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Abstract: Fast centroid-based clustering algorithms such as k-means usually converge to 

a local optimum. In this work, we propose a method for constructing a better clustering 

from two such suboptimal clustering solutions based on the fact that each suboptimal 

clustering has benefits regarding to including some of the correct clusters. We develop 

the new method COTCLUS to find two centroids from one clustering and replace them 

by two centroids from the other clustering so that the maximum decrease in the mean 

square error of the first clustering is achieved. After modifying centroids, k-means 

algorithm with few iterations is applied for fine-tuning. In an iterative algorithm, the 

resulting clustering is further improved using a new given clustering. The proposed 

method can find optimal clustering in a very small number of iterations for datasets with 

well-separated clusters. We demonstrate by experiments that the proposed method 

outperforms the selected competitive methods. 
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1. Introduction 

The goal of data clustering is to partition a set of unlabeled objects into homogeneous groups 

so that specific clustering criteria are optimized (Jain, Murty and Flynn, 1999). The sum of the within-

cluster variances or total squared error (TSE) is the most wide used criterion in which the squared 

distance between each data point and its nearest cluster centroid is calculated and all of those results 

are added together (Likas, Vlassis and Verbeek, 2003). The mean squared error (MSE) is equal to 

TSE divided by the size of dataset. Other objective functions may be more appropriate for datasets 

with different cluster structures. However, they are out of the scope of this paper. For example, Min-

Max k-means (Tzortzis and Likas, 2014) tackles the initialization problem of k-means by changing 

the objective function to be maximum within cluster variances.   

K-means is the most popular clustering algorithm that minimizes the sum of the within-cluster 

variances. First, it randomly selects initial centroids from data points and each data point is then 

assigned to its nearest centroid. The centroids are updated by averaging the data points belonging to 

each cluster. The result of the k-means algorithm highly depends on the initial choice of the centroids, 

and the algorithm often converges to a local optimum. Repeated k-means is recommended by several 

researchers where the k-means algorithm is run with several different initial configurations, and the 

best result is taken. Steinley (2003) recommends repeating k-means several thousand times because 

the number of local optima solutions even for a small dataset (N = 200) can run into the thousands. 

This approach, however, would be time consuming and still does not guarantee to yield the global 

optimum. 

Several methods exist that are able to obtain the near-optimal solution. Stochastic evolutionary 

approaches such as Genetic algorithm (Hruschka, Campello, and Freitas, 2009; Maulik and 

Bandyopadhyay, 2000) and simulated annealing (Klein and Dubes, 1989, Selim and Alsultan, 1991) 

take a large amount of time. Genetic algorithm starts with a population of random clustering solutions 



which are represented as chromosomes. Each chromosome is evaluated by the fitness function to 

check how good it is for the problem. A subset of chromosomes is selected, where fitter ones are 

more likely to be selected. Crossover and mutation operators are then applied to the selected 

chromosomes. The new good chromosomes are replaced with some of the weak old chromosomes. 

The entire process is repeated for a fixed number of iterations (Maulik and Bandyopadhyay, 2000). 

Simulated annealing is a sequential stochastic search that avoids local optima. To accomplish this, 

the algorithm with some probability allows a solution with lower quality is used in the next 

generation. The probability is determined by a parameter called temperature. Simulated annealing, in 

general, is very computationally expensive because it requires a very slow cooling rate (Klein and 

Dubes, 1989).  

Agglomerative clustering is a bottom-up approach in which each object is initially considered 

as its own cluster. Two closest clusters are then iteratively merged. Among several criteria for 

selecting the next two clusters, Ward’s criterion can be used to minimize the sum of squared errors 

(Ward, 1963). Agglomerative clustering is, in general, much slower than divisive algorithms such as 

k-means. Several methods have been proposed to speed up the process. For example, de Amorim et 

al. (2016) propose to start the agglomerative algorithm with a sufficiently large number of clusters 

instead of a partition formed by singleton clusters.  

