
applied
sciences

Article

Which Local Search Operator Works Best for the
Open-Loop TSP?

Lahari Sengupta *, Radu Mariescu-Istodor and Pasi Fränti

Machine Learning Group, School of Computing, University of Eastern Finland, 80101 Joensuu, Finland;
radum@cs.uef.fi (R.M.-I.); franti@cs.uef.fi (P.F.)
* Correspondence: lahari@cs.uef.fi; Tel.: +358-417232752

Received: 6 August 2019; Accepted: 17 September 2019; Published: 23 September 2019
����������
�������

Abstract: The traveling salesman problem (TSP) has been widely studied for the classical closed-loop
variant. However, very little attention has been paid to the open-loop variant. Most of the existing
studies also focus merely on presenting the overall optimization results (gap) or focus on processing
time, but do not reveal much about which operators are more efficient to achieve the result. In this
paper, we present two new operators (link swap and 3–permute) and study their efficiency against
existing operators, both analytically and experimentally. Results show that while 2-opt and relocate
contribute equally in the closed-loop case, the situation changes dramatically in the open-loop case
where the new operator, link swap, dominates the search; it contributes by 50% to all improvements,
while 2-opt and relocate have a 25% share each. The results are also generalized to tabu search and
simulated annealing.

Keywords: traveling salesman problem; open-loop TSP; randomized algorithms; local search;
NP–hard; O–Mopsi game

1. Introduction

The traveling salesman problem (TSP) aims to find the shortest tour for a salesperson to visit N
number of cities. In graph theory, a cycle including every vertex of a graph makes a Hamiltonian cycle.
Therefore, in the context of graph theory, the solution to a TSP is defined as the minimum-weight
Hamiltonian cycle in a weighted graph. In this paper, we consider the symmetric Euclidean TSP
variant, where the distance between two cities is calculated by their distance in the Euclidean space.
Both the original problem [1] and its Euclidean variant are NP–hard [2]. Finding the optimum solution
efficiently is therefore not realistic, even for the relatively small size of the input.

O–Mopsi (http://cs.uef.fi/o-mopsi/) is a mobile-based orienteering game where the player needs to
find some real-world targets, with the help of GPS navigation [3]. Unlike a prior instruction of visiting
order in the classical orienteering, O–Mopsi players have to decide the order of visiting targets by
themselves. The game finishes immediately when the last target is reached. The player does not need
to return to the start target. This corresponds to a special case of the orienteering problem [4]. Finding
the optimum order by minimizing the tour length corresponds to solving open-loop TSP [5], because
the players are not required to return to the start position. The open-loop variant is also NP–hard [2].
The solution to a closed-loop TSP is a tour; however, the solution to an open-loop TSP is an open path.
Hence, a TSP with the size N contains N links in its closed-loop solution and N-1 in its open-loop
solution (Figure 1). However, the optimum solution to an open-loop TSP is not usually achievable by
removing the largest link from the optimum solution to the closed-loop TSP (Figure 1).

Appl. Sci. 2019, 9, 3985; doi:10.3390/app9193985 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-9554-2827
http://www.mdpi.com/2076-3417/9/19/3985?type=check_update&version=1
http://cs.uef.fi/o-mopsi/
http://dx.doi.org/10.3390/app9193985
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 3985 2 of 24

Appl. Sci. 2019, 9, x FOR PEER REVIEW 2 of 26

Figure 1. Difference between open- and closed-loop traveling salesman problem (TSP).

In O–Mopsi, players are not required to solve the optimum tour, but finding a good tour is still

an essential part of the game. Experiments showed that, among the players who completed a game,

only 14% had found the optimum tour, even if the number of targets was about 10, on average [3].

The optimum tour is still needed for reference when analyzing the performance of the players. This

is usually made as a post-game analysis but can also happen during real-time play. A comparison

can be made with the tour length or with the visiting order. The game creator also needs an

estimator for the tour length, as it will be published as a part of the game info. If the game is created

automatically on the demand, TSP must be solved real-time. The optimality is highly desired, but

can sometimes be compromised for the sake of fast processing.

The number of targets in the current O–Mopsi instances varies from 4 to 27, but larger

instances may appear. For the smaller instances, the relatively simple branch-and-bound algorithm

is fast enough to produce the optimum tour. However, for the longer instances, it might take from

minutes to hours. Along with the exact solver, a faster heuristic algorithm is therefore needed to

find the solution more quickly, in spite of the danger of occasionally resulting in a sub-optimal

solution. Besides O–Mopsi, TSP arises in route planning [6], orienteering problems [7], and

automated map generation [8].

An example of O–Mopsi play is shown in Figure 2, with a comparison to the optimum tour

(reference). For analyzing, we calculate several reference tours: optimum, fixed-start, and dynamic.

The optimum tour takes into account the fact that the players can freely choose their starting point.

Since selecting the best starting point is challenging [9], we also calculate two alternative reference

tours from the location where the player started. Fixed-start is the optimum tour using this starting

point. The dynamic tour follows the player’s choices from the starting point but re-calculates the

new optimum every time the player deviates from optimum path. Three different evaluation

measures are obtained using these three tours: gap, mismatches, and mistakes; see [10].

Figure 2. Examples of O–Mopsi playing (left), the final tour (middle) and comparison to optimum

tour (right).

Figure 1. Difference between open- and closed-loop traveling salesman problem (TSP).

In O–Mopsi, players are not required to solve the optimum tour, but finding a good tour is still
an essential part of the game. Experiments showed that, among the players who completed a game,
only 14% had found the optimum tour, even if the number of targets was about 10, on average [3].
The optimum tour is still needed for reference when analyzing the performance of the players. This is
usually made as a post-game analysis but can also happen during real-time play. A comparison can be
made with the tour length or with the visiting order. The game creator also needs an estimator for the
tour length, as it will be published as a part of the game info. If the game is created automatically on
the demand, TSP must be solved real-time. The optimality is highly desired, but can sometimes be
compromised for the sake of fast processing.

The number of targets in the current O–Mopsi instances varies from 4 to 27, but larger instances
may appear. For the smaller instances, the relatively simple branch-and-bound algorithm is fast enough
to produce the optimum tour. However, for the longer instances, it might take from minutes to hours.
Along with the exact solver, a faster heuristic algorithm is therefore needed to find the solution more
quickly, in spite of the danger of occasionally resulting in a sub-optimal solution. Besides O–Mopsi,
TSP arises in route planning [6], orienteering problems [7], and automated map generation [8].

An example of O–Mopsi play is shown in Figure 2, with a comparison to the optimum tour
(reference). For analyzing, we calculate several reference tours: optimum, fixed-start, and dynamic.
The optimum tour takes into account the fact that the players can freely choose their starting point.
Since selecting the best starting point is challenging [9], we also calculate two alternative reference
tours from the location where the player started. Fixed-start is the optimum tour using this starting
point. The dynamic tour follows the player’s choices from the starting point but re-calculates the new
optimum every time the player deviates from optimum path. Three different evaluation measures are
obtained using these three tours: gap, mismatches, and mistakes; see [10].

Appl. Sci. 2019, 9, x FOR PEER REVIEW 2 of 26

Figure 1. Difference between open- and closed-loop traveling salesman problem (TSP).

In O–Mopsi, players are not required to solve the optimum tour, but finding a good tour is still

an essential part of the game. Experiments showed that, among the players who completed a game,

only 14% had found the optimum tour, even if the number of targets was about 10, on average [3].

The optimum tour is still needed for reference when analyzing the performance of the players. This

is usually made as a post-game analysis but can also happen during real-time play. A comparison

can be made with the tour length or with the visiting order. The game creator also needs an

estimator for the tour length, as it will be published as a part of the game info. If the game is created

automatically on the demand, TSP must be solved real-time. The optimality is highly desired, but

can sometimes be compromised for the sake of fast processing.

The number of targets in the current O–Mopsi instances varies from 4 to 27, but larger

instances may appear. For the smaller instances, the relatively simple branch-and-bound algorithm

is fast enough to produce the optimum tour. However, for the longer instances, it might take from

minutes to hours. Along with the exact solver, a faster heuristic algorithm is therefore needed to

find the solution more quickly, in spite of the danger of occasionally resulting in a sub-optimal

solution. Besides O–Mopsi, TSP arises in route planning [6], orienteering problems [7], and

automated map generation [8].

An example of O–Mopsi play is shown in Figure 2, with a comparison to the optimum tour

(reference). For analyzing, we calculate several reference tours: optimum, fixed-start, and dynamic.

The optimum tour takes into account the fact that the players can freely choose their starting point.

Since selecting the best starting point is challenging [9], we also calculate two alternative reference

tours from the location where the player started. Fixed-start is the optimum tour using this starting

point. The dynamic tour follows the player’s choices from the starting point but re-calculates the

new optimum every time the player deviates from optimum path. Three different evaluation

measures are obtained using these three tours: gap, mismatches, and mistakes; see [10].

Figure 2. Examples of O–Mopsi playing (left), the final tour (middle) and comparison to optimum

tour (right).

Figure 2. Examples of O–Mopsi playing (left), the final tour (middle) and comparison to optimum
tour (right).

Appl. Sci. 2019, 9, 3985 3 of 24

Being NP–hard, exact solvers of TSPs are time-consuming. Despite the huge time consumption,
exact solvers were prime attractions to researchers in earlier days. Dantzig, Fulkerson, and Johnson [11],
Held and Karp [12], Padberg and Rinaldi [13], Grötschel and Holland [14], Applegate et al. [15],
and others developed different algorithms to produce exact solutions. Laporte [16] surveyed exact
algorithms for TSP. By the year 2006, the Concorde solver solved a TSP instance with 85900 cities [17].

Along with these, different heuristic algorithms have been developed to find very fast near-optimal
solutions. The local search is one of the most common heuristics to produce near-optimum results [18].
It has two parts: tour construction and tour improvement. The tour construction generates an initial
solution that can be far beyond the optimum. A significant amount of research developed different
tour construction algorithms, such as the savings algorithm by Reference [19], polynomial–time 3/2
approximation algorithm by Reference [20], insertion [21], greedy [21], and the nearest neighbor
algorithm [21]. Among these, we use the greedy algorithm and a random arrangement for the
tour construction.

Being an iterative process, the tour improvement step modifies the initial solution with a small
improvement in each iteration. The key component in the local search is the choice of the operator,
which defines how the current solution is modified to generate new candidate solutions. Most used
operators are 2-opt [22] and its generalized variant, called k–opt [23], which is empirically the most
effective local search algorithm for large TSPs [24]. Okano et al. [25] analyzed the combination of 2-opt
with different well-known construction heuristics. Several researchers studied local search for TSP and
different optimization problems [16,21,26–32], even for vehicle routing application [33,34].

Although existing studies have analyzed the local search algorithms extensively, it is still not
known which operators are effective for open-loop cases. Besides this, the existing literature mainly
presents optimization results of algorithms instead of providing a detailed study on different operators.
As operators are the backbone of the local search algorithms, we need a detailed study on them to
know how to increase the productivity of the algorithm and how to avoid the local minima.

