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Technical mismatches between the training and matching conditions adversely affect the performance of
a speaker recognition system. In this paper, we present a matching scheme which is invariant to feature
rotation, translation and uniform scaling. The proposed approach uses a neighborhood graph to represent
the global shape of the feature distribution. The reference and test graphs are aligned by graph matching
and the match score is computed using conventional template matching. Experiments on the NIST-1999
SRE corpus indicate that the method is comparable to conventional Gaussian mixture model (GMM) and
vector quantization (VQ)-based approaches.
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1. Introduction

One of the biggest challenges in automatic speaker recognition
is obtaining invariance across varying operating conditions, while
retaining maximum speaker variability. Different handset type,
transmission line/coding, and background noise are typical factors,
which lead to signal mismatch across training and recognition. For
a speaker recognition system to be useful in practice it needs to be
optimized against the mismatch problem.

Various approaches have been proposed for tackling the invari-
ance problem, including robust feature extraction (Mammone
et al., 1996), feature normalization (Pelecanos and Sridharan,
2001), model transformation (Kenny et al., 2007; Teunen et al.,
2002; Vogt and Sridharan, 2008), and match score normalization
(Auckenthaler et al., 2000; Reynolds et al., 2000).

State-of-the-art text-independent speaker recognizers use
mean subtraction at the utterance level, often referred to as ceps-
tral mean subtraction (CMS) in the context of cepstral features.
The assumption in mean subtraction is that all the feature vectors
have been translated by an unknown channel-dependent vector.
By subtracting the mean from both the training and testing vectors,
the matching is less affected by this bias. For clean data (no chan-
nel mismatch), CMS degrades accuracy.

A general affine channel/environment model (Mak and Tsang,
2004; Mammone et al., 1996) includes rotation and scaling of the
ll rights reserved.

i).
feature vectors in addition to the additive bias. The three transfor-
mations – rotation, scaling, and translation – can be collectively ex-
pressed as an affine feature distortion model: y ¼ Axþ b. The
matrix A and vector b are channel-dependent transformation
parameters, whereas x and y are the ‘‘clean” and the ‘‘noisy” (ob-
served) vectors, respectively.

In image- and video-based biometrics, invariance against rota-
tion, translation and scaling is often desirable. For instance, a face
recognizer would produce the same match score, independent of
face tilting (rotation), location with respect to the background
(translation) and distance from the camera (scale). A natural idea
to achieve invariance is to construct a graph from certain feature
points from the images and then to use graph matching (Bunke
and Shearer, 1998) methodology. In the matching phase, only the
graph structures – and not the original feature points – are
compared. For example, Burge and Burger (2000) use Voronoi dia-
gram graphs to model ear shape. The graphs of the reference ear
and the unknown ear were matched using error-correcting graph
matching.

It is an open question whether similar ideas could be adopted to
speaker recognition. In our view, formulation of a transformation
invariant matching scheme for speech features poses several chal-
lenges. First, images are two-dimensional, and the semantic mean-
ing of the constructed graph can be visually verified. However,
commonly used speech spectrum features are high-dimensional
(10–40 dimensions), and it is difficult to give an intuitive meaning
to the graph calculated from the extracted features. Second, in
text-independent speaker recognition, the feature distributions of
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Fig. 1. Speaker recognition system diagram.

Fig. 2. Directed kNNG with k ¼ 1 (left), undirected version (right).
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the training vectors and the test utterance are likely to vary be-
cause of text mismatch in addition to the technical mismatches
mentioned above. It is also unclear whether the matching should
use the whole distributions, or should a good match be indicated
if the sub-graphs from the reference vectors and the test utterance
match well.

The motivation of this paper is to experiment with a few simple
ideas. To our knowledge, no graph-based matching has previously
been proposed for text-independent speaker recognition. The over-
view of the proposed scheme is illustrated in Fig. 1. We first cluster
both the training and the testing vectors into a small number of
clusters, represented by a set of centroid vectors. Neighborhood
graphs are then constructed for both sets. Finally, structural simi-
larity of the reference and the test graphs is evaluated by calculat-
ing the degree of isomorphism between the graphs.

We also propose a matching framework which is a hybrid be-
tween graph-based structural matching and vector-based template
matching. Graph matching is used as a pairing tool between the ref-
erence and the test centroids. The paired vectors from each set are
then used for finding the parameters of the affine transformation
model. Finally, the match score is computed as the distortion be-
tween the compensated centroids.

