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Abstract 
 

Finite-state automata offer an alternative approach to implement context models where 
the states in the automata cannot in general be assigned by a single context. Despite the 
potential of this approach, it makes the design of the modelling more problematic 
because the exact behaviour of the model is not known. Here we propose a simple 
formalism – context model automata (CMA) – that gives an exact interpretation for the 
minimum context belonging to each state in the automaton. The formalism is general 
enough to simulate context models such as PPM and GDMC. Using the CMA 
formalism as our tool, we study the behaviour of the above two context models.  
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1. Introduction 
 
Text compression is typically performed by statistical or dictionary-based methods [1, 2]. The 
input file is processed by a single pass starting with an initial model or dictionary. The method 
then adapts to the source data during the compression. Only the data that is already 
compressed (thus also known by the decoder) can be used in the model. In this way the 
decompression can be done synchronously. 
 
Dictionary-based methods decompose the source data into substrings which are compressed 
separately either by a pointer to an earlier occurrence of the string in the source data (LZ77 
variants) [3], or by a pointer to a dynamically constructed dictionary (LZ78 variants) [4]. The 
pointers are stored using a fixed length coding, or an entropy coding method such as Huffman 
coding [5]. 
 
Better compression performance is achieved by statistical compression at the cost of lower 
throughput and higher memory consumption. In symbol-based context models each symbol is 
predicted by a context, which is a combination of a few preceding symbols. A different 
statistical model is constructed for each context on the basis of the previously coded data. 
Each model consists of a table of successor symbols and their frequencies. The actual coding 
can be performed by arithmetic coding using the implementation given by Witten et al. [6]. 
 
Variable-order contexts have been widely used in PPM models (prediction by partial match), 
originally proposed in [7]. The highest order context is first applied. If the symbol is not 
predicted by the context, an escape symbol is coded and another lower level context is used. If 
no other context can be applied, the symbol is eventually coded using a zero-order model. The 
size of the highest order context is kept relatively small (three in [1]) to reduce the memory 
requirements and the learning cost. 
 
Data compression can conceptually be divided into two separate components: modelling and 
coding. Modelling is the key question in the design of a compression algorithm whereas the 
coding can be optimally done using arithmetic coding. From this point of view, it is easy to 
see that the statistical models are more general than the dictionary-based models since they 
explicitly separate the two components from each other. In fact, commonly used dictionary-
based methods can be simulated by symbol-wise statistical models. For example, Langdon has 
given a statistical counterpart for LZ78 in [8]. 
 
A third approach to text compression is the use of finite state automata. An automaton 
consists of a set of states and transitions between the states. Each transition corresponds to 
a single coding event: coding of a symbol or part of it. All states must include outgoing 
transitions for every possible coding incident that might appear. An implementation known as 
Dynamic Markov Compression (DMC) uses a binary alphabet in the automaton [9]. Symbols 
of larger alphabets must be handled bitwise. It has been shown that DMC actually implements 
a finite-context model [10]. 
 
Generalized Dynamic Markov Compression (GDMC), proposed by Teuhola and Raita [11], 
generalizes the idea of DMC to multisymbol alphabets. The states in the automaton 
correspond to the contexts and the transitions to the selection of the next state. Escape 
strategy is taken to reduce the number of outgoing transitions in each state. GDMC 
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implements a context model with potentially stronger capabilities than the PPM model but its 
exact behaviour is not understood very well.  
 
We propose a simple formalism, context model automata (CMA), for modelling the contexts 
in a finite-state automaton. It gives an exact interpretation for the minimum context belonging 
to each state in the automaton. We will show that both PPM and GDMC follow the CMA 
formalism. We thus obtain a context interpretation for the states of a GDMC automaton. 
CMA can also be used as a practical tool for analyzing the behaviour of the GDMC and PPM 
models, and to design new ones. 
 
A more theoretical approach has been taken by Bunton [12] for studying the contexts in a full-
table model where each state includes a complete set of transitions. The contexts are defined 
as a set of strings described by regular expressions. This gives an exact but not necessarily an 
easy interpretation for the contexts of the states. Our approach does not take into account the 
partial contexts included in the states but it gives a simpler interpretation for the contexts, 
which can be easily utilized in practical applications. We focus here on models that uses the 
escape strategy, in which only a subset of the entire alphabet may appear in each state. This is 
more faithful for the traditional context models such as PPM. 
 
Using CMA formalism as our tool, we study the behaviour of the GDMC and PPM context 
models. CMA gives useful information about the structure of the automaton by giving context 
interpretation for the states. CMA, however, models only an existing automaton and it does 
not define the way the automaton is constructed. The dynamic construction of CMA is 
therefore the key question when designing a new automaton-based compression scheme. In 
this study, we limit the discussion to the existing models underlying in PPM and GDMC. 
 
In PPM, the creation of new states depends on the context length, and in GDMC, on the 
statistics of the state. PPM is more greedy in the model expansion and it adapts quicker to the 
source data. The model growth is controlled by limiting the context length by a predefined 
maximum. GDMC, on the other hand, has no upper limit for the context length but it uses 
a frequency based heuristic to control the model growth. Due to its lazier expansion, the 
resulting contexts are not necessarily unique. Although CMA defines a minimum context 
length for each state, the automaton has longer partial contexts. 
 
