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Abstract 
 K-nearest neighbor graph has been used for reducing 

the number of distance calculations in PNN-based 
clustering. The bottleneck of the approach is the creation 
of the graph. In this paper, we develop a fast divide-and-
conquer method for graph creation based on algorithm 
previously used in the closest pair problem. The proposed 
algorithm is then applied to agglomerative clustering, in 
which it outperforms previous projection-based algorithm 
for high dimensional spatial data sets. 

1. Introduction 
Agglomerative clustering is popular method for 

generating the clustering hierarchically by a sequence of 
merge operations. Ward’s method [1] selects the cluster 
pair to be merged that minimizes the increase in the 
distortion function value. In vector quantization, it is 
known as pairwise nearest neighbor (PNN) method [2]. 
The main drawback of PNN method is its slowness. The 
straightforward implementation requires O(N3) time 
whereas a faster implementation exists [3] but still lower 
bounded by �(N2). The main source of computation 
originates from the search of the nearest neighbor cluster. 

In a previous work, it was shown that neighborhood 
graph can be applied for reducing the number of distance 
calculations in PNN [4]. Concept referred as k-nearest 
neighbor graph (kNN graph) was introduced. In the graph, 
every node represents a cluster, and the edges correspond 
to the pointers to the neighbor clusters. The graph is 
utilized as a search structure: every time we need to search 
for the nearest neighbor cluster, we consider only clusters 
that are neighbors in the graph structure. Thus, the use of 
the graph approximates the O(N) time full search by a 
faster O(k) time search method. 

The potential improvement due to the neighborhood 
graph was found to be significant in [4] but the graph 
creation is the bottleneck of the algorithm. In this work, 
we propose a new algorithm based on divide-and-conquer 
technique proposed for the closest pair problem [5]. 
Experimental results indicate that the proposed approach 
works well in the case of high-dimensional data sets. 

 

2. Graph-based clustering 
The clustering problem is defined here as 

a combinatorial optimization problem. Given a set of N 
data vectors X={x1, x2, …, xN}, partition the data set into 
M clusters so that a given distortion function is minimized. 
Partition P={p1, p2, …, pN} defines the clustering by 
giving for each data vector the index of the cluster where it 
is assigned to. A cluster sa is defined as the set of data 
vectors that belong to the same partition a. 

The clustering is then represented as the set S={s1, s2, 
..., sM}. In vector quantization, the output of the clustering 
is a codebook C={c1, c2, …, cM}, which is usually the set 
of cluster centroids. We assume that the vectors belong to 
Euclidean space, and use the mean square error (MSE) as 
the distortion function. 

 
2.1. Pairwise nearest neighbor method 

The pairwise nearest neighbor (PNN) method [1,2] 
generates the clustering hierarchically by a sequence of 
merge operations. At each step, two nearby clusters are 
merged. The method uses greedy strategy by choosing the 
cluster pair that increases the MSE least. A fast variant 
with linear memory consumption stores for every cluster 
a pointer to its nearest neighbor cluster [3]. Nevertheless, 
there are O(�N) distance calculations to be performed after 
every merge operation, which results in O(�N2) time 
algorithm, where � is the number of clusters to be updated. 

 
2.2. K-nearest neighbor graph 

We define k-nearest neighbor graph (kNN graph) as 
a weighted directed graph, in which every node represents 
a single cluster, and the edges correspond to the pointers 
to the neighbor clusters. The distance of clusters is defined 
by the merge distortion function [1,2]. 

The graph is utilized as a search structure: every time 
we need to search for the nearest neighbor, we consider 
only the clusters that are neighbors in the graph structure. 
Thus, the use of the graph approximates the O(N) time full 
search by a faster O(k) time search method. 
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GraphPNN(X, M) � S 

FOR i�1 to N DO 
si � {xi}; 

      FOR �  DO  � �),1;( Nisi �

Find k nearest neighbors; 

REPEAT 
(sa, sb) � GetNearestClustersInGraph(S); 
sab � Merge(sa, sb); 
Find the k nearest neighbors for sab; 
Update the nodes that had sa and sb as neighbors; 

UNTIL |S|=M; 
 

 
Fig. 1. Structure of the Graph-PNN. Fig. 2. Illustration of a kNN graph for k=4. 