Random swap is a simple evolutionary algorithm that selects one centroid at each iteration 

and replaces it with a random data point. It then applies k-means and uses the new solution for the 

next iteration if a better MSE is achieved (Fränti and Kivijärvi, 2000). J-means performs a broader 

search comparing to random swap, where each centroid is relocated with each data point which does 

not already coincide with a centroid (Hansen and Mladenović, 2001). Global k-means algorithm starts 

with one cluster when the optimal solution is trivially known, and in an incremental way, it adds one 

cluster at a time. To solve the problem with k clusters, k-1 initial centroids are provided from the 

clustering solution for the problem with k-1 clusters. The last centroid, in N different runs, is set equal 

to each of N data points. K-means is applied with each set of centroids and the clustering with 

minimum MSE is considered as the solution for the problem with k clusters (Likas, Vlassis and 

Verbeek, 2003). Ensemble clustering is another approach in which the partitions from multiple 

clusterings are combined to infer statistically about final clusters from all partitions (Fred and Jain, 

2005). All these methods, in general, have heavy computational load comparing to the standard k-

means algorithm. 

Several techniques try to improve k-means by intelligent selection of the initial centroids 

instead of random selection (Celebi, Kingravi and Vela, 2013). Steinley and Brusco compare 12 of 

such techniques, and conclude that their approach, which is similar to repeated k-means, outperforms 

others (Steinley and Brusco, 2007). Instead of random selection of centroids from data points, they 

divide the data randomly into k clusters and calculate the centroids as the initial configuration. K-

means++ is a well-known technique that aims at spreading the initial centroids over the whole range 

of a given dataset, and at the same time avoiding to select outliers. Specifically, it chooses the first 

centroid randomly from data points, and the distance of each data point x to its nearest centroid is 

calculated as D(x). In an iterative way, the next centroid is chosen randomly from data points 

(excluding the previously selected ones) with probability proportional to D2(x) (Arthur and 

Vassilvitskii, 2007).  

In this paper, we propose the novel approach COTCLUS to improve a centroid-based 

clustering of a dataset by an intelligent selection of two centroids and replacing them with two 

centroids from another clustering in such a way that maximum decrease in the clustering error is 

achieved. The new clustering can further be improved by iteratively using another clustering. The 

basic idea is to find a couple of badly allocated centroids from one clustering and replace them with 

two centroids from the other clustering so that a smaller MSE is achieved. We formulate the problem 

in Section 2, where we calculate the increase in MSE if a cluster is removed and the decrease in MSE 

if a cluster is split into two clusters. In splitting a cluster, one centroid is replaced by two 



corresponding centroids from the other clustering. Accordingly, the best couple of clusters for 

removing and splitting, which lead to maximum decrease in MSE, are selected. Section 3 provides 

the experimental results on a few publicly available and our own generated datasets. The datasets 

include a broad range of conditions including data size, dimensionality, relative density of clusters, 

overlap, and number of clusters. Our method demonstrates promising performance against the 

selected methods. Finally, conclusion and future work are given in Section 4. 

2. Combining Two Centroid-Based Clusterings 

K-means and many other centroid-based clustering algorithms usually fall into a local 

optimum. In each suboptimal clustering of a dataset with well-separated clusters, we observe that 

some clusters and their corresponding centroids have been correctly identified. For example, consider 

two clusterings of the artificially generated dataset S2 with 15 clusters in Figure 1. Without loss of 

generality, we use k-means as a centroid-based clustering algorithm to generate initial clusterings. 

The clusterings A and B both have two wrongly allocated centeroids. Removing incorrect centroids 

from A and replacing them by the two centroids inside the ellipse from B (see Figure 1) will turn A 

into a correct clustering of the dataset. Applying k-means with few iterations would help to fine-tune 

the resulting clustering. In the following, we formulate the problem, and describe our method for 

identifying and replacing two centroids of A with two centroids of B in order to reduce the clustering 

error. 

                               Clustering A                            Clustering B 

  

Figure 1. Applying k-means algorithm to S2 dataset with two different initial configurations 

Let S be a clustering solution including K clusters of a set of data points 
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dimensional Euclidean space. Each cluster jC is represented by its centroid jc . The objective function 

is the typical mean square error: 
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n cS 1}{   with a reduced MSE, i.e., an MM  . We found empirically that it is better to also 

improve bS  using aS  and take the better result. We define two actions removing center and splitting 

cluster for each cluster in aS , and calculate the removal and split costs. The cost values are used for 

selecting the best couple of centroids for swapping that results in maximum decrease in MSE. 