Feature and speaker model transformations, including the affine
transformation, have been studied by different authors (Kenny
et al., 2007; Mak and Tsang, 2004; Mammone et al., 1996; Siohan
and Lee, 1997; Vogt and Sridharan, 2008). These methods usually
require either parallel training data recorded simultaneously
through various handsets, or a large number of training utterances
collected from multiple recording sessions from a number of
speakers. These datasets are then used for estimating the transfor-
mation parameters. The method that we propose, in turn, aligns
the test vectors to the claimed speaker’s model during verification.
Therefore, the proposed method does not require any external data
or training of a channel/session variability model.

The rest of the paper is organized as follows. In Section 2, we
give details of the structural graph matching framework. Section
3 describes the hybrid structural and template matching algo-
rithm. Experimental setup and the results are described in Section
4. Finally, conclusions are drawn in Section 5.

2. Graph matching based on maximum common subgraph

In order to match two high-dimensional feature sets, we need
to extract some stable ‘‘feature points” from each set. This is some-
what analogous to finding minutia points from fingerprint images,
or eye locations from face images. We extract the same number of
feature points (N) from each set. Our assumption here is that when
the two feature sets originate from the same speaker, the relative
positions of the feature points, i.e. the shape of the distribution, re-
mains similar despite the channel effects and noise.

The steps of the proposed graph-based alignment are summa-
rized as follows:

(1) Feature extraction: Extract N feature points from both the
test and the training sets by clustering.

(2) Graph creation: Construct neighborhood graphs from the
training and testing feature points.

(3) Pairing of the feature points: Find the maximum common
subgraph (MCS) between the two graphs.

(4) Computing the match score: Based on the size of the maxi-
mum common subgraph.

To implement Step 1, we use k-means (MacQueen, 1967). As a
result of clustering, we have a set of code vectors located in
‘‘dense” regions of the feature distribution. It is assumed that the
dense regions are related to broad phonetic classes of the given
speaker and that they form stable points that can be used as the
reference points in alignment.

2.1. Graph creation

The output of clustering is a set of centroid vectors. We model
the relationship between the centroids using a k-nearest neighbour
graph (kNNG), in which each vertex represents a feature vector,
and the edges are pointers to the neighbouring vectors (Fränti
et al., 2006). Each vertex has exactly k edges to its k-nearest neigh-
bors in the sense of Euclidean distance. The final graph is obtained
by removing the distance information (weights), and converting
all the edges to undirected ones as illustrated in Fig. 2. As an
example, the edge set of the graph in the right side of Fig. 2 is
E ¼ fða; bÞ; ðb; cÞ; ðc; dÞ; ðd; eÞ; ðg; f Þ; ðh; iÞ; ði; jÞ; ðj; kÞ; ðl;mÞ; ðm;nÞg. In
(Fränti et al., 2006), neighbourhood size was studied in the context
of agglomerative clustering. It was found that, practical values of k
vary between 5 and 12. Here we set k ¼ 8.
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2.2. Defining the match score

A matching function is defined between two undirected and un-
weighted graphs G1 ¼ ðV1; E1Þ and G2 ¼ ðV2; E2Þ, where V1;2 and E1;2

are the discrete sets of vertices and edges, respectively. The most
natural measure of similarity between two graphs is based on
graph isomorphism (Diestel, 2000). Two graphs are isomorphic if
their vertices and edges can be relabeled using a common set of la-
bels. More precisely, the graphs G1 and G2 are isomorphic, if there
exists a bijection from the vertices and edges of G1 to the vertices
and edges of G2. Whenever two graphs are isomorphic, their struc-
ture (topology) is said to match perfectly.

Unfortunately, graphs constructed from real-world signals
never match perfectly due to measurement inaccuracies and signal
distortions. For that reason, we need to define a non-binary match
score which measures the degree of isomorphism (Bunke and
Messmer, 1997). We adopt the following distance measure (Bunke
and Shearer, 1998):

DMCSðG1;G2Þ ¼ 1� jMCSðG1;G2Þj
maxðjG1j; jG2jÞ

; ð1Þ

where MCSðG1;G2Þ is the maximum common subgraph (MCS) be-
tween G1 and G2, and j � j denotes the number of vertices in the gi-
ven graph. A maximum common subgraph is defined as the largest
graph, which is isomorphic to subgraphs found in G1 and G2. The
limits of the distance function DMCS are 0 and 1, where 0 is obtained
when the graphs G1 and G2 are isomorphic. The distance reaches a
maximum when the size of the MCS is 0, and this happens only
when one of the graphs is empty. If both graphs contain vertices,
at least the individual vertices are isomorphic to each other and
DMCS is less than one. In our graph matching system,
jG1j ¼ jG2j ¼ N, so the maximum size of the MCS is N. By noting that
the smallest size of MCS is 1, we obtain that (1) can have at most
N � 1 unique values.

