
Improving a Centroid-Based Clustering by Using Suitable

Centroids from Another Clustering

Mohammad Rezaei

School of Computing, University of Eastern Finland, Joensuu, Finland

Abstract: Fast centroid-based clustering algorithms such as k-means usually converge to

a local optimum. In this work, we propose a method for constructing a better clustering

from two such suboptimal clustering solutions based on the fact that each suboptimal

clustering has benefits regarding to including some of the correct clusters. We develop

the new method COTCLUS to find two centroids from one clustering and replace them

by two centroids from the other clustering so that the maximum decrease in the mean

square error of the first clustering is achieved. After modifying centroids, k-means

algorithm with few iterations is applied for fine-tuning. In an iterative algorithm, the

resulting clustering is further improved using a new given clustering. The proposed

method can find optimal clustering in a very small number of iterations for datasets with

well-separated clusters. We demonstrate by experiments that the proposed method

outperforms the selected competitive methods.

Keywords: Clustering, centroid-based, k-means, global optimization

1. Introduction

The goal of data clustering is to partition a set of unlabeled objects into homogeneous groups

so that specific clustering criteria are optimized (Jain, Murty and Flynn, 1999). The sum of the within-

cluster variances or total squared error (TSE) is the most wide used criterion in which the squared

distance between each data point and its nearest cluster centroid is calculated and all of those results

are added together (Likas, Vlassis and Verbeek, 2003). The mean squared error (MSE) is equal to

TSE divided by the size of dataset. Other objective functions may be more appropriate for datasets

with different cluster structures. However, they are out of the scope of this paper. For example, Min-

Max k-means (Tzortzis and Likas, 2014) tackles the initialization problem of k-means by changing

the objective function to be maximum within cluster variances.

K-means is the most popular clustering algorithm that minimizes the sum of the within-cluster

variances. First, it randomly selects initial centroids from data points and each data point is then

assigned to its nearest centroid. The centroids are updated by averaging the data points belonging to

each cluster. The result of the k-means algorithm highly depends on the initial choice of the centroids,

and the algorithm often converges to a local optimum. Repeated k-means is recommended by several

researchers where the k-means algorithm is run with several different initial configurations, and the

best result is taken. Steinley (2003) recommends repeating k-means several thousand times because

the number of local optima solutions even for a small dataset (N = 200) can run into the thousands.

This approach, however, would be time consuming and still does not guarantee to yield the global

optimum.

Several methods exist that are able to obtain the near-optimal solution. Stochastic evolutionary

approaches such as Genetic algorithm (Hruschka, Campello, and Freitas, 2009; Maulik and

Bandyopadhyay, 2000) and simulated annealing (Klein and Dubes, 1989, Selim and Alsultan, 1991)

take a large amount of time. Genetic algorithm starts with a population of random clustering solutions

which are represented as chromosomes. Each chromosome is evaluated by the fitness function to

check how good it is for the problem. A subset of chromosomes is selected, where fitter ones are

more likely to be selected. Crossover and mutation operators are then applied to the selected

chromosomes. The new good chromosomes are replaced with some of the weak old chromosomes.

The entire process is repeated for a fixed number of iterations (Maulik and Bandyopadhyay, 2000).

Simulated annealing is a sequential stochastic search that avoids local optima. To accomplish this,

the algorithm with some probability allows a solution with lower quality is used in the next

generation. The probability is determined by a parameter called temperature. Simulated annealing, in

general, is very computationally expensive because it requires a very slow cooling rate (Klein and

Dubes, 1989).

Agglomerative clustering is a bottom-up approach in which each object is initially considered

as its own cluster. Two closest clusters are then iteratively merged. Among several criteria for

selecting the next two clusters, Ward’s criterion can be used to minimize the sum of squared errors

(Ward, 1963). Agglomerative clustering is, in general, much slower than divisive algorithms such as

k-means. Several methods have been proposed to speed up the process. For example, de Amorim et

al. (2016) propose to start the agglomerative algorithm with a sufficiently large number of clusters

instead of a partition formed by singleton clusters.