 

 
2.3. Utilization of the graph 

The main structure of the algorithm is given in Fig. 1. 
The algorithm starts by initializing every data vector as its 
own clusters, and by constructing the neighborhood graph. 
The algorithm iterates by removing nodes from the graph 
until the desired number of clusters has been reached. 

At first, the edge with smallest weight is found, and the 
nodes (sa and sb) are merged. The algorithm creates a new 
node sab from the clusters sa and sb, which are removed 
from the graph. The corresponding edge costs are updated. 
The algorithm must also calculate cost values for the 
outgoing edges from the newly created node sab. The k 
nearest neighbors is found among the 2k neighbors of the 
previously merged nodes sa and sb. The time complexity of 
the iterations is O(�N log N). A sample nearest neighbor 
graph is illustrated in Fig. 2. 

3. Creation of the graph 
The graph can be constructed by brute force by 

considering all pairwise distances but at the cost of O(N2) 
time. We therefore consider two faster methods: the mean-
distance ordered partial search (MPS), and a new divide-
and-conquer technique. 

3.1. MPS for searching k neighbors 

The MPS method was originally proposed for k-means 
clustering in [6], generalized to the PNN in [7], and used 
for the graph creation in [4]. The MPS method stores the 
component sums of each cluster centroid (code vectors), 
which correspond to the projections of the vectors to the 
diagonal axis of the vector space. Then, given the cost 
function value of the best candidate found so far, vectors 
outside the radius defined by a given pre-condition can be 
excluded in the calculations. 

For finding the k nearest clusters, the condition of the 
graph was relaxed so that we find any k neighbors instead 
of the nearest ones. In particular, we use the exact MPS 
method for finding the nearest neighbor but stop the search 
immediately when it has been found. In addition to this, 
we maintain ordered list of the k best candidates found so 
far. The rest of the neighbors are then chosen simply from 
the list of the candidates. Even though the method is faster 
than the brute force, it still dominates the running time in 
the experiments made in [4]. Thus, faster graph creation is 
still desired. 

3.2. Closest pair problem 

We adopt the idea from a solution given to the closest pair 
problem [5]. The closest pair problem is stated as follows: 
given N points in d-dimensional space, find the two whose 
mutual distance is the smallest. The problem can be solved 
by recursive algorithm: 

1. Divide X into X1 and X2 by the median hyper 
plane H normal to some axis. 

2. Recursively solve the problem for X1 and X2. 
3. Compute δ = min(δ1, δ2), where δ1 and δ2 are the 

found distances in X1 and X2. 
4. Let X3 be the set of points that are within δ of H. 
5. Use the δ –sparsity condition to recursively 

examine all pairs in X3. 

It has been shown that, in the case of 2-dimensional vector 
space, only a constant number of points can be neighbor in 
any cell in the set X3 [8]. Assuming that the same primary 
axis is used in the division, the points can be pre-sorted 
and the analysis step can be performed in linear time. It 
has been proven that the algorithm takes O(N log N) time 
and the algorithm generalizes to multi-dimensional spaces 
but at the cost O(N logd-1N) time [9], where d is the 
number of dimensions. 



Divide-and-Conquer(X, k, ck ) � kNN 
IF ( |X|  > ck ) THEN 

X1, X2, proj � Divide(X); 
KNN1 � Divide-and-conquer(X1, k, ck); 
KNN2 � Divide-and-conquer(X2, k, ck); 
KNN � KNN1 � KNN2; 
X3 � GenerateThirdSet(X, kNN, proj); 
kNN3 � Divide-and-conquer(S3, k, ck); 
kNN � CombineResults(kNN, kNN3); 

ELSE 
kNN � BruteForce(X, kNN, k); 

END-IF 
RETURN kNN; 

GenerateThirdSet(X, kNN, proj) � X3 
X3 � �; 
FOR i � 1 TO |X| DO 

� � ProjectionDistance(X[i], proj); 
IF c� < kNN[i,1] THEN 

X3 � X3 � X[i]; 
RETURN X3; 

Fig. 3. Sketch of the divide-and-conquer algorithm. 

3.3. Divide-and-conquer for k-nearest neighbors 

We introduce next an algorithm applicable for finding 
k-near neighbors based on the above divide-and-conquer 
approach with the following differences. Firstly, we search 
several closest pairs for every vector in the data set. 
Secondly, we use principle component analysis (PCA) for 
calculating the projection axis with the maximum 
deviation. Thirdly, we use a distance-based heuristic for 
selecting the vectors to be included in the third sub set. 

