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Abstract: We consider compression of multi-component map images by context 
modeling and arithmetic coding. We apply optimized multi-level context tree for 
modeling the individual binary layers. The context pixels can be located within a search 
area in the current layer, or in a reference layer that has already been compressed. The 
binary layers are compressed using an optimized processing sequence that makes 
maximal utilization of the inter-layer dependencies. The structure of the context tree is 
static variable depth binary tree, and the context information is stored only in the leaves 
of the tree. The proposed technique achieves improvement of about 25 % over static 16 
pixel context template, and 15 % over similar single-level context tree. 

Index terms: binary images, context optimization, context tree, multi-layer images. 

 

1. Introduction 

We consider large images from the topographic map series 1:20 000 of National Land 
Survey of Finland (NLS) [1]. The size of each image is 50005000×  pixels, and 
represents a 1010 ×  km2 area. The map image consists of four binary layers with 
different semantic content, corresponding to the topographic data, fields, elevation lines 
and water area. The layers are combined and displayed to the user as color image, as 
shown in Figure 1. 

The binary layers can be compressed using context-based statistical modeling and 
arithmetic coding as in JBIG [2] and JBIG2 [3][4]. The pixels form geometrical 
structures with appropriate spatial dependencies that can be localized to a limited 
neighborhood. Context-based image compression utilizes the dependencies by 
conditioning the pixel probabilities on the combination of neighboring pixel values. The 
compression consists of two distinct phases: statistical modeling and arithmetic coding 
[5]. 

In the modeling phase, the probability distribution is estimated on the basis of the pixel 
configuration in the template. For example, the pixel configuration in Figure 2 is 
defined by the binary number 11100100102, which gives the context index 914 out of 
1024 possible within this template. Each context is assigned with its own statistical 
model that is adaptively updated during the compression/decompression process. 
Arithmetic coding assigns optimal code for the pixels in regards to the given statistical 
model [6]. 

In principle, a better probability estimation can be achieved using a larger context 
template. The use of large template, however, does not always result in compression 
improvement. The number of contexts grows exponentially with the size of template; 
adding one more pixel to the template doubles the size of the model. This leads to the 
context dilution problem, in which the statistics are distributed over too many contexts, 
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and thus, affects the accuracy of the probability estimates. The size and location of the 
template pixels can be optimized by exhaustive search as has been done for the case of 
dithered images in [7], and for multi-level map images in [8]. 

Context tree provides a more flexible approach for modeling the contexts so that larger 
number of neighbor pixels can be taken into account without the context dilution 
problem [9]. The contexts are represented as binary tree, and the context is constructed 
pixel by pixel. The context selection is deterministic and only the leaves of the tree are 
used. The location of the next neighbor pixels, and the depth of the individual branches 
of the tree depend on the combination of the already coded neighbor pixel values. Once 
the tree has been created, it is fully static and can be used in the compression as any 
other fixed-size template. 

In this paper, we extend the idea of the context tree for modeling multi-component map 
images. We propose a method for optimizing the context tree for a given image so that 
inter-layer dependencies are taken into account. The tree is constructed so that the 
template pixels can be located also in an already compressed reference layer. The 
method also optimizes the processing order of the layers so that inter-layer 
dependencies are maximally utilized. We apply the method in a static manner for each 
layer separately using a training image (static approach), or optimize and store the 
context tree for each image separately (semi-adaptive approach). 

 
Basic Fields 

  

Contours Water 

Multi-component image 

   

Figure 1: Illustration of multi-component map image. The shown fragment has the 
dimensions of 1000 × 1000 pixels. 
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Figure 2: An example of a 10-pixel context. 
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2. Context tree modeling 

Context tree is applied in the compression in a similar manner as fixed-size context 
templates; only the context selection is different. The context selection is made by 
traversing the context tree from the root to leaf, each time selecting the branch 
according to the corresponding neighboring pixel value. The leaf has a pointer (index) 
to the statistical model that is to be used. Each node in the tree represents a single 
context, as illustrated in Figure 3. The two children of a context correspond to the parent 
context augmented by one more pixel. The position of this pixel can be fixed in 
a predefined order, or optimized within a limited search area, relative to the compressed 
pixel position. 

The tree can be trained beforehand (static approach), or optimized directly for the 
image to be compressed (semi-adaptive approach).  In the latter case, an additional pass 
over the image will be required and the tree must also be stored in the compressed file. 
The cost of storing the tree structure is one bit per node, which is practically the same as 
two bits per context. If the position of the context pixel is optimized for each context, 
then this information must also be stored in the compressed file. 

?

? ? ? ?

??? ?

??

? ? ? ? ? ?

?

? ? ? ?

? ? ? ?? ??

 

Figure 3: Illustration of a Context tree. 

