
Proceedings of ACIVS 2002 (Advanced Concepts for Intelligent Vision Systems), Ghent, Belgium, September 9-11, 2002

POLYNOMIAL TIME CLUSTERING ALGORITHMS DERIVED
FROM BRANCH-AND-BOUND TECHNIQUE

Pasi Fränti and Olli Virmajoki

franti@cs.joensuu.fi, ovirma@cs.joensuu.fi
University of Joensuu, Department of Computer Science, P.O. Box 111, FIN-80101 Joensuu, FINLAND

Abstract

Optimal clustering can be solved using branch-and-bound
technique. The algorithm has exponential time complexity and,
therefore, only very small size problem instances can be solved in
practice. On the other hand, the branch-and-bound technique
provides useful insight to the problem itself, which can be
utilized in designing of practical clustering algorithms. In this
paper, we propose two sub-optimal but polynomial time
algorithms derived from the branch-and-bound technique. The
proposed algorithms generate only partial search tree, which are
solved optimally. The final solution is achieved by a series of
locally optimal steps.

1. INTRODUCTION

Clustering is an important problem that must often be
solved as a part of more complicated tasks in pattern
recognition, image analysis and other fields of science and
engineering [1, 2, 3, 4]. Clustering aims at partition a given
set of N data vectors into M groups so that similar vectors
are grouped together and dissimilar vectors to different
groups. The clustering task is usually formalized as
a combinatorial optimization problem, in which the goal is
to find the partition that minimizes a given cost function.
The clustering problem in its combinatorial form has been
shown to be NP-complete [5]. No polynomial time
algorithm is known to find the optimal solution. Therefore,
we have to content ourselves with sub-optimal solutions
obtained by heuristic algorithms. Despite known limitations
implicated by the NP-completeness, solving the optimal
clustering problem has some theoretical interest that
provides also new insight to the problem itself.
Agglomerative clustering is heuristic approach for
generating the clustering hierarchically. The process starts
by initializing each data vector as its own cluster. Two
clusters are merged at each step and the process is repeated
until the desired number of clusters is obtained. Ward’s
method [6] selects the cluster pair to be merged so that it
increases the given objective function value least. In the
vector quantization context, this is known as the pairwise
nearest neighbor (PNN) method due to [7]. In the rest of
this paper, we denote it as the PNN method.

A branch-and-bound technique has been proposed in [8]
based on the merging approach described above. It is easy
to see that any clustering can be produced by a series of
merge operations. Every merge reduces the number of
clusters by one. It therefore takes exactly N-M steps to
generate a clustering with M groups from the set of N data
vectors. Optimal clustering can be found by considering all
possible merge sequences and finding the one that
minimizes the optimization function. This can be
implemented as a branch-and-bound technique, which uses
search tree for finding the optimal clustering. The relation
of the branch-and-bound technique and the PNN method is
demonstrated in Fig. 1.
The complexity of the branch-and-bound technique,
however, is exponential and the practical usability is
therefore strongly limited to small size problem instances
only. In this paper, we propose two sub-optimal variants
that do not guarantee the optimality of the result but they
work in polynomial time.
The first algorithm, Piecewise optimization, divides the
problem into a series of smaller sub problems that are
solved optimally. The input at each stage of the algorithm is
N clusters (whole data set in the beginning), and the output
is the optimal clustering to N-Z clusters, where Z is
a parameter of the algorithm. The result is then input to the
same procedure, and the process is repeated until the
desired number of M clusters is reached.
The second algorithm, Look-ahead optimization, generates
complete search tree to the level Z and searches for the
optimal clustering of N-Z clusters. Instead of moving to the
local optimum at the level Z, it proceeds only one level in
the tree along the path towards to the direction of the local
optimum. After this, a completely new search tree is
generated starting from the level N-1. The process is
repeated N-M times.

2. CLUSTERING BY BRANCH-AND-BOUND

Next we give formal description of the clustering problem,
and recall the PNN method. The branch-and-bound
technique is then given as a method to generate minimum

 S00-1

Proceedings of ACIVS 2002 (Advanced Concepts for Intelligent Vision Systems), Ghent, Belgium, September 9-11, 2002

redundancy search tree. A bounding criterion is also
discussed.

2'nd merge AEB AEC AED BC BD CD

1'st merge AB AC AD AE BC BD BE CD CE DE

N = 5
M = 2

1'st merge 2'nd and 3'rd merge

A

E

B

D
C

 AEBC AED BCD 3'rd merge

Fig. 1. Illustration of the PNN as a search tree.

