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ABSTRACT

An i-vector approach to extracting features for video camera based
gesture recognition is proposed. Conventional low-level raw fea-
tures, such as position, speed, and acceleration, are low-dimensional
feature representations which often suffer from measurement noise
and thus are not highly discriminative. High-level features, such as
Fourier descriptor, usually take a global transformation on the whole
raw features of a gesture, but local statistical information is sel-
dom considered. Moreover, compared with speech recordings, video
cameras used to capture data are often at a low frame rate such that
it is challenging for proper modeling and recognition. In this paper,
we show that the proposed i-vector framework can handle both local
statistical information and sparse trajectory representations more ef-
ficiently under the sparse data scenarios for an in-car hand-gesturing
English letter recognition system. Experimental results confirm the
effectiveness of the proposed i-vector features, which can reduce the
letter error rate by as much as 36-44% relatively from the results
obtained with the conventional location based raw features.

Index Terms— gesture recognition, i-vector, hidden Markov
model, support vector machine, orthonormal basis

1. INTRODUCTION

Human computer interface (HCI) systems are drawing increasing at-
tention recently due to the increasing requirement to naturally inter-
act with multiple software or hardware systems in our daily lives.
Multi-modal inputs [1] should be considered for an HCI system to
enable natural ways of interacting with users. Recently, gesture
recognition is becoming more important because it provides some
side information that is not easily gained by speech recognition.

To establish an automatic gesture recognition (AGR) system
with continuous data sequences, we can use many popular sequen-
tial modeling techniques that have been studied in the community
of automatic speech recognition (ASR) [2]. Among them, hidden
Markov model (HMM) [3] has been reported to be useful for AGR
as well [4, 5, 6]. Thus we will use it as our baseline for this study.

In this study, the main focus is to develop a statistical feature
representation that is capable of describing the detailed local gesture
structure such that the discriminative power can be enhanced for ges-
tures of finger-written English letters. It is important to explore these
kind of features because conventional gestural features mostly rely
on the raw trajectory information, such as position and velocity se-
quences [4, 5, 6], and may not be as strong as speech feature vectors
in terms of their discriminative power.

Conventional features for gesture recognition can be roughly
categorized into two types. The first one contains the previously
mentioned raw features of a trajectory, the second one includes the
global transformation or statistics of the whole trajectory, such as
Fourier descriptors (FD) [7, 8], histogram of trajectory orientations

[9], or velocity profiles [10, 11]. Although some successful results
are reported, these features seldom consider local information such
as sub-unit relationships. For example, the local difference between
letter M and N only lies in their last strokes, “↗↓ move-out-stroke”
and “↑ move-out-stroke”, respectively. This kind of information
should be emphasized for better distinguishing letter M and N but
is not considered by these global features.

In this paper, we propose to use a statistical feature called i-
vector, mostly used in speaker verification literature [12, 13, 14, 15,
16], to represent the desired local statistical information by aligning
most likely state boundaries with a Viterbi decoder for HMM [3]
and extracting corresponding i-vector for each state. If each HMM
has 8 states, for instance, 8 i-vectors will be extracted. We can sim-
ply concatenate them to form a big vector to represent a gesture so
that classifiers such as support vector machines (SVMs) [17] can be
adopted to train a multi-class classifier for i-vector features.

Also, by comparing the i-vector with super-vector representation
and the reduced dimension representation using principal component
analysis (PCA), we found it will be highly beneficial to orthonormal-
ize the projection matrix of the i-vector extraction process. With this
modification, the proposed modified i-vector framework can reduce
the letter error rate by up to 36-44% compared to the baseline HMM
system on two different data sets.

2. RELATED WORK

The main focus of this work, as mentioned in the introduction, is
on building meaningful statistical features for AGR systems. Details
for previously mentioned three categories of gesture features are re-
viewed in this section.