 

 



2.1. Removing Center (RC)  

RC action removes one centroid 
a

kc  at a time from solution aS  and distributes the data points 
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j  ),,...,1(, . Each data point is assigned to the cluster with 

the second nearest centroid, see Figure 2. Since the distance of each object to the new centroid is 

larger than the distance to a

kc , MSE value increases. The resulting increase in MSE is calculated as: 









 

a
kCi

a

ki

a

ki

RC cxcx
N

kM
22

'

1
)(  

(2) 

where a

kc '
 is the second nearest centroid to data point a
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Figure 2. Removing one centroid 

2.2. Splitting Cluster (SC) 

SC action considers the data points associated with cluster a

kC  in bS  and locates the two 

clusters in bS , with corresponding centroids 
b

qc , 2,1q , that own most of the data points of a

kC . 

These two centroids are considered to be representative of data points in a

kC , see Figure 3. As a result 

of having two centroids instead of one to represent data points in a

kC , the MSE value for data points 

in a

kC  will decrease. The MSE decrease is calculated as: 
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Figure 3. Splitting a cluster 

2.3. Swapping 

In this stage, RCM  and SCM  values are sorted in ascending and descending order as 
RC

sortedM  and SC

sortedM , respectively. The pair )1(RC

sortedM and )1(SC

sortedM is the first choice for 

swapping. Two centroids of 
aS  corresponding to )1(RC

sortedM and )1(SC

sortedM  are replaced by two 

centroids of 
bS  corresponding to )1(SC

sortedM . 

The swapping is performed only if )1()1( RC

sorted

SC

sorted MM  , or in other words, the decrease 

in MSE as a result of SC action is larger than the increase in MSE as a result of RC action. The same 

process is then repeated for the next pair in the list of RC

sortedM  and SC

sortedM  values. After the swapping 

centroids completed, k-means algorithm with few iterations (from 2 to 4) is applied to fine-tune the 

location of the new centroids. The pseudo code of the overall algorithm is as follows: 

1. Input: 

Data set X 

number of clusters K 

clustering solutions aS  and bS  

2. for each cluster a

kC , k = 1 to K in aS  do 

3. compute )(kM RC  using Eq. 2 

4. find first corresponding centroid of bS  to a

kC : j1 

5. If a

k

a

k

b

j CCC /
1
 < 0.95 

6. find second corresponding centroid of bS  to a

kC : j2 

7. i1(k) = j1 and i2(k) = j2 

8. compute )(kM SC  using Equation 3 

9. else 

10. 0)(  kM SC   

11. Sort RCM  in ascending order: )(iidx RC
, i = 1..K 

12. Sort SCM  in descending order: )(iidx SC
, i = 1..K 

13. i = 1 



14. k1 = )(iidx SC
 and k2 = )(iidx RC

 

15. while )( 1kM SC  > )( 2kM RC  do 

16. Replace the centroids k1 and k2 of aS  with the centroids i1(k1) and i2(k1) of bS  

17. i = i + 1 

18. k1= )(iidx SC
 and k2= )(iidx RC

 

19. Apply k-means algorithm to aS   

20. Output: modified clustering solution aS  

2.4. Iterating the Process 

The process of combining two clusterings may be repeated for a certain number of times or 

until no significant improvement is obtained. Several scenarios are possible for iterating the process. 

A simple approach is to use two clustering at first iteration, and combine them to produce an improved 

clustering. At each following iteration, a new clustering is generated and combined with the resulting 

clustering from the previous iteration. Another approach is to use a larger number of initial solutions. 

At first iteration, every two clusterings are combined, and at each following iteration, the resulting 

clusterings from the previous iteration are combined.  

We should note that the focus of this paper is on the new approach for combining two 

clusterings. We use the simple iterating scenario in our experiments, and generate the initial solutions 

using k-means algorithm. This configuration gives promising performance for datasets with separated 

clusters. However, finding a better iterating scenario appropriate and efficient for complicated 

datasets remains an open problem for future work. 