Random swap is a simple evolutionary algorithm that selects one centroid at each iteration

and replaces it with a random data point. It then applies k-means and uses the new solution for the

next iteration if a better MSE is achieved (Fränti and Kivijärvi, 2000). J-means performs a broader

search comparing to random swap, where each centroid is relocated with each data point which does

not already coincide with a centroid (Hansen and Mladenović, 2001). Global k-means algorithm starts

with one cluster when the optimal solution is trivially known, and in an incremental way, it adds one

cluster at a time. To solve the problem with k clusters, k-1 initial centroids are provided from the

clustering solution for the problem with k-1 clusters. The last centroid, in N different runs, is set equal

to each of N data points. K-means is applied with each set of centroids and the clustering with

minimum MSE is considered as the solution for the problem with k clusters (Likas, Vlassis and

Verbeek, 2003). Ensemble clustering is another approach in which the partitions from multiple

clusterings are combined to infer statistically about final clusters from all partitions (Fred and Jain,

2005). All these methods, in general, have heavy computational load comparing to the standard k-

means algorithm.

Several techniques try to improve k-means by intelligent selection of the initial centroids

instead of random selection (Celebi, Kingravi and Vela, 2013). Steinley and Brusco compare 12 of

such techniques, and conclude that their approach, which is similar to repeated k-means, outperforms

others (Steinley and Brusco, 2007). Instead of random selection of centroids from data points, they

divide the data randomly into k clusters and calculate the centroids as the initial configuration. K-

means++ is a well-known technique that aims at spreading the initial centroids over the whole range

of a given dataset, and at the same time avoiding to select outliers. Specifically, it chooses the first

centroid randomly from data points, and the distance of each data point x to its nearest centroid is

calculated as D(x). In an iterative way, the next centroid is chosen randomly from data points

(excluding the previously selected ones) with probability proportional to D2(x) (Arthur and

Vassilvitskii, 2007).

In this paper, we propose the novel approach COTCLUS to improve a centroid-based

clustering of a dataset by an intelligent selection of two centroids and replacing them with two

centroids from another clustering in such a way that maximum decrease in the clustering error is

achieved. The new clustering can further be improved by iteratively using another clustering. The

basic idea is to find a couple of badly allocated centroids from one clustering and replace them with

two centroids from the other clustering so that a smaller MSE is achieved. We formulate the problem

in Section 2, where we calculate the increase in MSE if a cluster is removed and the decrease in MSE

if a cluster is split into two clusters. In splitting a cluster, one centroid is replaced by two

corresponding centroids from the other clustering. Accordingly, the best couple of clusters for

removing and splitting, which lead to maximum decrease in MSE, are selected. Section 3 provides

the experimental results on a few publicly available and our own generated datasets. The datasets

include a broad range of conditions including data size, dimensionality, relative density of clusters,

overlap, and number of clusters. Our method demonstrates promising performance against the

selected methods. Finally, conclusion and future work are given in Section 4.

2. Combining Two Centroid-Based Clusterings

K-means and many other centroid-based clustering algorithms usually fall into a local

optimum. In each suboptimal clustering of a dataset with well-separated clusters, we observe that

some clusters and their corresponding centroids have been correctly identified. For example, consider

two clusterings of the artificially generated dataset S2 with 15 clusters in Figure 1. Without loss of

generality, we use k-means as a centroid-based clustering algorithm to generate initial clusterings.

The clusterings A and B both have two wrongly allocated centeroids. Removing incorrect centroids

from A and replacing them by the two centroids inside the ellipse from B (see Figure 1) will turn A

into a correct clustering of the dataset. Applying k-means with few iterations would help to fine-tune

the resulting clustering. In the following, we formulate the problem, and describe our method for

identifying and replacing two centroids of A with two centroids of B in order to reduce the clustering

error.