It is noted that the CMA model itself says nothing about the compression performance. It is 
therefore equally important to consider also the statistical model integrated with the context 
model. For example, both PPM and GDMC use greedy state selection (the first predictive 
state is always applied). Better results could be obtained using information theoretic state 
selection, based on the expected compression performance of the states. However, it is not 
clear how the expected compression performance should be measured. In the rest of the paper, 
we will focus on context modelling only, and settle for the existing PPM and GDMC methods 
in the statistical modelling. 
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2. Context model automata 
 
The main components of a CMA-based compression algorithm are:  
 
 � Context model automaton (CMA) 
 � Statistical model 
 � Entropy coder 
 
The object of CMA is to model contexts only. For each input symbol the current state of the 
automaton determines the context predicting the symbol to be coded. The statistical model 
then calculates the probability distribution using the symbol frequencies included in the 
chosen context. The actual coding is performed by an entropy coder (usually arithmetic 
coding) on the basis of the determined probability distribution. After the coding, the statistics 
are updated. 
 
CMA implements the context model as follows. Each state in the automaton corresponds to 
a single context having its own statistics. The states include also transitions for all possible 
coding events that might appear. A transition leads to the state to be used next. The automaton 
is deterministic: its behaviour depends only on the input (source data and parameters), i.e., the 
automaton works always in the same way for the same input. 
 
The states do not necessarily include transitions for all possible symbols and the escape 
strategy is applied instead. Only transitions for already seen symbols can appear in the states. 
The rest are coded by an escape-transition (ESC) leading to another state. If the symbol does 
not exist in the following state, an escape path is followed until a proper state is reached and 
the symbol can be coded. The escape strategy eliminates also the zero-frequency problem [1]. 
An example of a CMA and its application for coding a sample source string are illustrated in 
Figure 1. 
 
The main phases of a CMA-based compression algorithm are described in Figure 2. The input 
data is processed symbol by symbol and the automaton is constructed dynamically during the 
coding process. The compression starts with an initial automaton from its initial state. The 
initial state typically includes transitions for all possible symbols and it carries no context. 
After a symbol has been coded and statistics updated, the automaton can be updated applying 
two basic cloning operations: 
 
 � Create a new state 
 � Create a new transition 
 
The modification of the automaton thus corresponds to the dynamic modelling in PPM-based 
compression schemes. The initial automaton does not need to be very complicated. It is more 
important that the automaton adapts to the input data. The key questions of CMA are when 
and how to clone. Solutions for these questions will be discussed in Section 3. 
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Figure 1: Example of a context model automaton for alphabet � = {a, b, c}. 

 
Compress(File): 

{ 
 C = C0   /* initial state */ 
 REPEAT 
  Symbol = GetNextSymbol(File); 
  C = CompressSymbol(C, Symbol); 
 UNTIL Symbol=EOF; 
 } 
 
CompressSymbol(C, Symbol): returns next state. 

{ 
IF EXISTS( C.Transition(Symbol) ) THEN 
 EncodeSymbol(C, Symbol); 
 UpdateStatistics(C, Symbol); 
 nextC = C.Transition(Symbol); 
 Update automaton 
ELSE 
 EncodeSymbol(C, ESC); 
 UpdateStatistics(C, ESC); 
 nextC = CompressSymbol(C.transition(ESC), Symbol); 
 Update automaton 
RETURN nextC; 

 } 

  

Figure 2: Pseudo code for the CMA coding process. 
 
 
2.1. Formal description of CMA 
 
The following symbols and definitions will be used to describe CMA: 

 
Alphabet of all symbols   � 
State in the automaton    C 
Initial state      C0 
Order of the context in C   |C| 
Any transition (S�D)    T 
Source state for a transition  S 
Destination state for a transition D 
Escape transition     ESC 
Label of a transition    Label(T) 
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There are two kinds of transitions in the automaton: actual transitions and escape transitions. 
Label(ESC) is defined to be an empty string. Note that the ESC-symbol still needs to be 
coded. Path describes a sequence of transitions corresponding to a traversal in the automaton. 
Label of path denotes the catenation of all non-ESC labels of the transitions along the path. 
The label of traversed path corresponds to a fixed number of previously coded symbols. 
 
Using the above symbols and definitions, an automaton is defined to be a context model 
automaton (CMA) if it meets the following criteria: 
 

Definition 1: (deterministicity property): There is only one outgoing transition from 
each state with the same label. Furthermore, only one possible outgoing ESC-transition 
exists in each state. 
 
Definition 2: (termination property): The automaton must terminate in a finite number 
of steps for any source string. 

 
Definition 3: (context property): The context in each state C is the longest common 
suffix of the labels of all possible paths from C0 to C. The order of the context in C is the 
length of that suffix string, and is denoted by |C|. 
 
Definition 4: (suffix property): Consider a transition T in the form S�D. The context of 
D is Suffix(S)+Label(T). In other words, the next context after an actual transition is 
always a suffix of the context of the previous state, concatenated with the symbol just 
coded. 
 

The termination property states that the automaton must be able to encode any source string 
and terminate within a finite time, i.e., it recognizes all the languages over the alphabet. This 
means that all escape paths from any state must eventually lead to a state that is capable of 
encoding the input symbol. In practice, this is usually solved so that all escape paths end up in 
the initial state of the automaton, which is capable of coding all alphabet symbols. 
 
