
Optimal layer ordering in the compression of map images

Pavel Kopylov and Pasi Fränti

Department of Computer Science, University of Joensuu, FINLAND.
E-mail: justas,franti@cs.joensuu.fi

Abstract:

We study the compression of color map images by context tree modeling and arithmetic
coding. The key issue of this method is the attempt of utilizing the correlations between
the color layers of the image, and to solve the optimal order of the layers as optimum
branching problem. The acquiring of the inter-layer dependencies is done by
optimization of the context tree for every pair of image layers. The cost matrix of the
inter-layer dependencies is then solved by Edmond’s algorithm for optimum branching.

1. Introduction
Usually, map images contain much less color information than photographic images. In
fact, the number of colors in a typical map image is less than 256. Among different
lossless methods tailored for the compression of such images, the most known are
dictionary based methods: GIF and PNG. The CompuServe Graphics Interchange
Format (GIF) is based on LZW dictionary compressor [1]. PNG (Portable Network
Graphics) encodes the image using the deflate [2] algorithm, which is a combination of
LZ77 dictionary compression [3] and Huffman coding.

Statistical methods such as JPEG-LS [4] and JBIG [5] does not perform well enough for
the map images. JPEG-LS uses linear predictive model, which works well on natural
images where spatially adjacent pixels tend to have similar values but not so well on
map images. JBIG uses local context modeling, which works well on binary images
where the limited number of colors allows the use of a reasonably sized context model.

One way to handle map images is to separate image color information into a set of
binary layers based on color or other predefined information, and compress them
separately.

In Embedded Image-Domain Adaptive Compression of Simple Images (EIDAC) [6]
three-dimensional context model was proposed. The method is tailored for compression
of grayscale images, but also have bit-plane nature. The algorithm processes the image
bit planes one by one, but the context pixels are selected not only from the current bit
plane, but also from already processed layers.

In another approach called SKIP pixel coding [7], the binary layers of the image are
acquired by color decomposition. The coding sequence proceeds layer by layer. In a
particular layer, if a given pixel has already been coded in a layer of higher priority it
does not need to be coded in the current layer or any of the lower layers. Thus the
coding of large amount of not relevant information about blank areas could be
“skipped”.

It was also shown that the location of the context components, and the shape of the
context are crucial for obtaining better compression rates [8][9]. Moreover, use of the
context tree [10] provides a more flexible approach for modeling, and thus allow us to
achieve more accurate probability estimates without leading to sparse context problem.

Proceedings of the Data Compression Conference (DCC’03)
1068-0314/03 $17.00 © 2003 IEEE

Also the discovery and the use of inter-layer dependencies allow us to model the
correlation between image layers. It was shown in [11] that the use of multi-level
context tree for multi-component map images allows us to achieve about 25% of
compression improvement over JBIG method.

In this paper we propose to exploit inter-layer dependencies by using the additional
information from different layers during the compression of the current one. This can be
done by solving the dependency correlation as a directed minimum spanning tree
problem (also known as optimum branching), and to apply multi-layer context tree
compression of the layers.

2. Context based compression
Statistical image compression consists of two distinct phases: statistical modeling and
coding [12]. In the modeling phase, we construct the probability distribution for the
occurrence of the symbols to be compressed. The coding can be efficiently performed
using arithmetic coding, which is an optimal coding for a given probability model [13].

A binary image can be considered as a message, generated by an information source.
The idea of statistical modeling is to describe the message symbols (pixels) according to
the probability distribution of the source alphabet (binary alphabet, in our case).
Shannon has shown in [14] that the information content of a single symbol (pixel) in the
message (image) can be measured by its entropy.

The dependencies can be localized to a limited neighborhood, and described by a
context-based statistical model [15]. In this model, the pixel probability is conditioned
on the context C, which is defined as distinct black-white configuration of neighboring
pixels within the local template.

In principle, better probability estimation can be achieved using a larger context
template but this leads to the context dilution problem, in which the statistics are
distributed over too many contexts.