To extract raw features for a gesture trajectory, clues such as
color and foreground-background correlation [18] are used to track
the hand location sequences followed by proper normalization [6].
Many derived quantities such as velocity, acceleration can then be
used. Despite of its easy representation, reasonable results are re-
ported in many indoor gesture recognition systems [4, 5]. However,
under noisy environments, object detection is subject to error and
extracted gesture trajectory can be questionable for proper modeling
[6]. Moreover, no structural or geometric information is explicitly
considered, while the advantages of applying local information such
as strokes are reported [6]. For example, when whole-letter HMM
is applied, the confusion of letter P and D can be observed. It can
be further disambiguated by considering the intersection points be-
tween curvy stroke (

y

or

y

) and the straight stroke (↑).
Another way to describe a trajectory based gesture is to use

global transformations on the data. The histogram of eight differ-
ent orientations are adopted and histograms for these directions are
pooled and fed into a k-nearest neighbor classifier [9]. In addition,
Fourier descriptor [7, 8] can also be used as a global feature by re-
sampling the original trajectory points to fixed number of points and
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Fig. 1. Concept of the i-vector technique

applying Cosine mapping to alleviate the non-stable results caused
by non-periodic characteristics of the trajectory. Fourier transform
is then performed on the re-sampled trajectory data or related quan-
tities. These methods are considered as global features and a single
feature vector would be generated for each gesture.

Alternatively, we may build the intermediate level local statisti-
cal feature by i-vector [12, 13, 14, 15, 16]. It was shown to be highly
discriminative for many speaker related problems compared to other
statistical features. As far as we know, this technique was mostly
used on speaker related works as well as audio concept detectors
[19], and was not yet explored in other communities.

3. I-VECTOR

In this section, we will first review the i-vector and introduce the
strategy on how we use this technique for our AGR system.

3.1. Conventional I-Vector

The i-vector [12], successfully adopted to the recent NIST Speaker
Recognition Evaluation (SRE) tasks [13, 14, 15, 16], is a statisti-
cal feature extraction technique developed from joint factor analysis
(JFA) [20] and is similar in flavor but more general when compared
to probabilistic principal component analysis (PPCA) [21]. The ba-
sic idea is to represent the expected variation of the posterior mean
vector compared with the mean vectors of a set of reference Gaus-
sian mixtures in a reduced space.

Assume the whole feature space can be roughly described by
a Gaussian mixture model (GMM) with C mixture components, a
super-vector of these C mixtures can be formed by concatenating
mean vectors of these Gaussian densities according to a set of pre-
defined mixture indices. This GMM is called universal background
model (UBM) [22] for the feature space. The corresponding super-
vector formed by concatenating mean vectors of all mixtures is de-
noted bym. The i-vector is formulated as:

µ = m+ V y + ε, (1)

where ε is a Gaussian noise term with zero mean and a diagonal
covariance matrix.

The core of i-vector is to find a projection matrix V so that, after
observing a data segment, the expected change of the posterior mean
statistic in the super-vector domain when compared to the UBM can

be represented in a reduced space effectively. Unlike most dimen-
sional reduction techniques such as PCA which focus on the com-
ponent analysis of its covariance matrix, i-vector scheme focuses on
the posterior statistical behavior. As shown in Fig. 1, it is natural
to claim that the posterior membership of a set of input feature vec-
tors should only concentrate on a small subset of the UBM mixtures.
Therefore, (µ −m) should be a sparse vector in the super-vector
domain. This is why performing a dimension reduction can empha-
size these differences and thus have a potential to increase the dis-
criminative power. The actual posterior super-vector µ however, is
a latent variable due to the fact that the actual membership of each
feature vector to what specific mixtures is unknown. So the i-vector
is defined as the expectation of the vector y in an expectation and
maximization (EM) framework [23, 24, 25].

By denoting the feature vector dimension as D, target i-vector
dimension as r, the dimension of the UBM super-vectorm and pos-
terior super-vector meanµwill beCD×1, and in general r � CD.
The target i-vector dimension r, also viewed as the rank of the pro-
jection matrix V , is a design parameter of this technique. It is rea-
sonable to guess it by doing eigen value analysis on data covariance
matrix evaluated in the super-vector domain.

