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Abstract:  

We study the compression of color map images by context tree modeling and arithmetic 
coding. The key issue of this method is the attempt of utilizing the correlations between 
the color layers of the image, and to solve the optimal order of the layers as optimum 
branching problem. The acquiring of the inter-layer dependencies is done by 
optimization of the context tree for every pair of image layers. The cost matrix of the 
inter-layer dependencies is then solved by Edmond’s algorithm for optimum branching. 

1. Introduction 
Usually, map images contain much less color information than photographic images. In 
fact, the number of colors in a typical map image is less than 256. Among different 
lossless methods tailored for the compression of such images, the most known are 
dictionary based methods: GIF and PNG. The CompuServe Graphics Interchange 
Format (GIF) is based on LZW dictionary compressor [1]. PNG (Portable Network 
Graphics) encodes the image using the deflate [2] algorithm, which is a combination of 
LZ77 dictionary compression [3] and Huffman coding. 

Statistical methods such as JPEG-LS [4] and JBIG [5] does not perform well enough for 
the map images. JPEG-LS uses linear predictive model, which works well on natural 
images where spatially adjacent pixels tend to have similar values but not so well on 
map images. JBIG uses local context modeling, which works well on binary images 
where the limited number of colors allows the use of a reasonably sized context model.  

One way to handle map images is to separate image color information into a set of 
binary layers based on color or other predefined information, and compress them 
separately. 

In Embedded Image-Domain Adaptive Compression of Simple Images (EIDAC) [6] 
three-dimensional context model was proposed. The method is tailored for compression 
of grayscale images, but also have bit-plane nature. The algorithm processes the image 
bit planes one by one, but the context pixels are selected not only from the current bit 
plane, but also from already processed layers. 

In another approach called SKIP pixel coding [7], the binary layers of the image are 
acquired by color decomposition. The coding sequence proceeds layer by layer. In a 
particular layer, if a given pixel has already been coded in a layer of higher priority it 
does not need to be coded in the current layer or any of the lower layers. Thus the 
coding of large amount of not relevant information about blank areas could be 
“skipped”. 

It was also shown that the location of the context components, and the shape of the 
context are crucial for obtaining better compression rates [8][ 9]. Moreover, use of the 
context tree [10] provides a more flexible approach for modeling, and thus allow us to 
achieve more accurate probability estimates without leading to sparse context problem. 
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Also the discovery and the use of inter-layer dependencies allow us to model the 
correlation between image layers. It was shown in [11] that the use of multi-level 
context tree for multi-component map images allows us to achieve about 25% of 
compression improvement over JBIG method. 

In this paper we propose to exploit inter-layer dependencies by using the additional 
information from different layers during the compression of the current one. This can be 
done by solving the dependency correlation as a directed minimum spanning tree 
problem (also known as optimum branching), and to apply multi-layer context tree 
compression of the layers. 

2. Context based compression 
Statistical image compression consists of two distinct phases: statistical modeling and 
coding [12]. In the modeling phase, we construct the probability distribution for the 
occurrence of the symbols to be compressed. The coding can be efficiently performed 
using arithmetic coding, which is an optimal coding for a given probability model [13]. 

A binary image can be considered as a message, generated by an information source. 
The idea of statistical modeling is to describe the message symbols (pixels) according to 
the probability distribution of the source alphabet (binary alphabet, in our case). 
Shannon has shown in [14] that the information content of a single symbol (pixel) in the 
message (image) can be measured by its entropy. 

The dependencies can be localized to a limited neighborhood, and described by a 
context-based statistical model [15]. In this model, the pixel probability is conditioned 
on the context C, which is defined as distinct black-white configuration of neighboring 
pixels within the local template. 

In principle, better probability estimation can be achieved using a larger context 
template but this leads to the context dilution problem, in which the statistics are 
distributed over too many contexts.  

Context tree provides a more flexible approach for modeling the contexts so that larger 
number of neighbor pixels can be taken into account without the context dilution 
problem [10]. The contexts are represented as binary tree, and the context is constructed 
pixel by pixel. The tree can be trained beforehand (static approach), or optimized 
directly for the image to be compressed (semi-adaptive approach).  In the latter case, an 
additional pass over the image will be required and the tree must also be stored in the 
compressed file. 

To construct a context tree, the image is processed and statistics are calculated for every 
context in the full tree, including the internal nodes. The tree is then pruned by 
comparing the children and parent nodes at each level. If compression gain is not 
achieved from using the children nodes instead of their parent node, the children are 
removed from the tree and their parent will become a leaf node. The code length can be 
calculated by summing up the self-entropies of the pixels as they occur in the image.  