The context property defines the context of a state C as the longest uniquely determined 
context. For example, consider the state ab in Figure 1. The labels of all possible incoming 
paths of length 3 are aab and bab. Their longest common suffix is ab, which is therefore the 
context of that state due to the context property. The actual context, however, may still be 
longer than |C|. In the previous example, there exists a longer (but only partially unique) 
context (a or b)+ab because the incoming path with the label cab cannot appear. 
 
The following corollaries are deduced directly from the CMA definitions: 
 

Corollary 1: If there is an actual transition from S to D, then |D| � |S| + 1. 
 

Corollary 2: If there is an ESC-transition from S to D, then |D| � |S|. 
 
Corollary 3: All actual transitions incoming to D have the same label. Furthermore, if 
there is at least one actual transition incoming to D then the last non-ESC transition 
along all paths leading to D must have the same label. 
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The corollary 1 states that the order of the context cannot be increased by more than one due 
to a single transition. This can be verified both by the context and suffix properties. The suffix 
property imposes also that the context cannot expand due to an escape transition (corollary 2). 
The suffix property is rather strict. Consider an ESC-transition between two states with 
a context of order 1 or greater. The suffix property implies that these contexts must have the 
same last symbol (corollary 3). A weaker definition would have stated that 
D = Suffix(S+Label(T)) but we adopt here the stronger definition. 
 
 
2.2. Dynamic construction of CMA 
 
CMA gives context interpretation for the states of automaton. However, CMA models only an 
existing automaton and does not say anything about how the automaton is constructed. The 
dynamic construction of CMA must therefore be defined by an initial automaton and by a set 
of cloning operations. We define a CMA-based compression method recursively by the 
following three criteria: 
 
 Requirement 1: The initial automaton is CMA. 
 
 Requirement 2: The new automaton due to a cloning operation is CMA. 
 
 Requirement 3: Cloning does not change the contexts of existing states. 
 
These first two requirements are rather loose and they give great freedom in the design of the 
context model. The third requirement, however, defines that cloning cannot change the 
contexts of an existing automaton. Thus, the context of a state is determined at the time of its 
creation and cloning operations may generate only local changes in the automaton. In this 
way, we can easily keep track of the way the automaton develops. 
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3. CMA implementations of GDMC and PPM models 
 
In the following section we will show how the GDMC and PPM models can be implemented 
under the CMA concept. We will first discuss the cloning operations introduced in GDCM 
and show that they directly implement a CMA. The PPM model is then simulated using the 
same cloning operations, and by making only minor modifications to the CompressSymbol 
function. 
 
 
3.1. GDMC model 
 
The initial model of GDMC is given in Figure 3. It is clearly a deterministic automaton and it 
can encode all symbols by a finite number of steps because all states have an escape path 
leading to the initial state, which contains transitions for all alphabet symbols. If the states are 
assigned by the contexts shown in Figure 3, the automaton will also meet the context and 
suffix properties. Thus, the first requirement for a dynamic CMA is fulfilled. 
 
3.1.1. Cloning operations in GDMC: 
 
GDMC involves two cloning operations: (1) creating new states, and (2) creating new 
transitions (shortcuts). A new state can be created after a symbol has been coded in the 
THEN-branch of the CompressSymbol function (see Figure 2). The objects of the operation 
are the current state and the next state in the automaton. Denote the last coded symbol by a 
and the corresponding transition by S�D. The cloning is performed by creating a new context 
Sa and redirecting the original transition from S�D to S�Sa. An ESC-transition Sa�D is 
also created, see Figure 4. The decision when to clone depends on the frequency distribution 
in the context, and is issued in Section 3.3. Note that the cloning in GDMC is performed only 
if the source state directly predicts the next symbol. It is thus never applied after an escape 
path. 
 
GDMC involves also the so-called shortcut operation. Shortcut is a new transition that 
bypasses a combination of an ESC-transition followed by an actual transition, see Figure 5. 
Note that it is possible to traverse a long ESC-path until a correctly labelled transition is 
found. In this case, only the last ESC-transition is involved in the shortcut operation, see 
Figure 6. Alternative shortcut strategies have been discussed in [11]. For example: (1) creating 
a direct shortcut S1�D, or (2) creating all possible shortcuts S1�D, S2�D, and so on. It is 
also noted that in GDMC, it is allowed to create a new state directly after a shortcut has been 
created. 

a

b

NULL

d

c

a
b

c

d

ESC

ESC

ESC

ESC

 
Figure 3: The initial model of GDMC. 
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Figure 5: Shortcut of GDMC. 
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Figure 6: Long path of ESC-transitions. 
 
 
3.1.2. CMA properties after context cloning: 
 
The new automaton after the context cloning is deterministic and the inclusion of the escape 
transition does not break the termination property. The context of the source state S is not 
affected by the cloning and so we can limit the examination of the context and suffix 
properties to Sa and D’ only. D’ denotes here the state D after cloning. The context property 
states that the context of a state is the longest common suffix of the labels of all paths from C0 
to the state. As the only incoming transition to Sa is S�Sa, the context of the new state can be 
defined by Sa (catenation of S with a). This fulfills both the context and suffix properties. 
 
