …, xN}, partition the data 
set into M clusters such that similar vectors are grouped 
together and dissimilar vectors to different groups. Partition 
P={p1, p2, …, pN } defines the clustering by giving for each 
data vector the cluster index of the group where it is 
assigned to. A cluster sa is defined as the set of data vectors 
that belong to the same partition a: 

�s x p aa i i� � �  (1) 

The clustering is then represented as the set S={s1, s2, ..., 
sM}. The clusters are sometimes also represented as their 
centroids: C={c1, c2, …, cM}. 
The most important choice is the cost function f for 
evaluating the goodness of the clustering. When the data 
vectors are in Euclidean space, a commonly used function 
is the mean square error between the data vectors and their 
nearest cluster centroids. Given a partition P and the cluster 
representatives C, it is calculated as: 
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The choice of the function depends on the application and 
there is no general solution to be used. However, once the 
objective function is decided the clustering problem can be 
formulated as a combinatorial optimization problem. 

2.2. Pairwise nearest neighbor method 

The pairwise nearest neighbor (PNN) method [6, 7] 
generates the clustering hierarchically using a sequence of 
merge operations. In each step of the algorithm, the number 
of the clusters is reduced by merging two nearby clusters: 

baa sss ��  (3) 

The cost of merging two clusters sa and sb is the increase in 
the MSE-value caused by the merge. It can be calculated 
using the following formula [7]: 
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where na and nb are the corresponding cluster sizes. The 
PNN applies local optimization strategy: all possible 
cluster pairs are considered and the one increasing the 
distortion least is chosen. A single merge step of the PNN is 
optimal but there is no guarantee of optimality of the final 
clustering resulting from a series of locally optimal merge 
steps. The time complexity of the PNN varies from O(N2) 
to O(N3) depending on the implementation and data set [9]. 

2.3. Branch-and-bound technique 

The idea of the PNN can be generalized to a branch-and-
bound technique by generating the clustering by a sequence 
of merge operations as proposed in [8]. It is easy to see that 
any clustering can be produced by a sequence of merge 
operations. Every merge operation reduces the number of 
clusters by one. It therefore takes exactly N-M steps to 
generate a clustering with M clusters, independent of the 
clustering and of the order of the merge operations. 
For example, consider the example shown in Fig. 1, in 
which we have five data points {A, B, C, D, E}. The 
resulting clustering can be generated by the following three 
merge operations: 

Initial: {A} {B} {C} {D} {E} 
Step 1: {AE} {B} {C} {D} 
Step 2: {AE} {BC} {D} 
Step 3: {AE} {BCD} 

All possible merge sequences can be represented as 
a search tree. The root of the tree represents the starting 
point, in which every data vector is assigned to its own 
cluster (N clusters), and its descendants represent all 
possible clusterings to N-1 clusters. In general, every node 
represents a single clustering with m clusters and its 
children represent the clusterings that have been produced 
by merging any two of the m existing clusters. The optimal 
clustering can be found by systematic search from the tree. 
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Fig. 2. Example of non-redundant search tree. Branches that do not have any valid clustering have been cut out. 

 

2.4. Permuting non-redundant search tree 

We consider next a single cluster represented as a list of the 
data vectors, and merge operation as the catenation of the 
two lists. For example, the clustering in Fig. 1 is 
represented as the pair (AE) (BCD), and their merge as 
(AE) + (BCD) = (AEBCD). 
The search tree includes a lot of redundancy as the same 
clustering can be constructed by many different order of the 
merge operations. For example, the clustering (AE) (BCD) 
can be reached by six different merge sequences, of which 
two are shown in Table 1. We must therefore limit the 
permutation of the search paths in the tree. 

Table 1: Example of generating clustering  
(AE) (BCD) via two different merge sequences. 

Sequence 1: Sequence 2: 

(A) (B) (C) (D) (E) (A) (B) (C) (D) (E) 
(AE) (B) (C) (D) (A) (BC) (D) (E) 
(AE) (BC) (D) (A) (BCD) (E) 
(AE) (BCD) (AE) (BCD) 

 
The redundancy of the search paths can be removed as 
follows. The algorithm permutes the cluster pair sa and sb in 
a predefined order so that the index of the first cluster (A) 
is always monotonically non-decreasing during the process, 
and that the index of the second cluster is greater that of the 
first clusters: b > a. In other words, if we have merged 
clusters sa0 and sb0 at the previous level, we should consider 
only cluster pairs sa and sb such that a � a0. This can be 
formalized as follows: 

� � abaass ba ��� 0:,  (5) 

where a0 is the index of the first cluster in the previous 
merge. Any clustering {s1, s2, ..., sm} can then be generated 
by constructing the clusters one by one in the order from s1 
to sm. Furthermore, there is no other merge sequence that 
could construct the same clustering without contradicting 

the permutation criterion (5). The non-redundant search 
tree is illustrated in Fig. 2. 
The criterion (5) removes redundant clusterings but there 
still exist partial branches that cannot be completed. For 
example, after the merge sequence (AB) � (CE) there are 
no more valid merges left because the permutation criterion 
does not allow to add anymore vectors in the cluster (AB), 
and because the merge (CE)+(D) would break the 
intracluster order. Fortunately, such branches can be 
eliminated using rather simple bounds for the permutation 
loop as derived in [8]. The pseudo code is formulated in 
Fig. 3. 
 