Context tree provides a more flexible approach for modeling the contexts so that larger
number of neighbor pixels can be taken into account without the context dilution
problem [10]. The contexts are represented as binary tree, and the context is constructed
pixel by pixel. The tree can be trained beforehand (static approach), or optimized
directly for the image to be compressed (semi-adaptive approach). In the latter case, an
additional pass over the image will be required and the tree must also be stored in the
compressed file.

To construct a context tree, the image is processed and statistics are calculated for every
context in the full tree, including the internal nodes. The tree is then pruned by
comparing the children and parent nodes at each level. If compression gain is not
achieved from using the children nodes instead of their parent node, the children are
removed from the tree and their parent will become a leaf node. The code length can be
calculated by summing up the self-entropies of the pixels as they occur in the image.

According to the direction of the pruning, the tree construction may be classified either
as top-down or bottom-up. In the top-down approach, the tree is constructed stepwise by
expanding the tree one level at a time starting from a predefined minimum level kMIN.
Bottom-up approach constructs a full tree of kMAX levels, which is then pruned one level
at a time up to the level kMIN using the same criterion as in the top-down approach. The

Proceedings of the Data Compression Conference (DCC’03)
1068-0314/03 $17.00 © 2003 IEEE

bottom-up approach provides better optimization of the tree [16] but the position of the
context pixels must be fixed.

In free tree [10], the position of the context pixel is also determined at each step. When
a new children node is constructed, all possible positions for the next context pixel are
analyzed within a predefined search area, and the position resulting in maximal
compression gain is chosen.

3. Map images representation
A map image could be provided us as a result of rasterization of vector map format files
like Simple Vector Format (SVF), Scalable Vector Graphics (SVG) or ERSI ArcShape
[17], as a set of binary images with different semantic meaning. In case that we will
consider topographic map series 1:20 000 of National Land Survey of Finland (NLS)
[18], each binary image represents different kind of logical information on the map like:
Basic for buildings, communication networks, Fields, Water, and Elevation lines.

The size of each image is 5000 pixels, and represents a 10 km2 area. The
map image can then be easily reconstructed by combining the binary layers, and
displayed to the user as color image, as shown in Fig. 1.

5000� 10�

On the other hand, the map image could be provided not as a set of semantically
separated binary layers, but as a color image without any additional information about
semantics of the image. Then, in order to proceed with compress of this map image by
context based compression technique we have to perform the color separation as
preliminary step to produce binary layers. The algorithm for the color separation starts
by analyzing the amount of the presenting colors in the image.

This approach has one side effect: it will produce the set of binary layers, which consist
of the same number of distinct pictures, as the number of colors in original image. In
other words, it will separate an image into all possible image colors. So, if we consider
the map image in Fig. 1 as an example, the resulting number of layers will be 5, not 4,
because the background color (white) will also be a separate layer.

Basic

Water

Contours

Fields

Layer 1 (black)

Layer 2 (blue)

Layer 3 (brown)

Layer 4 (yellow)

Layer 5 (white)

Figure 1: Illustration of a multi-component map image. The shown fragment has the

dimensions of 1000 � 1000 pixels.

Proceedings of the Data Compression Conference (DCC’03)
1068-0314/03 $17.00 © 2003 IEEE

4. Compression of binary layers
The straightforward approach is to compress the image layers separately. For this we
can use fixed-size context template defined by standard 1-norm and 2-norm distance
functions, see Fig. 2. The size of the context template is usually a parameter of the
compression algorithm, and it mainly depends on the size of the image.

It is also possible to optimize the size and shape of the template for the given image
layer to be compressed at the cost of longer compression time [8]. The optimal context
template can be solved by compressing the image using all possible templates and
selecting the one with achieved the best compression result. However, there are an
exponential number of different template configurations as a function of the template
size. A more practical approach is to optimize the locations for one pixel at a time.

Standard 1-norm template Standard 2-norm template Optimized template
(basic layer)

Optimized template
(contour layer)

5 113

8 416

?

2 7 153

11 19912 1020 6

18 14 17

 3 1713

9 515

?

