
Divide-and-conquer algorithm for creating neighborhood graph for clustering

Olli Virmajoki and Pasi Fränti

Department of Computer Science, University of Joensuu, PB 111, FIN-80101 Joensuu, Finland.
ovirma@cs.joensuu.fi, franti@cs.joensuu.fi

Abstract
 K-nearest neighbor graph has been used for reducing

the number of distance calculations in PNN-based
clustering. The bottleneck of the approach is the creation
of the graph. In this paper, we develop a fast divide-and-
conquer method for graph creation based on algorithm
previously used in the closest pair problem. The proposed
algorithm is then applied to agglomerative clustering, in
which it outperforms previous projection-based algorithm
for high dimensional spatial data sets.

1. Introduction
Agglomerative clustering is popular method for

generating the clustering hierarchically by a sequence of
merge operations. Ward’s method [1] selects the cluster
pair to be merged that minimizes the increase in the
distortion function value. In vector quantization, it is
known as pairwise nearest neighbor (PNN) method [2].
The main drawback of PNN method is its slowness. The
straightforward implementation requires O(N3) time
whereas a faster implementation exists [3] but still lower
bounded by �(N2). The main source of computation
originates from the search of the nearest neighbor cluster.

In a previous work, it was shown that neighborhood
graph can be applied for reducing the number of distance
calculations in PNN [4]. Concept referred as k-nearest
neighbor graph (kNN graph) was introduced. In the graph,
every node represents a cluster, and the edges correspond
to the pointers to the neighbor clusters. The graph is
utilized as a search structure: every time we need to search
for the nearest neighbor cluster, we consider only clusters
that are neighbors in the graph structure. Thus, the use of
the graph approximates the O(N) time full search by a
faster O(k) time search method.

The potential improvement due to the neighborhood
graph was found to be significant in [4] but the graph
creation is the bottleneck of the algorithm. In this work,
we propose a new algorithm based on divide-and-conquer
technique proposed for the closest pair problem [5].
Experimental results indicate that the proposed approach
works well in the case of high-dimensional data sets.

2. Graph-based clustering
The clustering problem is defined here as

a combinatorial optimization problem. Given a set of N
data vectors X={x1, x2, …, xN}, partition the data set into
M clusters so that a given distortion function is minimized.
Partition P={p1, p2, …, pN} defines the clustering by
giving for each data vector the index of the cluster where it
is assigned to. A cluster sa is defined as the set of data
vectors that belong to the same partition a.

The clustering is then represented as the set S={s1, s2,
..., sM}. In vector quantization, the output of the clustering
is a codebook C={c1, c2, …, cM}, which is usually the set
of cluster centroids. We assume that the vectors belong to
Euclidean space, and use the mean square error (MSE) as
the distortion function.

2.1. Pairwise nearest neighbor method

The pairwise nearest neighbor (PNN) method [1,2]
generates the clustering hierarchically by a sequence of
merge operations. At each step, two nearby clusters are
merged. The method uses greedy strategy by choosing the
cluster pair that increases the MSE least. A fast variant
with linear memory consumption stores for every cluster
a pointer to its nearest neighbor cluster [3]. Nevertheless,
there are O(�N) distance calculations to be performed after
every merge operation, which results in O(�N2) time
algorithm, where � is the number of clusters to be updated.

2.2. K-nearest neighbor graph

We define k-nearest neighbor graph (kNN graph) as
a weighted directed graph, in which every node represents
a single cluster, and the edges correspond to the pointers
to the neighbor clusters. The distance of clusters is defined
by the merge distortion function [1,2].

The graph is utilized as a search structure: every time
we need to search for the nearest neighbor, we consider
only the clusters that are neighbors in the graph structure.
Thus, the use of the graph approximates the O(N) time full
search by a faster O(k) time search method.

mailto:franti@cs.joensuu.fi

GraphPNN(X, M) � S

FOR i�1 to N DO
si � {xi};

 FOR � DO � �),1;(Nisi �

Find k nearest neighbors;

REPEAT
(sa, sb) � GetNearestClustersInGraph(S);
sab � Merge(sa, sb);
Find the k nearest neighbors for sab;
Update the nodes that had sa and sb as neighbors;

UNTIL |S|=M;

Fig. 1. Structure of the Graph-PNN. Fig. 2. Illustration of a kNN graph for k=4.

2.3. Utilization of the graph

The main structure of the algorithm is given in Fig. 1.
The algorithm starts by initializing every data vector as its
own clusters, and by constructing the neighborhood graph.
The algorithm iterates by removing nodes from the graph
until the desired number of clusters has been reached.

At first, the edge with smallest weight is found, and the
nodes (sa and sb) are merged. The algorithm creates a new
node sab from the clusters sa and sb, which are removed
from the graph. The corresponding edge costs are updated.
The algorithm must also calculate cost values for the
outgoing edges from the newly created node sab. The k
nearest neighbors is found among the 2k neighbors of the
previously merged nodes sa and sb. The time complexity of
the iterations is O(�N log N). A sample nearest neighbor
graph is illustrated in Fig. 2.