Branch-and-bound(X, M) � S; 

FOR i�1 to N DO 
si � {xi}; 

S � BB(S, 1, 2, M); 

BB(S0, a0, b0, M) � Sbest, MSEbest; 

MSEbest � �; 
IF |S0| = M THEN RETURN S0, MSE(S0); 
FOR a � a0 to M 

IF a=a0 THEN bmin � b0 
ELSE bmin � a+1 

FOR b � bmin to |S0| 
S � S0; 
S � Merge(S, sa, sb); 
S, mse  � BB(S, a, b, M); 
IF mse < MSEbest THEN 

MSEbest � mse; 
Sbest � S; 

END-IF 
END-FOR 

END-FOR 

RETURN Sbest, MSEbest; 

Fig. 3. Algorithm for generating non-redundant search tree. 
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2.5. Bounding criterion 

It is also possible to bound the search if we know that the 
current branch cannot lead to a better solution than the best 
solution found so far. The bounding is based on the fact 
that every merge operation increases the MSE-value of the 
solution. Thus, when we have generated the first solution in 
the search tree, we can use its MSE-value as the upper limit 
for the optimal solution. Other branches of the tree can then 
be terminated if the following condition is true: 

minMSEMSEt �  (6) 

3. POLYNOMIAL TIME VARIANTS 

We introduce next two sub-optimal variants of the branch-
and-bound technique. The algorithms do not guarantee the 
optimality of the result but they work in polynomial time. 

3.1. Piecewise optimization 

The original optimization problem is divided into a series 
of smaller sub problems that are solved optimally. The 
input at each stage of the algorithm is N clusters (whole 
data set in the beginning), and the output is the optimal 
clustering to N-Z clusters, where Z is a parameter. The 
result is then input to the same procedure, and the process 
is repeated until the desired number of M clusters is 
reached. The method is denoted as Piecewise optimization, 
and it is illustrated in Fig. 4. 
If the size of a single sub-problem is Z, we need �(N-M)/Z� 
stages in the algorithm. The quality of the result depends on 
the parameter Z; greater values give better clustering result 
at the cost of longer run time. The extreme case is when we 
set Z=N-M, which would result to the same algorithm as the 
branch-and-bound technique in Section 2. By setting Z=1, 
on the other hand, the method would be the same as the 
original PNN method. The pseudo code of the Piecewise 
optimization is shown in Fig. 5. 
At the starting point of the algorithm when we have N 
clusters as the input, we have O(N2) possible merge 
operations to be considered. Two subsequent merge 
operations results in O(N4) different solutions. In general, 
the time complexity of z subsequent merge operations is 
O(N2Z), and the overall Piecewise algorithm is O(N�N2Z). 
The algorithm works in polynomial time when Z is small 
enough to be considered as a constant. On the other hand, 
the time complexity increases exponentially as a function 
of Z. The algorithm is therefore useful only with very small 
values of Z, for example Z=2, or Z=3. 

3.2. Look-ahead optimization 

The Piecewise optimization traverses the search tree 
through local optima. At each stage of the algorithm, the 
last merge is the most critical because the algorithm can see 
only one level forward in the tree. Slightly better but Z 
times slower variant, denoted as Look-ahead optimization, 
is therefore proposed as follows. 
As in the Piecewise optimization, the Look-ahead 
optimization generates a complete search tree down to the 
level Z, and then searches for the optimal clustering with 
N-Z clusters. Instead of moving to this local optimum at the 
level Z, the algorithm proceed only one level in the tree 
along the path towards the direction of the local optimum. 
After the single step, a completely new search tree is 
re-generated starting from the level N-1. The process is 
repeated N-M times as illustrated in Fig. 6. 
This variant is less critical for the local minima. As 
a drawback, the time complexity of the algorithm is Z times 
that of the previous variant. With Z-values larger than 2, we 
would also do unnecessary work as a part of the search tree 
would be re-generated several times. In practice, the 
algorithm can be realized only with very small values of Z. 
 

N clusters

N - Z clusters

N - 2Z clusters

N - 3Z clusters

M clusters
Final result

Z merge
steps

Fig. 4. Illustration of the Piecewise optimization. The 
starting points at each step are shown as white dots. 

 

PiecewiseOptimization(X, M, Z) � S; 

FOR i�1 to N DO 
si � {xi}; 

REPEAT 
size � max(M, |S|-Z); 
S � BB(S, 1, size, �); 

UNTIL |S| = M; 

Fig. 5. Piecewise optimization algorithm. 
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Local
minima

Final result  
Fig. 6. Illustration of the Look-Ahead optimization. The 

starting points at each step are shown as white dots. 