 Clustering A Clustering B

Figure 1. Applying k-means algorithm to S2 dataset with two different initial configurations

Let S be a clustering solution including K clusters of a set of data points
N

iixX 1}{  in the d

dimensional Euclidean space. Each cluster jC is represented by its centroid jc . The objective function

is the typical mean square error:

  


K

j Ci ji
j

cx
N

MSE
1

21
, 


jCi i

j

j x
C

c
1

(1)

Given two different clusterings
K

j

a

j

a cS 1}{  and
K

j

b

j

b cS 1}{  with associated MSE values

aM and bM , the goal is to improve aS using the knowledge from bS and build a new clustering
K

j

n

j

n cS 1}{  with a reduced MSE, i.e., an MM  . We found empirically that it is better to also

improve bS using aS and take the better result. We define two actions removing center and splitting

cluster for each cluster in aS , and calculate the removal and split costs. The cost values are used for

selecting the best couple of centroids for swapping that results in maximum decrease in MSE.

2.1. Removing Center (RC)

RC action removes one centroid
a

kc at a time from solution aS and distributes the data points

a
kCiix


}{ to neighboring clusters kjKjca

j ),,...,1(, . Each data point is assigned to the cluster with

the second nearest centroid, see Figure 2. Since the distance of each object to the new centroid is

larger than the distance to a

kc , MSE value increases. The resulting increase in MSE is calculated as:









 

a
kCi

a

ki

a

ki

RC cxcx
N

kM
22

'

1
)(

(2)

where a

kc '
 is the second nearest centroid to data point a

ki Cix , .

Clustering A

Figure 2. Removing one centroid

2.2. Splitting Cluster (SC)

SC action considers the data points associated with cluster a

kC in bS and locates the two

clusters in bS , with corresponding centroids
b

qc , 2,1q , that own most of the data points of a

kC .

These two centroids are considered to be representative of data points in a

kC , see Figure 3. As a result

of having two centroids instead of one to represent data points in a

kC , the MSE value for data points

in a

kC will decrease. The MSE decrease is calculated as:



















  

 a
kCi

b

ki

a

ki

SC cxcx
N

kM
2

'

21
)(

(3)

where b

kc '
 (one of the two corresponding centroids to a

kC) is the nearest centroid in the solution bS

to the data point a

ki Cix , . We set 0)( kM SC if a

kC has a very similar cluster b

kC ' in bS for which

95.0/' a

k

b

k

a

k CCC  .

 Clustering A Clustering B

Figure 3. Splitting a cluster

2.3. Swapping

In this stage, RCM and SCM values are sorted in ascending and descending order as
RC

sortedM and SC

sortedM , respectively. The pair)1(RC

sortedM and)1(SC

sortedM is the first choice for

swapping. Two centroids of
aS corresponding to)1(RC

sortedM and)1(SC

sortedM are replaced by two

centroids of
bS corresponding to)1(SC

sortedM .

The swapping is performed only if)1()1(RC

sorted

SC

sorted MM  , or in other words, the decrease

in MSE as a result of SC action is larger than the increase in MSE as a result of RC action. The same

process is then repeated for the next pair in the list of RC

sortedM and SC

sortedM values. After the swapping

centroids completed, k-means algorithm with few iterations (from 2 to 4) is applied to fine-tune the

location of the new centroids. The pseudo code of the overall algorithm is as follows:

1. Input:

Data set X

number of clusters K

clustering solutions aS and bS

2. for each cluster a

kC , k = 1 to K in aS do

3. compute)(kM RC using Eq. 2

4. find first corresponding centroid of bS to a

kC : j1

5. If a

k

a

k

b

j CCC /
1
 < 0.95

6. find second corresponding centroid of bS to a

kC : j2

7. i1(k) = j1 and i2(k) = j2

8. compute)(kM SC using Equation 3

9. else

10. 0)( kM SC

11. Sort RCM in ascending order:)(iidx RC
, i = 1..K

12. Sort SCM in descending order:)(iidx SC
, i = 1..K

13. i = 1

14. k1 =)(iidx SC
 and k2 =)(iidx RC

15. while)(1kM SC >)(2kM RC do

16. Replace the centroids k1 and k2 of aS with the centroids i1(k1) and i2(k1) of bS

17. i = i + 1

18. k1=)(iidx SC
 and k2=)(iidx RC

19. Apply k-means algorithm to aS

20. Output: modified clustering solution aS

2.4. Iterating the Process

The process of combining two clusterings may be repeated for a certain number of times or

until no significant improvement is obtained. Several scenarios are possible for iterating the process.