The label of the longest common path incoming to D’ is either the original context D, or Sa 
due to cloning. Thus, due to the context property D’ = Min(D, Sa), where Min is defined as the 
shorter of the two strings. Considering that the automaton was CMA before cloning, we know 
that: D = Suffix(S)+a (suffix property). It follows that D’ = Min(Suffix(S)+a, Sa) = Suffix(S)+a 
= D. In other words, the context of D does not change due to cloning and therefore D’ fulfills 
the context property. Furthermore, the cloning has no effect on any successor of D. The suffix 
property of D’ can also be verified easily: D’ = Suffix(Sa)+Label(ESC) = Suffix(Sa) which is 
true because D’ = Suffix(S)+a. The modified automaton therefore meets the CMA properties 
also after the cloning of a new state. 
 
In the previous examinations we have assumed that no transition is directed to the state itself. 
It is possible that actual transitions in GDMC are sometimes directed to the state itself. Even 
so, all the above conclusions are still valid (proof is omitted here). 
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3.1.3. CMA properties after shortcut: 
 
An ESC-transition is traversed in GDMC only when there is not outgoing transition labelled 
by the current symbol to be coded. Duplicate labels are thus never created and the automaton 
remains deterministic. The termination property is also preserved since new escape transitions 
are never created by shortcuts. 
 
The creation of a shortcut does not affect the states S and C of Figure 5 in any way, and so 
only the state D’ needs to be examined. The label of the longest common path incoming to D’ 
is either D or Suffix(S)+a due to the new transition. Considering that the automaton was also 
CMA before the modification, we know that D = Suffix(C)+a and C = Suffix(S). It thus 
follows that 
 

D’ = Min(D, Suffix(S)+a) 
 = Min(Suffix(C)+a, Suffix(S)+a)           (1) 

 
The fact that C = Suffix(S) implies |Suffix(C)+a| � |Suffix(S)+a|. The above equation therefore 
simplifies to: 

 
D’ = Suffix(C)+a = D.              (2) 

 
This gives a proof to the context and suffix properties for D’. Moreover, since D’ = D, the 
shortcut does not affect the succeeding states of D in any way. Thus, the modified automata 
due to the creation of a shortcut meet the CMA properties. Note that the alternative shortcut 
strategies discussed in [11] would meet all the CMA criteria, too. 
 
 
3.2. PPM model 
 
In PPM, the coding of a symbol starts always at the highest level Nmax. If the symbol cannot be 
coded by the current context, lower level contexts are reached using escape transitions. After 
a proper context has been found and the symbol has been coded, the process should then 
continue at the highest level again. The corollary 1 of the CMA properties, however, states 
that the order of context cannot increase by more than one due to a single transition. For 
example, suppose that the last three coded symbols were abc (assuming Nmax=3), but the next 
symbol d is predicted only by the context c. After d has been coded, the next context 
according to the PPM model should be bcd. But there cannot be a direct transition c�bcd in 
CMA. 
 
In order to perform the PPM simulation, the meaning of a transition is more relaxed than in 
GDMC. Originally a transition corresponds not only to the coding of a symbol but it also 
indicates the state to be used for the next symbol. The cloning and creation of transitions are 
defined in the same way as in GDMC but the coding is not necessarily continued from the 
state pointed out by the transition. Instead, the next state is the new state due to cloning. 
 
The CompressSymbolPPM function simulating the PPM model is defined in Figure 7. The 
function takes the symbol to be coded and an N-level context as input, and outputsthe next 
context to be used, which is located at level N+1 (or at level Nmax in case of N=Nmax). If 
transition for the input symbol exists, the symbol is compressed and the transition is followed 

 10



for obtaining the context for the next symbol. The resulting state is then returned as the output 
of the function. This is a trivial case where no cloning is needed. 
 
In the case when the correct transition does not exist, the routine follows an escape path 
recursively through lower levels and when a proper state is found and the symbol coded, the 
function begins backtracking among the traversed escape path. New states are cloned during 
the backtracking and the result of the recursion is a state at the same level as the current one. 
If the current state is at level Nmax, a shortcut is created for pointing to the newly obtained 
state. Otherwise (which happens at the lower levels during the recursion) a new state is cloned 
at the level N+1. This process is illustrated in Figure 8 where d is the input symbol and abc 
the context. Since transition d does not exist the function is recursively called and the state 
bcd is eventually obtained as a result. 
 
The simulation is now almost complete but we still need to define the initial automaton for 
PPM. In principle, the automaton of Figure 3 could be applied but the original algorithm in [7] 
uses slightly different initialisation. This is implemented by the automaton shown in Figure 9. 
The first state (“static”) has transitions for all possible symbols in the alphabet and the 
statistical model assigned to the state is assumed to be static. This is sometimes referred as “-1 
level context” in the literature. 
 
The second state (“adaptive”) has only an escape transition to the “static” state. In this way the 
model may better adapt to the input data because it has no transitions for unused symbols as a 
burden. In our implementation, we let also the “static” state to adapt to the input data. 
 