There are both advantages and disadvantages in using the dis-
tance (1). The advantage is that the measure (1) is theoretically a
very good candidate for a similarity score: it satisfies all the metric
space axioms (Bunke and Shearer, 1998), including the triangular
inequality. The drawback is that finding the maximum common
subgraph is an NP-complete problem (Kann, 1992). For this reason,
we have to restrict the experiments to a small number of vectors.

2.3. Computing the match score

We use the Durand–Pasari algorithm (Durand et al., 1999) to
find the maximum common subgraph. It finds the MCS in two
steps. First, a so-called association graph (Levi, 1972) is constructed
from the graphs G1 and G2. The association graph
Gassc ¼ ðVassc; EasscÞ is a description of the isomorphic relationships
between the pairs of vertices in both graphs. We take a pair of ver-
tices from G1 and G2, and if the pairs are isomorphic, the associa-
tion graph has an edge denoting that relation. From the
definition it follows that the association graph can be easily com-
puted in OðN4Þ time. On the other hand, an association graph has
N2 vertices, so the worst case memory consumption will occur
when the association graph is a complete graph, resulting in
jEasscj ¼ N4. In practice, the memory consumption depends on the
edge density. Edge density refers to the number of edges normal-
ized by the number of vertices.

In the second step, the maximum clique (Diestel, 2000) is found
from the association graph. A clique is a subgraph, which has edges
between all its vertices. This step, however, takes OðN2 � N2!Þ time
(Conte et al., 2007) and is the bottleneck of the algorithm. We
therefore consider a faster heuristic known as Reactive Local Search
for Maximum Clique (RLSMC) (Battiti and Mascia, 2007). It is an iter-
ative local search heuristic, in which a new maximum clique solu-
tion is found in each iteration, taking into account the solutions
from the previous iterations. One iteration of this algorithm works
in OðmaxfN2; jEasscjgÞ time. Drawback of the heuristic is that there
is no guarantee on the result compared to the exact algorithm. The
steps of the matching algorithm are summarized in Algorithm 1.
Algorithm 1. Computation of DMCS
Cluster the input data sets X1 and X2

Construct kNNG’s G1 and G2 from the clustering result of X1 and X2

Construct association graph from G1 and G2

Find maximum clique from the association graph
Calculate score using DMCSðG1;G2Þ
2.4. Graph invariance to affine transformation

To show that the (1) is invariant to rotation, uniform scaling and
translation, we need to show that kNN graph is invariant under
these properties. If kNN graph is invariant, the corresponding max-
imum common subgraph is invariant also and the claim is true.
Next we show that kNN graph is indeed invariant. Let A be a rota-
tion matrix which includes uniform scaling by factor a, that is,
ATA ¼ AAT ¼ aI. Furthermore, let f ðxÞ be the affine map
x7!Axþ b. The squared Euclidean distance between two arbitrary
vectors x and y which both have been subjected to transformation
f is,

kf ðxÞ � f ðyÞk2 ¼ kðAxþ bÞ � ðAy þ bÞk2 ¼ ðAx� AyÞTðAx� AyÞ

¼ ðAxÞTðAx� AyÞ � ðAyÞTðAx� AyÞ

¼ xTATAx� xTATAy � yTATAxþ yTATAy

¼ aðxTx� xTy � yTxþ yTyÞ ¼ akx� yk2
; ð2Þ

which is the distance in the original space multiplied by a constant.
Therefore, the kNN neighborhood assignments in the transformed
space do not change.
3. Hybrid graph- and template-based matching

Conventional speaker recognition methods based on vector
quantization (VQ) or Gaussian mixture modeling (GMM) directly
match the unknown person’s feature vectors against the reference
model(s). This template-based approach gives a real-valued match
score but is not robust against affine transformations of features.
The graph matching based on the MCS distance (1), on the other
hand, implements structural matching as the match score is com-
puted from the graph structures without any reference to the ori-
ginal vectors. The match score, however, is discrete and cannot be
expected to be a very discriminative dissimilarity value: often no
unique best-matching speaker was observed in our preliminary
speaker identification experiments. We therefore formulate a hy-
brid approach that combines the good properties of the graph-
and template-based approaches by using graph matching as an
alignment tool prior to template matching.