2.1. Definition of clustering problem

The clustering problem is defined here as follows. Given
a set of N data vectors X={x1, x2, …, xN}, partition the data
set into M clusters such that similar vectors are grouped
together and dissimilar vectors to different groups. Partition
P={p1, p2, …, pN } defines the clustering by giving for each
data vector the cluster index of the group where it is
assigned to. A cluster sa is defined as the set of data vectors
that belong to the same partition a:

�s x p aa i i� � � (1)

The clustering is then represented as the set S={s1, s2, ...,
sM}. The clusters are sometimes also represented as their
centroids: C={c1, c2, …, cM}.
The most important choice is the cost function f for
evaluating the goodness of the clustering. When the data
vectors are in Euclidean space, a commonly used function
is the mean square error between the data vectors and their
nearest cluster centroids. Given a partition P and the cluster
representatives C, it is calculated as:

� � �
�

���

N

i
pi i

cx
N

PCMSE
1

21, (2)

The choice of the function depends on the application and
there is no general solution to be used. However, once the
objective function is decided the clustering problem can be
formulated as a combinatorial optimization problem.

2.2. Pairwise nearest neighbor method

The pairwise nearest neighbor (PNN) method [6, 7]
generates the clustering hierarchically using a sequence of
merge operations. In each step of the algorithm, the number
of the clusters is reduced by merging two nearby clusters:

baa sss �� (3)

The cost of merging two clusters sa and sb is the increase in
the MSE-value caused by the merge. It can be calculated
using the following formula [7]:

2
, ba

ba

ba
ba cc

nn
nnd ��

�

�
 (4)

where na and nb are the corresponding cluster sizes. The
PNN applies local optimization strategy: all possible
cluster pairs are considered and the one increasing the
distortion least is chosen. A single merge step of the PNN is
optimal but there is no guarantee of optimality of the final
clustering resulting from a series of locally optimal merge
steps. The time complexity of the PNN varies from O(N2)
to O(N3) depending on the implementation and data set [9].

2.3. Branch-and-bound technique

The idea of the PNN can be generalized to a branch-and-
bound technique by generating the clustering by a sequence
of merge operations as proposed in [8]. It is easy to see that
any clustering can be produced by a sequence of merge
operations. Every merge operation reduces the number of
clusters by one. It therefore takes exactly N-M steps to
generate a clustering with M clusters, independent of the
clustering and of the order of the merge operations.
For example, consider the example shown in Fig. 1, in
which we have five data points {A, B, C, D, E}. The
resulting clustering can be generated by the following three
merge operations:

Initial: {A} {B} {C} {D} {E}
Step 1: {AE} {B} {C} {D}
Step 2: {AE} {BC} {D}
Step 3: {AE} {BCD}

All possible merge sequences can be represented as
a search tree. The root of the tree represents the starting
point, in which every data vector is assigned to its own
cluster (N clusters), and its descendants represent all
possible clusterings to N-1 clusters. In general, every node
represents a single clustering with m clusters and its
children represent the clusterings that have been produced
by merging any two of the m existing clusters. The optimal
clustering can be found by systematic search from the tree.

 S00-2

Proceedings of ACIVS 2002 (Advanced Concepts for Intelligent Vision Systems), Ghent, Belgium, September 9-11, 2002

BCE BCDBC

AB

ABC ABD ABE

AC AD AE BC BD

CD

CE

DE

CDE

CECD

ABCE ABDE

DE

ACD ACE BD BCEBE DE ADE BC BE BC BD CD BCD BDE

ACDE BE

BD

BDE BCDEABCD

Fig. 2. Example of non-redundant search tree. Branches that do not have any valid clustering have been cut out.

2.4. Permuting non-redundant search tree

We consider next a single cluster represented as a list of the
data vectors, and merge operation as the catenation of the
two lists. For example, the clustering in Fig. 1 is
represented as the pair (AE) (BCD), and their merge as
(AE) + (BCD) = (AEBCD).
The search tree includes a lot of redundancy as the same
clustering can be constructed by many different order of the
merge operations. For example, the clustering (AE) (BCD)
can be reached by six different merge sequences, of which
two are shown in Table 1. We must therefore limit the
permutation of the search paths in the tree.

Table 1: Example of generating clustering
(AE) (BCD) via two different merge sequences.