In this paper, we study several operators and their combinations in the context of local search.
We aim at answering which of them works best in terms of the quality and efficiency. We consider four
operations, of which two are existing and two are new:

• Relocate [35]
• 2-opt [22]
• 3–permutation (new)
• Link swap (new)

Between the new two operators, the former also applies to the more common closed-loop TSP,
but the second is specifically tailored for the open-loop problem. We also propose an algorithm to
achieve a global minimum in most problem instances of size up to 31, preferably in real-time.

We study the performance of these operators when applied separately, and when mixed.
We consider random, best improvement, and first improvement search strategies. We first report how
successful the operators are in equal conditions, and whether the choice of the best operator changes
towards the end of the iterations. We study two initialization techniques: random and heuristic,
and the effect of re-starting the search. Results are reported for two open-loop datasets (O–Mopsi,
Dots), see Table 1. The O–Mopsi dataset contains real-world TSP instances and the Dots dataset is
a computer-generated random dataset for an experimental computer game. Since it is an outdoor
dataset, generating the former one is relatively difficult. Therefore, the available number of instances
are much lower than Dots. However, both datasets need real-time reference solutions.

The rest of the paper is organized as follows. In Section 2, we describe the local search operators
we use in this study. We define these operators with illustrations and study their abilities to produce
unique improved solutions. In Section 3, we provide results of the tests carried on with these operators
on Table 1 datasets. Based on these results, we introduce a new method to solve open-loop TSPs in this
section. In Section 4, we evaluate the quality and efficiency of our proposed algorithm. In Section 5,

Appl. Sci. 2019, 9, 3985 4 of 24

we test stochastic variants, aiming to improve our algorithm. Lastly, in Section 6, we conclude our
findings in this study.

Table 1. Datasets used in this study.

Dataset: Type: Distance: Instances: Sizes:

O-Mopsi 1 Open loop Haversine 145 4-27
Dots 1 Open loop Euclidean 4226 4-31

1 http://cs.uef.fi/o-mopsi/datasets/.

2. Local Search

The local search is a way to upgrade an existing solution to a new candidate solution by small
changes. A local search operator seeks and finds a small modification to improve the solution.
The search approach of a local search operator can be one of several of different types. In the first and
best improvement strategy, the first and best candidate is always chosen among all the candidates,
respectively. For these two cases, we continue the search until saturation, which means no further
improvement is found. In a random search strategy, candidates are chosen randomly until some
constant iteration. In the local search, a better solution can almost always be found.

We next study the following four operators:

• Relocate [35]
• 2-opt [22]
• 3–permute (new) Link swap (new)

2.1. Relocate

Changing the order of nodes can produce different solutions. Relocate is the process where a
selected node (target) is moved from its current position in the tour to another position (destination).
Hence, the position of the selected node is relocated. Each relocation of a node produces one outcome.
Gendreau, Hertz, and Laporte [35] developed the GENI method to insert a new node by breaking a
link. We use this idea and create relocate as a tour improvement operator. Figure 3 illustrates relocate
using an O-Mopsi example, where target A is moved between B and C. First, we take A from its current
position by removing links PA and AQ, and by adding link PQ to close the gap. Then, A is added to its
new position by removing link BC, and by adding BA and AC. As an effect, the tour becomes 30 m
shorter. The size of the search neighborhood is O(N2) because there are N possible targets and N-2
destinations to choose from, in total.Appl. Sci. 2019, 9, x FOR PEER REVIEW 5 of 26

Figure 3. Working of the relocate operator and an example of how it improves the tour in an

O–Mopsi game by 30 meters.

2.2. Two-Optimization (2-opt)

Croes [22] first introduced the 2-optimization method, which is a simple and very common

operator [36]. The idea of 2-opt is to exchange the links between two pairs of subsequent nodes as

shown in Figure 4. It has also been generalized to k–opt (L–K heuristics) [23] and implemented by

Helsgaun [37]. Johnson and McGeoch [21] explained thoroughly the 2-opt and 3–opt processes. In

the case of 3–opt, the only difference from 2-opt is to exchange the links between three pairs of

nodes. The method was originally developed for the closed-loop TSP, but it applies to the

open-loop TSP as well. In addition, we also consider dummy nodes paired with one of the two

terminal nodes. Such a way, terminal nodes can also change into an internal node.

Figure 4. Three examples of how the 2-optimization method can improve the tour.

The 2-opt approach removes crossings in the path. Pan and Xia [38] highlighted this

cross-removing effect in their work. However, 2-opt is more than the cross-removal method, as

shown in Figure 4.

In Figure 5, 2-opt is illustrated with two real examples from O-Mopsi. Here, AB and CD are the

two links involved in the operation. In the modified tour, these links are replaced by AC and BD. In

Figure 3. Working of the relocate operator and an example of how it improves the tour in an O–Mopsi
game by 30 meters.

http://cs.uef.fi/o-mopsi/datasets/

Appl. Sci. 2019, 9, 3985 5 of 24

2.2. Two-Optimization (2-opt)

Croes [22] first introduced the 2-optimization method, which is a simple and very common
operator [36]. The idea of 2-opt is to exchange the links between two pairs of subsequent nodes as
shown in Figure 4. It has also been generalized to k–opt (L–K heuristics) [23] and implemented by
Helsgaun [37]. Johnson and McGeoch [21] explained thoroughly the 2-opt and 3–opt processes. In the
case of 3–opt, the only difference from 2-opt is to exchange the links between three pairs of nodes.
The method was originally developed for the closed-loop TSP, but it applies to the open-loop TSP as
well. In addition, we also consider dummy nodes paired with one of the two terminal nodes. Such a
way, terminal nodes can also change into an internal node.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 5 of 26

Figure 3. Working of the relocate operator and an example of how it improves the tour in an

O–Mopsi game by 30 meters.

2.2. Two-Optimization (2-opt)

Croes [22] first introduced the 2-optimization method, which is a simple and very common

operator [36]. The idea of 2-opt is to exchange the links between two pairs of subsequent nodes as

shown in Figure 4. It has also been generalized to k–opt (L–K heuristics) [23] and implemented by

Helsgaun [37]. Johnson and McGeoch [21] explained thoroughly the 2-opt and 3–opt processes. In

the case of 3–opt, the only difference from 2-opt is to exchange the links between three pairs of

nodes. The method was originally developed for the closed-loop TSP, but it applies to the

open-loop TSP as well. In addition, we also consider dummy nodes paired with one of the two

terminal nodes. Such a way, terminal nodes can also change into an internal node.

Figure 4. Three examples of how the 2-optimization method can improve the tour.

The 2-opt approach removes crossings in the path. Pan and Xia [38] highlighted this

cross-removing effect in their work. However, 2-opt is more than the cross-removal method, as

shown in Figure 4.

In Figure 5, 2-opt is illustrated with two real examples from O-Mopsi. Here, AB and CD are the

two links involved in the operation. In the modified tour, these links are replaced by AC and BD. In

Figure 4. Three examples of how the 2-optimization method can improve the tour.

The 2-opt approach removes crossings in the path. Pan and Xia [38] highlighted this cross-removing
effect in their work. However, 2-opt is more than the cross-removal method, as shown in Figure 4.

In Figure 5, 2-opt is illustrated with two real examples from O-Mopsi. Here, AB and CD are the
two links involved in the operation. In the modified tour, these links are replaced by AC and BD.
In the first example, the original links cross, which is then deleted and the length of the overall tour is
shortened from 1010 m to 710 m. The second example shows that 2-opt can also improve the tour,
even when the original links do not cross.

The 2-opt operator works with links. A tour consists of N-1 links, so there are (N-1)*(N-2) possible
pairs of links. Thus, the size of the neighborhood is O(N2).

Appl. Sci. 2019, 9, 3985 6 of 24

Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 26

the first example, the original links cross, which is then deleted and the length of the overall tour is

shortened from 1010 m to 710 m. The second example shows that 2-opt can also improve the tour,

even when the original links do not cross.

The 2-opt operator works with links. A tour consists of N-1 links, so there are (N-1)*(N-2)

possible pairs of links. Thus, the size of the neighborhood is O(N2).

Figure 5. Two examples of the 2-opt method in O-Mopsi.

2.3. Three-Node Permutation (3-permute)

Permutation between the order of the nodes is another potentially useful operator for the local

search. Although the idea is quite straightforward, we are not aware of its existence in literature, so

we will briefly consider it here. As per the theory, three nodes (A, B, C) can generate six different

orders. Therefore, given an existing sequence (triple) of three nodes, ABC, we can create five new

solutions: ACB, BAC, BCA, CAB, and CBA.

In Figure 6, an original and its five alternatives are shown. The real O-Mopsi game where this

example originates from is also shown. Here, the tour length is reduced by 170 m when changing

the original order (ABC) to the better one (BAC).

There are N-1 possible triples, including two dummies after the terminal points. The size of the

neighborhood is, therefore, 6*(N-1) = O(N), which is significantly smaller than that of the relocate

and 2-opt operators.

Figure 5. Two examples of the 2-opt method in O-Mopsi.

2.3. Three-Node Permutation (3-permute)

Permutation between the order of the nodes is another potentially useful operator for the local
search. Although the idea is quite straightforward, we are not aware of its existence in literature, so we
will briefly consider it here. As per the theory, three nodes (A, B, C) can generate six different orders.
Therefore, given an existing sequence (triple) of three nodes, ABC, we can create five new solutions:
ACB, BAC, BCA, CAB, and CBA.

In Figure 6, an original and its five alternatives are shown. The real O-Mopsi game where this
example originates from is also shown. Here, the tour length is reduced by 170 m when changing the
original order (ABC) to the better one (BAC).

There are N-1 possible triples, including two dummies after the terminal points. The size of the
neighborhood is, therefore, 6*(N-1) = O(N), which is significantly smaller than that of the relocate and
2-opt operators.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 26

Figure 6. All six combinations of 3–permute and an O–Mopsi game example that is improved by 170

m.

2.4. Link Swap

Solving the open-loop variant of TSP allows us to introduce a new operator that is not possible

with the closed-loop problem. Link swap is analogous to relocate, hence we consider one link, AB,

and swap it into a new location in the tour, see Figure 7. However, to keep the new solution as a

valid TSP tour, we are limited to three choices: replace AB by AT2, BT1, or T1T2. As a result, one or

both of the nodes A and B will become a new terminal node.

In the O–Mopsi example in Figure 7, we can see that a single link swap operation improves the

solution by reducing the tour length up to 137 m.

We have N–1 choices for a link to be removed, and for each of them, we have three new

alternatives. Thus, the size of the neighborhood is 3*(N–1) = O(N). Link swap is a special case of

3–opt and relocate operator, but as the size of the neighborhood is linear, it is a faster operation

than both 3–opt and relocate operator.

Figure 7. Original tour and three alternatives created by link swap (left). In each case, the link x is

replaced by a new link connecting to one or both terminal nodes. In the O–Mopsi example (right),

the tour is improved by 137m.