The method has two main phases. In the first phase, the refer-
ence and test vector sets are paired by graph matching. The corre-
sponding vectors from the isomorphic vertices from the kNN
graphs are paired together. Denoting the N cluster centroids
from the test and reference sets by X ¼ fxig; i ¼ 1; . . . ;N and
Y ¼ fyig; . . . ;N, respectively, graph matching produces the index
pairs ðik; jkÞ; k ¼ 1;2; . . . ;K where ik; jk 2 f1;2; . . . ;Ng and K ¼
jMCSðG1;G2Þj.

To this end, we have defined a pairing between the two sets of
vectors that allows optimization under the affine distortion model.
Assuming that eX ¼ fxikg; k ¼ 1;2; . . . ;K contains the ‘‘clean” andeY ¼ fyjk

g; k ¼ 1;2; . . . ;K contains the ‘‘noisy” vectors, we want to



Fig. 3. Matching before (left) and after the alignment by MCS (right).
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find the affine transformation that minimizes the squared error be-
tween the two paired vector sets,

ðA�;b�Þ ¼ arg min
ðA;bÞ

XK

k¼1

kyjk
� ðAxik þ bÞk2

: ð3Þ

To solve the optimization problem (3), we represent the vectors in
extended form by adding one more dimension with scalar 1,
x̂ ¼ ½xT;1�T. The extended vectors from each set are re-arranged into
two matrices X and Y according to the pairing, that is,
X ¼ ðx̂i1 ; x̂i2 ; . . . ; x̂iK Þ and Y ¼ ðŷj1 ; ŷj2 ; . . . ; ŷjK Þ. The parameters of the
affine transformation, on the other hand, can be represented as

W ¼
A b
0 � � � 0 0 1

� �
; ð4Þ

and the optimization problem (3) can be written as a system of lin-
ear equations:

Y ¼ cW X; ð5Þ

which has the standard least squares solution via normal equations:

cW ¼ YXTðXXTÞ�1
: ð6Þ

The least squares approximation of the transform parameters can
then be obtained directly from the matrix cW .

In the second phase, all the remaining (non-matched) code vec-
tors from the sets X ¼ X n eX and Y ¼ Y n eY are matched. Test vec-
tors are first transformed using the affine transformation and
then matched by the quantization distortion defined as:

DTSEðX;YÞ ¼
X
x2X

min
y2Y
kx� yk2

: ð7Þ

The reason for excluding the MCS-paired vectors is that these
vectors already match perfectly in the sense of the graph distance.
A nonzero distortion value is obtained when the reference and test
distribution shapes (in the sense of the graph structure) differ from
each other. In this sense, the score can said to be a hybrid structural
and template score. The hybrid matching algorithm is summarized
in Algorithm 2, and illustrated in Fig. 3.
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Algorithm 2. Hybrid graph- and template-based matching
Find the pairing ðik; jkÞ; k ¼ 1;2; . . . ;K using MCS
Find the solution ðA�;b�Þ to (3) using least squares
X  X n fxikg; k ¼ 1; . . . ;K
Y  Y n fyjk

g; k ¼ 1; . . . ;K
X  replace each vector x in X by A�xþ b�

Compute the score as DTSEðY ;XÞ þ DTSEðX;YÞ
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Fig. 4. The effect of the number of iterations on the accuracy of the local search
heuristic (RLSMC algorithm) relative to the exact algorithm (Durand–Pasari).
4. Experiments

4.1. Effectiveness of the heuristic graph matching algorithm

We have two graph matching algorithms, the exact Durand–
Pasari algorithm (exact MCS) and the heuristic RLSMC algorithm
(heuristic MCS). With the exact algorithm, the size of the graph
is restricted to 20 vertices in practise due to its exponential time
complexity. This is clearly too small a number for modeling spec-
tral features. Therefore, for any large scale experiments, the heuris-
tic variant must be used.