Sequence 1: Sequence 2:

(A) (B) (C) (D) (E) (A) (B) (C) (D) (E)
(AE) (B) (C) (D) (A) (BC) (D) (E)
(AE) (BC) (D) (A) (BCD) (E)
(AE) (BCD) (AE) (BCD)

The redundancy of the search paths can be removed as
follows. The algorithm permutes the cluster pair sa and sb in
a predefined order so that the index of the first cluster (A)
is always monotonically non-decreasing during the process,
and that the index of the second cluster is greater that of the
first clusters: b > a. In other words, if we have merged
clusters sa0 and sb0 at the previous level, we should consider
only cluster pairs sa and sb such that a � a0. This can be
formalized as follows:

� � abaass ba ��� 0:, (5)

where a0 is the index of the first cluster in the previous
merge. Any clustering {s1, s2, ..., sm} can then be generated
by constructing the clusters one by one in the order from s1
to sm. Furthermore, there is no other merge sequence that
could construct the same clustering without contradicting

the permutation criterion (5). The non-redundant search
tree is illustrated in Fig. 2.
The criterion (5) removes redundant clusterings but there
still exist partial branches that cannot be completed. For
example, after the merge sequence (AB) � (CE) there are
no more valid merges left because the permutation criterion
does not allow to add anymore vectors in the cluster (AB),
and because the merge (CE)+(D) would break the
intracluster order. Fortunately, such branches can be
eliminated using rather simple bounds for the permutation
loop as derived in [8]. The pseudo code is formulated in
Fig. 3.

Branch-and-bound(X, M) � S;

FOR i�1 to N DO
si � {xi};

S � BB(S, 1, 2, M);

BB(S0, a0, b0, M) � Sbest, MSEbest;

MSEbest � �;
IF |S0| = M THEN RETURN S0, MSE(S0);
FOR a � a0 to M

IF a=a0 THEN bmin � b0
ELSE bmin � a+1

FOR b � bmin to |S0|
S � S0;
S � Merge(S, sa, sb);
S, mse � BB(S, a, b, M);
IF mse < MSEbest THEN

MSEbest � mse;
Sbest � S;

END-IF
END-FOR

END-FOR

RETURN Sbest, MSEbest;

Fig. 3. Algorithm for generating non-redundant search tree.

 S00-3

Proceedings of ACIVS 2002 (Advanced Concepts for Intelligent Vision Systems), Ghent, Belgium, September 9-11, 2002

2.5. Bounding criterion

It is also possible to bound the search if we know that the
current branch cannot lead to a better solution than the best
solution found so far. The bounding is based on the fact
that every merge operation increases the MSE-value of the
solution. Thus, when we have generated the first solution in
the search tree, we can use its MSE-value as the upper limit
for the optimal solution. Other branches of the tree can then
be terminated if the following condition is true:

minMSEMSEt � (6)

3. POLYNOMIAL TIME VARIANTS

We introduce next two sub-optimal variants of the branch-
and-bound technique. The algorithms do not guarantee the
optimality of the result but they work in polynomial time.

3.1. Piecewise optimization

The original optimization problem is divided into a series
of smaller sub problems that are solved optimally. The
input at each stage of the algorithm is N clusters (whole
data set in the beginning), and the output is the optimal
clustering to N-Z clusters, where Z is a parameter. The
result is then input to the same procedure, and the process
is repeated until the desired number of M clusters is
reached. The method is denoted as Piecewise optimization,
and it is illustrated in Fig. 4.
If the size of a single sub-problem is Z, we need �(N-M)/Z�
stages in the algorithm. The quality of the result depends on
the parameter Z; greater values give better clustering result
at the cost of longer run time. The extreme case is when we
set Z=N-M, which would result to the same algorithm as the
branch-and-bound technique in Section 2. By setting Z=1,
on the other hand, the method would be the same as the
original PNN method. The pseudo code of the Piecewise
optimization is shown in Fig. 5.
At the starting point of the algorithm when we have N
clusters as the input, we have O(N2) possible merge
operations to be considered. Two subsequent merge
operations results in O(N4) different solutions. In general,
the time complexity of z subsequent merge operations is
O(N2Z), and the overall Piecewise algorithm is O(N�N2Z).
The algorithm works in polynomial time when Z is small
enough to be considered as a constant. On the other hand,
the time complexity increases exponentially as a function
of Z. The algorithm is therefore useful only with very small
values of Z, for example Z=2, or Z=3.

3.2. Look-ahead optimization

The Piecewise optimization traverses the search tree
through local optima. At each stage of the algorithm, the
last merge is the most critical because the algorithm can see
only one level forward in the tree. Slightly better but Z
times slower variant, denoted as Look-ahead optimization,
is therefore proposed as follows.
As in the Piecewise optimization, the Look-ahead
optimization generates a complete search tree down to the
level Z, and then searches for the optimal clustering with
N-Z clusters. Instead of moving to this local optimum at the
level Z, the algorithm proceed only one level in the tree
along the path towards the direction of the local optimum.
After the single step, a completely new search tree is
re-generated starting from the level N-1. The process is
repeated N-M times as illustrated in Fig. 6.
This variant is less critical for the local minima. As
a drawback, the time complexity of the algorithm is Z times
that of the previous variant. With Z-values larger than 2, we
would also do unnecessary work as a part of the search tree
would be re-generated several times. In practice, the
algorithm can be realized only with very small values of Z.