A simple approach is to use two clustering at first iteration, and combine them to produce an improved

clustering. At each following iteration, a new clustering is generated and combined with the resulting

clustering from the previous iteration. Another approach is to use a larger number of initial solutions.

At first iteration, every two clusterings are combined, and at each following iteration, the resulting

clusterings from the previous iteration are combined.

We should note that the focus of this paper is on the new approach for combining two

clusterings. We use the simple iterating scenario in our experiments, and generate the initial solutions

using k-means algorithm. This configuration gives promising performance for datasets with separated

clusters. However, finding a better iterating scenario appropriate and efficient for complicated

datasets remains an open problem for future work.

3. Experimental Results

We examine the performance of COTCLUS using two sets of datasets I and II. Datasets I

include seven publicly available datasets with known ground truth. We generated Datasets II with

varying clustering complexity in order to arrange controllable experiments, and examine the proposed

method on different data structures.

We compare COTCLUS to five different approaches for improving k-means including

repeated k-means, random swap, k-means++, J-means, and genetic algorithm. We have set the

number of iterations to 500 and 5000 for repeated k-means and random swap, respectively, and 100

for the rest of iterative methods. To make the results statistically valid, we repeat the overall process

100 times for each method, and report the average values. All the methods were implemented in

MATLAB, and the experiments were performed on a 2.7-GHz Intel(R) core i5-6400 with 8.00 GB

RAM.

The best MSE for each dataset is available from the provided ground truth. Therefore, for the

iterative algorithms including repeated k-means, random swap, J-means, genetic algorithm, and

COTCLUS, we stop the iteration as soon as the best MSE with an error less than 1% is achieved.

Accordingly, the average time and the average number of iterations needed to obtain the optimal MSE

are reported.

3.1. Results on Datasets I

We first evaluate our proposed method on datasets I which include seven datasets with known

ground truth summarized in Table 1, and depicted in Figure 4. They include varying cluster overlap

(S sets) (Fränti and Virmajoki, 2006), large number of clusters with two different structures (Birch

sets) (Zhang, Ramakrishnan, and Livny, 1997), and high-dimensional data (DIM032 set) (Fränti,

Virmajoki, and Hautamaki, 2006).

Tables 2 and 3 show the quality of clustering results measured by MSE and adjusted Rand

index (ARI) (Hubert and Arabie, 1985, Rezaei and Fränti, 2016). The green-shaded cells in the table

indicate the cases when the methods are able to find optimal clustering. Random swap, J-means, and

COTCLUS are the methods that can achieve optimal solution for all the datasets. Genetic algorithm

is not practical for Birch datasets due to large processing time. Repeated k-means yields a poor

performance when the number of clusters or the data dimensionality is large.

We report in Table 4, the average time and the average number of iterations needed to reach

the optimal MSE. K-means++ is faster than COTCLUS, but it does not provide correct clustering for

any of the datasets, see Table 3. For all datasets, COTCLUS provides less processing time than other

iterative algorithms. However, more significant results are achieved for the high-dimensional dataset

and the datasets with large number of clusters (highlighted by green-shaded cells in Table 4).

COTCLUS is 16, 31, and 39 times faster than random swap for Birch1, Birch2, and DIM032 datasets,

respectively.