3. Experimental Results 

We examine the performance of COTCLUS using two sets of datasets I and II. Datasets I 

include seven publicly available datasets with known ground truth. We generated Datasets II with 

varying clustering complexity in order to arrange controllable experiments, and examine the proposed 

method on different data structures.  

We compare COTCLUS to five different approaches for improving k-means including 

repeated k-means, random swap, k-means++, J-means, and genetic algorithm. We have set the 

number of iterations to 500 and 5000 for repeated k-means and random swap, respectively, and 100 

for the rest of iterative methods. To make the results statistically valid, we repeat the overall process 

100 times for each method, and report the average values. All the methods were implemented in 

MATLAB, and the experiments were performed on a 2.7-GHz Intel(R) core i5-6400 with 8.00 GB 

RAM. 

The best MSE for each dataset is available from the provided ground truth. Therefore, for the 

iterative algorithms including repeated k-means, random swap, J-means, genetic algorithm, and 

COTCLUS, we stop the iteration as soon as the best MSE with an error less than 1% is achieved. 

Accordingly, the average time and the average number of iterations needed to obtain the optimal MSE 

are reported. 

3.1. Results on Datasets I 

We first evaluate our proposed method on datasets I which include seven datasets with known 

ground truth summarized in Table 1, and depicted in Figure 4. They include varying cluster overlap 

(S sets) (Fränti and Virmajoki, 2006), large number of clusters with two different structures (Birch 

sets) (Zhang, Ramakrishnan, and Livny, 1997), and high-dimensional data (DIM032 set) (Fränti, 

Virmajoki, and Hautamaki, 2006). 



Tables 2 and 3 show the quality of clustering results measured by MSE and adjusted Rand 

index (ARI) (Hubert and Arabie, 1985, Rezaei and Fränti, 2016). The green-shaded cells in the table 

indicate the cases when the methods are able to find optimal clustering. Random swap, J-means, and 

COTCLUS are the methods that can achieve optimal solution for all the datasets. Genetic algorithm 

is not practical for Birch datasets due to large processing time. Repeated k-means yields a poor 

performance when the number of clusters or the data dimensionality is large.  

We report in Table 4, the average time and the average number of iterations needed to reach 

the optimal MSE. K-means++ is faster than COTCLUS, but it does not provide correct clustering for 

any of the datasets, see Table 3. For all datasets, COTCLUS provides less processing time than other 

iterative algorithms. However, more significant results are achieved for the high-dimensional dataset 

and the datasets with large number of clusters (highlighted by green-shaded cells in Table 4). 

COTCLUS is 16, 31, and 39 times faster than random swap for Birch1, Birch2, and DIM032 datasets, 

respectively.  

 

Table 1. Summary of the datasets 

Dataset Number of data 

points  

Number of 

clusters 

Dimension  

of data  

S1-S4 5000 15 2 

Birch1 100,000 100 2 

Birch2 100,000 100 2 

DIM032 1024 16 32 

 

    

S1 S2 S3 S4 



 

 

DIM032 

Figure 4. Example datasets 

Table 2. Clustering quality of various clustering methods and different datasets, measured by TSE 

Algorithm 

Dataset 

S1 S2 S3 S4 Birch 1 Birch 2 dim032 

×108 ×108 ×108 ×108 ×108 ×106 ×1 

K-means 19.80 19.95 20.14 17.51 5.71 8.58 490.17 

K-means++ 16.97 19.18 19.04 17.10 5.51 5.60 136.73 

Repeated KM 8.92 13.28 16.89 15.72 5.11 5.68 76.80 

Genetic Algorithm 9.14 13.29 16.97 15.79 - - 7.096 

Random swap 8.92 13.28 16.89 15.72 4.64 2.28 7.096 

J-means 8.92 13.28 16.89 15.72 4.64 2.28 7.096 

COTCLUS 8.92 13.28 16.89 15.72 4.64 2.28 7.096 

 

Table 3. Clustering quality of various clustering methods and different datasets, measured by ARI 