N clusters

N - Z clusters

N - 2Z clusters

N - 3Z clusters

M clusters
Final result

Z merge
steps

Fig. 4. Illustration of the Piecewise optimization. The
starting points at each step are shown as white dots.

PiecewiseOptimization(X, M, Z) � S;

FOR i�1 to N DO
si � {xi};

REPEAT
size � max(M, |S|-Z);
S � BB(S, 1, size, �);

UNTIL |S| = M;

Fig. 5. Piecewise optimization algorithm.

 S00-4

Proceedings of ACIVS 2002 (Advanced Concepts for Intelligent Vision Systems), Ghent, Belgium, September 9-11, 2002

Local
minima

Final result
Fig. 6. Illustration of the Look-Ahead optimization. The

starting points at each step are shown as white dots.

4. EXPERIMENTAL RESULTS

We consider first simulated data sets in order to find out
how large clustering problems the optimal branch-and-
bound technique can solve. The results are summarized in
Fig. 7-8 with different number of clusters using Pentium
450 MHz computer for simulated data set. The algorithm is
fastest when the number of clusters is set small (M=2), or
large (M=9). These correspond to the situations, in which
the number of possible solutions is smallest. The use of
early termination improves the algorithm but the
improvement is only marginal. We conclude that the
practical usability of the optimal branch-and-bound
algorithm is limited to very small size problem instances
only.
Similar results are given also to the polynomial time
variants in Fig. 9. The algorithms are performed for
a simulated data set with 15 clusters. The size of the data
set is varied by randomly subsampling source data set of
1000 vectors. The polynomial time variants are faster and
can process larger data sets than the optimal branch-and-
bound technique. Only small sub tree sizes (Z=2,3) were
applied.
The qualities of the sub-optimal variants are compared in
Table 2 with other heuristic clustering methods. The
random clustering is obtained by randomly selecting M
data vectors and use them as cluster representatives, and
then partition the rest of the data set by minimizing
Euclidean distance from the data vectors to the cluster
representatives. K-means is an iterative clustering
algorithm, which is also known as the GLA in vector
quantization context due to [11]. The PNN is implemented
as in [9], and the RLS refers to the Randomized Local
Search method [12], which is one of the best heuristic
clustering algorithms in terms of quality.

0
500

1000
1500
2000
2500
3000

3 5 7 9 11 13 15 17

Size of the data set

Se
co

nd
s

B&BB&B with bounding
criterion

Fig. 7. The dependency of time from the size of data
with M=2 clusters.

0
2000
4000
6000
8000

10000
12000

10 11 12 13 14 15 16 17 18
Size of the data set

Se
co

nd
s

B&B with
bounding
criterionB&B

Fig. 8. The dependency of time from the size of data with
M=9 clusters.

0

500

1000

1500

2000

30 40 50 60 70 80 90 100 110 120

Size of the data set

Se
co

nd
s

Piecewise (Z =2)

Piecewise (Z =3)

Look-ahead (Z =2)Look-ahead (Z =3)

Fig. 9. The effect of the problem size to the run time in the
case of the polynomial time variants (M=15).

In comparison to the PNN, the polynomial time variants
(Piecewise and Look-ahead) manage to produce better
clustering in two cases (N=70, 80) but the difference is
marginal. For the rest of the data there are no differences
between the PNN and branch-and-bound variants. The
RLS, on the other hand, gives somewhat better results than
the PNN and BB. It is noted that the optimality of the
results is not known but it is expected that the RLS results
are close to optimum.

 S00-5

Proceedings of ACIVS 2002 (Advanced Concepts for Intelligent Vision Systems), Ghent, Belgium, September 9-11, 2002

Table 2: Performance comparison for the simulated data set (N=30..100). The values are mean square errors (�109).