2 8 144

161017 11 6

19 12 18

20

 9 219

7 316

?

1 114

15108 517 6

18 12 13 14

20

 14 216

12 415

?

1 9 193

10 2068 5

711 18

1317

Figure 2: Alternative orderings for the context templates.

The idea of multi-layer context template is to utilize the information from additional
image layer, referred here as the reference image. The restriction on the use of the
reference image is that it must already have be coded so that both encoder and decoder
have the same information. The main difference in the construction of single-layer and
multi-layer context templates is in additional neighborhood mask used for selection of
the pixels from the reference image. The pixels in the current layer must be already
coded pixels, but in the reference the pixels can be anywhere in the image.

The idea of utilizing multi-layer dependencies can be extended also to the context tree
modeling. The multi-level context tree is constructed as follows. The tree starts from
scratch and the branches are expanded one pixel at a time. The location of the template
pixels are optimized and fixed beforehand and then applied for every branch. Another
approach is to optimize the location separately for every branch (Free Tree approach).

Layer1

Layer2

Figure 3: Example of two layers obtained by color separation.

The use of the information from the reference layer will allow us in some cases to
increase the compression ratio of the single layer up to 50% according to [11]. In fact, if

Proceedings of the Data Compression Conference (DCC’03)
1068-0314/03 $17.00 © 2003 IEEE

we will consider the compression of sample images in Fig. 3, the compression of these
two images separately using single-level context trees would result in 4854+1330=6184
bytes. On the other hand, if we use the information from the first layer when
compressing the second layer, the tree structure of the second layer would be simpler.
All information would be concentrated only in the first branch of the tree, as shown in
Fig. 4. Thus the compression of the second layer would be only 146 bytes, and the final
size of the compressed file 4854+146=5000 bytes.

The map images usually have inter-layer dependencies. For example, the same pixel is
usually not set in the water layer and in the field layers at the same time although it is
possible as the layers are generated from map database independently from each other.
Another observation is that the basic and the water layers have redundant information
along the rivers and lake boundaries. In general, anything is possible, and it is not easy
to observe the existing dependencies by the eye. The dependencies, however, can be
automatically captured by the statistical modeling.

?

?

????

??

?

P = 0.01%
P = 99.99%

w
b

P = 100%
P = 0%

w
b

P = 100%
P = 0%

w
b

P = 0.68%
P = 99.32%

w
b

P = 84.31%
P = 15.69%

w
b

P = 99.93%
P = 0.07%

w
b

? ?

Fig. 4: Example of a two-level context tree, in which two context pixels are taken from the

current layer and one from the reference layer (shown below the current pixel ‘?’).

5. Optimization of the order
The existing dependencies are demonstrated in Fig. 5, in the case of the NLS map
images. There are significant inter-layer dependencies between the basic layer and the
two other layers (water, field). The contour layer, on the other hand, is independent
from all other layers. The main observation is that we cannot utilize all the existing
dependencies as the order of processing restricts which layers we can use as the
reference layer.

For example, if we compress the basic layer first, we can then improve the compression
of the water layer by 52% (118705 bytes). The opposite order would improve the
compression of the basic layer by 35% (345061 bytes). It is easy to see that the best
order for these layers would be to compress the water layer first, the basic layer second,
and then fields layer last. The contours layer should be processed either the first or the
last so that it would not affect the compression of other layers.

Proceedings of the Data Compression Conference (DCC’03)
1068-0314/03 $17.00 © 2003 IEEE

52.49%
(118705 bytes)

35.67%
(345061 bytes)

57
.7

9%
(1

54
21

 b
yt

es
)

Figure 5: The arrow links show the inter-layer dependencies as a number of saved bits the first

image is used as reference image when compressing the next one.

In general, we can select any predefined order because of known (or assumed)
dependencies. If we do not know the image source beforehand, we should optimize the
order of the layers for maximal utilization of the inter-layer dependencies. The selected
processing order can be stored in the compressed file by few bits only. The best
ordering can be achieved as explained in the following subsections.