Algorithm 
Dataset 

S1 S2 S3 S4 Birch 1 Birch 2 dim032 

K-means 0.84 0.86 0.83 0.84 0.83 0.79 0.76 

K-means++ 0.87 0.87 0.87 0.86 0.85 0.86 0.93 



Repeated KM 1.00 1.00 0.99 0.97 0.91 0.86 0.95 

Genetic Algorithm 0.99 1.00 0.97 0.94 - - 1.00 

Random swap 1.00 1.00 0.99 0.97 1.00 1.00 1.00 

J-means 1.00 1.00 0.99 0.97 1.00 1.00 1.00 

COTCLUS 1.00 1.00 0.99 0.97 1.00 1.00 1.00 

 

Table 4. Required time (sec) and number of repeats to find optimal solution for various clustering 

methods and different datasets 

Algorithm 
Dataset 

S1 S2 S3 S4 Birch 1 Birch 2 dim032 

K-means 0.198 0.207 0.224 0.238 0.5296 0.2916 0.176 

K-means++ 0.195 0.221 0.221 0.229 9.25 6.58 0.184 

Repeated  

KM 

time 7.52 2.85 2.74 1.39 544.7 298.4 69.46 

# repeats 39 14 13 6 100 100 417 

Genetic 

Algorithm 

time 100.9 13.27 17.38 20.57 - - 68.83 

# repeats 36 12 11 6 - - 325 

Random  

swap 

time 5.72 2.77 2.37 1.40 435.1 760.8 41.15 

# repeats 30 13 11 6 165 489 247 

J-means+ 
time 68.31 3.84 5.81 3.24 5034 11500 29.40 

# repeats 89 5 7 3 55 112 37 

COTCLUS 
time 0.887 0.816 0.838 1.70 25.80 24.15 1.05 

# repeats 2 2 2 4 3 5 3 

3.2. Results on Datasets II 

The second experiment was performed on the synthetic datasets which contain spherical 

clusters with varying data size, number of clusters, relative cluster density, cluster overlap, and 

dimensionality. We selected the levels of each factor similar to the works presented in (Steinley and 

Brusco, 2007) and (Brusco and Steinley, 2007): 

1. Size of dataset: N = 200, 1000, and 5000 

2. Number of clusters: K = 4, 6, and 8 

3. Dimensionality: d = 2, 4, 6, 8, and 10. 

4. Relative cluster density: three types of datasets are considered including (I) all clusters with 

the same size, (II) one cluster includes 60% of data points, and other clusters have the same 



size, and (III) one cluster includes 10% of data points, and other clusters have the same size. 

5. Cluster overlap: three levels of overlap between clusters are considered including 0, 0.2, and 

0.4. The overlap value 0.2 means that if we assign data points to their nearest centroid, 20% 

of the points are assigned to different clusters than the expected one.  

In a series of experiments, we vary one parameter while fixing others to compare the 

clustering methods. The default settings of parameters are: N = 1000, K = 8, d = 2, no overlap (o = 

0), and all clusters with the same size (type I). Tables 5 to 14 suggest the following conclusions: 

(i) All methods except k-means and k-means++ are capable of finding optimal solution for all 

datasets and all levels of parameters if enough iterations are performed.  

(ii) Regarding the time required for finding the optimal solution, the proposed method 

COTCLUS significantly outperforms other methods. It needs, in average, only two 

iterations to converge to the optimal solution. Repeated k-means and random swap have 

almost the same speed, and perform much faster than genetic algorithm and J-means. 

(iii) Increasing data size and dimensionality does not affect much on the processing time. The 

reason is that the maximum data size N = 5000, and the maximum dimensionality d = 10, 

were not big enough to show a significant increase in the processing time. Increasing the 

number of clusters and overlap results in a more considerable increase in the required 

processing time and number of iterations to obtain the optimal solution. All evolutionary 

methods perform slower for relative cluster density type II than type I and III. However, the 

increase in the time for COTCLUS is much lower than other algorithms specially repeated 

k-means and random swap.  