To calculate the i-vector under latent characteristic of posterior
super-vector µ, assume the super-vector UBM mean and covariance
matrix correspond to the cth mixture are mc and Σc, respectively.
With ot being the feature vector at the tth frame, and γt(c) being the
posterior probability of the mixture c after observing ot, the training
of the projection matrixV can be done in the following way [12, 25]:

1. Randomly initialize V ,
2. For each gesture s with Ts frames from N training gestures,

estimate Baum-Welch statistics with Eq. (2) and (3),
3. Estimate expected i-vector for each gesture by Eq. (4),
4. EstimateVc, the component ofV corresponds to the cth mix-

ture of UBM with Eq. (5),
5. Iterate until stop criteria, say 10 iterations, for V are met.

The effective count for mixture c:

Nc(s) =

Ts∑
t=1

γt(c), (2)

and the expected changes on mixture c:

Fc(s) =

Ts∑
t=1

γt(c)(ot −mc), (3)
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and the iterative update equations:

〈y(s)〉 =(I +

C∑
c=1

Nc(s)V
∗
c Σ−1

c Vc)
−1·

(

C∑
c=1

V ∗c Σ
−1
c Fc(s)), (4)

Vc =(

N∑
s=1

Fc(s)〈y∗(s)〉)·

(

N∑
s=1

Nc(s)〈y(s)y∗(s)〉)−1. (5)

Once the UBM and the projection matrix V are ready, we can
compute i-vector for each testing segment with Eq. (4). In this study,
ALIZE toolkit [26] is used.

3.2. Proposed Modifications on I-Vector for AGR systems

Despite its effectiveness reported in the speaker verification task, di-
rectly apply this GMM-based technique for all observed trajectories
will not keep the structural information of the underlying gestures,
as we will see its negative impact in Section 5.

To resolve this problem, the direct solution is inspired by an
original work of i-vector [25] and similar strategies [27, 28]. For
each gesture, we can just apply the i-vector on the Viterbi aligned
state sequence. That is, we first use standard HMM recognition to
get the state sequence given by the model with maximal log likeli-
hood score and apply i-vector extraction on segment aligned to each
state, and eventually concatenate i-vectors generated by these states
to form a super-vector of the i-vectors aligned to these states. We
call it “one i-vector per state” strategy in the following paragraphs.

An induced problem is how to select the UBM for each state.
One easiest way is to pool all mixtures from the same state of dif-
ferent models and assume these mixtures are the only candidates to
be chosen within this specific state. Or we can make a tied-mixture
system and apply this tied-mixture pool as UBM mixtures. In this
work, we took the former one for it can be computed more efficiently
and the results are still quite reasonable.

Besides doing HMM state alignment and extract i-vectors cor-
responding to these states, an alternative solution is to use a sliding
window to extract i-vectors so that we will have a set of i-vectors for
each gesture.This method will be more computationally expensive
and unfortunately cannot provide extra gain so we will not discuss it
here. Therefore, the “one i-vector per state” strategy will be used as
our primary feature to be fed into SVM classifiers.

Moreover, note that in Eq. (4), the column vectors of the projec-
tion matrix Vc are not guaranteed to form an orthonormal basis. As
will be discussed in Section 5, it is quite crucial to orthonormalize
these vectors. We believe this is because when these column vectors
are not mutually independent, they may not be able to achieve the
best representation of the original posterior variation in low dimen-
sional space. Moreover, since classifiers based on Euclidean dis-
tance are sensitive to the data scales, the normalization process is
also believed to be able to make the resulting i-vector more robust
to estimation noise. For practical data, we found the Vc matrix can
have small norms for some of its column vectors and the inner prod-
uct terms for these column vectors with other column vectors can
sometimes be even at scales larger than their norms. This make it
more sensible to ensure the projection matrix Vc to have orthonor-
mal column vectors.

4. CLASSIFIERS FOR AGR SYSTEMS

In this section, we will introduce the classifiers used in our system.
For sequence recognition with raw trajectory features, we adopted
HMMs, and for vector-based classification with i-vector features,
SVMs were utilized.