According to the direction of the pruning, the tree construction may be classified either 
as top-down or bottom-up. In the top-down approach, the tree is constructed stepwise by 
expanding the tree one level at a time starting from a predefined minimum level kMIN. 
Bottom-up approach constructs a full tree of kMAX levels, which is then pruned one level 
at a time up to the level kMIN using the same criterion as in the top-down approach. The 
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bottom-up approach provides better optimization of the tree [16] but the position of the 
context pixels must be fixed. 

In free tree [10], the position of the context pixel is also determined at each step. When 
a new children node is constructed, all possible positions for the next context pixel are 
analyzed within a predefined search area, and the position resulting in maximal 
compression gain is chosen.  

3. Map images representation 
A map image could be provided us as a result of rasterization of vector map format files 
like Simple Vector Format (SVF), Scalable Vector Graphics (SVG) or ERSI ArcShape  
[17], as a set of binary images with different semantic meaning. In case that we will 
consider topographic map series 1:20 000 of National Land Survey of Finland (NLS) 
[18], each binary image represents different kind of logical information on the map like: 
Basic for buildings, communication networks, Fields, Water, and Elevation lines. 

The size of each image is 5000  pixels, and represents a 10  km2 area. The 
map image can then be easily reconstructed by combining the binary layers, and 
displayed to the user as color image, as shown in Fig. 1. 

5000� 10�

On the other hand, the map image could be provided not as a set of semantically 
separated binary layers, but as a color image without any additional information about 
semantics of the image. Then, in order to proceed with compress of this map image by 
context based compression technique we have to perform the color separation as 
preliminary step to produce binary layers. The algorithm for the color separation starts 
by analyzing the amount of the presenting colors in the image.  

This approach has one side effect: it will produce the set of binary layers, which consist 
of the same number of distinct pictures, as the number of colors in original image. In 
other words, it will separate an image into all possible image colors. So, if we consider 
the map image in Fig. 1 as an example, the resulting number of layers will be 5, not 4, 
because the background color (white) will also be a separate layer. 
 

Basic 

 

Water 

 

Contours 

 

Fields 

 

 

Layer 1 (black) 

 

Layer 2 (blue) 

 

Layer 3 (brown) 

 

Layer 4 (yellow) 

 

Layer 5 (white) 

 
Figure 1: Illustration of a multi-component map image. The shown fragment has the 

dimensions of 1000 � 1000 pixels. 
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4. Compression of binary layers 
The straightforward approach is to compress the image layers separately. For this we 
can use fixed-size context template defined by standard 1-norm and 2-norm distance 
functions, see Fig. 2. The size of the context template is usually a parameter of the 
compression algorithm, and it mainly depends on the size of the image. 

It is also possible to optimize the size and shape of the template for the given image 
layer to be compressed at the cost of longer compression time [8]. The optimal context 
template can be solved by compressing the image using all possible templates and 
selecting the one with achieved the best compression result. However, there are an 
exponential number of different template configurations as a function of the template 
size. A more practical approach is to optimize the locations for one pixel at a time. 

Standard 1-norm template Standard 2-norm template Optimized template 
(basic layer) 

Optimized template 
(contour layer) 

5 113

8 416

?

2 7 153

11 19912 1020 6

18 14 17

 3 1713

9 515

?

2 8 144

161017 11 6

19 12 18

20

 9 219

7 316

?

1 114

15108 517 6

18 12 13 14

20

 14 216

12 415

?

1 9 193

10 2068 5

711 18

1317

 

Figure 2: Alternative orderings for the context templates. 

 
The idea of multi-layer context template is to utilize the information from additional 
image layer, referred here as the reference image. The restriction on the use of the 
reference image is that it must already have be coded so that both encoder and decoder 
have the same information. The main difference in the construction of single-layer and 
multi-layer context templates is in additional neighborhood mask used for selection of 
the pixels from the reference image. The pixels in the current layer must be already 
coded pixels, but in the reference the pixels can be anywhere in the image. 

The idea of utilizing multi-layer dependencies can be extended also to the context tree 
modeling. The multi-level context tree is constructed as follows. The tree starts from 
scratch and the branches are expanded one pixel at a time. The location of the template 
pixels are optimized and fixed beforehand and then applied for every branch. Another 
approach is to optimize the location separately for every branch (Free Tree approach). 

 
Layer1 

 

Layer2 

 

Figure 3: Example of two layers obtained by color separation. 

 
The use of the information from the reference layer will allow us in some cases to 
increase the compression ratio of the single layer up to 50% according to [11]. In fact, if 
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we will consider the compression of sample images in Fig. 3, the compression of these 
two images separately using single-level context trees would result in 4854+1330=6184 
bytes. On the other hand, if we use the information from the first layer when 
compressing the second layer, the tree structure of the second layer would be simpler. 
All information would be concentrated only in the first branch of the tree, as shown in 
Fig. 4. Thus the compression of the second layer would be only 146 bytes, and the final 
size of the compressed file 4854+146=5000 bytes. 