The initial model of Figure 9 is theoretically not clean because the “adaptive” state contradicts 
the suffix property of CMA (incoming transitions should not have different labels). This has 
no practical consequences because the exception remains local and the rest of the dynamically 
constructed automaton will still meet all the CMA criteria. If we had adopted the weaker 
version of the suffix property (stating that D = Suffix(S+Label(T)) the initial model would 
have been a proper CMA. 
 
 
 CompressSymbolPPM(C, Symbol): returns next state. 

{ 
IF EXISTS( C.Transition(Symbol) ) THEN 
 EncodeSymbol(C, Symbol); 
 UpdateStatistics(C, Symbol); 
 nextC = C.Transition(Symbol); 
ELSE 
 EncodeSymbol(C, ESC); 
 nextC = CompressSymbolPPM(C.transition(ESC), Symbol); 
 CreateTransition(C, nextC, Symbol); 
 IF |C| < Nmax THEN 
  nextC = CloneContext(C, nextC, Symbol); 
RETURN nextC; 
} 

 

 
Figure 7: Compression function for CMA in order to simulate PPM. The operations 

modifying the automaton are enhanced. 
 

<Figure 8 is not included in this file due to technical problems. Only paper copy exists!!!> 
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Figure 8: Example of the use of the CompressSymbolPPM function. 
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Figure 9: Initial model for PPM. 
 
 
3.3. Properties of the GDMC and PPM models 
 
In the following, we will study the behaviour of the GDMC and PPM context models using 
the CMA formalism as our tool. The contexts in CMA can be easily determined during the 
coding process by assigning the states with their level number. Both in GDMC and PPM, the 
level number |C| of a new state C is already known at the time it is cloned. Due to the suffix 
property, it is always one higher than that of the source state involved in the cloning, see 
Figure 4. The actual context is then the |C| last coded symbols. 
 
3.3.1. Cloning states: 
 
The key questions for creating new states are: when to clone and how to clone. PPM clones 
always after a symbol has been coded. Greedy context expansion is usually advantageous, see 
[1, p. 149] and [2], but the growth of the automaton must be limited in some way to keep the 
memory consumption reasonable. The straightforward solution of PPM limits the context 
lengths to a predefined maximum Nmax. GDMC, on the other hand, has no upper limit for the 
context length but it uses the following heuristic to control the growth. Consider that the 
transition S�D was traversed. A new state is created if the difference 
 
              (3) � � �f D DD f S Di

i
� � �� �
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exceeds a predefined cloning constant (CC). Here DDi refers to a successor state of D, and f to 
transition frequency. This gives a feasible solution for limiting the growth of the automaton. 
Best compression results were reported with very small CC-values [11]. Note that unbounded 
context lengths have also been proposed for PPM in [13]. This method limits the model 
growth by cloning only when a context is used second time. 
 
Another significant difference between the GDMC and PPM models lies in the way the 
automaton is traversed. When coding a long sequence of escape transitions, the PPM model 
allows backtracking among the traversed escape path. New states are also cloned during the 
backtracking. In this way, PPM creates all possible contexts from the current level up to the 
level Nmax whereas GDMC expands the automaton only by one context at a time. PPM is 
therefore more greedy in the context cloning. 
 
After a new state has been cloned, there is a question whether the coding process should 
continue from the current state D (like in GDMC), or from the new state that was created in 
the cloning (like in PPM). At first sight there seems to be no point to continue from the newly 
created state because it has not yet learned any transitions. The context cannot therefore 
predict the next symbol and an escape transition must be followed back to the state D. The 
traversed escape transition, on the other hand, does not cost any bits since its probability is 1. 
Besides, if the coding continues from the new state it can directly learn the next symbol to be 
coded, and in this way the state adapts faster to the source data. 
 
Figure 10 demonstrates the behaviour of the GDMC and PPM models when a sample string 
“abcaba” is coded. PPM learns all existing contexts up to the upper limit, whereas GDMC 
expandeds only up to the second level. None of the second level contexts has learned any 
transitions yet. The faster model growth of PPM can be summarised in the following three 
properties: (1) greedy cloning criterion, (2) multiple cloning operations in a single coding step, 
(3) coding is continued directly from the new state after cloning. 
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Figure 10: GDMC (left) and PPM (right) automata after the coding of a string abcaba. 
In GDMC, cloning was performed when a context was used second time. 

In PPM, Nmax was set to 3. 
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3.3.2. Transitions: 
 
Consider a transition S�D (assuming |S|<Nmax) and denote |D|-|S| by the increase of a context 
length due to the transition. In PPM, all such transitions increase the context exactly by one. 
This is a consequence of the greedy cloning criterion in which the creation of a new transition 
is directly followed by a cloning operation. Only exceptions are the states locating at the level 
Nmax. Escape transitions decrease the context always by one. 
 
In GDMC, transitions can also be directed to the same, or to a lower level in the automaton. 
For example, when coding the symbol c in the state ab of Figure 10, transition ab�c will be 
created. If the state c is not immediately cloned the transition will remain. This is possible due 
to the lazy cloning criterion. Transitions can also be directed to themselves. It may happen 
when the same symbol is repeated in the source data. 
 
Escape transitions can be directed in GDMC to any lower level. For example, if the state c 
was cloned after traversing the transition ab�c (the new state being abc), the resulting escape 
transition (abc�c) would decrease the context by two. These kind of arbitrary jumps between 
different levels are possible because the cloning criterion does not take into account the 
contexts of the states but it depends on the frequencies only. 
 