2.5. The Uniqueness of the Operators

Figure 6. All six combinations of 3–permute and an O–Mopsi game example that is improved by 170 m.

Appl. Sci. 2019, 9, 3985 7 of 24

2.4. Link Swap

Solving the open-loop variant of TSP allows us to introduce a new operator that is not possible
with the closed-loop problem. Link swap is analogous to relocate, hence we consider one link, AB,
and swap it into a new location in the tour, see Figure 7. However, to keep the new solution as a valid
TSP tour, we are limited to three choices: replace AB by AT2, BT1, or T1T2. As a result, one or both of
the nodes A and B will become a new terminal node.

In the O–Mopsi example in Figure 7, we can see that a single link swap operation improves the
solution by reducing the tour length up to 137 m.

We have N–1 choices for a link to be removed, and for each of them, we have three new alternatives.
Thus, the size of the neighborhood is 3*(N–1) = O(N). Link swap is a special case of 3–opt and relocate
operator, but as the size of the neighborhood is linear, it is a faster operation than both 3–opt and
relocate operator.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 26

Figure 6. All six combinations of 3–permute and an O–Mopsi game example that is improved by 170

m.

2.4. Link Swap

Solving the open-loop variant of TSP allows us to introduce a new operator that is not possible

with the closed-loop problem. Link swap is analogous to relocate, hence we consider one link, AB,

and swap it into a new location in the tour, see Figure 7. However, to keep the new solution as a

valid TSP tour, we are limited to three choices: replace AB by AT2, BT1, or T1T2. As a result, one or

both of the nodes A and B will become a new terminal node.

In the O–Mopsi example in Figure 7, we can see that a single link swap operation improves the

solution by reducing the tour length up to 137 m.

We have N–1 choices for a link to be removed, and for each of them, we have three new

alternatives. Thus, the size of the neighborhood is 3*(N–1) = O(N). Link swap is a special case of

3–opt and relocate operator, but as the size of the neighborhood is linear, it is a faster operation

than both 3–opt and relocate operator.

Figure 7. Original tour and three alternatives created by link swap (left). In each case, the link x is

replaced by a new link connecting to one or both terminal nodes. In the O–Mopsi example (right),

the tour is improved by 137m.

2.5. The Uniqueness of the Operators

Figure 7. Original tour and three alternatives created by link swap (left). In each case, the link x is
replaced by a new link connecting to one or both terminal nodes. In the O–Mopsi example (right),
the tour is improved by 137m.

2.5. The Uniqueness of the Operators

All operators create a large number of neighbor solutions. The set of solutions generated by
one operator can be similar to the set of another operator. Given the same initial solution, if all the
candidate solutions generated by one operator were a subset of the solutions generated by another
operator, then this approach would be redundant. Next, we study the uniqueness of these methods.

Relocate: The highlighted target in the start tour in Figure 8 can swap to six different positions.
By analyzing these six results, we can observe that the tours 1 to 3 are also possible outcomes of
3–permute. Tours 1 and 2 are also possible outcomes of 2-opt and tour 1 can be an outcome of link
swap. However, the rest of the tours are unique, and only possible to produce by the relocate operator.
Only the relocate operator can produce the best result in this example (tour 4).

Appl. Sci. 2019, 9, 3985 8 of 24

Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 26

All operators create a large number of neighbor solutions. The set of solutions generated by

one operator can be similar to the set of another operator. Given the same initial solution, if all the

candidate solutions generated by one operator were a subset of the solutions generated by another

operator, then this approach would be redundant. Next, we study the uniqueness of these methods.

Relocate: The highlighted target in the start tour in Figure 8 can swap to six different positions.

By analyzing these six results, we can observe that the tours 1 to 3 are also possible outcomes of

3–permute. Tours 1 and 2 are also possible outcomes of 2-opt and tour 1 can be an outcome of link

swap. However, the rest of the tours are unique, and only possible to produce by the relocate

operator. Only the relocate operator can produce the best result in this example (tour 4).

Figure 8. Six neighboring solutions created by relocate, of which three are unique.

2-opt: In this method, two links are removed and two new ones are created. An example is

shown in Figure 9, where the first removed link is fixed as the red one, which is highlighted, and

the second one is varied. The resulting six new tours are shown. The other operators can generate

four of them as well; however, two of them are unique. The best outcome is uniquely generated by

the 2-opt operator.

Figure 9. Six neighboring solutions created by 2-opt, of which two are unique.

3-permute: The example in Figure 10 reveals that the operator does not produce even a single

unique result. Therefore, if both relocate and 2-opt are used, this operator is redundant. Relocate

can find four out of the five solutions, and 2-opt can find three.

A potential benefit of the 3–permute operator is that it needs to explore only a smaller

neighborhood, O(N), in comparison to O(N2) of relocate and 2-opt. However, this smaller

neighborhood is not extensive enough, as it misses the solutions shown in Figures 8 and 9. Our

experiments also show that the local search using 3-permute is consistently outperformed by the

other operators. We, therefore, do not consider this operator further.

Figure 8. Six neighboring solutions created by relocate, of which three are unique.

2-opt: In this method, two links are removed and two new ones are created. An example is shown
in Figure 9, where the first removed link is fixed as the red one, which is highlighted, and the second
one is varied. The resulting six new tours are shown. The other operators can generate four of them as
well; however, two of them are unique. The best outcome is uniquely generated by the 2-opt operator.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 26

All operators create a large number of neighbor solutions. The set of solutions generated by

one operator can be similar to the set of another operator. Given the same initial solution, if all the

candidate solutions generated by one operator were a subset of the solutions generated by another

operator, then this approach would be redundant. Next, we study the uniqueness of these methods.

Relocate: The highlighted target in the start tour in Figure 8 can swap to six different positions.

By analyzing these six results, we can observe that the tours 1 to 3 are also possible outcomes of

3–permute. Tours 1 and 2 are also possible outcomes of 2-opt and tour 1 can be an outcome of link

swap. However, the rest of the tours are unique, and only possible to produce by the relocate

operator. Only the relocate operator can produce the best result in this example (tour 4).

Figure 8. Six neighboring solutions created by relocate, of which three are unique.

2-opt: In this method, two links are removed and two new ones are created. An example is

shown in Figure 9, where the first removed link is fixed as the red one, which is highlighted, and

the second one is varied. The resulting six new tours are shown. The other operators can generate

four of them as well; however, two of them are unique. The best outcome is uniquely generated by

the 2-opt operator.

Figure 9. Six neighboring solutions created by 2-opt, of which two are unique.

3-permute: The example in Figure 10 reveals that the operator does not produce even a single

unique result. Therefore, if both relocate and 2-opt are used, this operator is redundant. Relocate

can find four out of the five solutions, and 2-opt can find three.

A potential benefit of the 3–permute operator is that it needs to explore only a smaller

neighborhood, O(N), in comparison to O(N2) of relocate and 2-opt. However, this smaller

neighborhood is not extensive enough, as it misses the solutions shown in Figures 8 and 9. Our

experiments also show that the local search using 3-permute is consistently outperformed by the

other operators. We, therefore, do not consider this operator further.

Figure 9. Six neighboring solutions created by 2-opt, of which two are unique.

3-permute: The example in Figure 10 reveals that the operator does not produce even a single
unique result. Therefore, if both relocate and 2-opt are used, this operator is redundant. Relocate can
find four out of the five solutions, and 2-opt can find three.

A potential benefit of the 3–permute operator is that it needs to explore only a smaller neighborhood,
O(N), in comparison to O(N2) of relocate and 2-opt. However, this smaller neighborhood is not extensive
enough, as it misses the solutions shown in Figures 8 and 9. Our experiments also show that the local
search using 3-permute is consistently outperformed by the other operators. We, therefore, do not
consider this operator further.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 26

Figure 10. Six neighboring solutions created by 3–permute, but none of them is unique.

Link swap: This operator creates three alternatives for a selected link. Two of these are

redundant with 2-opt, but the one which connects the two previous terminal points is unique

(Figure 11). It is also the best one. Link swap is therefore worthwhile in cases when the terminal

points are close to each other.

Figure 11. Three neighboring solutions created by link swap, of which the one connecting the

terminal nodes is unique.

3. Performance of a Single Operator

We next test the performance of the different operators within a local search. For this, we need

an initial tour to start with and a search strategy. These will be discussed first, followed by the

experimental results.

3.1. Initial Solution

If the operator and search strategy are good, the choice of initialization should not matter

much for the final result. We, therefore, consider only two choices:

• Random

• Heuristic (greedy)

Random initialization selects the nodes one by one randomly to create the initial tour.

A straightforward method for better initialization is greedy heuristic. It selects a random node

as a starting point and always takes the closest unvisited node as the next target. Because of solving

open-loop TSP, the starting point also matters in this case. We therefore systematically try all nodes

as the starting point and generate N candidate tours using the greedy heuristics. Among N

candidate tours, we select the shortest tour as the initial solution. The pseudocode for this is the

following:

Algorithm 1: Finding the heuristic initial path

HeuristicPath ()

InitialPath infinity

FOR node 1 TO N DO

 NewPath GreedyPath (node)

 IF Length (NewPath) < Length (InitialPath) THEN

Figure 10. Six neighboring solutions created by 3–permute, but none of them is unique.

Link swap: This operator creates three alternatives for a selected link. Two of these are redundant
with 2-opt, but the one which connects the two previous terminal points is unique (Figure 11). It is

Appl. Sci. 2019, 9, 3985 9 of 24

also the best one. Link swap is therefore worthwhile in cases when the terminal points are close to
each other.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 26

Figure 10. Six neighboring solutions created by 3–permute, but none of them is unique.

Link swap: This operator creates three alternatives for a selected link. Two of these are

redundant with 2-opt, but the one which connects the two previous terminal points is unique

(Figure 11). It is also the best one. Link swap is therefore worthwhile in cases when the terminal

points are close to each other.

Figure 11. Three neighboring solutions created by link swap, of which the one connecting the

terminal nodes is unique.

3. Performance of a Single Operator

We next test the performance of the different operators within a local search. For this, we need

an initial tour to start with and a search strategy. These will be discussed first, followed by the

experimental results.

3.1. Initial Solution

If the operator and search strategy are good, the choice of initialization should not matter

much for the final result. We, therefore, consider only two choices:

• Random

• Heuristic (greedy)

Random initialization selects the nodes one by one randomly to create the initial tour.

A straightforward method for better initialization is greedy heuristic. It selects a random node

as a starting point and always takes the closest unvisited node as the next target. Because of solving

open-loop TSP, the starting point also matters in this case. We therefore systematically try all nodes

as the starting point and generate N candidate tours using the greedy heuristics. Among N

candidate tours, we select the shortest tour as the initial solution. The pseudocode for this is the

following:

Algorithm 1: Finding the heuristic initial path

HeuristicPath ()

InitialPath infinity

FOR node 1 TO N DO

 NewPath GreedyPath (node)

 IF Length (NewPath) < Length (InitialPath) THEN

Figure 11. Three neighboring solutions created by link swap, of which the one connecting the terminal
nodes is unique.