5.1. Construction of the cost matrix
Suppose that we have k layers. To obtain the best possible order we have to study out all
pairwise dependencies by tentatively compressing every layer using each other as
a reference layer. The result would be a k�k cost matrix consisting of the absolute bit
rates for every layer-reference layer pairing. Using the information of this matrix, we
can calculate the result of all possible permutations for the processing order. If the
number of layers is small enough (with the NLS images k=4), this is not a problem.
With larger values of k, when the image was generated by color separation, this will
result in a longer computational time.

!k

On the other hand, not all information in the matrix is relevant to us. In the case when
there are no dependencies between the layers, the corresponding compression result
would be the same (or worse) with or without the use of inter-layer context model. We
can therefore reduce the amount of information in the cost matrix by subtracting the
original values by the values obtained by layer-independent compression, and then
eliminate all values less than or equal to zero. The resulting matrix is shown in Table 1.

The reduced cost matrix is considered as a directed graph with k nodes. The task of
obtaining the optimal order is closely related (but not exactly) related to the minimum
spanning tree problem. We follow the approach taken by Tate for optimal band ordering
in compression of multi-spectral images [19].

Proceedings of the Data Compression Conference (DCC’03)
1068-0314/03 $17.00 © 2003 IEEE

Table 1: Example of the cost matrix.
0 1 2 3 4 5 6 7 8 9 10 11

0 4283 7110 0 0 0 0 729 226 0 0 0
1 6293 4082 0 3 259 0 1218 288 334 118 1049
2 9963 3253 0 0 0 0 1888 0 0 0 0
3 61 0 0 98 325 3008 1113 0 0 0 860
4 0 0 0 0 0 0 0 0 0 0 0
5 158 0 0 119 0 0 2474 11 0 0 501
6 0 0 0 1570 53 122 1801 0 0 0 2570
7 3254 1698 3006 615 88 3249 2895 108 1253 883 9475
8 641 0 0 0 0 0 0 0 0 0 0
9 0 0 110 0 0 0 0 0 0 2094 285
10 415 230 818 0 12 102 0 1391 0 4984 1011
11 0 0 0 0 0 0 635 5945 0 97 0

5.2. Solving optimum branching
A spanning tree of a graph is a subset of the edges that contains all the nodes of the
graph. The minimum spanning tree (MST) is a spanning tree with the minimum sum of
the weights of the edges included in the given graph. The minimum weighted tree can
be solved in polynomial time using Prim’s algorithm [20], for example. However, there
are few differences that separate our problem of obtaining the optimal order from the
minimum spanning tree problem:

�� We have a directed graph whereas the MST is defined with undirected graph.
�� We can have only one incoming edge for any node.
�� We can have several separate spanning trees instead of only one.
�� We have maximization problem.

The first two differences make the problem as a directed spanning tree problem. The
directed spanning tree is defined as a spanning tree where all nodes (except the root)
have exactly one incoming edge. This is also known as the optimum branching problem
[21], and it can be solved in O(n2) time [22].

In the optimal ordering, it is not necessary to have a single spanning tree but we can
have separate sub graphs, see Fig. 5. This means that we should actually find spanning
forest instead of a single tree. The problem was considered as the maximum spanning
forest problem in [19]. However, we have eliminated all negative weights in the cost
matrix (Table 3), and the inclusion of a zero-edge can be considered as independent
compression of the corresponding layers. Thus, we can still consider the optimal
ordering as maximum directed spanning tree problem. For simplicity, we apply the
Edmond’s algorithm as proposed in [21], see Figure 6.

The optimal branching for the data in Table 1 is shown in Figure 7, and the
corresponding directed minimum spanning tree in Figure 8. This ordering of the layers
sums up to 124 977 bytes, which corresponds to the improvement of 24.79 % in
comparison to the original result.