3.3.3. Partial contexts: 
 
The context property defines the minimum order of the context and implies that there might 
be a higher order partial context in the state. Consider a state C with an N-order context. 
Denote all possible incoming (N+1)-length paths to C by xC, and the set of all possible 
symbols x by X. The state C is defined to include a partial context of order N+1 if the set X is 
a true subset of the full symbol set (X��). In other words, there exists at least one symbol in 
the alphabet that cannot precede the context. 
 
In the case of full table strategy (where all states include transitions for all alphabet symbols), 
each longer context implies a partial context in all of its suffix contexts [12]. For example, if 
the state ab exists in the automaton, the partial context in b is (�\a)+b because the state b will 
never be used for the input string ab. Similarly, all other longer contexts reduce certain string 
combinations from the context of b. 
 
In the case of escape strategy, the question of partial contexts becomes more complicated 
because of the escape transitions. For example, the state b in Figure 11 (left) does not include 
a partial context (b or c)+b despite the state ab exists in the automaton. The state b is indeed 
not reached with the input abc. However, the context of a state is defined merely on the basis 
of the history. The exclusion of certain string combinations depending on the future symbols 
is known as the exclusion principle. Nevertheless, it is not considered as a partial context 
because the state b can still be reached by all possible input strings xb (x��). 
 
Variable order context models using escape strategy are not so strict about what is the exact 
context of a state. When a longer context (ab) adapts to more and more different transitions, 
the effect of the string ab is reduced in the shorter context b. It is therefore gradually 
transferring towards the context (b or c)+b but it may never reach that status. 
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Despite the above discussion, the CMA automata can still include partial contexts in the strict 
sense. Figure 11 illustrates how this kind of context is created by the cloning operation of 
GDMC. The new state bc includes a partial context (b or c)+bc because it cannot be reached 
when coding the string abc (due to the state ab and the transition ab�c). This originates from 
the lazy cloning criterion of GDMC, which allows states to be cloned after they have already 
been bypassed by shortcuts. The direct consequence is that the longest possible context is not 
always utilized. In PPM model, this kind of partial contexts cannot appear because of the 
greedy cloning criterion. 
 
 

NULL
c

a

a ab

b

bc c

b

c

NULL
c

a

a ab

b

bc

b

c c

bc partial context

 
 

Figure 11: Example of a partial context in GDMC. 
 
 
3.3.4. Duplicate contexts: 
 
Consider the automaton of Figure 11 (left). Assume that the transition NULL�c was traversed 
and the state c is then cloned. This results in two states with identical contexts, see Figure 12. 
The original state c will be reached using the existing transitions ab�c and b�c, the new one 
using the redirected transition NULL�c. 
 
Due to the suffix property, the cloning operation creates a new context whose order is one 
higher than that of the source transition. Duplicate contexts are therefore generated always 
when the traversed transition already increases the context by one: |D|=|S|+1. The main effect 
of the duplicates is that the new state will include a partial context. For example, the new 
context c in Figure 12 includes a partial context (a or c)+c. Duplicates may also be generated 
for |D|<|S|+1 if the source state S is already a duplicate context. In this case, there exist two 
branches in the automaton with similar contexts. 
 
It is unclear what is the advantage/disadvantage of the duplicate contexts. Presumably they 
slow down the learning process because the same set of transitions must first be learned in the 
original context, and only then they can be learned in the new (duplicate) context. If so 
desired, the existence of duplicates could be easily avoided by allowing cloning only when 
|D|<|S|+1. Note that duplicate contexts cannot appear in PPM model due to the greedy 
cloning criterion. 
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Figure 12: Example of duplicate contexts. 
 
 
3.4. Probability estimation 
 
Both PPM and GDMC use frequency-based probability model. The probability for a transition 
is calculated by dividing its frequency count by the sum of all frequency counts of the 
outgoing transitions. The only exception is the escape transition. In GDMC, escape transitions 
are treated as any other transitions and they thus has their own frequency counters. In PPM the 
probability for an escape transition is calculated by a predefined function known as Escape 
method C [14]: 
 

 � �p ESC
q

q c
�

�

                (4) 

 
Here q is the number of outgoing transitions in the state, and c is the sum of their frequency 
counts, i.e., the total number of times the state has been visited. It is noted that q equals to the 
number of times the escape transition has been used. Both methods thus have the same 
intuition but the actual probability values may differ because of different initialisation and 
update strategies. 
 
In PPM, the statistics for a new context start from scratch and the frequency of a new 
transition is always set to 1. In GDMC, the frequency of a new transition (referring to 
Figure 5) is estimated by: 
 

 � �
� � �

� �
�

f S D
f S C f C D

Effsum C S
� �

� � �

|
           (5) 

 
where Effsum(C|S) is the sum of all transition counts in C excluding the ones existing also in 
S. This corresponds to the exclusion principle (see below). Due to this initialisation the 
frequencies are stored as real numbers instead of integer domain. See [11] for details of this 
probability modelling method. 
 
