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Mixture Linear Prediction in Speaker Verification
Under Vocal Effort Mismatch

Jouni Pohjalainen, Cemal Hanilçi, Tomi Kinnunen, and Paavo Alku, Senior Member, IEEE

Abstract—This paper describes an approach to robust signal
analysis using iterative parameter re-estimation of a mixture
autoregressive (AR) model. The model’s focus can be adjusted
by initialization of the target and non-target states. The variant
examined in this study uses an i.i.d. mixture AR model and is
designed to tackle the spectral biasing effect caused by the voice
excitation in speech signals with variable fundamental frequency.
In our speaker verification experiments, this method performed
competitively against standard spectrum analysis techniques in
non-mismatch conditions and showed significant improvements in
vocal effort mismatch conditions.

Index Terms—Robust acoustic features, speaker recognition,
spectrum analysis, speech feature extraction.

I. INTRODUCTION

S PECTRUM analysis is essential in most signal processing
applications. Methods such as the fast Fourier transform

(FFT) and linear prediction (LP) perform well under ideal con-
ditions but their performance typically degrades in the presence
of distortions. In audio signal processing, the distortions include
background noise (additive) and channel distortion (convolu-
tive). In speech signal processing, spectral information is further
affected bymany speaker-related effects, such as speaking style,
vocal effort, and fundamental frequency (F0). For instance, the
formant locations produced by LP for high-pitch speech are bi-
ased towards the nearest F0 harmonics [1].
Distortion and speaker-related variability are particularly

detrimental in speech applications that use machine learning,
such as automatic speech and speaker recognition, in which
short-time spectra are parametrized using statistical models.
If the conditions of the model training differ from their actual
usage in the test phase, the mismatch in the spectral feature
statistics between the training and test might severely degrade
the performance. Multi-condition training is often found to
improve the performance, even in adverse conditions, but the
use of this approach is limited by the difficulty and cost of
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collecting sufficient training data in order to cover all rele-
vant usage conditions. Therefore, in order to improve signal
analysis performance in mismatched and variable conditions,
it is necessary to study spectrum analysis methods that are
inherently robust with respect to the sources of variability and
distortion present in real-world signals. This topic is addressed
in the present study by first introducing a general principle
for stochastic linear predictive analysis based on a mixture
autoregressive model. We demonstrate that the method leads
to iteratively generated temporal weighting of the signal in-
formation based on initial autoregression templates—a target
template to look for and a non-target template to avoid.
The application being studied is text-independent speaker

verification under vocal effort variability and mismatch. F0
increase is known to be one of the main acoustical effects when
vocal effort is raised from soft to loud [2], [3]. With the advent
of real machine learning applications for speech signals, tack-
ling vocal effort mismatch is becoming increasingly important
[4], [5]. Previously, feature-level solutions have been proposed
to compensate for the effects of vocal effort other than F0,
such as spectral tilt [6], [7]. However, previous studies on F0
robustness have concentrated primarily on formant estimation
(e.g., [1], [8], [9]). Given the recent success of time-weighted
linear prediction in robust feature extraction under additive
noise (e.g., [10], [11]), it is justified to study the proposed
stochastic, time-weighted linear predictive modeling approach
in feature extraction by customizing it to produce spectra less
affected by F0 variation than standard methods.

II. LINEAR PREDICTIVE SPECTRUM ESTIMATION

A. Linear Prediction Weighted in Time

Linear predictive modeling assumes that the signal
follows a zero-mean autoregressive (AR) process

of order , which in the domain
corresponds to an all-pole filter .
Here, is the excitation signal and is its optional
gain [12]. Linear prediction (LP) solves the predictor co-
efficients by minimizing the prediction error energy

, where each prediction is a linear
combination of the and the previous samples. In this work,
sums over follow the autocorrelation method [12]. Weighted
linear prediction (WLP) generalizes LP by instead minimizing
a time-weighted energy
[9], which emphasizes “reliable” signal segments and de-em-
phasizes others; LP follows as a special case by making the
weighting function a constant. Typically, the short-time
energy (STE) of recent samples, , is chosen
for weighting in order to emphasize high-energy segments of
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Fig. 1. Left: A Hamming-windowed speech frame (vowel from a female speaker sampled at 16 kHz) with different weighting functions. STE is the weighting
scheme generally used with WLP. GMLP weights, which tend to avoid GCIs, result from iterative EM re-estimation, with the initial autoregression templates
chosen according to Section II-B4. Right: Corresponding spectra of FFT, LP, WLP, and GMLP ( ), including the initial spectra of the GMLP states.