3. Performance of a Single Operator

We next test the performance of the different operators within a local search. For this, we need
an initial tour to start with and a search strategy. These will be discussed first, followed by the
experimental results.

3.1. Initial Solution

If the operator and search strategy are good, the choice of initialization should not matter much
for the final result. We, therefore, consider only two choices:

• Random
• Heuristic (greedy)

Random initialization selects the nodes one by one randomly to create the initial tour.
A straightforward method for better initialization is greedy heuristic. It selects a random node

as a starting point and always takes the closest unvisited node as the next target. Because of solving
open-loop TSP, the starting point also matters in this case. We therefore systematically try all nodes as
the starting point and generate N candidate tours using the greedy heuristics. Among N candidate
tours, we select the shortest tour as the initial solution. Algorithm 1 presents the pseudocode for this.

Algorithm 1: Finding the heuristic initial path

HeuristicPath ()
InitialPath← infinity
FOR node← 1 TO N DO

NewPath← GreedyPath (node)
IF Length (NewPath) < Length (InitialPath) THEN

InitialPath← NewPath
RETURN InitialPath
GreedyPath (startNode)
NewPath [1]← startNode
FOR i← 2 TO N DO

NewPath [i] ← Nearest node from startNode
startNode ← NewPath [i]

RETURN NewPath

3.2. Search Strategy

For the search strategy we consider the following three choices:

• Best improvement
• First improvement
• Random search

Appl. Sci. 2019, 9, 3985 10 of 24

Best improvement studies the entire neighborhood and selects the best one among all solutions.
This can be impractical, especially if the neighborhood is large. The first improvement studies the
neighborhood only until it founds any solution that provides improvement. It can be more practical as
it moves on with the search quicker. Random search studies the neighbors in random order, and similar
to the first improvements, accepts any new solution that improves.

We also consider repeated (multi-start) local search, which simply re-starts the search from scratch
several times. This helps if the search is susceptible to getting stuck into a local minimum [39].
Moreover, every repeat is essentially a random attempt to converge to a local optimum; parallelization
can be applied by running different repeats on different execution threads. O'Neil & Burtscher [40]
and Al-Adwan et al. [41] preferred repeated local search, for TSP and Xiang et al. [42] for matrix
multiplication to overcome local optima.

A pseudocode that covers all the search variants with all the operators is given in Algorithm 2.
The only parameter is the number of iterations for which the search continues. First and best
improvement searches can also be terminated when the entire neighborhood is searched without
further improvement. This corresponds to the hill-climbing strategy.

Algorithm 2: Finding the improved tour by all the operators for different search strategies

LocalSearch (InitialPath, OperationType)
Path← InitialPath
SWITCH SearchType

CASE RANDOM
FOR i← 1 TO Iterations DO

NewPath← NewRandomSolution (Path, OperationType)
IF Length (NewPath) < Length (Path) THEN

Path← NewPath
CASE FIRST

Path← NewFirstSolution (Path)
CASE BEST

Path← NewBestSolution (Path)
RETURN Path
NewRandomSolution (Path, OperationType)
SWITCH OperationType

CASE RELOCATE
Target← Random (1, N)
Destination← Random (1, N)
NewPath← relocate (Path, Target, Destination)

CASE 2OPT
FirstLink← Random (1, N)
SecondLink← Random (1, N)
NewPath← 2Opt (Path, FirstLink, SecondLink)

CASE LINKSWAP
Link← Random (1, N)
NewPath← linkSwap (Path, Link)

RETURN NewPath
NewFirstSolution (Path, OperationType)
FOR i← 1 TO N DO

FOR j← 1 TO N DO
SWITCH OperationType

CASE RELOCATE
NewPath← relocate (Path, i, j)

CASE 2OPT
NewPath← 2Opt (Path, i, j)

Appl. Sci. 2019, 9, 3985 11 of 24

IF Length (NewPath) < Length (Path) THEN
Path← NewPath
RETURN Path

IF OperationType = LINKSWAP
NewPath← linkSwap (Path, i)
IF Length (NewPath) < Length (Path) THEN

Path← NewPath
RETURN Path

NewBestSolution (Path, OperationType)
FOR i← 1 TO N DO

FOR j← 1 TO N DO
SWITCH OperationType

CASE RELOCATE
NewPath← relocate (Path, i, j)

CASE 2OPT
NewPath← 2Opt (Path, i, j)

IF Length (NewPath) < Length (Path) THEN
Path← NewPath

IF OperationType = LINKSWAP
NewPath← linkSwap (Path, i)
IF Length (NewPath) < Length (Path) THEN

Path← NewPath
RETURN Path

3.3. Results With A Single Operator

We first study how close the operators can improve paths to the optimum solutions using O–Mopsi
and Dots datasets. Optimum paths were computed by branch-and-bound. Two results are reported:

• Gap (%)
• Instances solved (%)

The gap is the length of the optimum path divided by the length of the tour found by the local
search (0% indicates optimum). The second result is the number of instances for which an optimum
solution is found by the local search. We also express it in a percentage value, which indicates 100%
means that the method finds the optimum solutions for all instances. We execute every operator
individually with all search strategies on all O-Mopsi game instances. Repeated search is applied only
for the random search with random initialization.

We combine the results of O-Mopsi and Dots datasets and report those in Table 2. In the table,
we first write the gap values, and the percentage values of solved instances are written inside the
parentheses. The 2-opt is the best individual operator. It reaches a 2% gap and solves 57% of all
instances when starts from a random initialization, and 0.8% (73% instances) using the heuristic
initialization. The repeats are important. With 25 repeats, the 2-opt solves 97% of all instances, and the
mean gap is almost 0%.

The better initialization provides significant improvement in all cases, which indicates the search
gets stuck into a local minimum. The choice of the search strategy, however, has only minor influence.
We, therefore, consider only the random search in further experiments.

Appl. Sci. 2019, 9, 3985 12 of 24

Table 2. Combined results of single and subsequent application of random improvement with different
operators averaged over O–Mopsi and Dots instances. The percentage of solved instances are shown
inside the parenthesis. The number of iterations was fixed to 10000 for randomized search, whereas
first and best improvements were iterated until convergence.

Single Operator Double Operators Mix of Three

Initialization Random Heuristic Repeated
(25 times)

Repeated (25 times) Second
Operator: Repeated (25 times)

Relocate 2-opt Link
swap Subseq-uent Mixed

First 7% (30%) 1.0% (70%) - - - - - -

Reloc-ate
Best 6% (34%) 0.9% (72%) - - - - - -

Random 6% (34%) 0.9% (71%) 0.18%
(90%) - 0.007%

(98%)
0.032%
(97%)

0.010%
(98%)

0.005%
(99.7%)

2-opt
First 2% (54%) 1.0% (70%) - - - - - -
Best 2% (57%) 0.8% (73%) - - - - - -

Random 2% (52%) 0.8% (73%) 0.02%
(97%)

0.009%
(98%) - 0.018%

(97%)
0.005%
(99%)

0.005%
(99.7%)

Link
swap

Best 44% (5%) 2.9 (59%) - - - - - -

Random 11% (31%) 3.0 (58%) 1.00%
(77%)

0.019%
(98%)

0.010%
(97%) - 0.006%

(99%)
0.005%
(99.7%)

3.4. Combining the Operators

Our primary goal was to find an optimum solution for all game instances. The best combination
(2-opt with a random search using 25 repeats) missed it for only 3% of instances. Nevertheless, these are
relatively easy instances; therefore, they should all be solvable by the local search. We, therefore,
consider combining different operators. We do this by applying a single run of the local search with one
operator, and then continue the search with another operator. We consider all pairs and the subsequent
combinations of all three operators.

We tested all combinations but report only the results of 25 repeats using the random improvement
(random initialization). From the results in Table 2, we can see that all combinations manage to solve a
minimum of 97% of all instances and have a gap of 0.032% or less. The mixed variant with the order
(2-opt + relocate + link swap) found the optimum solution for 99% cases. In this case, 2-opt solves
already a 97% of all instances, then the consecutive relocate makes it 98%, and finally link swap makes
it 99%. This shows that the operators have complementary search spaces; when one operator stops
progressing, another one can still improve further. Examples are shown in Figure 12.Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 26

Figure 12. Operators have complementary search spaces.

After being stopped, it is also possible that a single operator can start to work again when

other operators make some improvement in the meantime. Hence, these works of other operators

make the first operator alive again. Figure 13 has three such examples, where the first operator

entraps into a local optimum. Then, other operators recover the process from the local optimum

and improvement continues. Again, the first operator starts working later.

Figure 13. A single operator can re-work after being stuck with the help of other operators’

improvement.

Figure 12. Operators have complementary search spaces.

Appl. Sci. 2019, 9, 3985 13 of 24

After being stopped, it is also possible that a single operator can start to work again when other
operators make some improvement in the meantime. Hence, these works of other operators make the
first operator alive again. Figure 13 has three such examples, where the first operator entraps into a
local optimum. Then, other operators recover the process from the local optimum and improvement
continues. Again, the first operator starts working later.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 26

Figure 12. Operators have complementary search spaces.

After being stopped, it is also possible that a single operator can start to work again when

other operators make some improvement in the meantime. Hence, these works of other operators

make the first operator alive again. Figure 13 has three such examples, where the first operator

entraps into a local optimum. Then, other operators recover the process from the local optimum

and improvement continues. Again, the first operator starts working later.

Figure 13. A single operator can re-work after being stuck with the help of other operators’

improvement.

Figure 13. A single operator can re-work after being stuck with the help of other operators’ improvement.

In addition, we consider also mixing the operators randomly as follows. We perform only a
single run of the local search for 10,000 iterations. However, instead of fixing the operator beforehand,
we choose it randomly at every iteration. The pseudocode of the mixed variant is demonstrated in
Algorithm 3. This random mixing solves all instances with having a 0% gap if we repeat the process
for 25 times.

Algorithm 3: Finding a solution by mixing local search operators

RandomMixing (NumberOfIteration, Path)
FOR i← 1 TO NumberOfIteration DO

operation← Random (NodeSwap, 2opt, LinkSwap)
NewPath← NewRandomSolution (Path, operation)
IF Length (NewPath) < Length (Path) THEN

Path← NewPath
RETURN Path

Lawler et al. [43] stated that local search algorithms get trapped in sub-optimal points. Here, we find
that the operators, even when mixed, could not solve all the instances from any random initial solution.
Figure 14 shows three examples where the search was stuck to a local optimum from where none of

Appl. Sci. 2019, 9, 3985 14 of 24

the operators can process further. In these cases, the repeated random mixed local search was needed
to solve these instances.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 26

In addition, we consider also mixing the operators randomly as follows. We perform only

a single run of the local search for 10,000 iterations. However, instead of fixing the operator

beforehand, we choose it randomly at every iteration. Pseudocode of the mixed variant is below.