Both PPM and GDMC apply the so-called exclusion principle when calculating the effective 
probability for a symbol. If escape transition was just traversed, it is known that the current 
symbol cannot be any of the symbols predicted by the previous state. All these symbols can 
therefore be excluded from the probability calculations. The exclusion principle always 
improves the compression because otherwise a proportion of the probability space would be 
wasted for impossible coding events. 

 16



 
After the symbol has been coded, its frequency count is incremented by one. The update is 
restricted only to the predictive state; the counters in  the lower order states are not altered. 
This principle, known as update exclusion, is commonly used in PPM and also in GDMC. An 
alternative strategy would be to follow the escape path to the initial state and update the 
frequencies in all states along the path. For example, if the symbol was predicted by the 
context abc, the update would then consider also the states bc and c. 
 
 
4. Empirical results 
 
The files of Calgary corpus [1] were compressed using the GDMC and PPM models with the 
parameter setup of Table 1. We want to find out what kind of contexts (and how long) the 
models create, how fast they adapt to the source, and what kind of transitions there exist in the 
automata. Additional tests were performed by varying the main parameters of the models. The 
aim is to find out how the parameter setup affects the performance of the compression, and 
how well the context model can be controlled by the parameters. The throughput of the CMA-
based implementation does not significantly differ from the previous implementations of PPM 
and GDMC. 
 
In the literature, the maximum context length of PPM is often set to 3 but we use Nmax=4 
because it gives lower bit rate for all files in Corpus, except the file geo. The average bit rates 
for various Nmax-values (1 to 7) are (3.62, 2.85, 2.46, 2.34, 2.32, 2.33, 2.34). In addition, we 
tested also GDMC with Nmax=4 (referred as GDMC-4). The results are summarised in Table 
2. The average bit rates for GDMC and GDMC-4 are 2.52 and 2.55. The GDMC bit rates are 
7 % higher than that of PPM on average. Slightly better results were obtained only for the 
three longest files (book1, book2 and pic). The benefit of the unlimited context length remains 
marginal: 2 % on average and the maximum improvement is 6 % for the file pic. 
 
PPM learns all contexts up to the maximum length that there are to be learned. GDMC is 
more picky in cloning and learns only about 35-80 % of the same contexts. It also learns 
a large number of longer contexts. The total number of contexts in GDMC is typically about 
three times as much as in PPM but only about 60 % of the contexts are unique; the rest are 
duplicates. 
 
 
Table 1: Summary of the context and probability model parameters. 
 
   PPM GDMC 
 Context Context length limit: Nmax = 4 No upper limit 
 model Cloning criterion: Clone always Depends on statistics 
  Multiple cloning: Yes No 
 Statistical Probability estimation: Frequency based Frequency based 
 model Initial statistics: Starting from scratch Derived from successor 
  Escape probability: PPM model C Own frequency 

counter for ESC 
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Table 2: Performance comparison (bit rates) of the various methods. 
 

  File Size PPM-4 GDMC GDMC-4
  bib 111261 1.94 2.04 2.08 
  book1 768771 2.33 2.32 2.33 
  book2 610856 2.04 2.02 2.07 
  geo 102400 4.72 5.16 5.16 
  news 377109 2.43 2.60 2.63 
  obj1 21504 3.73 4.40 4.41 
  obj2 246814 2.51 2.81 2.86 
  paper1 53161 2.37 2.58 2.59 
  paper2 82199 2.35 2.45 2.46 
  pic 513216 0.82 0.80 0.85 
  progc 39611 2.41 2.67 2.68 
  progl 71646 1.77 1.82 1.89 
  progp 49379 1.76 1.90 1.95 
  trans 93695 1.58 1.73 1.79 
  Average 224401 2.34 2.52 2.55 

 
 
In PPM, the input symbols were predicted by a context length of 3.27 on average. In GDMC 
and GDMC-4, the corresponding numbers were 4.38 and 2.94 (excluding obj1 and pic). In 
pic, the average length of the predicted context was as large as 1823 due to the high repetition 
of zero bytes (large homogenous white areas in the binary image). We also observed that 
GDMC uses almost always the longest available context in the automaton. This indicates that, 
even if there are partial contexts in the automaton (besides the duplicates), they are rarely 
used. 
 
It was shown in Section 3.3 that duplicates in GDMC can be avoided by modifying the 
cloning criterion accordingly. Our experiments show that this modification does not have any 
significant effect on the compression performance. Small improvement (0-3 %) was achieved 
in case of 9 files out of 14, but the bit rate increased in the case of geo (4 %) and pic (16 %). 
This is most likely explained by the nature of their data, which is not taken into account in the 
compression. The file pic, for example, is a binary image but the context models process the 
data one byte at a time. GDMC utilizes the bitwise dependencies across the byte boundaries 
somewhat better since it is capable of modelling partial contexts (involved also in the 
duplicate contexts). 
 
Figure 13 illustrates the source of the code bits. In PPM, 55 % of the code bits originate from 
the highest level (N=4). The code bits in GDMC originate from a wider variety of levels, but 
overall, the highest levels (N�4) contribute by a lesser amount (38 %) than the highest level in 
PPM. Even if there are a great number of longer contexts in GDMC, they are only suffix 
extensions of those appearing also at the levels N�4. GDMC thus relies more on the lower 
level contexts than PPM. 
 