The map images usually have inter-layer dependencies. For example, the same pixel is 
usually not set in the water layer and in the field layers at the same time although it is 
possible as the layers are generated from map database independently from each other. 
Another observation is that the basic and the water layers have redundant information 
along the rivers and lake boundaries. In general, anything is possible, and it is not easy 
to observe the existing dependencies by the eye. The dependencies, however, can be 
automatically captured by the statistical modeling. 
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Fig. 4: Example of a two-level context tree, in which two context pixels are taken from the 

current layer and one from the reference layer (shown below the current pixel ‘?’). 

5. Optimization of the order  
The existing dependencies are demonstrated in Fig. 5, in the case of the NLS map 
images. There are significant inter-layer dependencies between the basic layer and the 
two other layers (water, field). The contour layer, on the other hand, is independent 
from all other layers. The main observation is that we cannot utilize all the existing 
dependencies as the order of processing restricts which layers we can use as the 
reference layer. 

For example, if we compress the basic layer first, we can then improve the compression 
of the water layer by 52% (118705 bytes). The opposite order would improve the 
compression of the basic layer by 35% (345061 bytes). It is easy to see that the best 
order for these layers would be to compress the water layer first, the basic layer second, 
and then fields layer last. The contours layer should be processed either the first or the 
last so that it would not affect the compression of other layers. 
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Figure 5: The arrow links show the inter-layer dependencies as a number of saved bits the first 

image is used as reference image when compressing the next one. 

 

In general, we can select any predefined order because of known (or assumed) 
dependencies. If we do not know the image source beforehand, we should optimize the 
order of the layers for maximal utilization of the inter-layer dependencies. The selected 
processing order can be stored in the compressed file by few bits only. The best 
ordering can be achieved as explained in the following subsections. 

5.1. Construction of the cost matrix 
Suppose that we have k layers. To obtain the best possible order we have to study out all 
pairwise dependencies by tentatively compressing every layer using each other as 
a reference layer. The result would be a k�k cost matrix consisting of the absolute bit 
rates for every layer-reference layer pairing. Using the information of this matrix, we 
can calculate the result of all  possible permutations for the processing order. If the 
number of layers is small enough (with the NLS images k=4), this is not a problem. 
With larger values of k, when the image was generated by color separation, this will 
result in a longer computational time. 

!k

On the other hand, not all information in the matrix is relevant to us. In the case when 
there are no dependencies between the layers, the corresponding compression result 
would be the same (or worse) with or without the use of inter-layer context model. We 
can therefore reduce the amount of information in the cost matrix by subtracting the 
original values by the values obtained by layer-independent compression, and then 
eliminate all values less than or equal to zero. The resulting matrix is shown in Table 1. 

The reduced cost matrix is considered as a directed graph with k nodes. The task of 
obtaining the optimal order is closely related (but not exactly) related to the minimum 
spanning tree problem. We follow the approach taken by Tate for optimal band ordering 
in compression of multi-spectral images [19]. 
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Table 1: Example of the cost matrix. 
0 1 2 3 4 5 6 7 8 9 10 11

0 4283 7110 0 0 0 0 729 226 0 0 0
1 6293 4082 0 3 259 0 1218 288 334 118 1049
2 9963 3253 0 0 0 0 1888 0 0 0 0
3 61 0 0 98 325 3008 1113 0 0 0 860
4 0 0 0 0 0 0 0 0 0 0 0
5 158 0 0 119 0 0 2474 11 0 0 501
6 0 0 0 1570 53 122 1801 0 0 0 2570
7 3254 1698 3006 615 88 3249 2895 108 1253 883 9475
8 641 0 0 0 0 0 0 0 0 0 0
9 0 0 110 0 0 0 0 0 0 2094 285
10 415 230 818 0 12 102 0 1391 0 4984 1011
11 0 0 0 0 0 0 635 5945 0 97 0  

 

5.2. Solving optimum branching 
A spanning tree of a graph is a subset of the edges that contains all the nodes of the 
graph. The minimum spanning tree (MST) is a spanning tree with the minimum sum of 
the weights of the edges included in the given graph. The minimum weighted tree can 
be solved in polynomial time using Prim’s algorithm [20], for example. However, there 
are few differences that separate our problem of obtaining the optimal order from the 
minimum spanning tree problem: 

�� We have a directed graph whereas the MST is defined with undirected graph. 
�� We can have only one incoming edge for any node. 
�� We can have several separate spanning trees instead of only one. 
�� We have maximization problem. 

The first two differences make the problem as a directed spanning tree problem. The 
directed spanning tree is defined as a spanning tree where all nodes (except the root) 
have exactly one incoming edge. This is also known as the optimum branching problem 
[21], and it can be solved in O(n2) time [22]. 