This random mixing solves all instances with having a 0% gap if we repeat the process for 25 times.

Algorithm 3: Finding a solution by mixing local search operators

RandomMixing (NumberOfIteration, Path)

FOR i 1 TO NumberOfIteration DO

 operation Random (NodeSwap, 2opt, LinkSwap)

 NewPath NewRandomSolution (Path, operation)

 IF Length (NewPath) < Length (Path) THEN

 Path NewPath

RETURN Path

Lawler et al. [43] stated that local search algorithms get trapped in sub-optimal points. Here,

we find that the operators, even when mixed, could not solve all the instances from any random

initial solution. Figure 14 shows three examples where the search was stuck to a local optimum

from where none of the operators can process further. In these cases, the repeated random mixed

local search was needed to solve these instances.

Figure 14. Examples of local optima. Repeats overcome these.

4. Analysis of Repeated Random Mixed Local Search

We next analyze the performance of the repeated local search in more detail. We use both the

145 O–Mopsi instances and the larger Dots dataset, which contains 4226 computer-generated TSP

instances. Here problem size varies from 4 to 31.

4.1. Effect of the repetitions

Figure 15 reports how many of the instances are solved when we increase the number of

repeats. In the case of O–Mopsi, most instances (144) are solved already with 15 repeats, and all

with 25 repeats. The results with the Dots instances are similar: 15–25 iterations are reasonably

good, after which only 100 instances were not solved optimally. After 150 repeats, only one instance

remains unsolved.

Figure 14. Examples of local optima. Repeats overcome these.

4. Analysis of Repeated Random Mixed Local Search

We next analyze the performance of the repeated local search in more detail. We use both the
145 O–Mopsi instances and the larger Dots dataset, which contains 4226 computer-generated TSP
instances. Here problem size varies from 4 to 31.

4.1. Effect of the repetitions

Figure 15 reports how many of the instances are solved when we increase the number of repeats.
In the case of O–Mopsi, most instances (144) are solved already with 15 repeats, and all with 25 repeats.
The results with the Dots instances are similar: 15–25 iterations are reasonably good, after which only
100 instances were not solved optimally. After 150 repeats, only one instance remains unsolved.Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 26

Figure 15. Instances solved as a function of the number of repetitions.

Figure 16 demonstrates the effect of repetition for a single (typical) instance as the average path

length. We portray all improving steps from a random start in the first run. There is a similar kind

of improving steps from different random starts in the consecutive runs. However, we only show

more improved steps than the previous run. Thus, we can see there are very few better steps in

higher runs, and three or four repeated runs are usually enough to achieve the optimum result. The

gap values are also shown to demonstrate the closeness of our outcomes to the optimum result. In

the first run, we usually achieve a result that is already very close to the optimum. The repetitions

push the result to the global optimum, but they act merely as a fine tuner for the results. If we can

settle the sub-optimal result very close to the global optimum, then a local search with only a few

repeats would be sufficient for these datasets.

Figure 16. Typical example of the effect of repetition.

Next, we evaluate the total work based on the number of iterations and the number of repeats.

We plot four different curves with random start repeated 1, 5, 15, and 25 times for the O–Mopsi

instances. Figure 17 shows how close the path length becomes to the optimum during 10,000

iterations. A similar plot is also drawn for the Dots instances with 1, 5, 15, 25, 50, 100, and 150

repeats. All the curves coincide on each other so they appear as only one line in Figure 17.

Figure 15. Instances solved as a function of the number of repetitions.

Figure 16 demonstrates the effect of repetition for a single (typical) instance as the average path
length. We portray all improving steps from a random start in the first run. There is a similar kind of
improving steps from different random starts in the consecutive runs. However, we only show more
improved steps than the previous run. Thus, we can see there are very few better steps in higher runs,
and three or four repeated runs are usually enough to achieve the optimum result. The gap values

Appl. Sci. 2019, 9, 3985 15 of 24

are also shown to demonstrate the closeness of our outcomes to the optimum result. In the first run,
we usually achieve a result that is already very close to the optimum. The repetitions push the result to
the global optimum, but they act merely as a fine tuner for the results. If we can settle the sub-optimal
result very close to the global optimum, then a local search with only a few repeats would be sufficient
for these datasets.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 26

Figure 15. Instances solved as a function of the number of repetitions.

Figure 16 demonstrates the effect of repetition for a single (typical) instance as the average path

length. We portray all improving steps from a random start in the first run. There is a similar kind

of improving steps from different random starts in the consecutive runs. However, we only show

more improved steps than the previous run. Thus, we can see there are very few better steps in

higher runs, and three or four repeated runs are usually enough to achieve the optimum result. The

gap values are also shown to demonstrate the closeness of our outcomes to the optimum result. In

the first run, we usually achieve a result that is already very close to the optimum. The repetitions

push the result to the global optimum, but they act merely as a fine tuner for the results. If we can

settle the sub-optimal result very close to the global optimum, then a local search with only a few

repeats would be sufficient for these datasets.

Figure 16. Typical example of the effect of repetition.

Next, we evaluate the total work based on the number of iterations and the number of repeats.

We plot four different curves with random start repeated 1, 5, 15, and 25 times for the O–Mopsi

instances. Figure 17 shows how close the path length becomes to the optimum during 10,000

iterations. A similar plot is also drawn for the Dots instances with 1, 5, 15, 25, 50, 100, and 150

repeats. All the curves coincide on each other so they appear as only one line in Figure 17.

Figure 16. Typical example of the effect of repetition.

Next, we evaluate the total work based on the number of iterations and the number of repeats.
We plot four different curves with random start repeated 1, 5, 15, and 25 times for the O–Mopsi
instances. Figure 17 shows how close the path length becomes to the optimum during 10,000 iterations.
A similar plot is also drawn for the Dots instances with 1, 5, 15, 25, 50, 100, and 150 repeats. All the
curves coincide on each other so they appear as only one line in Figure 17.Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 26

Figure 17. Total amount of work.

4.2. Processing Time

The time complexity of the method can be analyzed as follows. At each iteration, the algorithm

tries to find improvement by a random local change. The effect of this change is tested in constant

time. Only when improvement is found, the solution is updated accordingly, which takes O(N)

time. Let us assume probability p for finding an improvement. The time complexity is, therefore,

O(IR + pNIR), where I and R are the number of iterations and repetitions, respectively. The value

for p is higher at the beginning, when the configuration is close to random and gradually decreases

to zero when approaching to a saturation point (the solution that cannot be improved by any local

operation). In our observations, p is small (0.002 on average for O–Mopsi and even lesser for Dots),

so the time complexity reduces to O(IR), in practice. This means that the speed of the algorithm is

almost independent on the problem size (see Figure 18).

In contrast, optimal solvers such as Concorde [17] have exponential time complexity. We are

unable to find a complexity analysis for Concorde in literature, however, we estimate it empirically

by analyzing the running time required by Concorde to solve TSPLIB [44] instances. From the

website (http://www.math.uwaterloo.ca/tsp/concorde/benchmarks/bench99.html), we choose 105

instances with increasing problem sizes (N between 14 and 13509) and analyze the trend. According

to this, Concorde has a complexity of (1.5e^(0.004N)). This implies that for small instances (up to

several thousands) the algorithm is expected to be fast. However, the analysis also reveals that

some points highly deviate from the expected line. This implies that some instances are more

difficult to solve (with a higher number of nodes in the search tree) and require more time, such as

the instance (d1291), with 1291 targets, which has almost 8 hours of running time where another

instance (rl1304) with 1304 targets has only 22 minutes of running time. In comparison to that,

Random Mix finishes more predictably.

Figure 17. Total amount of work.

Appl. Sci. 2019, 9, 3985 16 of 24

4.2. Processing Time

The time complexity of the method can be analyzed as follows. At each iteration, the algorithm
tries to find improvement by a random local change. The effect of this change is tested in constant time.
Only when improvement is found, the solution is updated accordingly, which takes O(N) time. Let us
assume probability p for finding an improvement. The time complexity is, therefore, O(IR + pNIR),
where I and R are the number of iterations and repetitions, respectively. The value for p is higher
at the beginning, when the configuration is close to random and gradually decreases to zero when
approaching to a saturation point (the solution that cannot be improved by any local operation). In our
observations, p is small (0.002 on average for O–Mopsi and even lesser for Dots), so the time complexity
reduces to O(IR), in practice. This means that the speed of the algorithm is almost independent on the
problem size (see Figure 18).

In contrast, optimal solvers such as Concorde [17] have exponential time complexity. We are
unable to find a complexity analysis for Concorde in literature, however, we estimate it empirically by
analyzing the running time required by Concorde to solve TSPLIB [44] instances. From the website
(http://www.math.uwaterloo.ca/tsp/concorde/benchmarks/bench99.html), we choose 105 instances with
increasing problem sizes (N between 14 and 13509) and analyze the trend. According to this, Concorde
has a complexity of (1.5eˆ(0.004N)). This implies that for small instances (up to several thousands) the
algorithm is expected to be fast. However, the analysis also reveals that some points highly deviate
from the expected line. This implies that some instances are more difficult to solve (with a higher
number of nodes in the search tree) and require more time, such as the instance (d1291), with 1291
targets, which has almost 8 hours of running time where another instance (rl1304) with 1304 targets
has only 22 minutes of running time. In comparison to that, Random Mix finishes more predictably.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 17 of 26

Figure 18. Run time as a function of problem size.

Considering the repeats, we summarized the result in Table 3, which shows that a single run

takes 0.8 ms and 25 repeats take 16 ms on an average, regardless of the dataset.

Table 3. Running time.

 Single run 25 repeats

O–Mopsi 0.8 ms 16 ms

Dots 0.7 ms 16 ms

4.3. Parameter Values

We investigate different values for the I and R parameters using grid-search and recorded how

many operations are needed to solve different sized problems. The results are summarized in

Figure 19. In this context, we want to mention, as there are not a sufficient number of samples with

more than 25 targets in the O–Mopsi dataset and 30 targets in the Dots dataset, we ignore those

samples. From the chart, we can conclude that proper parameter values to use for the O–Mopsi

dataset are I = 213 and R = 25. The dots dataset requires higher values of I = 215 and R = 26. The

relationship between I and R seems to stabilize for larger instances.

Figure 19. Required number of operations increases with problem size.

Figure 18. Run time as a function of problem size.

Considering the repeats, we summarized the result in Table 3, which shows that a single run takes
0.8 ms and 25 repeats take 16 ms on an average, regardless of the dataset.

Table 3. Running time.

Single Run 25 Repeats

O–Mopsi 0.8 ms 16 ms
Dots 0.7 ms 16 ms

4.3. Parameter Values

We investigate different values for the I and R parameters using grid-search and recorded how
many operations are needed to solve different sized problems. The results are summarized in Figure 19.
In this context, we want to mention, as there are not a sufficient number of samples with more than 25
targets in the O–Mopsi dataset and 30 targets in the Dots dataset, we ignore those samples. From the

http://www.math.uwaterloo.ca/tsp/concorde/benchmarks/bench99.html

Appl. Sci. 2019, 9, 3985 17 of 24

chart, we can conclude that proper parameter values to use for the O–Mopsi dataset are I = 213 and
R = 25. The dots dataset requires higher values of I = 215 and R = 26. The relationship between I and R
seems to stabilize for larger instances.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 17 of 26

Figure 18. Run time as a function of problem size.