3. Creation of the graph
The graph can be constructed by brute force by

considering all pairwise distances but at the cost of O(N2)
time. We therefore consider two faster methods: the mean-
distance ordered partial search (MPS), and a new divide-
and-conquer technique.

3.1. MPS for searching k neighbors

The MPS method was originally proposed for k-means
clustering in [6], generalized to the PNN in [7], and used
for the graph creation in [4]. The MPS method stores the
component sums of each cluster centroid (code vectors),
which correspond to the projections of the vectors to the
diagonal axis of the vector space. Then, given the cost
function value of the best candidate found so far, vectors
outside the radius defined by a given pre-condition can be
excluded in the calculations.

For finding the k nearest clusters, the condition of the
graph was relaxed so that we find any k neighbors instead
of the nearest ones. In particular, we use the exact MPS
method for finding the nearest neighbor but stop the search
immediately when it has been found. In addition to this,
we maintain ordered list of the k best candidates found so
far. The rest of the neighbors are then chosen simply from
the list of the candidates. Even though the method is faster
than the brute force, it still dominates the running time in
the experiments made in [4]. Thus, faster graph creation is
still desired.

3.2. Closest pair problem

We adopt the idea from a solution given to the closest pair
problem [5]. The closest pair problem is stated as follows:
given N points in d-dimensional space, find the two whose
mutual distance is the smallest. The problem can be solved
by recursive algorithm:

1. Divide X into X1 and X2 by the median hyper
plane H normal to some axis.

2. Recursively solve the problem for X1 and X2.
3. Compute δ = min(δ1, δ2), where δ1 and δ2 are the

found distances in X1 and X2.
4. Let X3 be the set of points that are within δ of H.
5. Use the δ –sparsity condition to recursively

examine all pairs in X3.

It has been shown that, in the case of 2-dimensional vector
space, only a constant number of points can be neighbor in
any cell in the set X3 [8]. Assuming that the same primary
axis is used in the division, the points can be pre-sorted
and the analysis step can be performed in linear time. It
has been proven that the algorithm takes O(N log N) time
and the algorithm generalizes to multi-dimensional spaces
but at the cost O(N logd-1N) time [9], where d is the
number of dimensions.

Divide-and-Conquer(X, k, ck) � kNN
IF (|X| > ck) THEN

X1, X2, proj � Divide(X);
KNN1 � Divide-and-conquer(X1, k, ck);
KNN2 � Divide-and-conquer(X2, k, ck);
KNN � KNN1 � KNN2;
X3 � GenerateThirdSet(X, kNN, proj);
kNN3 � Divide-and-conquer(S3, k, ck);
kNN � CombineResults(kNN, kNN3);

ELSE
kNN � BruteForce(X, kNN, k);

END-IF
RETURN kNN;

GenerateThirdSet(X, kNN, proj) � X3
X3 � �;
FOR i � 1 TO |X| DO

� � ProjectionDistance(X[i], proj);
IF c� < kNN[i,1] THEN

X3 � X3 � X[i];
RETURN X3;

Fig. 3. Sketch of the divide-and-conquer algorithm.

3.3. Divide-and-conquer for k-nearest neighbors

We introduce next an algorithm applicable for finding
k-near neighbors based on the above divide-and-conquer
approach with the following differences. Firstly, we search
several closest pairs for every vector in the data set.
Secondly, we use principle component analysis (PCA) for
calculating the projection axis with the maximum
deviation. Thirdly, we use a distance-based heuristic for
selecting the vectors to be included in the third sub set.

The pseudo code of the algorithm is given in Fig. 3. At
each step of the recursion, we divide the data set X into
two sub sets X1 and X2 of equal sizes as follows. We first
calculate the principle axis of the data vectors in X, and
then select (d-1)-dimensional hyper plane H perpendicular
to the principal axis. The hyper plane is selected so that
approximately half of the vectors belong to one side of the
space, and the rest to the other side. Once the dividing
procedure has been done, the two sub problems X1 and X2
are solved recursively. Sub problems smaller than ck are
solved by brute force search.

After the sub problems have been solved, we generate
a third sub set X3 consisting of vectors that are closer to
the dividing hyper plane H than to its nearest neighbor in
the corresponding sub set (X1 or X2). By using the control
parameter c we can control the number of vectors chosen
in the sub set. Once the sub set is created, the algorithm is
recursively applied for X3. Finally, the results of the three
sub problems are combined. Fig. 4 illustrates the division
of the set X to three overlapping sub sets.

Sub set X1

�

�

�

�

H

New neighbor link that w ill be
found by the analysis of X3

Sub set X2

Sub set X3

Fig. 4. Division to three overlapping sub sets (X1, X2, X3
according to the dividing hyper plane H. The arrows indicate the
nearest neighbors of the vectors.

The time complexity of the proposed divide-and-conquer
algorithm is estimated here by a recurrence T(N) =
3�T(N/2) + O(N�d2) assuming that the size of the third sub
set is less than equal to that of the other sub sets X1 and
X2. The second term originate from the calculation of the
principal axis. The rest of the calculations can be
performed in linear time. The recurrence solves to
O(d2

�N1.58
�logN). It might be possible to squeeze the

complexity to O(N�logN) by selecting the dividing hyper
plane by some simpler method, and by making tighter
bounds for the third sub set. Note that the size of the X3
can be controlled by the parameter c.