the analysis frame that, with stationary background noise, have
a high local signal-to-noise ratio. The coefficients are solved
by setting , leading to the normal equations

, .
STE weighting emphasizes, within the pitch period, the

beginning of the glottal closed phase, where formants are
prominent (see Fig. 1). However, each closed phase begins
with transient, high-amplitude samples at the glottal closure
instant (GCI) as the main acoustical excitation of the vocal tract
is generated. These transient samples at GCIs do not contain
formant information. As F0 increases, they cover a larger pro-
portion of the frame. In the frequency domain, this is marked
by the spectral harmonic structure becoming sparse, with F0
harmonics biasing the modeling of formants using conven-
tional spectrum analysis techniques. STE weighting does not
specifically downweight GCIs, resulting in F0 bias persisting
also in such WLP models. It was recently demonstrated in [1]
that F0 bias in formant estimates can be reduced by, instead, de-
signing a weighting function that downweights the squared
residual around the GCIs. However, while algorithms have
been proposed to explicitly estimate GCIs, these epochs are
difficult to estimate reliably. In [1], the GCI information was
obtained in an oracle-like manner by using synthetic vowels
as test material. In the next sections, we propose an automatic
method to simultaneously estimate an appropriate weighting
function and the all-pole coefficients.

B. Mixture Linear Prediction

1) The General Mixture Autoregressive Model: The
signal , , can be modeled as a mixture of

autoregressive processes with conditional density
, where is

the model’s parameter set and is the standard normal den-
sity function; , , is
the prior distribution of a hidden state variable
that determines which one of the AR processes,

(1)

generates sample . The are intercept (constant) terms and
the are Gaussian white noise excitations.
Two main approaches to modeling the latent state process

exist and have been previously studied in time series analysis
and econometrics: can be considered i.i.d. andmodeled using
component weights as , leading to an i.i.d. mix-
ture AR model [13], or it can be assumed to follow a first-order
Markov process, leading to a linear predictive hidden Markov
or Markov-switching AR model [14], [15], [16], [17].
In speech processing, mixture AR models appear not to have

been previously applied to frame-level spectrum analysis, but
similar models have been used for parametrizing utterances in
recognition applications. Some of them work on the feature
vector level, [18], [19], while others, [20], [21], work on the
signal level but apply the AR dynamics in separate frames.
Some Markov-switching recognition models, [22], [23], are
similar to the current signal model in that they consider each
sample and its associated hidden state . The current method
differs from previous studies both by applying the signal model
to frame-level spectrum analysis and by being directed towards
finding an AR model of a target type as opposed to a non-target
type. Before parameter estimation using the iterative expec-
tation-maximization (EM) principle [24], one of the states is
designated as target, the other one(s) as non-target and the
AR parameters of these states are initialized with simplified,
characteristic descriptions of desired and undesired signal qual-
ities, respectively. Because EM increases the model likelihood
with each iteration, it will converge towards a local likelihood
maximum whose location on the parameter hypersurface is
determined by the initial parameter values.
2) Dynamics of the Hidden State Process: In this study, we

investigate Gaussian mixture linear prediction (GMLP) [25],
a simple implementation of the targeted mixture principle.
The probability law governing is assumed to be i.i.d. and
parametrized with component weights , similarly
to Gaussian mixture models (GMMs) [26]. The GMLP signal
model is thus specified by the set of parameters

,
iteratively re-estimated by applying the EM principle [24]:
1) In the E step, estimate the excitations as predic-
tion residuals .
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Then, determine the hidden state posterior probabil-
ities

and

renormalize so that (a lower limit of 0.01
is imposed to avoid occurrence of unused states).

2) In the M step, re-estimate the component weights as

and the variances as .

For , define (for the intercept) and
, , and solve the normal equa-

tions ,
. Barring the intercept term, the latter equations

are equivalent to standardWLP (Section II.A) weighted by
corresponding state posterior probabilities ( ).