Considering the repeats, we summarized the result in Table 3, which shows that a single run

takes 0.8 ms and 25 repeats take 16 ms on an average, regardless of the dataset.

Table 3. Running time.

 Single run 25 repeats

O–Mopsi 0.8 ms 16 ms

Dots 0.7 ms 16 ms

4.3. Parameter Values

We investigate different values for the I and R parameters using grid-search and recorded how

many operations are needed to solve different sized problems. The results are summarized in

Figure 19. In this context, we want to mention, as there are not a sufficient number of samples with

more than 25 targets in the O–Mopsi dataset and 30 targets in the Dots dataset, we ignore those

samples. From the chart, we can conclude that proper parameter values to use for the O–Mopsi

dataset are I = 213 and R = 25. The dots dataset requires higher values of I = 215 and R = 26. The

relationship between I and R seems to stabilize for larger instances.

Figure 19. Required number of operations increases with problem size. Figure 19. Required number of operations increases with problem size.

In Figure 20, we fix the product IR to 218 (O–Mopsi) and 221 (Dots) and vary their individual
values. Typically, different same-product combinations are equally effective at solving the instances.
However, using too few repetitions, the algorithm typically gets stuck at a local optimum, which is not
the global one. On the other hand, when the number of iterations becomes too small, it is likely that
some local operations can still improve the result (not saturated).

Appl. Sci. 2019, 9, x FOR PEER REVIEW 18 of 26

In Figure 20, we fix the product IR to 218 (O–Mopsi) and 221 (Dots) and vary their individual

values. Typically, different same-product combinations are equally effective at solving the

instances. However, using too few repetitions, the algorithm typically gets stuck at a local

optimum, which is not the global one. On the other hand, when the number of iterations becomes

too small, it is likely that some local operations can still improve the result (not saturated).

Figure 20. Gap variation with varied iterations and repetitions.

4.4. The Productivity of the Operators

We next analyze the productivity of the operators, as follows. We count how many times each

operator found an improvement in the solution. For this case, we also evaluate our operators by

closed-loop instances (TSPLIB instances) [44]. We should mention here that closed-loop instances

do not contain single links to swap. Therefore, the link swap operation is not possible for them. We

can only use the relocate and 2-opt operators to solve TSPLIB problems. In this context, we want to

mention that we choose 12 TSPLIB instances to test with problem size of 52–3795. These instances

are significantly larger than O–Mopsi and Dots instances, and therefore, we used a much higher

number of iterations (108) and 25 repeats. The total distribution of the improvement achieved by

operators is shown in Figure 21 both for the open-loop (O–Mopsi and Dot games) and closed-loop

(TSPLIB) [44] cases. From the results, we can make the following observations.

First, we can see that the 2-opt and relocate are almost equally productive in all cases.

However, the situation changes dramatically from the closed-loop to the open-loop case. While

2-opt and relocate both have about a 50% share of all improvements in the closed-loop case

(TSPLIB), they are inferior to the new link swap operator in case of open-loop test sets (O–Mopsi

and Dots). The link swap operator dominates by a 50% share, while 2-opt and relocate have roughly

a 25% share each. The relocate operator becomes also slightly more productive than 2-opt.

Figure 21. Share of the improvements by all three operators both with the open-loop (O–Mopsi and

Dot games) and closed-loop (TSPLIB) problem instances. With TSBPLIB, we use 108 iterations and

25 repeats.

Figure 20. Gap variation with varied iterations and repetitions.

4.4. The Productivity of the Operators

We next analyze the productivity of the operators, as follows. We count how many times each
operator found an improvement in the solution. For this case, we also evaluate our operators by
closed-loop instances (TSPLIB instances) [44]. We should mention here that closed-loop instances do
not contain single links to swap. Therefore, the link swap operation is not possible for them. We can
only use the relocate and 2-opt operators to solve TSPLIB problems. In this context, we want to
mention that we choose 12 TSPLIB instances to test with problem size of 52–3795. These instances are
significantly larger than O–Mopsi and Dots instances, and therefore, we used a much higher number
of iterations (108) and 25 repeats. The total distribution of the improvement achieved by operators is
shown in Figure 21 both for the open-loop (O–Mopsi and Dot games) and closed-loop (TSPLIB) [44]
cases. From the results, we can make the following observations.

Appl. Sci. 2019, 9, 3985 18 of 24

First, we can see that the 2-opt and relocate are almost equally productive in all cases. However,
the situation changes dramatically from the closed-loop to the open-loop case. While 2-opt and relocate
both have about a 50% share of all improvements in the closed-loop case (TSPLIB), they are inferior to
the new link swap operator in case of open-loop test sets (O–Mopsi and Dots). The link swap operator
dominates by a 50% share, while 2-opt and relocate have roughly a 25% share each. The relocate
operator becomes also slightly more productive than 2-opt.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 18 of 26

In Figure 20, we fix the product IR to 218 (O–Mopsi) and 221 (Dots) and vary their individual

values. Typically, different same-product combinations are equally effective at solving the

instances. However, using too few repetitions, the algorithm typically gets stuck at a local

optimum, which is not the global one. On the other hand, when the number of iterations becomes

too small, it is likely that some local operations can still improve the result (not saturated).

Figure 20. Gap variation with varied iterations and repetitions.

4.4. The Productivity of the Operators

We next analyze the productivity of the operators, as follows. We count how many times each

operator found an improvement in the solution. For this case, we also evaluate our operators by

closed-loop instances (TSPLIB instances) [44]. We should mention here that closed-loop instances

do not contain single links to swap. Therefore, the link swap operation is not possible for them. We

can only use the relocate and 2-opt operators to solve TSPLIB problems. In this context, we want to

mention that we choose 12 TSPLIB instances to test with problem size of 52–3795. These instances

are significantly larger than O–Mopsi and Dots instances, and therefore, we used a much higher

number of iterations (108) and 25 repeats. The total distribution of the improvement achieved by

operators is shown in Figure 21 both for the open-loop (O–Mopsi and Dot games) and closed-loop

(TSPLIB) [44] cases. From the results, we can make the following observations.

First, we can see that the 2-opt and relocate are almost equally productive in all cases.

However, the situation changes dramatically from the closed-loop to the open-loop case. While

2-opt and relocate both have about a 50% share of all improvements in the closed-loop case

(TSPLIB), they are inferior to the new link swap operator in case of open-loop test sets (O–Mopsi

and Dots). The link swap operator dominates by a 50% share, while 2-opt and relocate have roughly

a 25% share each. The relocate operator becomes also slightly more productive than 2-opt.

Figure 21. Share of the improvements by all three operators both with the open-loop (O–Mopsi and

Dot games) and closed-loop (TSPLIB) problem instances. With TSBPLIB, we use 108 iterations and

25 repeats.

Figure 21. Share of the improvements by all three operators both with the open-loop (O–Mopsi and
Dot games) and closed-loop (TSPLIB) problem instances. With TSBPLIB, we use 108 iterations and
25 repeats.

One question is whether all operators work equally efficiently at the beginning of the search, when
there is more room for improvements, as they do at the end of the search when the improvements
are harder to find. We select four typical O-Mopsi game examples and find the productivity of the
operators through the total search spaces (Figure 22). We plot them in Figure 23. Similarly, Figure 24
shows the productivity of operators along the search spaces of four typical dot games. We plot those
games in Figure 25. The diagrams show that there are no visible patterns to be observed. All operators
remain productive at all stages of the search. Link swap is the most active and relocate is slightly more
productive at the end of the search with the O–Mopsi instances.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 19 of 26

One question is whether all operators work equally efficiently at the beginning of the search,

when there is more room for improvements, as they do at the end of the search when the

improvements are harder to find. We select four typical O-Mopsi game examples and find the

productivity of the operators through the total search spaces (Figure 22). We plot them in Figure 23.

Similarly, Figure 24 shows the productivity of operators along the search spaces of four typical dot

games. We plot those games in Figure 25. The diagrams show that there are no visible patterns to be

observed. All operators remain productive at all stages of the search. Link swap is the most active and

relocate is slightly more productive at the end of the search with the O–Mopsi instances.

Figure 22. Productivity of the operators during the search with for 4 different O–Mopsi instances.

Figure 23. Screenshots of the 4 different O–Mopsi instances (in the same order).

Figure 22. Productivity of the operators during the search with for 4 different O–Mopsi instances.

Appl. Sci. 2019, 9, 3985 19 of 24

Appl. Sci. 2019, 9, x FOR PEER REVIEW 19 of 26

One question is whether all operators work equally efficiently at the beginning of the search,

when there is more room for improvements, as they do at the end of the search when the

improvements are harder to find. We select four typical O-Mopsi game examples and find the

productivity of the operators through the total search spaces (Figure 22). We plot them in Figure 23.

Similarly, Figure 24 shows the productivity of operators along the search spaces of four typical dot

games. We plot those games in Figure 25. The diagrams show that there are no visible patterns to be

observed. All operators remain productive at all stages of the search. Link swap is the most active and

relocate is slightly more productive at the end of the search with the O–Mopsi instances.

Figure 22. Productivity of the operators during the search with for 4 different O–Mopsi instances.

Figure 23. Screenshots of the 4 different O–Mopsi instances (in the same order). Figure 23. Screenshots of the 4 different O–Mopsi instances (in the same order).
Appl. Sci. 2019, 9, x FOR PEER REVIEW 20 of 26

Figure 24. Productivity of the operators during the search with for 4 different Dots instances.

Figure 25. Screenshots of 4 different dots instances (in the same order).

5. Stochastic Variants

We consider repeat to overcome the local optimum values. However, there are several other

methods to overcome local optimum values using tabu search [45], simple simulated annealing and

combined variants [46–50], genetic algorithm [51–54]. Besides these, Quintero–Araujo et al. [55]

combined iterated local search and Monte Carlo simulation on vehicle routing problems. We

compared our results with some of these methods; additionally, we consider two stochastic variants

of the local search:

• Tabu search [45]

• Simulated annealing [47]

Tabu search is a metaheuristic first introduced by Glover [45]. The idea is to allow uphill

moves that worsen the solution to avoid being stuck in a local optimum. It forces the search to new

Figure 24. Productivity of the operators during the search with for 4 different Dots instances.

Appl. Sci. 2019, 9, 3985 20 of 24

Appl. Sci. 2019, 9, x FOR PEER REVIEW 20 of 26

Figure 24. Productivity of the operators during the search with for 4 different Dots instances.

Figure 25. Screenshots of 4 different dots instances (in the same order).