Table 5. Clustering quality for various clustering methods and datasets with different sizes 

Algorithm 
N=200 N=1000 N=5000 

TSE ARI TSE ARI TSE ARI 

K-means 68.37 0.81 69.80 0.82 72.79 0.80 

K-means++ 55.58 0.85 56.37 0.86 58.53 0.85 

Repeated KM 32.09 1.00 36.56 1.00 37.20 1.00 

Genetic Algorithm 32.09 1.00 36.56 1.00 37.20 1.00 

Random swap 32.09 1.00 36.56 1.00 37.20 1.00 

J-means 32.09 1.00 36.56 1.00 37.20 1.00 

COTCLUS 32.09 1.00 36.56 1.00 37.20 1.00 

Table 6. Required time (sec) and number of repeats to find optimal solution for various clustering 

methods and datasets with different sizes 

Algorithm N = 200 N = 1000 N = 5000 

K-means 0.173 0.172 0.191 

K-means++ 0.174 0.180 0.188 

Repeated KM 
time 1.38 1.10 1.39 

# repeats 8 6 7 

Genetic 

algorithm 

time 6.92 7.28 7.97 

# repeats 6 5 6 

Random swap 
time 1.47 1.09 1.50 

# repeats 8 6 8 

J-means 
time 1.32 5.60 5.76 

# repeats 11 5 14 

COTCLUS 
time 0.756 0.667 0.787 

# repeats 2 2 2 

Table 7. Clustering quality for various clustering methods and datasets with different number of 

clusters 

Algorithm 
K = 4 K = 6 K = 8 

TSE ARI TSE ARI TSE ARI 

K-means 56.53 0.84 78.34 0.84 69.80 0.82 

K-means++ 54.38 0.86 65.81 0.89 56.37 0.86 

Repeated KM 37.45 1.00 39.13 1.00 36.56 1.00 

Genetic Algorithm 37.45 1.00 39.13 1.00 36.56 1.00 

Random swap 37.45 1.00 39.13 1.00 36.56 1.00 

J-means 37.45 1.00 39.13 1.00 36.94 1.00 

COTCLUS 37.45 1.00 39.13 1.00 36.56 1.00 



Table 8. Required time (sec) and number of repeats to find optimal solution for various clustering 

methods and datasets with different number of clusters 

Algorithm K = 4 K = 6 K = 8 

K-means 0.168 0.172 0.172 

K-means++ 0.172 0.174 0.180 

Repeated KM 
time 0.268 0.445 1.10 

# repeats 2 3 6 

Genetic 

algorithm 

time 6.67 6.79 7.28 

# repeats 1 2 5 

Random swap 
time 0.377 0.509 1.09 

# repeats 2 3 6 

J-means 
time 0.501 1.36 5.60 

# repeats 1 2 5 

COTCLUS 
time 0.331 0.489 0.667 

# repeats 1 1 2 

Table 9. Clustering quality for various clustering methods and datasets with different 

dimensionalities 

Algorithm 
d = 2 d = 4 d = 6 d = 8 d = 10 

TSE ARI TSE ARI TSE ARI TSE ARI TSE ARI 

K-means 69.80 0.82 69.33 0.80 49.36 0.82 47.18 0.81 50.60 0.79 

K-means++ 56.37 0.86 56.22 0.86 45.66 0.84 44.20 0.84 43.43 0.85 

Repeated KM 36.56 1.00 39.90 1.00 37.29 0.99 33.62 1.00 32.43 1.00 

Genetic Algorithm 36.56 1.00 39.90 1.00 37.29 0.99 33.62 1.00 32.43 1.00 

Random swap 36.56 1.00 39.90 1.00 37.29 0.99 33.62 1.00 32.43 1.00 

J-means 36.94 1.00 39.90 1.00 37.29 0.99 33.62 1.00 32.43 1.00 

COTCLUS 36.56 1.00 39.90 1.00 37.29 0.99 33.62 1.00 32.43 1.00 

Table 10. Required time (sec) and number of repeats to find optimal solution for various clustering 

methods and datasets with different dimensionalities 

Algorithm d = 2 d = 4 d = 6 d = 8 d = 10 

K-means 0.172 0.167 0.174 0.171 0.168 

K-means++ 0.180 0.168 0.178 0.176 0.167 

Repeated KM 
time 1.10 0.830 0.837 1.19 1.02 

# repeats 6 5 5 7 6 

Genetic 

algorithm 

time 7.28 7.10 7.11 7.45 7.35 

# repeats 5 4 4 6 5 

Random swap 
time 1.09 1.01 1.16 1.22 1.27 

# repeats 6 6 6 7 7 

Time 5.60 1.82 3.21 2.46 1.78 



J-means # repeats 5 5 9 6 4 

COTCLUS 
time 0.667 0.558 0.662 0.571 0.666 

# repeats 2 1 2 1 2 

Table 11. Clustering quality for various clustering methods and datasets with different relative 