 
To construct a context tree, the image is processed and statistics are calculated for every 
context in the full tree, including the internal nodes. The tree is then pruned by 
comparing the children and parents nodes at each level. If compression gain is not 
achieved from using the children nodes instead of their parent node, the children are 
removed from the tree and their parent will become a leaf node. The compression gain 
is calculated as: 

 ( ) ( ) ( ) ( ) SplitCostClClClCCCGain BWBW −−−=,,     (1) 

where C is the parent context and CW and CB are the two children nodes. The code 
length l denotes the total number of output bits from the pixels coded using the context. 
The cost of storing the tree is integrated into the SplitCost parameter. The code length 
can be calculated by summing up the self-entropies of the pixels as they occur in the 
image: 
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The probability of the pixel is calculated on the basis of the observed frequencies using 
a Bayesian sequential estimator: 
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where t
Wn , t

Bn  are the time-dependent frequencies, and t
Wp  , t

Bp  are the probabilities for 

white and black colors respectively, and δ = 0.45, as in [2]. 

According to the direction of the pruning, the tree construction is classified either as 
top-down or bottom-up. In top-down approach, the tree is constructed stepwise by 
expanding the tree one level at a time starting from a predefined minimum level kMIN. 
A drawback is that the expansion of the tree can terminate too early in situations as 
shown in Figure 4 [10]. 

In free tree [9], the position of the context pixel is also determined at each step. When 
a new children node is constructed, all possible positions for the next context pixel are 
analyzed within a predefined search area, and the position resulting in maximal 
compression gain is chosen. A drawback of the free tree approach is that the position of 
the new context pixel must also be stored in the compressed file. 

In bottom-up approach, a full tree of kMAX levels is first constructed. The tree is then 
pruned one level at a time up to the level kMIN using the same criterion as in the top-
down approach. The bottom-up approach provides better optimization of the tree [11], 
but the position of the context pixels must be fixed. 
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Figure 4: Example of tree construction. 
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3. Multi-level context tree  

The multi-level context tree is constructed as follows. The tree is pruned using the top-
down approach with delayed pruning technique as presented in [10]. The tree starts 
from scratch and the branches are expanded one pixel at a time. The location of the 
template pixels are optimized and fixed beforehand and then applied for every branch. 
Another approach is to optimize the location separately for every branch (Free Tree 
approach).  

Pixels can be included from two layers: the current layer and another reference layers. 
The pixels in the current layer can be located in the neighborhood area including already 
coded pixels, but the pixels in the reference layer can be located anywhere in the image. 
The only limitation is that the reference layer must have been coded before the current 
layer. We use the joint 77 pixels neighborhood as shown in Figure 5. 

 

?  

x

 

Figure 5: The neighborhood area for optimizing the location of the template pixels.  
The area in the current layer is shown left, and in the reference layer right. 

 

Additional information from the reference layer can improve the probability estimation. 
For example, consider the example in Figure 6, where the compression of the two 
images via separate single-level context trees would result in 4854+1330=6184 bytes. If 
we use the information from the first layer when compressing the second layer, the tree 
structure of the second layer would be simpler. All information would be concentrated 
only in the first branch of the tree, as shown in Figure 7. The compression of the second 
layer would be only 146 bytes, and the final size of the compressed file 4854+146=5000 
bytes. This kind of situation can happen when the layers are generated by color 
separation from the original color image. 

The map images have also other inter-layer dependency. For example, the same pixel is 
usually not set in the water layer and in the field layers at the same time, although still 
possible as the layers are generated from map database. Another observation is that the 
basic and the water layers have some redundant information along the rivers and lake 
boundaries. In general, anything is possible, and it is not easy to observe the existing 
dependencies by the eye. The dependencies, however, can be automatically captured by 
the statistical modeling. 
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Figure 6: Example of two layers obtained by color separation. 
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Figure 7: Example of a two-level context tree, in which two context pixels are from the 
current layer and one from the reference layer (shown below the current pixel ‘?’). 

 
The existing dependencies are demonstrated in Figure 8 for the case of the NLS map 
images. We can see that there are significant inter-layer dependencies, especially 
between the basic layer and the two other layers (water, field). The contour layer, on the 
other hand, is independent from all other layers. The main observation is that we cannot 
utilize all the existing dependencies as the order of processing restricts which layers we 
can use as the reference layer. 

For example, if we compress the basic layer first, we can then improve the compression 
of the water layer by 52% (118705 bytes). The opposite order would improve the 
compression of the basic layer by 35% (345061 bytes). It is easy to see that the best 
order for these layers would be to compress the water layer first, the basic layer second, 
and then fields layer last. The contours layer should be processed either the first or the 
last so that it would not affect the compression of other layers. 