5. Stochastic Variants

We consider repeat to overcome the local optimum values. However, there are several other

methods to overcome local optimum values using tabu search [45], simple simulated annealing and

combined variants [46–50], genetic algorithm [51–54]. Besides these, Quintero–Araujo et al. [55]

combined iterated local search and Monte Carlo simulation on vehicle routing problems. We

compared our results with some of these methods; additionally, we consider two stochastic variants

of the local search:

• Tabu search [45]

• Simulated annealing [47]

Tabu search is a metaheuristic first introduced by Glover [45]. The idea is to allow uphill

moves that worsen the solution to avoid being stuck in a local optimum. It forces the search to new

Figure 25. Screenshots of 4 different dots instances (in the same order).

5. Stochastic Variants

We consider repeat to overcome the local optimum values. However, there are several other
methods to overcome local optimum values using tabu search [45], simple simulated annealing and
combined variants [46–50], genetic algorithm [51–54]. Besides these, Quintero–Araujo et al. [55]
combined iterated local search and Monte Carlo simulation on vehicle routing problems. We compared
our results with some of these methods; additionally, we consider two stochastic variants of the local
search:

• Tabu search [45]
• Simulated annealing [47]

Tabu search is a metaheuristic first introduced by Glover [45]. The idea is to allow uphill moves
that worsen the solution to avoid being stuck in a local optimum. It forces the search to new directions.
A tabu list of previously considered solutions, or moves, is maintained to prevent the search from
going into cycles around the local optima.

We incorporate the tabu search with our local search as follows. When an improvement is found
in the solution, we mark the added links as tabu. These links are not allowed to be changed in the next
0.2·N iterations. We use the best improvement as the search strategy. Table 4 shows results of tabu
search for O-Mopsi and Dots games.

Simulated annealing (SA) is another approach to make the search stochastic. Although there
are a large number of adaptive simulated annealing variants, we consider a simpler one, the noising
method of Charon and Hudry [47]. The idea is to add random noise to the cost function to allow
uphill moves and therefore avoid local optima. The noise is a random number between r ∈ [0, ± rmax],
and acts as a multiplier for the noisy cost function: f noise = r·f. The noise starts from rmax = 1 and
decreases at every iteration by a constant 2/T, where T is the number of iterations. The noise reaches r
= 0 halfway, and the search then reduces back to normal local search by using normal cost function
(f) for the remaining iterations. We apply a random mixed local search with 25 repeats. Table 4 also
shows simulated annealing results for O-Mopsi and Dots instances.

Appl. Sci. 2019, 9, 3985 21 of 24

Table 4. Comparison of Tabu search and simulated annealing (SA) result with random mixed local
search result with the same iteration and repetition for O–Mopsi and dot instances.

Repeated (25 times)

Gap (avg.) Not Solved

O–Mopsi
Random mixed local search 0% 0

Tabu search 0% 0
Simulated annealing (SA) 0% 0

Dots
Random mixed local search 0.001% 1

Tabu search 0.0003% 3
SA 0.007% 10

Finding the productivity of the operators as in Figure 21 for random mixed local search, we consider
finding out the same in case of tabu search and simulated annealing. From a random mixed local
search, we found that link swap was the most effective operation. Figure 26 illustrates that in tabu
search, link swap is the least effective. However, link swap is again the most effective for the simulated
annealing, as shown in Figure 27. We mark the added links as forbidden for tabu search, so link swap
becomes too restrictive in this case. This makes link swap often non-working.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 22 of 26

Table 4. Comparison of Tabu search and simulated annealing (SA) result with random mixed local

search result with the same iteration and repetition for O–Mopsi and dot instances.

Repeated (25 times)

Gap (avg.) Not solved

O–Mopsi

Random mixed local search 0% 0

Tabu search 0% 0

Simulated annealing (SA) 0% 0

Dots

Random mixed local search 0.001% 1

Tabu search 0.0003% 3

SA 0.007% 10

Figure 26. Share of improvement by all three methods for Tabu search.

Finding the productivity of the operators as in Figure 21 for random mixed local search, we

consider finding out the same in case of tabu search and simulated annealing. From a random

mixed local search, we found that link swap was the most effective operation. Figure 26 illustrates

that in tabu search, link swap is the least effective. However, link swap is again the most effective

for the simulated annealing, as shown in Figure 27. We mark the added links as forbidden for tabu

search, so link swap becomes too restrictive in this case. This makes link swap often non-working.

Figure 26. Share of improvement by all three methods for Tabu search.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 22 of 26

Table 4. Comparison of Tabu search and simulated annealing (SA) result with random mixed local

search result with the same iteration and repetition for O–Mopsi and dot instances.

Repeated (25 times)

Gap (avg.) Not solved

O–Mopsi

Random mixed local search 0% 0

Tabu search 0% 0

Simulated annealing (SA) 0% 0

Dots

Random mixed local search 0.001% 1

Tabu search 0.0003% 3

SA 0.007% 10

Figure 26. Share of improvement by all three methods for Tabu search.

Finding the productivity of the operators as in Figure 21 for random mixed local search, we

consider finding out the same in case of tabu search and simulated annealing. From a random

mixed local search, we found that link swap was the most effective operation. Figure 26 illustrates

that in tabu search, link swap is the least effective. However, link swap is again the most effective

for the simulated annealing, as shown in Figure 27. We mark the added links as forbidden for tabu

search, so link swap becomes too restrictive in this case. This makes link swap often non-working.

Figure 27. Share of improvement by all three methods for simulated annealing (SA).

We compare the performance of random mixed local search, tabu search, and simulated annealing
for O-Mopsi and dots games in Table 5. We study the gap value and execution time for every method.
Results show that neither tabu nor simulated annealing improved the performance of the random
mixed local search algorithm.

Appl. Sci. 2019, 9, 3985 22 of 24

Table 5. Summary of overall results (mean).

Results Random mix Tabu SA

Gap Time Gap Time Gap Time
O–Mopsi 0% <1 s 0% 1.3 s 0 % <1 s

Dots 0.001% <1 s 0.0003% 1.3 s 0.007% <1 s

6. Discussion

We have studied the open-loop variant of TSP to find out which operators work best. Two new
operators were proposed: link swap and 3–permute. The link swap operator was shown to be the
most productive. Even though 2-opt works best as a single operator, the best results are obtained using
a mixture of all three operators (2-opt, relocate, link swap). The new operator, link swap, provides,
50% of all the improvements, while 2-opt and relocate have roughly a 25% share each. To sum up,
the link swap operator is the most efficient operator in the mix.

For our problem instances up to size 31, the proposed combination of the local search (random
mixed local search) finds the optimum solution in all O–Mopsi instances, and in all except one, Dots
problem instances. Iterations and repetitions are the most significant parameters of the proposed
method. Additionally, a suitable number of iterations and repetitions are essential with respect to
the problem size, which is 213 and 25 for the O–Mopsi dataset, and 215 and 26 for the Dots dataset.
For O–Mopsi instances, processing times are 0.8 ms (single) and 16 ms (repeats). For Dots instances,
processing times are 0.7 ms (single) and 16 ms (repeats). The overall complexity of the algorithm
mainly depends on the number of iterations and repeats. Furthermore, considering the multi-threaded
platform, different repeats can work simultaneously to decrease the processing time by a factor of a
number of threads.

Tabu search and simulated annealing were also considered but they did not provide further
improvements in our tests. The productivity of the operators was consistent with those of the local
search. We conclude that the local search is sufficient for our application where the optimum result is
needed in real-time, and the occasional sub-optimal result can be tolerated.

The limitation of the new operator, link swap, is that it is suitable only for the open-loop case
and does not apply to TSPLIB instances. Therefore, only 2-opt and relocate can be used for these
instances. Without link swap, relocate also becomes weaker in the mixing algorithm, which might
weaken the result.

Author Contributions: Conceptualization, P.F., R.M.-I., and L.S.; methodology, L.S., R.M.-I.; writing—original
draft preparation, L.S.; writing—review and editing, P.F and R.M.-I.; supervision, P.F.

Funding: This research received no external funding

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of Np-Completeness; W.H. Freeman
& Co.: New York, NY, USA, 1979; ISBN 0716710455.

2. Papadimitriou, C.H. The Euclidean travelling salesman problem is NP-complete. Theor. Comput. Sci. 1977, 4,
237–244. [CrossRef]

3. Fränti, P.; Mariescu-Istodor, R.; Sengupta, L. O-Mopsi: Mobile Orienteering Game for Sightseeing, Exercising,
and Education. ACM Trans. Multimed. Comput. Commun. Appl. 2017, 13, 56. [CrossRef]

4. Vansteenwegen, P.; Souffriau, W.; Van Oudheusden, D. The orienteering problem: A survey. Eur. J. Oper. Res.
2011, 209, 1–10. [CrossRef]

5. Chieng, H.H.; Wahid, N. A Performance Comparison of Genetic Algorithm’s Mutation Operators in n-Cities
Open Loop Travelling Salesman Problem. In Recent Advances on Soft Computing and Data Mining. Advances in
Intelligent Systems and Computing; Herawan, T., Ghazali, R., Deris, M., Eds.; Springer: Berlin/Heidelberg,
Germany, 2014; Volume 287.

http://dx.doi.org/10.1016/0304-3975(77)90012-3
http://dx.doi.org/10.1145/3115935
http://dx.doi.org/10.1016/j.ejor.2010.03.045

Appl. Sci. 2019, 9, 3985 23 of 24

6. Gavalas, D.; Konstantopoulos, C.; Mastakas, K.; Pantziou, G. A survey on algorithmic approaches for solving
tourist trip design problems. J. Heuristics 2014, 20, 291–328. [CrossRef]

7. Golden, B.L.; Levy, L.; Vohra, R. The Orienteering Problem. Nav. Res. Logist. 1987, 34, 307–318. [CrossRef]
8. Perez, D.; Togelius, J.; Samothrakis, S.; Rohlfshagen, P.; Lucas, S.M. Automated Map Generation for the

Physical Traveling Salesman Problem. IEEE Trans. Evol. Comput. 2014, 18, 708–720. [CrossRef]
9. Sengupta, L.; Mariescu-Istodor, R.; Fränti, P. Planning your route: Where to start? Comput. Brain Behav. 2018,

1, 252–265. [CrossRef]
10. Sengupta, L.; Fränti, P. Predicting difficulty of TSP instances using MST. In Proceedings of the IEEE

International Conference on Industrial Informatics (INDIN), Helsinki, Finland, June 2019; pp. 848–852.
11. Dantzig, G.B.; Fulkerson, D.R.; Johnson, S.M. Solution of a Large Scale Traveling Salesman Problem; Technical

Report P-510; RAND Corporation: Santa Monica, CA, USA, 1954.
12. Held, M.; Karp, R.M. The traveling salesman problem and minimum spanning trees: Part II. Math. Program.

1971, 1, 6–25. [CrossRef]
13. Padberg, M.; Rinaldi, G. A branch-and-cut algorithm for the resolution of large-scale symmetric traveling

salesman problems. SIAM Rev. 1991, 33, 60–100. [CrossRef]
14. Grötschel, M.; Holland, O. Solution of large-scale symmetric travelling salesman problems. Math. Program.