4.1. Hidden Markov Model

As mentioned in previous studies [4, 5, 6], HMM is one of the most
intuitive ways for sequence modeling. A continuous density HMM is
the most commonly used model for ASR, which solves the following
problem:

arg max
λk∈Λ

{log[P (Os|λk)]}, (6)

whereOs is a sequence of feature vectors of the sth test gesture and
model λk, representing gesture class k, is a member of the available
model set Λ. The probability term P (.) can be decomposed into the
product of discrete state transition probability terms and continuous
state observation density terms usually modeled by GMMs. In the
present work, each λk represent a whole-letter gesture correspond-
ing to a pre-defined writing order.

One advantage of HMM is its capability to segment the contin-
uous data into several states. As mentioned in Section 3.2, this state
alignment information can be used to extract i-vector for each state
accordingly. Hidden Markov model toolkit [29] is used for modeling
and recognizing HMM based AGR.

4.2. Support Vector Machine

SVM [17] is widely used in information retrieval problems [30, 31].
Its soft margin version with regularized penalty term is most widely
used, which is shown in the following:

min
w,ξ,b
{1

2
‖w‖2 + C

n∑
i=1

ξi}

subject to yi(w · x− b) ≥ 1− ξi, ∀i = 1, ..., N, (7)

where yi ∈ {−1, 1} is the class label of the ith sample for a specific
target class. Therefore, multiple SVMs are used for a multi-class
problem. Once the feature vectorxwas extracted, it could be applied
in a straight-forward way. In this study, we adopted this linear SVM
classifier implemented using LIBSVM tool [32].

5. EXPERIMENTS AND RESULTS

We designed a series of experiments to verify the proposed methods.
Two in-car data sets, data sets 1 and 2, were used. We first present
the common experimental setups for all experiments.

5.1. Common Experimental Setups

The two data sets were recorded with Dragonfly 2 camera at 15 fps
frame rate. The controlled set 1 was collected in an uncontrolled
manner from 17 users at three different times, morning, noon, and
evening, respectively. In addition, set 2 was collected with 10 users
only around noon time with controlled lighting conditions, but all
gestures in data set 2 did not share the same stroke orders as those
in data set 1. Moreover, in set 2, it may have different stroke or-
ders for the same letter, for example, we observed 6 different ways
to express the gesture letter “E”. About 3,800 and 3,500 available
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Table 1. Results for Preliminary Experiments

Feature Type Dimension Classifier
Set 1

(1,877)
LER(%)

Set 2
(1,717)
LER(%)

Raw Feature 6 HMM 14.86 7.16
FD

(Global Feature) 64 SVM 26.52 13.80

One i-vector/gesture
(Global Feature)

64 SVM 16.41 11.07
100 SVM 16.46 11.01

labeled gesturing sequences were selected for sets 1 and 2, respec-
tively. We then randomly chose half of the data for training and the
rest for testing, with training and testing data sharing the same pool
of users. These two data sets were evaluated separately to check the
robustness of the i-vector features for AGR systems.

The raw features were consisted of 6-dimension data: the scaled
position, corresponding smoothed velocity and acceleration. The po-
sition coordinates were scaled into a square region with both axes
normalized to be within [0, 1]. A smoothing window of size 3 is
used for computing both the velocity and acceleration in both axes.

As for HMMs, we chose 8 states and 2 mixtures per state be-
cause the configuration with large number of states may leave too
few data points in each state. We adopted this configuration and
found the baseline system to be slightly worse than the configura-
tion mentioned in our previous study [6] with 16-state HMMs and
1 mixture per state on test set 1. However, even starting from this
configuration, we were able to outperform the previously reported
HMM-based system with i-vector and SVM.

For the i-vector systems, 64 and 100 dimensions were chosen to
test the system performance. Although these are fairly small num-
bers compared to those used in speaker recognition systems [12, 13,
14, 15, 16], we found both dimensions can contribute to more than
99% of the data covariance so it was adequate to represent the po-
tential data variation.