Figure 13 demonstrates also the growth of the models. The lower level contexts are used more 
often in the early stage of compression. When the compression proceeds and the models adapt 
to the data, the higher levels become more commonly used. The overall bit rate decreases over 
the course of time. PPM expands the contexts faster than GDMC, which is shown in a better 
compression performance in the early stages, see Figure 14. 
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Figure 13: Source level of code bits as a function time (all files). 
 
 

Error! Not a valid link. 
 

Figure 14: Bit rates of GDMC relative to PPM as a function of time (average values). 
 
 
In GDMC, 32 % of the code bits originates from escape symbols whereas the corresponding 
number in PPM is 14 %. By comparing the transition statistics, it was shown that GDMC 
learns fewer transitions than PPM. The number of transitions (excluding escape transitions) 
per context are 2.00 (PPM) and 1.04 (GDMC) on average. This is partly explained by the 
longer contexts of GDMC. They can predict certain symbols more accurately than the lower 
level contexts but the total number of transitions (predicted symbols) remains smaller. Escape 
transitions are therefore used more often. The destination level of the transitions, however, did 
not significantly differ between the models. Only very few transitions lead to the lower levels 
in GDMC, see Table 3. 
 
 
Table 3: Destination level of transitions in respect to the source level. 
 

  +1 same -1 lower
 PPM 34 % 66 % 0.0 % 0.0 %
 GDMC 95 % 4 % 0.7 % 0.0 %
 GDMC-4 42 % 56 % 2.4 % 0.0 %

 
PPM and GDMC have their differences also in the probability model. For example, they use 
different initial automata (see Figures 3 and 9). The initial automaton of PPM gives 1 % lower 
bit rate on average. A more significant difference is the initialisation of the frequency counter 
when a new transition is created. In PPM, the frequencies start from scratch whereas GDMC 
uses a more sophisticated frequency estimation technique (see Section 3.4). According to our 
experiments, the results of GDMC are about 10 % worse if the PPM-like probability model is 
applied. This implies that the model might be utilized also in PPM but unfortunately this is 
not the case. The GDMC probability model has been designed and optimized merely within 
the GDMC context model and we were not able to adopt the method in PPM. 
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5. Conclusions 
 
A simple formalism was introduced to describe context model automata (CMA). It provides 
a strong tool to simulate existing context modelling methods such as PPM and GDMC. The 
behaviour of the above two methods were studied both analytically and experimentally from 
the CMA point of view. The main advantages of the PPM and GDMC models can be 
summarised as follows: 
 
 PPM:      GDMC: 
 � Fast adaptation to source  � No upper limit for context size 
 � Better initial model   � Partial contexts 
 � Accuracy of statistics  � Sophisticated probability model 
 
The main advantage of PPM over GDMC is its faster adaptation to the source data. This 
originates from the following properties: (1) greedy cloning criterion, (2) multiple cloning 
operations in a single coding step, (3) coding is continued directly from the new state after 
cloning. PPM can learn up to Nmax new contexts per coded symbol whereas GDMC can learn 
only one. The PPM model expands quicker in the early part of compression but the growth 
becomes smoother over the course of time. The GDMC model, on the other hand, keeps on 
growing with the same rate throughout the compression because there is no upper limit for the 
context length. 
 
The initial model of PPM is slightly better (1 %) than that of GDMC because the zero-order 
context has no transitions for unused symbols as a burden. Furthermore, the statistics of the 
PPM contexts are more accurate than that of GDMC. The highest level contexts in PPM are 
created immediately when they first appear in the source data. The statistics thus concentrate 
on the relevant contexts only. In GDMC it takes longer to build the same contexts. There are 
also a great number of higher level and duplicate contexts in the GDMC automaton. The 
learning is therefore inefficiently distributed over a wider number of contexts resulting in less 
accurate statistics. 
 
The unbounded context length of GDMC is both an advantage and a disadvantage. It allows 
more flexibility in the context length but it also results in unnecessarily long contexts because 
the context expansion is not properly controlled. This defects the learning of the statistics and 
a better cloning criterion should therefore be designed. 
 
The other benefits of GDMC are also questionable. The potential of partial/duplicate contexts 
is their ability to model more efficiently contexts beyond the byte boundary (such as the 
binary data of the file pic). Unfortunately extra contexts break up the statistics into too many 
contexts resulting in less accurate prediction in the case of normal data files. There is also no 
direct control of the conditions under which the duplicates are created and they are created 
more or less in a random fashion. Moreover, we were not able to transfer the sophisticated 
estimation of transition frequencies into the PPM model. Its main benefit is most likely to 
compensate the slower learning efficiency of GDMC, i.e., the method tries to predict the 
frequency that the PPM model would have already learned due to its faster adaptation. 
 
To sum up, CMA provides a formalism to describe context model automata. It gives useful 
information about the structure of the automaton. Potential weaknesses, such as duplicates and 
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arbitrarily long contexts, can therefore be easily controlled if so desired. CMA, on the other 
hand, models only the structure of the automaton without giving any direct information about 
the compression performance. It is therefore important to consider also the statistical model 
when designing a CMA-based compression method. In particular, information theoretic state 
selection and the mixing of the probability estimates from different states have been shown to 
improve compression performance of a PPM model by 5-12 % [15]. 
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