1991, 51, 141–202. [CrossRef]
15. Applegate, D.; Bixby, R.; Chvatal, V. On the solution of traveling salesman problems. Documenta Mathematica

Journal der Deutschen Mathematiker-Vereinigung. Int. Congr. Math. 1988, Extra Volume III, 645–656.
16. Laporte, G. The traveling salesman problem: An overview of exact and approximate algorithms. Eur. J. Oper.

Res. 1992, 59, 231–247. [CrossRef]
17. Applegate, D.L.; Bixby, R.E.; Chvatal, V.; Cook, W.J. The Traveling Salesman Problem: A Computational Study;

Princeton University Press: Princeton, NJ, USA, 2011.
18. Johnson, D.S.; Papadimitriou, C.H.; Yannakakis, M. How easy is local search? J. Comput. Syst. Sci. 1988, 37,

79–100. [CrossRef]
19. Clarke, G.; Wright, J.W. Scheduling of Vehicles from a Central Depot to a Number of Delivery Points.

Oper. Res. 1964, 12, 568–581. [CrossRef]
20. Christofides, N. Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem (Technical Report388);

Graduate School of Industrial Administration, Carnegie Mellon University: Pittsburgh, PA, USA, 1976.
21. Johnson, D.S.; McGeoch, L.A. The traveling salesman problem: A case study in local optimization. Local

Search Comb. Optim. 1997, 1, 215–310.
22. Croes, G.A. A Method for Solving Traveling-Salesman Problems. Oper. Res. 1958, 6, 791–812. [CrossRef]
23. Lin, S.; Kernighan, B.W. An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 1973,

21, 498–516. [CrossRef]
24. Rego, C.; Glover, F. Local search and metaheuristics. In The Traveling Salesman Problem and Its Variations;

Springer: Boston, MA, USA, 2007; pp. 309–368.
25. Okano, H.; Misono, S.; Iwano, K. New TSP construction heuristics and their relationships to the 2-opt.

J. Heuristics 1999, 5, 71–88. [CrossRef]
26. Johnson, D.S.; McGeoch, L.A. Experimental analysis of heuristics for the STSP. In The Traveling Salesman

Problem and Its Variations; Springer: Boston, MA, USA, 2007; pp. 369–443.
27. Aarts, E.; Aarts, E.H.; Lenstra, J.K. (Eds.) Local Search in Combinatorial Optimization; Princeton University

Press: Princeton, NJ, USA, 2003.
28. Jünger, M.; Reinelt, G.; Rinaldi, G. The traveling salesman problem. Handb. Oper. Res. Manag. Sci. 1995, 7,

225–330.
29. Laporte, G. A concise guide to the traveling salesman problem. J. Oper. Res. Soc. 2010, 61, 35–40. [CrossRef]
30. Ahuja, R.K.; Ergun Ö Orlin, J.B.; Punnen, A.P. A survey of very large-scale neighborhood search techniques.

Discret. Appl. Math. 2002, 123, 75–102. [CrossRef]
31. Rego, C.; Gamboa, D.; Glover, F.; Osterman, C. Traveling salesman problem heuristics: Leading methods,

implementations and latest advances. Eur. J. Oper. Res. 2011, 211, 427–441. [CrossRef]
32. Matai, R.; Singh, S.; Mittal, M.L. Traveling salesman problem: An overview of applications, formulations, and

solution approaches. In Traveling Salesman Problem, Theory and Applications; IntechOpen: London, UK, 2010.
33. Laporte, G. The vehicle routing problem: An overview of exact and approximate algorithms. Eur. J. Oper.

Res. 1992, 59, 345–358. [CrossRef]

http://dx.doi.org/10.1007/s10732-014-9242-5
http://dx.doi.org/10.1002/1520-6750(198706)34:3<307::AID-NAV3220340302>3.0.CO;2-D
http://dx.doi.org/10.1109/TEVC.2013.2281508
http://dx.doi.org/10.1007/s42113-018-0018-0
http://dx.doi.org/10.1007/BF01584070
http://dx.doi.org/10.1137/1033004
http://dx.doi.org/10.1007/BF01586932
http://dx.doi.org/10.1016/0377-2217(92)90138-Y
http://dx.doi.org/10.1016/0022-0000(88)90046-3
http://dx.doi.org/10.1287/opre.12.4.568
http://dx.doi.org/10.1287/opre.6.6.791
http://dx.doi.org/10.1287/opre.21.2.498
http://dx.doi.org/10.1023/A:1009695129052
http://dx.doi.org/10.1057/jors.2009.76
http://dx.doi.org/10.1016/S0166-218X(01)00338-9
http://dx.doi.org/10.1016/j.ejor.2010.09.010
http://dx.doi.org/10.1016/0377-2217(92)90192-C

Appl. Sci. 2019, 9, 3985 24 of 24

34. Vidal TCrainic, T.G.; Gendreau, M.; Prins, C. Heuristics for multi-attribute vehicle routing problems: A survey
and synthesis. Eur. J. Oper. Res. 2013, 231, 1–21. [CrossRef]

35. Gendreau, M.; Hertz, A.; Laporte, G. New insertion and postoptimization procedures for the traveling
salesman problem. Oper. Res. 1992, 40, 1086–1094. [CrossRef]

36. Mersmann, O.; Bischl, B.; Bossek, J.; Trautmann, H.; Wagner, M.; Neumann, F. Local Search and the Traveling
Salesman Problem: A Feature-Based Characterization of Problem Hardness. In Lecture Notes in Computer
Science, Proceedings of the Learning and Intelligent Optimization, Paris, France, 16–20 January 2012; Springer:
Berlin/Heidelberg, Germany, 2012; Volume 7219, p. 7219.

37. Helsgaun, K. An effective implementation of the Lin–Kernighan traveling salesman heuristic. Eur. J. Oper.
Res. 2000, 126, 106–130. [CrossRef]

38. Pan, Y.; Xia, Y. Solving TSP by dismantling cross paths. In Proceedings of the IEEE International Conference
on Orange Technologies, Xian, China, 20–23 September 2014; pp. 121–124.

39. Martí, R. Multi-start methods. In Handbook of Metaheuristics; Springer: Berlin/Heidelberg, Germany, 2003;
pp. 355–368.

40. O’Neil, M.A.; Burtscher, M. Rethinking the parallelization of random-restart hill climbing: A case study in
optimizing a 2-opt TSP solver for GPU execution. In Proceedings of the 8th Workshop on General Purpose
Processing using GPUs, San Francisco, CA, USA, 7 February 2015; pp. 99–108.

41. Al-Adwan, A.; Sharieh, A.; Mahafzah, B.A. Parallel heuristic local search algorithm on OTIS hyper hexa-cell
and OTIS mesh of trees optoelectronic architectures. Appl. Intell. 2019, 49, 661–688. [CrossRef]

42. Xiang, Y.; Zhou, Y.; Chen, Z. A local search based restart evolutionary algorithm for finding triple product
property triples. Appl. Intell. 2018, 48, 2894–2911. [CrossRef]

43. Lawler, E.L.; Lenstra, J.K.; Rinnooy Kan AH, G.; Shmoys, D.B. The Traveling Salesman Problem; A Guided Tour
of Combinatorial Optimization; Publisher Wiley: Chichester, UK, 1985.

44. Reinelt, G. A traveling salesman problem library. INFORMS J. Comput. 1991, 3, 376–384. [CrossRef]
45. Glover, F. Tabu Search-Part I. ORSA J. Comput. 1989, 1, 190–206. [CrossRef]
46. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680.

[CrossRef] [PubMed]
47. Charon, I.; Hurdy, O. Application of the noising method to the travelling salesman problem. Eur. J. Oper. Res.

2000, 125, 266–277. [CrossRef]
48. Chen, S.M.; Chien, C.Y. Solving the traveling salesman problem based on the genetic simulated annealing

ant colony system with particle swarm optimization techniques. Expert Syst. Appl. 2011, 38, 14439–14450.
[CrossRef]

49. Ezugwu, A.E.S.; Adewumi, A.O.; Frîncu, M.E. Simulated annealing based symbiotic organisms search
optimization algorithm for traveling salesman problem. Expert Syst. Appl. 2017, 77, 189–210. [CrossRef]

50. Geng, X.; Chen, Z.; Yang, W.; Shi, D.; Zhao, K. Solving the traveling salesman problem based on an adaptive
simulated annealing algorithm with greedy search. Appl. Soft Comput. 2011, 11, 3680–3689. [CrossRef]

51. Albayrak, M.; Allahverdi, N. Development a new mutation operator to solve the Traveling Salesman Problem
by aid of Genetic Algorithms. Expert Syst. Appl. 2011, 38, 1313–1320. [CrossRef]

52. Nagata, Y.; Soler, D. A new genetic algorithm for the asymmetric traveling salesman problem. Expert Syst.
Appl. 2012, 39, 8947–8953. [CrossRef]

53. Singh, S.; Lodhi, E.A. Study of variation in TSP using genetic algorithm and its operator comparison. Int. J.
Soft Comput. Eng. 2013, 3, 264–267.

54. Vashisht, V.; Choudhury, T. Open loop travelling salesman problem using genetic algorithm. Int. J. Innov.
Res. Comput. Commun. Eng. 2013, 1, 112–116.

55. Quintero-Araujo, C.L.; Gruler, A.; Juan, A.A.; Armas, J.; Ramalhinho, H. Using simheuristics to promote
horizontal collaboration in stochastic city logistics. Prog. Artif. Intell. 2017, 6, 275. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ejor.2013.02.053
http://dx.doi.org/10.1287/opre.40.6.1086
http://dx.doi.org/10.1016/S0377-2217(99)00284-2
http://dx.doi.org/10.1007/s10489-018-1283-2
http://dx.doi.org/10.1007/s10489-017-1118-6
http://dx.doi.org/10.1287/ijoc.3.4.376
http://dx.doi.org/10.1287/ijoc.1.3.190
http://dx.doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://dx.doi.org/10.1016/S0377-2217(99)00457-9
http://dx.doi.org/10.1016/j.eswa.2011.04.163
http://dx.doi.org/10.1016/j.eswa.2017.01.053
http://dx.doi.org/10.1016/j.asoc.2011.01.039
http://dx.doi.org/10.1016/j.eswa.2010.07.006
http://dx.doi.org/10.1016/j.eswa.2012.02.029
http://dx.doi.org/10.1007/s13748-017-0122-8
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Local Search
	Relocate
	Two-Optimization (2-opt)
	Three-Node Permutation (3-permute)
	Link Swap
	The Uniqueness of the Operators

	Performance of a Single Operator
	Initial Solution
	Search Strategy
	Results With A Single Operator
	Combining the Operators

	Analysis of Repeated Random Mixed Local Search
	Effect of the repetitions
	Processing Time
	Parameter Values
	The Productivity of the Operators

	Stochastic Variants
	Discussion
	References