4. Experiments
We consider three data sets from [3] with the number of
clusters fixed to M=256. The illustration in Fig. 5 shows
the amount of work required by the graph creation and the
PNN iterations with the different number of neighborhood
size (k). In the following, we fix the neighborhood size to
k=4.

0
1
2
3
4
5
6

2 4 6 8 10 12 14 16 18 20

k

se
co

nd
s PNN iterations

Graph creation by divide-and-conquer

Bridge

Fig. 5. Effect of the neighborhood size on running time.

Table 1. Running times of the graph creation.
Bridge House Miss America

Time MSE Time MSE Time MSE
Brute Force 34 171.17 881 6.43 89 5.44

Brute Force /fast 16 172.20 446 6.33 43 5.48
MPS 3 171.11 18 6.37 44 5.44

Graph
PNN

Divide-and-Conquer 2 171.80 49 6.58 7 5.44

Table 2. Comparison of the Graph-PNN to other methods.
Bridge House Miss America

Time MSE Time MSE Time MSE
Full search 79 168.92 1574 6.27 229 5.36 Fast PNN

+PDS+MPS+Lazy 9 168.92 190 6.26 106 5.37
Full MPS 3 170.28 19 6.33 45 5.11

Limited search MPS 3 170.56 14 6.51 6 5.58
Graph PNN

Divide-and-conquer 2 170.69 51 6.37 8 5.43
Full MPS 4 166.23 20 6.14 47 5.30

Limited search MPS 4 166.38 15 6.18 9 5.34
Graph PNN + GLA

Divide-and-conquer 2 165.81 52 6.14 10 5.30
Standard 13 179.95 23 7.77 20 5.95 GLA

+PDS+MPS+Activity 2 180.02 3 7.80 8 5.95

5,3

5,4

5,5

5,6

5,7

5,8

5,9

6,0

0 10 20 30 40
Time (seconds)

M
SE

Fast GLA

Miss America

MPS

Standard GLA

Divide-and-conquer

Fig. 6. Time-distortion performance of the Graph-PNN.

The running times of the graph creation are summarized in
Table 1, and the overall results in Table 2. Comparative
results are given for the fast exact PNN [3], and the fast
exact PNN with several speed-up methods as proposed in
[7]. Two k-means variants (GLA and Fast GLA) are also
included. The results show that the divide-and-conquer
technique is faster than the MPS with the 16-dimensional
data sets (Bridge and Miss America) but slower with the
3-dimensional data set (House). The time-distortion
performance is illustrated in Fig. 6 for Miss America with
the two graph creation algorithms.

5. Conclusion
The proposed divide-and-conquer technique provides fast
method for the creation of the graph, and it improves the

previous method in the case of the high dimensional data
sets. In the 3-dimensional color clustering, on the other
hand, the method was slower than the existing MPS
method.

6. References
[1] J.H. Ward, "Hierarchical grouping to optimize an objective

function," J. Amer. Statist.Assoc., 58, 236-244, 1963.
[2] W.H. Equitz, "A new vector quantization clustering

algorithm," IEEE-ASSP, 37(10), 1568-1575, Oct. 1989.
[3] P. Fränti, T. Kaukoranta, D.-F. Shen and K.-S. Chang,

"Fast and memory efficient implementation of the exact
PNN," IEEE-IP, 9(5), 773-777, May 2000.

[4] P. Fränti, O. Virmajoki and V. Hautamäki "Fast PNN-
based clustering using k-nearest neighbor graph", IEEE
Int. Conf. on Data Mining (ICDM’03), pp. 525-528,
Melbourne, FL USA, November 2003.

[5] F.P. Preparata, M.I. Shamos, Computational Geometry: An
Introduction. Springer-Verlag, New York, 1985.

[6] S.-W. Ra and J.K. Kim, “A fast mean-distance-ordered
partial codebook search algorithm for image vector
quantization,” IEEE-CS, 40(9), 576-579, September 1993.

[7] O. Virmajoki, P. Fränti, T. Kaukoranta, "Practical methods
for speeding-up the pairwise nearest neighbor method",
Optical Engineering, 40(11), 2495-2504, November 2001.

[8] M.I. Shamos, "Geometric complexity", Proc. 7th Annual
ACM Symposium on the Theory of Computing, pp.224-
233, Albuquerque, New Mexico, 1975

[9] J.L. Bentley and M.I. Shamos, "Divide-and-Conquer in
Multidimensional Space", 8th Annual ACM Symposium on
the Theory of Computing, pp.220-230, New York, 1976.

	Introduction
	Graph-based clustering
	Pairwise nearest neighbor method
	K-nearest neighbor graph
	Utilization of the graph

	Creation of the graph
	MPS for searching k neighbors
	Closest pair problem
	Divide-and-conquer for k-nearest neighbors

	Experiments
	Conclusion
	References