Equivalent formulas are given in [13]. Notably, setting the
AR order makes the intercepts behave like Gaussian
means and leads to conventional GMM re-estimation formulas
[26].
In each iteration of GMLP, the time complexity of the E step

(determination of and , ) is , where
is the number of samples within the analysis frame. In the

M step, re-estimation of and is . Apart from the
factor (the number of states), the above operations are of the
same order as windowing and correlation in both GMLP and
classical linear predictive methods [27]. The remaining compu-
tation in one iteration is due to solving the groups of weighted
normal equations for the AR coefficients , which is
by using the Cholesky decomposition, also used with the covari-
ance method of LP [27]. The computation load of GMLP rela-
tive to standard methods thus depends linearly on the number
of iterations and states.
In Markov-switching linear prediction (MSLP), the compo-

nent weights are replaced by two sets of parameters: state
transition probabilities and initial state probabilities [16].
Again, parameter estimation is iterative and based on EM.
However, it needs to use the computationally more expensive
forward–backward algorithm [26], or another similar approach
[17], to compute the probabilities required for re-estimating the
model parameters. In preliminary tests on different systems,
this noticeably increased the feature computation time, but did
not improve the verification performance. Thus, only GMLP is
evaluated in this study.
3) Role of the Constant Terms: In conventional LP, inter-

cept terms are not used. The intercept is zero for a zero-mean
AR process [16] and can thus be omitted. For speech, the as-
sumption of a zero mean approximately holds true when using
analysis frames large enough to cover more than one pitch pe-
riod, since speech does not contain important frequencies below
F0. In mixture linear prediction, however, the inclusion of the
intercept term (Eq. (1)), even if initialized with zero for each
state, allows the AR models the freedom to focus on subsets of
the analysis frame without implicitly assuming their samples to
add to zero. Moreover, it is possible that the frame would have
a non-zero mean due to low-frequency distortion components.
Despite the inclusion of the intercept terms in the EM iteration,
this term is not included in the final target all-pole model which
is chosen as .

4) Application to Speech with Variable F0: While different
initializations of the mixture model lead to different target
models, in this study, we concentrate on downweighting GCIs
[1]. With , we initialize the target model (state 1) with

, , and . It thus corresponds to the
single-pole filter , the inverse of the typical
pre-emphasis filter used to compensate for the
spectral tilt of voiced speech. This can be viewed as a rough
approximation of the characteristic low-pass spectrum enve-
lope of voiced speech. For the non-target state 2, the lagged
AR parameters are initialized with , , and the
intercept with . This filter has a flat spectrum,
like the spectrum envelope of an impulse train, and a focus on
large signal values typical at GCIs. As Fig. 1 shows, during the
EM iteration the target state 1 gravitates towards signal seg-
ments that have low-pass spectral characteristics and smaller
amplitudes, while state 2 concentrates on GCIs, collecting their
effects and preventing the harmonics of F0 from biasing the
target model spectrum. For this initialization, it has been found
beneficial to perform one preliminary iteration of EM where
only and are updated (from the initial values of
and , ).

III. EXPERIMENTS

A. Experiment Setup

The experiments are carried out on core tasks of the 2010
NIST SRE corpus involving conversational telephone speech
sampled at 8 kHz. We examine three vocal effort conditions:
• Det 5: Normal vocal effort in both training and test, test
data containing 708 target and 29655 impostor trials.

• Det 6:Normal vocal effort in training and high vocal effort
in test (361 target and 28311 impostor trials).

• Det 8: Normal vocal effort in training and low vocal effort
in test (289 target and 28306 impostor trials).