Table 1. Summary of the datasets

Dataset Number of data

points

Number of

clusters

Dimension

of data

S1-S4 5000 15 2

Birch1 100,000 100 2

Birch2 100,000 100 2

DIM032 1024 16 32

S1 S2 S3 S4

DIM032

Figure 4. Example datasets

Table 2. Clustering quality of various clustering methods and different datasets, measured by TSE

Algorithm

Dataset

S1 S2 S3 S4 Birch 1 Birch 2 dim032

×108 ×108 ×108 ×108 ×108 ×106 ×1

K-means 19.80 19.95 20.14 17.51 5.71 8.58 490.17

K-means++ 16.97 19.18 19.04 17.10 5.51 5.60 136.73

Repeated KM 8.92 13.28 16.89 15.72 5.11 5.68 76.80

Genetic Algorithm 9.14 13.29 16.97 15.79 - - 7.096

Random swap 8.92 13.28 16.89 15.72 4.64 2.28 7.096

J-means 8.92 13.28 16.89 15.72 4.64 2.28 7.096

COTCLUS 8.92 13.28 16.89 15.72 4.64 2.28 7.096

Table 3. Clustering quality of various clustering methods and different datasets, measured by ARI

Algorithm
Dataset

S1 S2 S3 S4 Birch 1 Birch 2 dim032

K-means 0.84 0.86 0.83 0.84 0.83 0.79 0.76

K-means++ 0.87 0.87 0.87 0.86 0.85 0.86 0.93

Repeated KM 1.00 1.00 0.99 0.97 0.91 0.86 0.95

Genetic Algorithm 0.99 1.00 0.97 0.94 - - 1.00

Random swap 1.00 1.00 0.99 0.97 1.00 1.00 1.00

J-means 1.00 1.00 0.99 0.97 1.00 1.00 1.00

COTCLUS 1.00 1.00 0.99 0.97 1.00 1.00 1.00

Table 4. Required time (sec) and number of repeats to find optimal solution for various clustering

methods and different datasets

Algorithm
Dataset

S1 S2 S3 S4 Birch 1 Birch 2 dim032

K-means 0.198 0.207 0.224 0.238 0.5296 0.2916 0.176

K-means++ 0.195 0.221 0.221 0.229 9.25 6.58 0.184

Repeated

KM

time 7.52 2.85 2.74 1.39 544.7 298.4 69.46

repeats 39 14 13 6 100 100 417

Genetic

Algorithm

time 100.9 13.27 17.38 20.57 - - 68.83

repeats 36 12 11 6 - - 325

Random

swap

time 5.72 2.77 2.37 1.40 435.1 760.8 41.15

repeats 30 13 11 6 165 489 247

J-means+
time 68.31 3.84 5.81 3.24 5034 11500 29.40

repeats 89 5 7 3 55 112 37

COTCLUS
time 0.887 0.816 0.838 1.70 25.80 24.15 1.05

repeats 2 2 2 4 3 5 3

3.2. Results on Datasets II

The second experiment was performed on the synthetic datasets which contain spherical

clusters with varying data size, number of clusters, relative cluster density, cluster overlap, and

dimensionality. We selected the levels of each factor similar to the works presented in (Steinley and

Brusco, 2007) and (Brusco and Steinley, 2007):

1. Size of dataset: N = 200, 1000, and 5000

2. Number of clusters: K = 4, 6, and 8

3. Dimensionality: d = 2, 4, 6, 8, and 10.

4. Relative cluster density: three types of datasets are considered including (I) all clusters with

the same size, (II) one cluster includes 60% of data points, and other clusters have the same

size, and (III) one cluster includes 10% of data points, and other clusters have the same size.

5. Cluster overlap: three levels of overlap between clusters are considered including 0, 0.2, and

0.4. The overlap value 0.2 means that if we assign data points to their nearest centroid, 20%

of the points are assigned to different clusters than the expected one.

In a series of experiments, we vary one parameter while fixing others to compare the

clustering methods. The default settings of parameters are: N = 1000, K = 8, d = 2, no overlap (o =

0), and all clusters with the same size (type I). Tables 5 to 14 suggest the following conclusions:

(i) All methods except k-means and k-means++ are capable of finding optimal solution for all

datasets and all levels of parameters if enough iterations are performed.

(ii) Regarding the time required for finding the optimal solution, the proposed method

COTCLUS significantly outperforms other methods. It needs, in average, only two

iterations to converge to the optimal solution. Repeated k-means and random swap have

almost the same speed, and perform much faster than genetic algorithm and J-means.