We first study the quality of the heuristic algorithm by generat-
ing a random graph G with N vertices using the so-called Erd}os-Re-
nyi (Diestel, 2000) algorithm. We then randomly permutate the
vertex labels in order to obtain a graph G0 which is isomorphic to
G. The result of the heuristic algorithm is compared to the known
optimum (N), and the relative differences are summarized in Fig. 4
as a function of the iterations in the algorithm. For smaller graphs,
the heuristic solution is close (within 15%) to the exact solution
which is acceptable for our method. For the further experiments,
we fix the number of iterations to 5000.

4.2. Demonstration of rotation invariance

Next, we demonstrate the rotation invariance property of the
graph-based methods. We extract mel-frequency cepstral coeffi-
cients (MFCCs) from two speakers (see Section 4.3). We then rotate
these feature sets with pre-specified rotation matrices and study
whether the graph-based approaches are capable of undoing the
rotation. In the ideal case, the match score (distortion) of 0 would
be obtained regardless of rotation.

We refer to the two speakers as A and B, and denote the original
codebooks by A0 and B0, respectively. Both of these sets are then
rotated by 45� three times (in a sequence) by using different rota-
tion axes. Rotations are performed subsequently after each other,
yielding rotated feature sets denoted as A1, A2 and A3 (B1, B2
and B3, respectively). The first two dimensions of the feature sets
are displayed in Figs. 5 and 6 along with N ¼ 20 codebook
centroids.

We match the dataset A0 against all the eight datasets and com-
pute the match scores using the template-based method (TSE), the
structural approach (graph matching), and the hybrid method
(graph matching followed by TSE matching). For the graph match-
ing, we use either the Durand–Pasari algorithm (exact) or the
RLSMC algorithm (heuristic). The match scores (distances) are gi-
ven in Table 1.

The TSE distance increases when the datasets become rotated
more, as expected. The graph-based approach, on the other hand,
is much less affected by rotation. The exact MCS variant gives a
perfect match for the correct speaker in all cases. The heuristic
MCS variant is slightly less accurate, but the order of the speaker
scores is still correct: larger distortions are obtained for speaker
B as should be. It is also noted that the hybrid approach gives a



Fig. 5. The first two dimensions of the original A0 (left), along with the rotated sets A1, A2 and A3.

Fig. 6. The first two dimensions of the original feature set B0 (left), along with the rotated sets B1, B2 and B3.

Table 1
Match scores from the rotation experiment

Algorithm Match A0 against

A0 A1 A2 A3 B0 B1 B2 B3

Template-based (TSE) 0.00 1.00 1.22 1.62 0.61 1.44 2.03 2.47

Structural (graph)
Exact MCS 0.00 0.00 0.00 0.00 0.35 0.35 0.35 0.35
Heuristic MCS 0.05 0.05 0.05 0.05 0.35 0.35 0.35 0.35

Hybrid (graph + TSE)
Exact MCS 0.00 0.00 0.00 0.00 1.35 2.25 2.85 2.43
Heuristic MCS 0.00 0.03 0.05 0.03 0.37 0.87 0.92 1.53

Table 2
Speaker verification accuracies (EER %) on a subset of the NIST-1999 corpus

Model size GMM baseline VQ baseline Graph + TSE (heuristic MCS)

32 15.3 12.5 20.0
64 17.1 12.5 13.8

128 17.2 12.5 15.0
256 15.0 11.3 N/A
512 13.8 12.5 N/A

1024 12.5 11.3 N/A

Model size refers to the number of Gaussians (GMM), code vectors (VQ) or graph
vertices (graph + TSE).
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Fig. 7. Verification accuracies of the methods on the NIST-1999 corpus.
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wider range of match scores compared with the purely structural
matching as expected.

4.3. Speaker recognition experiments

We use a subset of the NIST-1999 SRE speaker recognition eval-
uation corpus for the speaker recognition experiments. The data is
conversational speech acquired over a landline telephone network,
and the sampling rate is 8 kHz. We use the 12 lowest mel-fre-
quency cepstral coefficients (MFCCs) as the acoustic features,
excluding the 0th coefficient. The window size is 30 milliseconds,
and the mel-frequency filterbank consists of 27 triangular-shaped
filters.

We have selected 30 male target speakers for our experiments
from the training section of the corpus. In the original corpus, each
speaker has two training files from two different recording sessions
denoted as ‘‘a” and ‘‘b”. We use the ‘‘a” files as the training files and
the ‘‘b” files as the test data. Identification accuracy is measured by
performing closed-set identification on these 30 speakers. For the
verification experiments, we match all the ða; bÞ cross-pairs from
these speakers, and an additional 50 genuine trials from additional
speakers from the same corpus. This amounts to a total number of
80 genuine and 870 impostor trials. Verification accuracy is mea-
sured using the detection error trade-off (DET) plots and equal er-
ror rate (EER).