In the optimal ordering, it is not necessary to have a single spanning tree but we can 
have separate sub graphs, see Fig. 5. This means that we should actually find spanning 
forest instead of a single tree. The problem was considered as the maximum spanning 
forest problem in [19]. However, we have eliminated all negative weights in the cost 
matrix (Table 3), and the inclusion of a zero-edge can be considered as independent 
compression of the corresponding layers. Thus, we can still consider the optimal 
ordering as maximum directed spanning tree problem. For simplicity, we apply the 
Edmond’s algorithm as proposed in [21], see Figure 6. 

The optimal branching for the data in Table 1 is shown in Figure 7, and the 
corresponding directed minimum spanning tree in Figure 8. This ordering of the layers 
sums up to 124 977 bytes, which corresponds to the improvement of 24.79 % in 
comparison to the original result. 
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Given: 
  Connected graph G=[V,E] 
  Solution set S=[V,E] 

MST_For_Directed_Graph(G,S) 

  FOR (each Vi) DO 
    Ei = FindMinEnteringEdge(Vi,G); 
    AddEdgeAndItsEndpoints(S,Ei); 
   
  C=LocateCycles(S); 
  IF (C != empty) THEN 
    FOR (each Ci) 
      Ee=FindEnteringEdges(G,Ci); 
      CalculateModifiedCost(Ee); 
      Eem=FindMinEdge(Ee); 
      ReplaceEdge(Ec,Eem); 
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Figure 6: Edmond’s algorithm. Figure 7: Optimum branching for Table 1. 
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Figure 8: The corresponding directed MST of Figure 7. 

 

5.3. Selection of the background color 
In the case of color separation, we can also eliminate one layer completely and consider 
it as the background color. Usually the background color is white but this is not 
necessarily the case always. In fact, we can set any of the layer as the background color. 
The consequence is that the chosen layer is not compressed. There are two obvious 
choices for selecting the background color: 

�� Greedy: The layer with the maximal compressed size.  
�� Optimal: The layer of whose removal gives most improvement in compression. 

The greedy choice is not necessary the best because of the inter-layer dependencies. In 
other words, the background layer cannot be used as a reference layer, and therefore the 
removal of dependent layer can increase the compressed size of other layers.  

The optimal choice can be obtained by considering the removal of all possible layers. 
This is computationally feasible because the problem of finding the optimal ordering 
takes O(n2) where n is the number of nodes in the initial graph, and is typically small 
(e.g. n=4). Thus, we can find the optimal background color at most in O(n3) time. The 
bottleneck of the optimization is the calculation of the numbers in the matrix at the first 
place, not solving the graph problem. 
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6. Experiments 
We evaluate the proposed technique by compressing five sets of map images as shown 
in Fig. 9. In the beginning, all images were passed trough color separation. The obtained 
binary layers were then compressed using context tree modeling and arithmetic coding. 

1 2 3 4 5 
Topographic map 

1 : 20 000 
Topographic map 

1 : 8 000 
Road map 
1 : 100 000 

Road map 
1 : 800 000 

Detailed – Sea  
1 : 250000 

Detailed – City 
1 : 250000 

   
Figure 9: Sample 256x256 pixel fragments of the test images. 

 
The results are summarized in Table 2 with the context tree modeling for each layer 
separately (CT), and with multi-level context tree (MCT). Both variants are considered 
with and without the optimal removal of the background color. The results show that the 
file size of the CT is about 40% more than that of the MCT. The results of the MCT are 
then compared with other compression methods in Table 3. 

Table 2: The average results for each set of test images in kilobytes, and percent of 
improvement in comparison with the CT. 

CT

1:20000 960 616 35,79 % 577 39,94 % 401 58,23 %
1:8000 64 34 46,28 % 36 44,06 % 30 53,38 %

1:100000 243 185 23,74 % 194 20,10 % 155 35,97 %
1:800000 268 240 10,45 % 219 18,33 % 198 26,22 %

sea 181 125 30,71 % 124 31,28 % 106 41,12 %
vantaa 215 190 11,76 % 186 13,53 % 164 24,02 %
Sum 1930 13351391 1054

Multi Level CTCT w/o background Multi Level CT w/o 
background

 
 
Table 3: The comparison of compression methods in bytes. 

GIF PNG JBIG 16 PPM PWC SKIP MCT
1:20000 1801 1854 1018 1449 777 532 401
1:8000 86 90 62 81 35 34 30

1:100000 288 278 283 203 198 202 155
1:800000 303 287 274 211 197 198 198

sea 150 155 181 113 124 117 106
vantaa 225 212 238 172 155 172 164
Sum 2853 2876 2056 2229 1485 1256 1054  

7. Conclusions  
We have proposed a method for compressing multi-level context tree modeling and 
optimizing the order of processing the layers. The optimal order of processing the layers 
was solved by Edmond’s algorithm as for the directed minimum spanning tree problem.  
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