(iii) Increasing data size and dimensionality does not affect much on the processing time. The

reason is that the maximum data size N = 5000, and the maximum dimensionality d = 10,

were not big enough to show a significant increase in the processing time. Increasing the

number of clusters and overlap results in a more considerable increase in the required

processing time and number of iterations to obtain the optimal solution. All evolutionary

methods perform slower for relative cluster density type II than type I and III. However, the

increase in the time for COTCLUS is much lower than other algorithms specially repeated

k-means and random swap.

Table 5. Clustering quality for various clustering methods and datasets with different sizes

Algorithm
N=200 N=1000 N=5000

TSE ARI TSE ARI TSE ARI

K-means 68.37 0.81 69.80 0.82 72.79 0.80

K-means++ 55.58 0.85 56.37 0.86 58.53 0.85

Repeated KM 32.09 1.00 36.56 1.00 37.20 1.00

Genetic Algorithm 32.09 1.00 36.56 1.00 37.20 1.00

Random swap 32.09 1.00 36.56 1.00 37.20 1.00

J-means 32.09 1.00 36.56 1.00 37.20 1.00

COTCLUS 32.09 1.00 36.56 1.00 37.20 1.00

Table 6. Required time (sec) and number of repeats to find optimal solution for various clustering

methods and datasets with different sizes

Algorithm N = 200 N = 1000 N = 5000

K-means 0.173 0.172 0.191

K-means++ 0.174 0.180 0.188

Repeated KM
time 1.38 1.10 1.39

repeats 8 6 7

Genetic

algorithm

time 6.92 7.28 7.97

repeats 6 5 6

Random swap
time 1.47 1.09 1.50

repeats 8 6 8

J-means
time 1.32 5.60 5.76

repeats 11 5 14

COTCLUS
time 0.756 0.667 0.787

repeats 2 2 2

Table 7. Clustering quality for various clustering methods and datasets with different number of

clusters

Algorithm
K = 4 K = 6 K = 8

TSE ARI TSE ARI TSE ARI

K-means 56.53 0.84 78.34 0.84 69.80 0.82

K-means++ 54.38 0.86 65.81 0.89 56.37 0.86

Repeated KM 37.45 1.00 39.13 1.00 36.56 1.00

Genetic Algorithm 37.45 1.00 39.13 1.00 36.56 1.00

Random swap 37.45 1.00 39.13 1.00 36.56 1.00

J-means 37.45 1.00 39.13 1.00 36.94 1.00

COTCLUS 37.45 1.00 39.13 1.00 36.56 1.00

Table 8. Required time (sec) and number of repeats to find optimal solution for various clustering

methods and datasets with different number of clusters

Algorithm K = 4 K = 6 K = 8

K-means 0.168 0.172 0.172

K-means++ 0.172 0.174 0.180

Repeated KM
time 0.268 0.445 1.10

repeats 2 3 6

Genetic

algorithm

time 6.67 6.79 7.28

repeats 1 2 5

Random swap
time 0.377 0.509 1.09

repeats 2 3 6

J-means
time 0.501 1.36 5.60

repeats 1 2 5

COTCLUS
time 0.331 0.489 0.667

repeats 1 1 2

Table 9. Clustering quality for various clustering methods and datasets with different

dimensionalities

Algorithm
d = 2 d = 4 d = 6 d = 8 d = 10

TSE ARI TSE ARI TSE ARI TSE ARI TSE ARI

K-means 69.80 0.82 69.33 0.80 49.36 0.82 47.18 0.81 50.60 0.79

K-means++ 56.37 0.86 56.22 0.86 45.66 0.84 44.20 0.84 43.43 0.85

Repeated KM 36.56 1.00 39.90 1.00 37.29 0.99 33.62 1.00 32.43 1.00

Genetic Algorithm 36.56 1.00 39.90 1.00 37.29 0.99 33.62 1.00 32.43 1.00

Random swap 36.56 1.00 39.90 1.00 37.29 0.99 33.62 1.00 32.43 1.00

J-means 36.94 1.00 39.90 1.00 37.29 0.99 33.62 1.00 32.43 1.00

COTCLUS 36.56 1.00 39.90 1.00 37.29 0.99 33.62 1.00 32.43 1.00

Table 10. Required time (sec) and number of repeats to find optimal solution for various clustering