5.2. Preliminary Experiments

First, we performed a set of preliminary experiments to compare
global features with the raw trajectory features. For the global fea-
ture, we computed 64 dimensional FD features and only used a sin-
gle i-vector to represent each gesture in both the 64 and 100 dimen-
sional subspaces. These extracted features were then fed into SVM
classifiers mentioned above. Compared to the baseline HMM system
with raw features, unfortunately, these two global features are infe-
rior to the baseline, as shown in the rows 2 to 4 of Table 1, with sizes
of two testing data sets given in the brackets shown in the columns
4 and 5 of the header row. This is because the FD features could
capture and treat meaningless move-in and move-out strokes with
random orientations as real gesturing parts. By removing them, the
FD system can be comparable to the baseline. Moreover, although
the single i-vector system seems to be better than FD as a global
feature system, it is still inferior to the baseline for ignoring local
structural information. The weakness of these global features and
the importance of the local statistical information were now verified.
In the remainder of the paper, we will only discuss the local features.

5.3. Experiments with Local Features

Next, the local statistical features with i-vector extracted at each state
will be examined. We first ran the baseline HMM system to deter-
mine the state boundaries of the most likely state sequences. During
the training phase, data segments aligned to each state were pooled

Table 2. AGR Results for Two Data Sets with Local Features

Feature Type Dimension Classifier
Set 1

(1,877)
LER(%)

Set 2
(1,717)
LER(%)

Raw Feature 6 HMM 14.86 7.16

One i-vector/state 64×8=512 SVM 11.19 8.10
100×8=800 SVM 10.82 7.34

Super-Vector 2,496 SVM 8.79 5.24

Super-Vector(PCA) 512 SVM 8.79 5.36
800 SVM 8.74 5.36

One i-vector/state
with orthonormalV

64×8=512 SVM 8.63 4.54
100×8=800 SVM 8.31 4.83

to train the V matrix for each state and UBM were formed by mix-
tures belonging to the corresponding state as in Section 3.2.

We compared the projected i-vector with the original super-
vector, estimated µ − m, and the naı̈ve dimensional reduction
based on PCA. As shown in the rows 2 and 3 of Table 2, the 64
and 100 dimensional i-vector per state setups can respectively give
24.70%-37.34% relative error reductions for test set 1, but increase
the error rate by 2.51%-13.13% for test set 2 relatively. We believe
these degradations were due to the non-uniform norm of the non-
orthogonal column vectors of the projection matrix V discussed in
Section 3.2. As shown in Table 2, the original super-vector in row
4 and the features reduced to 512 and 800 dimensions in rows 5
and 6 are comparable for both test sets and consistently better than
the i-vector results in rows 2 and 3. These results not only show
that PCA can preserve the discriminative power of the super-vector
but verify the importance of ensuring the column vectors of V to
form an orthonormal basis. Therefore, as we can see in the last two
rows of Table 2, the i-vector with an orthonormalized matrix V ,
again, consistently outperformed all other systems with a relative
error reduction of up to 44.08% and 36.59% for test sets 1 and 2
compared to the baseline, respectively. The effectiveness of the
proposed scheme is thus verified.

6. CONCLUSION AND FUTURE WORK

We proposed an i-vector based feature extraction framework for ges-
ture recognition of finger-written English letters. We also showed
that ensuring the column vectors of the projection matrix V of i-
vector extraction to be orthonormal is the key to enhance the dis-
criminative power of the resulting i-vector over original super-vector.
With this modified framework, experiments confirm the effective-
ness of the proposed scheme can achieve up to a relative 36-44%
relative reduction on letter error rates for two different data sets.

We believe the i-vector features will open up new research op-
portunities in gesture recognition. Although it is designed to only
extend whole-letter models, its robustness and strong discriminative
power is clearly verified. Different factors could also be studied un-
der the JFA framework for letter modeling. Lighting conditions is
one of the most critical sources for AGR errors. User modeling in
AGR is also a subject that fits into the JFA framework similar to
speaker modeling in speaker verification.
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