Proceedings of the Data Compression Conference (DCC’03)
1068-0314/03 $17.00 © 2003 IEEE

Given:
 Connected graph G=[V,E]
 Solution set S=[V,E]

MST_For_Directed_Graph(G,S)

 FOR (each Vi) DO
 Ei = FindMinEnteringEdge(Vi,G);
 AddEdgeAndItsEndpoints(S,Ei);

 C=LocateCycles(S);
 IF (C != empty) THEN
 FOR (each Ci)
 Ee=FindEnteringEdges(G,Ci);
 CalculateModifiedCost(Ee);
 Eem=FindMinEdge(Ee);
 ReplaceEdge(Ec,Eem);

0

1

2 3

4

5

6

7

89

10

11

42
83

99
63

228

98

4984

883

1570

32
499475

3006

28
95

Figure 6: Edmond’s algorithm. Figure 7: Optimum branching for Table 1.

10

9

7
5

2

11

10 8

3 46

Figure 8: The corresponding directed MST of Figure 7.

5.3. Selection of the background color
In the case of color separation, we can also eliminate one layer completely and consider
it as the background color. Usually the background color is white but this is not
necessarily the case always. In fact, we can set any of the layer as the background color.
The consequence is that the chosen layer is not compressed. There are two obvious
choices for selecting the background color:

�� Greedy: The layer with the maximal compressed size.
�� Optimal: The layer of whose removal gives most improvement in compression.

The greedy choice is not necessary the best because of the inter-layer dependencies. In
other words, the background layer cannot be used as a reference layer, and therefore the
removal of dependent layer can increase the compressed size of other layers.

The optimal choice can be obtained by considering the removal of all possible layers.
This is computationally feasible because the problem of finding the optimal ordering
takes O(n2) where n is the number of nodes in the initial graph, and is typically small
(e.g. n=4). Thus, we can find the optimal background color at most in O(n3) time. The
bottleneck of the optimization is the calculation of the numbers in the matrix at the first
place, not solving the graph problem.

Proceedings of the Data Compression Conference (DCC’03)
1068-0314/03 $17.00 © 2003 IEEE

6. Experiments
We evaluate the proposed technique by compressing five sets of map images as shown
in Fig. 9. In the beginning, all images were passed trough color separation. The obtained
binary layers were then compressed using context tree modeling and arithmetic coding.

1 2 3 4 5
Topographic map

1 : 20 000
Topographic map

1 : 8 000
Road map
1 : 100 000

Road map
1 : 800 000

Detailed – Sea
1 : 250000

Detailed – City
1 : 250000

Figure 9: Sample 256x256 pixel fragments of the test images.

The results are summarized in Table 2 with the context tree modeling for each layer
separately (CT), and with multi-level context tree (MCT). Both variants are considered
with and without the optimal removal of the background color. The results show that the
file size of the CT is about 40% more than that of the MCT. The results of the MCT are
then compared with other compression methods in Table 3.

Table 2: The average results for each set of test images in kilobytes, and percent of
improvement in comparison with the CT.

CT

1:20000 960 616 35,79 % 577 39,94 % 401 58,23 %
1:8000 64 34 46,28 % 36 44,06 % 30 53,38 %

1:100000 243 185 23,74 % 194 20,10 % 155 35,97 %
1:800000 268 240 10,45 % 219 18,33 % 198 26,22 %

sea 181 125 30,71 % 124 31,28 % 106 41,12 %
vantaa 215 190 11,76 % 186 13,53 % 164 24,02 %
Sum 1930 13351391 1054

Multi Level CTCT w/o background Multi Level CT w/o
background

Table 3: The comparison of compression methods in bytes.

GIF PNG JBIG 16 PPM PWC SKIP MCT
1:20000 1801 1854 1018 1449 777 532 401
1:8000 86 90 62 81 35 34 30

1:100000 288 278 283 203 198 202 155
1:800000 303 287 274 211 197 198 198

sea 150 155 181 113 124 117 106
vantaa 225 212 238 172 155 172 164
Sum 2853 2876 2056 2229 1485 1256 1054

7. Conclusions
We have proposed a method for compressing multi-level context tree modeling and
optimizing the order of processing the layers. The optimal order of processing the layers
was solved by Edmond’s algorithm as for the directed minimum spanning tree problem.