A GMM-supervector/support vector machine (SVM)
sub-system [28] with channel compensation by nuisance
attribute projection (NAP) [29] is used as a quick-to-train
classifier to experiment with the number of GMLP iterations
and to add to the generality of the tests. Gender-dependent
UBMs (universal background models) with 512 Gaussians
are trained using the NIST SRE05, SRE06, and Switchboard
corpora. Negative examples (background speakers) to train
speaker-dependent SVMs are selected from the SRE03 and
SRE04 corpora (395 male and 577 female speech files). NAP
matrices are trained using 2020 male and 2017 female utter-
ances from SRE06. In adapting the mean vectors, relevance
factor is used.
In the i-vector [30] system, we use gender-dependent UBMs

with 1024 Gaussians, trained on the same material as those
for the GMM-SVM system. Gender-dependent T-matrices
(or i-vector extractors) are trained with 5 EM iterations using
the SRE04, SRE05, SRE06, Fisher, and Switchboard corpora
(19084 male and 24237 female utterances). 600-dimensional,
whitened and length-normalized i-vectors are extracted for each
utterance and compared using a probabilistic LDA (PLDA)
back-end with a 200-dimensional speaker subspace.
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TABLE I
EQUAL ERROR RATES (%) FOR TWO SPEAKER VERIFICATION SYSTEMS IN VARIABLE TEST CONDITIONS, USING DIFFERENT SPECTRUM ANALYSES IN MFCC
COMPUTATION. GMLP WAS FIXED AT 3 AND 5 ITERATIONS FOR MALE AND FEMALE SPEAKERS, RESPECTIVELY, PRIOR TO THE I-VECTOR EXPERIMENTS, FOR

WHICH THE METHODS WITH STATISTICALLY SIGNIFICANT IMPROVEMENT [31] OVER THE OTHER THREE ARE SHOWN IN BOLDFACE

TABLE II
MINDCF RESULTS FOR THE TWO SYSTEMS EVALUATED ANALOGOUSLY TO TABLE I. STATISTICAL TESTING AT THE MINDCF THRESHOLD (I-VECTOR
SYSTEM) IS DONE FOR DIFFERENCES IN , ACCORDING TO WHICH ANY SINGLE SUPERIOR METHOD IS SHOWN IN BOLDFACE

Mel-frequency cepstral coefficients (MFCCs) for the classi-
fiers are computed in Hamming-windowed frames with length
30 ms and overlap 15 ms. Spectra given by FFT, LP ( ),
WLP ( ), or the described variant of GMLP ( )
are processed as follows: 1) square the magnitude spectrum,
2) multiply it by 27 triangular filters spaced evenly on the mel
scale, 3) take the logarithm of the filterbank output energies, and
4) apply discrete cosine transform to obtain 18 MFCCs without
the zeroth coefficient. Next, the MFCCs are RASTA filtered
across frames and features are appended to the feature
vectors [11]. Finally, utterance-level cepstral mean and variance
normalization and voice activity detection based on frame ener-
gies are applied to the feature vector sequence.

B. Results

The systems are evaluated at two operating points (detection
thresholds) determined by the miss and false alarm rates
and . Tables I and II show equal error rates (EER;
) and minimum decision cost function (MinDCF; minimal

) values, respectively. Auxiliary GMM-SVM
tests suggest that more GMLP iterationsmay be optimal for mis-
matched female speech than otherwise, likely due to greater F0
bias. Statistical analyses of differences in at
95% confidence [31], for the i-vector system at both thresholds
separately for male and female speech (12 cases), show GMLP
to significantly outperform FFT, LP andWLP on female speech

with vocal effort mismatch (DET 6 and DET 8), while FFT out-
performs the other methods in the DET 8 male case. GMLP is
in the best performing group (with no significant differences)
for DET 5 male at both thresholds and for DET 5 female and
DET 6 male at the EER and MinDCF thresholds, respectively.
These results suggest that this variant of GMLP performs com-
petitively in matched vocal effort conditions–still containing F0
variation and potential mismatch–and especially support its use
for improving system robustness against mismatch caused by
raised vocal effort. Such conditions can easily occur in noisy
real-world environments due to, e.g., the Lombard reflex [32].

IV. CONCLUSION

Mixture linear prediction was proposed as a stochastic
version of weighted linear prediction for spectral modeling.
It is given target and non-target characteristics in parameter
initialization of a mixture autoregressive model prior to itera-
tive re-estimation, which generates temporal weighting for the
squared residual. In this study, the initialization was designed to
focus on downweighting the effect of voiced speech excitation.
In speaker verification with vocal effort (and F0) mismatch,
this method significantly improved performance upon standard
methods. Both the general principle and its present variant
thus hold potential for further study and applications in robust
signal analysis. Software implementations can be found at
http://www.acoustics.hut.fi/research/robustness/.
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