Method: N=30 N=40 N=50 N=60 N=70 N=80 N=90 N=100

Random clustering 2.996 2.914 7.093 4.181 5.399 4.940 4.545 4.062
K-means [12] 0.948 1.081 1.108 1.541 1.647 1.614 1.628 1.837

PNN [8] 0.396 0.573 0.992 1.181 1.246 1.225 1.274 1.373
BB: Piecewise (Z=2) 0.396 0.573 0.992 1.181 1.240 1.206 1.274 1.373

BB: Look-ahead (Z=2) 0.396 0.573 0.992 1.181 1.240 1.206 1.274 1.373
RLS [13] 0.396 0.573 0.992 1.141 1.203 1.169 1.238 1.335

Finally, we compare the performance of different clustering
methods for a standard clustering test problem SS2 of [10],
pp. 103-104. The data set contains 89 postal zones in
Bavaria (Germany) and their attributes are the number of
self-employed people, civil servants, clerks and manual
workers in these areas. The attributes are normalized to the
scale [0, 1] according to their minimum and maximum
values. The results in Table 3 indicate that the Piecewise
and Look-ahead algorithms can improve over the PNN and
the K-means but at the cost of significant increase in run
time. The results, however, are still worse than that of the
RLS. Moreover, the slowness of the algorithms may restrict
their use in the case of larger data sets.

Table 3: Performance comparison for the data set SS2
(N=89) [10]. The values are mean square errors (�109).

Method: Error: Time:

Random clustering 1.760 � 0 s
K-means [11] 1.140 � 0 s

PNN [9] 0.336 � 0 s
BB: Piecewise (Z=2) 0.323 342 s
BB: Piecewise (Z=3) 0.336 1061 s
BB: Piecewise (Z=4) 0.323 4851 s

BB: Look-ahead (Z=2) 0.323 652 s
BB: Look-ahead (Z=3) 0.316 3129 s

RLS [12] 0.313 � 0 s

5. CONCLUSIONS

We have introduced two polynomial time algorithms that
were analytically derived from the optimal branch-and-
bound technique. The algorithms offer good compromise
between the optimal algorithm and the PNN. They can
operate with larger data sets than the optimal branch-and-
bound technique and, on the other hand, give better results
than the PNN in terms of quality. However, the methods
were still outperformed by the best competitor (the RLS). It

is noted more tests should be performed to obtain more
conclusive results.

6. REFERENCES

[1] Everitt BS, Cluster Analysis, 3rd Edition. Edward Arnold /
Halsted Press, London, 1992.

[2] Kaufman L, Rousseeuw PJ, Finding Groups in Data: An
Introduction to Cluster Analysis. John Wiley Sons, New
York, 1990.

[3] Dubes R, Jain A, Algorithms that Cluster Data. Prentice-Hall,
Englewood Cliffs, NJ, 1987.

[4] A. Gersho and R.M. Gray, Vector Quantization and Signal
Compression. Kluwer Academic Publishers, Dordrecht 1992.

[5] M.R. Garey, D.S. Johnson, H.S. Witsenhausen, "The
complexity of the generalized Lloyd-Max problem". IEEE
Transactions on Information Theory, 28 (2), 255-256, March
1982.

[6] J.H. Ward, "Hierarchical grouping to optimize an objective
function", J. Amer. Statist.Assoc., 58, 236-244, 1963.

[7] W.H. Equitz, "A new vector quantization clustering
algorithm", IEEE Transactions on Acoustics, Speech, and
Signal Processing 37 (10), 1568-1575, October 1989.

[8] P. Fränti, O. Virmajoki and T. Kaukoranta, "Branch-and-
bound technique for solving optimal clustering", Int. Conf.
on Pattern Recognition (ICPR’02), Québec, Canada, August
2002. (to appear)

[9] P. Fränti, T. Kaukoranta, D.-F. Shen and K.-S. Chang, "Fast
and memory efficient implementation of the exact PNN",
IEEE Transactions on Image Processing, 9 (5), 773-777,
May 2000.

[10] H. Späth, Cluster Analysis Algorithms for Data Reduction
and Classification of Objects, Ellis Horwood Limited, West
Sussex, UK, 1980.

[11] Y. Linde, A. Buzo and R.M. Gray, "An Algorithm for Vector
Quantizer Design", IEEE Transactions on Communications,
28 (1), 84-95, January 1980.

[12] P. Fränti and J. Kivijärvi, "Randomized local search
algorithm for the clustering problem", Pattern Analysis and
Applications 3(4): 358-369, 2000.

 S00-6

	INTRODUCTION
	CLUSTERING BY BRANCH-AND-BOUND
	Definition of clustering problem
	Pairwise nearest neighbor method
	Branch-and-bound technique
	Permuting non-redundant search tree
	Bounding criterion

	POLYNOMIAL TIME VARIANTS
	Piecewise optimization
	Look-ahead optimization

	EXPERIMENTAL RESULTS
	CONCLUSIONS
	REFERENCES