Proceedings of the Data Compression Conference (DCC’03)
1068-0314/03 $17.00 © 2003 IEEE

References
[1] T.A Welch., “A Technique for High-performance Data Compression,” Computer 17(6)

pp. 8-19, June 1984.
[2] Peter Deutsch, “DEFLATE Compressed Data Format Specification,” rfc1951,

http://www.cis.ohio-state.edu/htbin/rfc/rfc1951.html, May 1996.
[3] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data Compression,” IEEE

Transactions on Information Theory, 23(3) pp. 337-343, May 1977.
[4] M. Weinberger, G. Seroussi, G. Sapiro, and M. W. Marcellin, “The LOCO-I Lossless

Image Compression Algorithm: Principles and Standardization into JPEG-LS,” HPL98-
193, HP Labs, 1998.

[5] JBIG: ISO/IEC International Standard 11544, ISO/IEC/JTC1/SC29/WG9; also ITU-T
Recommendation T.82. Progressive Bi-level Image Compression, 1993.

[6] Y. Yoo, Y. Kwon and Ortega A. “Embedded Image-Domain Adaptive Compression of
Simple Images,” 32 Asilomar Conf. on Signals, Systems and Computers, Nov. 1998.

[7] S. Forchhammer and O. Riis, “Content Layer Progressive Coding of Digital Maps”, IEEE
Proceedings Data Compression Conference, Snowbird, Utah, USA, pp. 233-242, March
2000.

[8] E.I. Ageenko, P. Kopylov and P. Fränti "Optimizing context template for compression of
multi-component map images", GraphiCon'00, Moscow, Russia, pp. 151-156, 2000.

[9] E.I. Ageenko, P. Kopylov and P. Fränti, "On the size and shape of multi-level context
templates for compression of map images", IEEE Int. Conf. on Image Processing
(ICIP'01), Thessaloniki, Greece, pp. 458-461, vol.3, October 2001.

[10] B. Martins, S. Forchhammer, “Bi-level image compression with tree coding”, IEEE
Trans. Image Processing 7 (4): 517-528, 1998.

[11] P. Kopylov and P. Fränti, “Context tree compression of multi-component map images”,
IEEE Proc. Data Compression Conference, Snowbird, Utah, USA, pp. 212-221, 2002.

[12] J.J. Rissanen and G.G. Langdon, Universal modeling and coding. IEEE Trans. Inform.
Theory IT-27: 12-23, 1981.

[13] J.J. Rissanen and G.G. Langdon, Arithmetic coding. IBM Journal of Research,
Development 23: 146-162, 1979.

[14] C.E. Shanon, A mathematical theory of communication. Bell Syst. Tech Journal 27:
398-403, 1948.

[15] G.G. Langdon, J. Rissanen, Compression of black-white images with arithmetic coding.
IEEE Trans. Communications 29 (6): 858-867, 1981.

[16] Ageenko E.I., Fränti P., “Compression of large binary images in digital spatial libraries”,
Computers & Graphics 24 (1): 91-98, February 2000.

[17] ESRI, “ESRI Shapefile Technical Description”, An ESRI White Paper, 1998.
(http://www.esri.com/library/whitepages/pdfs/shapefile.pdf)

[18] National Land Survey of Finland, Opastinsilta 12 C, P.O.Box 84, 00521 Helsinki,
Finland. (http://www.nls.fi/index_e.html)

[19] S.R. Tate, “Band ordering in lossless compression of multispectral images”, IEEE Trans.
on Computers, 46(4): 477-483, April 1997.

[20] R.C. Prim. Shortest connection networks and some generalizations. Bell Systems
Technology Journal, 36:1389-1401, 1957.

[21] J. Edmonds, “Optimum branchings”, J. Research of the National Bureau of Standards,
71B, 133-240, 1967.

[22] R.E. Tarjan, “Finding Optimum Branchings”, Networks, 7, 25-35, 1977.

Proceedings of the Data Compression Conference (DCC’03)
1068-0314/03 $17.00 © 2003 IEEE

http://www.nls.fi/index_e.html

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