We include two standard approaches as reference systems:
adapted GMM (Reynolds et al., 2000) and adapted VQ (Hautamäki
et al., 2008). Both of them use a previously trained universal back-
ground model (UBM) to train the target-specific GMM, or a code-
book using maximum a posteriori (MAP) criterion. We use 70
speakers from the other training segments of the NIST-1999 corpus
to train the UBMs. Adaptation relevance factors of r ¼ 16 and
r ¼ 12 are used for the GMM- and VQ-based models, respectively.
Only the mean vectors are adapted in the GMM system (Reynolds
et al., 2000). In the matching phase, the target score is normalized
using the background model score.

The EERs are given in Table 2 and the DET plot for model size
N ¼ 64 is shown in Fig. 7. Overall, the graph-based approach is
comparable to GMM and VQ. The graph-based approach is slightly
better at small false alarm rates. The accuracy of GMM increases as
a function of model size whereas the accuracy of the graph-based



Table 3
Speaker identification error rates on a subset of the NIST-1999 corpus

Model Individual systems Fusion

GMM-UBM
(%)

Graph + TSE
(%)

Score-level
(%)

Rank-level
(%)

Voting
(%)

32 30 43 27 30 37
64 23 30 20 23 27

128 23 30 23 29 27
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approach degrades at N ¼ 128. A likely explanation is that the heu-
ristic MCS algorithm has not converged and the number of itera-
tions should be set higher since the size of the association graph
is much larger compared with N ¼ 64. For larger graphs, the space
required by the association graph and the running times were
impractically high.

Finally, we choose the GMM- and graph-based systems for a fu-
sion experiment. In score fusion, we first normalize the scores of
each classifier to have zero mean and unit variance, followed by
equal weights summation. In rank fusion, the scores of each classi-
fier are converted to rank values and summed. In voting, the ranks
are hardened to binary decisions. In the case of a tie, we randomly
choose between the best-matching speakers. The fusion results are
given in Table 3. Score fusion improves accuracy for the model
sizes N ¼ 32 and N ¼ 64, which suggests that the two approaches
might contain mutually complementary information.

5. Conclusions

In this study, we have introduced graph-based matching ap-
proach to text-independent speaker recognition. The approach
was motivated by the fact that a neighborhood graph encodes
structural information about the feature space. Under the affine
distortion model – including rotation, translation, and uniform
scaling – ideally the neighborhood graph should not change.

The performance of the proposed method was comparable to
the GMM- and VQ-based approaches. A fusion experiment demon-
strated that GMM- and graph-based methods might contain mutu-
ally complementary information. The approach has potential to
complement or replace currently used statistical and template-
based methods.

The method, however, has several practical problems to be
solved before it can be utilized in real-life speaker recognition sys-
tems. First, exact graph matching is computationally expensive,
and heuristic algorithm needs to be used which weakens the per-
formance. Second, the size of the association graph grows fast for
large models, which implies increased running time. The largest
graph that we could test in reasonable time was 128. A possible fu-
ture solution could be based on a heuristic algorithm, which solves
the graph matching problem directly, without reducing it first to
the maximum clique search from the association graph. To further
speed up scoring in the identification task, some form of decision
tree in which the ‘‘feature points” represent tree nodes, could be
used.

In the current approach, the ‘‘feature points” from the reference
and test sets were found by clustering and implicitly assumed to
correspond to phonetic classes. In general, the joint effects of chan-
nel and text (phonetic) mismatch are not well understood. Re-
cently, excellent results have been obtained by using phone-class
constrained GMMs which reduces text mismatch by phone recog-
nition (Castaldo et al., 2007). The graph-based method could be
used by restricting matching onto the same phone classes between
training and test utterances.

Different graph structures are also possible. In this study, we
considered unweighted kNN graph where a node is either con-
nected or not to another node. A possible future direction would
be using real-valued weights (such as Euclidean distances between
points) and re-defining the matching framework for such graphs.
Current likelihood-based (or frame-based) approaches also assume
independence of the frames, largely ignoring utterance-level struc-
tural information. Graph matching could be potentially used as an
alternative matching tool for the existing GMM-based systems.
These are points for future research.
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