In general, we can select any predefined order on the basis of known (or assumed) 
dependencies. If we do not know the image source beforehand, we should optimize the 
order of the layers for maximal utilization of the inter-layer dependencies. The selected 
processing order can be stored in the compressed file by few bits. The best ordering can 
be achieved as follows.  
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Suppose that we have k layers. We first try out all pairwise dependencies by tentatively 
compressing every layer using each other as reference. The result would be a k×k matrix 
consisting of the absolute bit rates for every layer-reference layer pairing. Using the 
information of this matrix, we can calculate the result of all k! possible permutations for 
the processing order. Assuming that the number of layers is small (with the NLS images 
k=4), this is not a problem. With larger values of k, the problem would reduce to an 
interesting problem that is closely (but not exactly) related to the minimum spanning 
tree problem. 
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Figure 8: The arrow links show the inter-layer dependencies as a number of saved bits 
the first image is used as reference image when compressing the next one. 

 

4. Experiments 

We compress a set of topographic map images originating from the NLS topographic 
database [1]. We use five randomly chosen images from the database corresponding to 
the map sheets No/No 431306, 124101, 201401, 263112, and 431204. The images are of 
the size 5000×5000 pixels, and have the original scale 1:20 000. This corresponds to 
a resolution of two meters per pixel. The topographic map images are composed of four 
semantic layers: 

• basic – topographic image, supplemented with communications networks, 
buildings, protected sites, benchmarks and administrative boundaries; 

• fields –  solid polygonal regions; 
• contours –  thin lines representing the elevations levels; 
• water –  solid regions, and various width lines representing lakes, rivers, 

swamps, water streams. 
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Two variants are implemented and tested: Context tree refers to the fixed order of the 
context pixels, and Free tree to the variable ordering. We consider also both semi-
adaptive and static approaches. The static tree is trained for the image 431306, which 
contains most common geometrical structures. The semi-adaptive tree is optimized for 
the input image to be compressed. In the semi-adaptive approach, the cost of storing the 
tree is included into the splitting criterion. The additional cost is 2 bits per node for 
Context tree, and � � 9)77log(2 =+  bits per node for Free tree. Thus, we evaluate the 

following methods: 

• static Context tree (Static CT) 
• semi-adaptive Context tree (Semi-adaptive CT) 
• static Free tree (Static FT) 
• semi-adaptive Free tree (Semi-adaptive FT) 

Table 1 gives the results when compressing each layer separately, and Table 2 when 
using additional information from the reference layer. Sequential JBIG using a context 
template of 16 pixels is used as point of comparison. The results and corresponding 
processing sequences are summarized in Figure 9. The results show that the best 
compression is obtained with Static Free Tree when compressing each layers separately 
(Table 1), and by Semi-adaptive Free tree when multi-level context tree is applied 
(Table 2). The most important contexts and their statistics are shown in Figure 10. 

Let us study the found dependencies. There is a static dependency Fields-Basic, that can 
be used when Basic and Fields layers are present. We just have to ensure that Basic 
layer is compressed first as the additional information is used during the compression of 
Fields layer. The Contours layer can be placed anywhere in the processing sequence 
because no layer depends on it, and this layer does not depend on other layers. Two 
other cases of the dependencies were found: Basic-dependent and Water-dependent. 

To sum up, the multi-level context tree improves the compression performance by 15% 
on average compared to Context-tree without using multi-level ability, and 25% 
compared to the sequential JBIG with context template of size 16. 

 

Table 1: Summarized results of compressing each layer separately. The numbers are 
given as bytes, and as the relative improvement in comparison to JBIG 16. 

 Static CT Semi-adaptive CT Static FT Semi-adaptive FT  JBIG 16 

Basic 846220 12,53% 961977 0,56% 847667 12,38% 900706 6,90%  967425 

Fields 24453 8,36% 27270 -2,19% 23349 12,50% 25346 5,02%  26685 
Contours 502119 10,87% 538435 4,42% 501279 11,01% 529324 6,04%  563326 
Water 197592 12,63% 219807 2,80% 195297 13,64% 207136 8,41%  226150 

 

Table 2: Layer-by-layer compression results using multi-level context tree. The 
numbers are given as bytes, and as the relative improvement in comparison to JBIG 16. 

The dependent layers are shown in the brackets. 

Sum Static CT Semi-adaptive CT Static FT Semi-adaptive FT  JBIG 16 

Basic (Water) 791657 18,17% 783046 19,06% 672812 30,45% 622364 35,67%  967425 

Fields (Basic) 12054 54,83% 11963 55,17% 11173 58,13% 11264 57,79%  26685 
Water (Basic) 120676 46,64% 126004 44,28% 96792 57,20% 107445 52,49%  226150 
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Figure 9: Three different processing sequences. The first one compresses each layer 
separately, and the other two using two different processing order indicated by the 

arrows. Fixed-size template of 16 pixels would sum up to 1783586 bytes (JBIG-16). 
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Figure 10: Four most used contexts for the compression of Basic 
when the Water is used as the reference layer. 
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5. Conclusions 

Multi-level context tree was proposed for compressing multi-component map images. 
Both the tree and the processing order of the layers are optimized. The proposed 
technique achieves of about 25 % compression improvement over static 16-pixel 
context template, and 15 % over similar single-level context tree. A drawback of the 
method is that it requires heavy optimization in the compression end. 
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