methods and datasets with different dimensionalities

Algorithm d = 2 d = 4 d = 6 d = 8 d = 10

K-means 0.172 0.167 0.174 0.171 0.168

K-means++ 0.180 0.168 0.178 0.176 0.167

Repeated KM
time 1.10 0.830 0.837 1.19 1.02

repeats 6 5 5 7 6

Genetic

algorithm

time 7.28 7.10 7.11 7.45 7.35

repeats 5 4 4 6 5

Random swap
time 1.09 1.01 1.16 1.22 1.27

repeats 6 6 6 7 7

Time 5.60 1.82 3.21 2.46 1.78

J-means # repeats 5 5 9 6 4

COTCLUS
time 0.667 0.558 0.662 0.571 0.666

repeats 2 1 2 1 2

Table 11. Clustering quality for various clustering methods and datasets with different relative

density of clusters

Algorithm
TYPE I TYPE II TYPE III

TSE ARI TSE ARI TSE ARI

K-means 69.80 0.82 52.65 0.51 76.38 0.84

K-means++ 56.37 0.86 42.12 0.73 63.10 0.88

Repeated KM 36.56 1.00 27.55 1.00 37.90 1.00

Genetic Algorithm 36.56 1.00 27.55 1.00 37.90 1.00

Random swap 36.56 1.00 27.55 1.00 37.90 1.00

J-means 36.94 1.00 27.55 1.00 37.90 1.00

COTCLUS 36.56 1.00 27.55 1.00 37.90 1.00

Table 12. Required time (sec) and number of repeats to find optimal solution for various clustering

methods and datasets with different relative density of clusters

Algorithm
Relative cluster density

Type I Type II TYPE III

K-means 0.172 0.178 0.175

K-means++ 0.180 0.181 0.175

Repeated KM
time 1.10 8.58 1.37

repeats 6 50 8

Genetic

algorithm

time 7.28 13.13 7.44

repeats 5 39 7

Random swap
time 1.09 6.21 1.61

repeats 6 36 10

J-means
time 5.60 14.31 110.1

repeats 5 13 5

COTCLUS
time 0.667 1.76 1.25

repeats 2 5 3

Table 13. Clustering quality for various clustering methods and datasets with different levels of

overlap between clusters

Algorithm
o = 0 o = 0.2 o = 0.4

TSE ARI TSE ARI TSE ARI

K-means 69.80 0.82 43.87 0.76 32.49 0.76

K-means++ 56.37 0.86 40.34 0.78 29.67 0.80

Repeated KM 36.56 1.00 30.50 0.97 26.10 0.98

Genetic Algorithm 36.56 1.00 30.55 0.96 26.19 0.96

Random swap 36.56 1.00 30.50 0.97 26.10 0.98

J-means 36.94 1.00 30.50 0.98 26.10 0.99

COTCLUS 36.56 1.00 30.50 0.98 26.09 0.99

Table 14. Required time (sec) and number of repeats to find optimal solution for various clustering

methods and datasets with different levels of overlap between clusters

Algorithm
Overlap between clusters

o = 0 o = 0.2 o = 0.4

K-means 0.172 0.178 0.181

K-means++ 0.180 0.181 0.183

Repeated KM
time 1.10 1.18 1.44

repeats 6 7 8

Genetic

algorithm

time 7.28 7.35 9.84

repeats 5 6 7

Random swap
time 1.09 1.13 1.49

repeats 6 6 8

J-means
time 5.60 4.78 4.99

repeats 5 4 4

COTCLUS
time 0.667 0.721 1.21

repeats 2 2 3

4. Conclusion and Future Work

We have proposed a method for combining two centroid-based clusterings of a dataset with

the intent of reducing the clustering error. The process can be repeated by combining the resulting

clustering with a new clustering. For only few iterations, the algorithm shows good convergence to

optimal or near-optimal solution for datasets with well-separated clusters. In contrary to alternative

methods such as repeated k-means and random swap, our experimental results show that the

performance of COTCLUS remains strong for datasets with large number of clusters or high-

dimensional feature space.