4. EXPERIMENTAL RESULTS 

We consider first simulated data sets in order to find out 
how large clustering problems the optimal branch-and-
bound technique can solve. The results are summarized in 
Fig. 7-8 with different number of clusters using Pentium 
450 MHz computer for simulated data set. The algorithm is 
fastest when the number of clusters is set small (M=2), or 
large (M=9). These correspond to the situations, in which 
the number of possible solutions is smallest. The use of 
early termination improves the algorithm but the 
improvement is only marginal. We conclude that the 
practical usability of the optimal branch-and-bound 
algorithm is limited to very small size problem instances 
only. 
Similar results are given also to the polynomial time 
variants in Fig. 9. The algorithms are performed for 
a simulated data set with 15 clusters. The size of the data 
set is varied by randomly subsampling source data set of 
1000 vectors. The polynomial time variants are faster and 
can process larger data sets than the optimal branch-and-
bound technique. Only small sub tree sizes (Z=2,3) were 
applied. 
The qualities of the sub-optimal variants are compared in 
Table 2 with other heuristic clustering methods. The 
random clustering is obtained by randomly selecting M 
data vectors and use them as cluster representatives, and 
then partition the rest of the data set by minimizing 
Euclidean distance from the data vectors to the cluster 
representatives. K-means is an iterative clustering 
algorithm, which is also known as the GLA in vector 
quantization context due to [11]. The PNN is implemented 
as in [9], and the RLS refers to the Randomized Local 
Search method [12], which is one of the best heuristic 
clustering algorithms in terms of quality. 
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Fig. 7. The dependency of time from the size of data  
with M=2 clusters. 
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Fig. 9. The effect of the problem size to the run time in the 
case of the polynomial time variants (M=15). 

 
 
In comparison to the PNN, the polynomial time variants 
(Piecewise and Look-ahead) manage to produce better 
clustering in two cases (N=70, 80) but the difference is 
marginal. For the rest of the data there are no differences 
between the PNN and branch-and-bound variants. The 
RLS, on the other hand, gives somewhat better results than 
the PNN and BB. It is noted that the optimality of the 
results is not known but it is expected that the RLS results 
are close to optimum. 
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Table 2: Performance comparison for the simulated data set (N=30..100). The values are mean square errors (�109). 

 
Method: N=30 N=40 N=50 N=60 N=70 N=80 N=90 N=100 

Random clustering 2.996 2.914 7.093 4.181 5.399 4.940 4.545 4.062 
K-means [12] 0.948 1.081 1.108 1.541 1.647 1.614 1.628 1.837 

PNN [8] 0.396 0.573 0.992 1.181 1.246 1.225 1.274 1.373 
BB:  Piecewise (Z=2) 0.396 0.573 0.992 1.181 1.240 1.206 1.274 1.373 

BB: Look-ahead (Z=2) 0.396 0.573 0.992 1.181 1.240 1.206 1.274 1.373 
RLS [13] 0.396 0.573 0.992 1.141 1.203 1.169 1.238 1.335 

 
 

Finally, we compare the performance of different clustering 
methods for a standard clustering test problem SS2 of [10], 
pp. 103-104. The data set contains 89 postal zones in 
Bavaria (Germany) and their attributes are the number of 
self-employed people, civil servants, clerks and manual 
workers in these areas. The attributes are normalized to the 
scale [0, 1] according to their minimum and maximum 
values. The results in Table 3 indicate that the Piecewise 
and Look-ahead algorithms can improve over the PNN and 
the K-means but at the cost of significant increase in run 
time. The results, however, are still worse than that of the 
RLS. Moreover, the slowness of the algorithms may restrict 
their use in the case of larger data sets. 

Table 3: Performance comparison for the data set SS2 
(N=89) [10]. The values are mean square errors (�109). 

Method: Error: Time: 

Random clustering 1.760 � 0 s 
K-means [11] 1.140 � 0 s 

PNN [9] 0.336 � 0 s 
BB:  Piecewise (Z=2) 0.323 342 s 
BB:  Piecewise (Z=3) 0.336 1061 s 
BB:  Piecewise (Z=4) 0.323 4851 s 

BB: Look-ahead (Z=2) 0.323 652 s 
BB: Look-ahead (Z=3) 0.316 3129 s 

RLS [12] 0.313 � 0 s 

5. CONCLUSIONS 

We have introduced two polynomial time algorithms that 
were analytically derived from the optimal branch-and-
bound technique. The algorithms offer good compromise 
between the optimal algorithm and the PNN. They can 
operate with larger data sets than the optimal branch-and-
bound technique and, on the other hand, give better results 
than the PNN in terms of quality. However, the methods 
were still outperformed by the best competitor (the RLS). It 

is noted more tests should be performed to obtain more 
conclusive results. 
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