density of clusters 

Algorithm 
TYPE I TYPE II TYPE III 

TSE ARI TSE ARI TSE ARI 

K-means 69.80 0.82 52.65 0.51 76.38 0.84 

K-means++ 56.37 0.86 42.12 0.73 63.10 0.88 

Repeated KM 36.56 1.00 27.55 1.00 37.90 1.00 

Genetic Algorithm 36.56 1.00 27.55 1.00 37.90 1.00 

Random swap 36.56 1.00 27.55 1.00 37.90 1.00 

J-means 36.94 1.00 27.55 1.00 37.90 1.00 

COTCLUS 36.56 1.00 27.55 1.00 37.90 1.00 

Table 12. Required time (sec) and number of repeats to find optimal solution for various clustering 

methods and datasets with different relative density of clusters 

Algorithm 
Relative cluster density 

Type I Type II TYPE III 

K-means 0.172 0.178 0.175 

K-means++ 0.180 0.181 0.175 

Repeated KM 
time 1.10 8.58 1.37 

# repeats 6 50 8 

Genetic 

algorithm 

time 7.28 13.13 7.44 

# repeats 5 39 7 

Random swap 
time 1.09 6.21 1.61 

# repeats 6 36 10 

J-means 
time 5.60 14.31 110.1 

# repeats 5 13 5 

COTCLUS 
time 0.667 1.76 1.25 

# repeats 2 5 3 

Table 13. Clustering quality for various clustering methods and datasets with different levels of 

overlap between clusters 

Algorithm 
o = 0 o = 0.2 o = 0.4 

TSE ARI TSE ARI TSE ARI 

K-means 69.80 0.82 43.87 0.76 32.49 0.76 

K-means++ 56.37 0.86 40.34 0.78 29.67 0.80 



Repeated KM 36.56 1.00 30.50 0.97 26.10 0.98 

Genetic Algorithm 36.56 1.00 30.55 0.96 26.19 0.96 

Random swap 36.56 1.00 30.50 0.97 26.10 0.98 

J-means 36.94 1.00 30.50 0.98 26.10 0.99 

COTCLUS 36.56 1.00 30.50 0.98 26.09 0.99 

Table 14. Required time (sec) and number of repeats to find optimal solution for various clustering 

methods and datasets with different levels of overlap between clusters 

Algorithm 
Overlap between clusters 

o = 0 o = 0.2 o = 0.4 

K-means 0.172 0.178 0.181 

K-means++ 0.180 0.181 0.183 

Repeated KM 
time 1.10 1.18 1.44 

# repeats 6 7 8 

Genetic 

algorithm 

time 7.28 7.35 9.84 

# repeats 5 6 7 

Random swap 
time 1.09 1.13 1.49 

# repeats 6 6 8 

J-means 
time 5.60 4.78 4.99 

# repeats 5 4 4 

COTCLUS 
time 0.667 0.721 1.21 

# repeats 2 2 3 

4. Conclusion and Future Work 

We have proposed a method for combining two centroid-based clusterings of a dataset with 

the intent of reducing the clustering error. The process can be repeated by combining the resulting 

clustering with a new clustering. For only few iterations, the algorithm shows good convergence to 

optimal or near-optimal solution for datasets with well-separated clusters. In contrary to alternative 

methods such as repeated k-means and random swap, our experimental results show that the 

performance of COTCLUS remains strong for datasets with large number of clusters or high-

dimensional feature space.  

The main open issue that should be addressed in the future is how to develop a new iterating 

scenario. Currently, we combine the resulting clustering of the previous iteration with a new 

clustering. However, after a few iterations, the new weak clustering cannot make a significant 

improvement. With a better iterating scenario, the proposed method seems to work fine for datasets 

with overlapping clusters as well as well-separated clusters.  
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