The main open issue that should be addressed in the future is how to develop a new iterating

scenario. Currently, we combine the resulting clustering of the previous iteration with a new

clustering. However, after a few iterations, the new weak clustering cannot make a significant

improvement. With a better iterating scenario, the proposed method seems to work fine for datasets

with overlapping clusters as well as well-separated clusters.

References

Arthur, D., & Vassilvitskii, S. (2007). K-means++: The advantages of careful seeding. Paper

presented at the Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete

algorithms.

Brusco, M. J., & Steinley, D. (2007). A comparison of heuristic procedures for minimum within-

cluster sums of squares partitioning. Psychometrika, 72(4), 583-600.

Celebi, M. E., Kingravi, H. A., & Vela, P. A. (2013). A comparative study of efficient initialization

methods for the k-means clustering algorithm. Expert Systems with Applications, 40(1), 200-

210.

de Amorim, R. C., Makarenkov, V., & Mirkin, B. (2016). A-Ward pβ: Effective hierarchical

clustering using the Minkowski metric and a fast k-means initialisation. Information Sciences,

370, 343-354.

Fränti, P., & Kivijärvi, J. (2000). Randomised local search algorithm for the clustering problem.

Pattern Analysis & Applications, 3(4), 358-369.

Fränti, P., & Virmajoki, O. (2006). Iterative shrinking method for clustering problems. Pattern

Recognition, 39(5), 761-775.

Franti, P., Virmajoki, O., & Hautamaki, V. (2006). Fast agglomerative clustering using a k-nearest

neighbor graph. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(11),

1875-1881.

Fred, A. L., & Jain, A. K. (2005). Combining multiple clusterings using evidence accumulation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 27(6), 835-850.

Hansen, P., & Mladenović, N. (2001). J-means: a new local search heuristic for minimum sum of

squares clustering. Pattern Recognition, 34(2): 405-413.

Hruschka, E. R., Campello, R. J., & Freitas, A. A. (2009). A survey of evolutionary algorithms for

clustering. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews), 39(2), 133-155.

Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193-218.

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM computing surveys

(CSUR), 31(3), 264-323.

Klein, R. W., & Dubes, R. C. (1989). Experiments in projection and clustering by simulated

annealing. Pattern Recognition, 22(2), 213-220.

Likas, A., Vlassis, N., & Verbeek, J. J. (2003). The global k-means clustering algorithm. Pattern

Recognition, 36(2), 451-461.

Maulik, U., & Bandyopadhyay, S. (2000). Genetic algorithm-based clustering technique. Pattern

Recognition, 33(9), 1455-1465.

Naldi, M. C., de Carvalho, A. C., & Campell, R. J. G. B. (2008). Genetic clustering for data mining

Soft computing for knowledge discovery and data mining (pp. 113-132): Springer.

Rezaei, M., & Fränti, P. (2016). Set matching measures for external cluster validity. IEEE

Transactions on Knowledge and Data Engineering, 28(8), 2173-2186.

Selim, S. Z., & Alsultan, K. (1991). A simulated annealing algorithm for the clustering problem.

Pattern Recognition, 24(10), 1003-1008.

Steinley, D. (2003). Local optima in k-means clustering: what you don't know may hurt you.

Psychological Methods, 8(3), 294-304.

Steinley, D., & Brusco, M. J. (2007). Initializing k-means batch clustering: A critical evaluation of

several techniques. Journal of Classification, 24(1), 99-121.

Tzortzis, G., & Likas, A. (2014). The MinMax k-means clustering algorithm. Pattern Recognition,

47(7), 2505-2516.

Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the

American Statistical Association, 58(301), 236-244.

Zhang, T., Ramakrishnan, R., & Livny, M. (1997). BIRCH: A new data clustering algorithm and its

applications. Data Mining and Knowledge Discovery, 1(2), 141-182.