The pseudo code of the algorithm is given in Fig. 3. At 
each step of the recursion, we divide the data set X into 
two sub sets X1 and X2 of equal sizes as follows. We first 
calculate the principle axis of the data vectors in X, and 
then select (d-1)-dimensional hyper plane H perpendicular 
to the principal axis. The hyper plane is selected so that 
approximately half of the vectors belong to one side of the 
space, and the rest to the other side. Once the dividing 
procedure has been done, the two sub problems X1 and X2 
are solved recursively. Sub problems smaller than ck are 
solved by brute force search.  

After the sub problems have been solved, we generate 
a third sub set X3 consisting of vectors that are closer to 
the dividing hyper plane H than to its nearest neighbor in 
the corresponding sub set (X1 or X2). By using the control 
parameter c we can control the number of vectors chosen 
in the sub set. Once the sub set is created, the algorithm is 
recursively applied for X3. Finally, the results of the three 
sub problems are combined. Fig. 4 illustrates the division 
of the set X to three overlapping sub sets.  
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Fig. 4. Division to three overlapping sub sets (X1, X2, X3 
according to the dividing hyper plane H. The arrows indicate the 
nearest neighbors of the vectors. 

 

 

The time complexity of the proposed divide-and-conquer 
algorithm is estimated here by a recurrence T(N) = 
3�T(N/2) + O(N�d2) assuming that the size of the third sub 
set is less than equal to that of the other sub sets X1 and  
X2. The second term originate from the calculation of the 
principal axis. The rest of the calculations can be 
performed in linear time. The recurrence solves to 
O(d2

�N1.58
�logN). It might be possible to squeeze the 

complexity to O(N�logN) by selecting the dividing hyper 
plane by some simpler method, and by making tighter 
bounds for the third sub set. Note that the size of the X3 
can be controlled by the parameter c. 

4. Experiments 
We consider three data sets from [3] with the number of 
clusters fixed to M=256. The illustration in Fig. 5 shows 
the amount of work required by the graph creation and the 
PNN iterations with the different number of neighborhood 
size (k). In the following, we fix the neighborhood size to 
k=4. 
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Fig. 5. Effect of the neighborhood size on running time.  



Table 1. Running times of the graph creation. 
Bridge House Miss America  

Time MSE Time MSE Time MSE 
Brute Force 34 171.17 881 6.43 89 5.44 

Brute Force /fast 16 172.20 446 6.33 43 5.48 
MPS 3 171.11 18 6.37 44 5.44 

Graph 
PNN 

Divide-and-Conquer 2 171.80 49 6.58 7 5.44 
 

Table 2. Comparison of the Graph-PNN to other methods. 
Bridge House Miss America  

Time MSE Time MSE Time MSE 
Full search 79 168.92 1574 6.27 229 5.36 Fast PNN 

+PDS+MPS+Lazy 9 168.92 190 6.26 106 5.37 
Full MPS 3 170.28 19 6.33 45 5.11 

Limited search MPS  3 170.56 14 6.51 6 5.58 
Graph PNN 

Divide-and-conquer 2 170.69 51 6.37 8 5.43 
Full MPS 4 166.23 20 6.14 47 5.30 

Limited search MPS 4 166.38 15 6.18 9 5.34 
Graph PNN + GLA 

Divide-and-conquer 2 165.81 52 6.14 10 5.30 
Standard 13 179.95 23 7.77 20 5.95 GLA 

+PDS+MPS+Activity 2 180.02 3 7.80 8 5.95 
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Fig. 6. Time-distortion performance of the Graph-PNN. 

 
The running times of the graph creation are summarized in 
Table 1, and the overall results in Table 2. Comparative 
results are given for the fast exact PNN [3], and the fast 
exact PNN with several speed-up methods as proposed in 
[7]. Two k-means variants (GLA and Fast GLA) are also 
included. The results show that the divide-and-conquer 
technique is faster than the MPS with the 16-dimensional 
data sets (Bridge and Miss America) but slower with the 
3-dimensional data set (House). The time-distortion 
performance is illustrated in Fig. 6 for Miss America with 
the two graph creation algorithms. 

5. Conclusion 
The proposed divide-and-conquer technique provides fast 
method for the creation of the graph, and it improves the 

previous method in the case of the high dimensional data 
sets. In the 3-dimensional color clustering, on the other 
hand, the method was slower than the existing MPS 
method. 
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