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a b s t r a c t 

Automatic speaker verification (ASV) technology is recently finding its way to end-user applications for 

secure access to personal data, smart services or physical facilities. Similar to other biometric technolo- 

gies, speaker verification is vulnerable to spoofing attacks where an attacker masquerades as a particular 

target speaker via impersonation, replay, text-to-speech (TTS) or voice conversion (VC) techniques to gain 

illegitimate access to the system. We focus on TTS and VC that represent the most flexible, high-end 

spoofing attacks. Most of the prior studies on synthesized or converted speech detection report their 

findings using high-quality clean recordings. Meanwhile, the performance of spoofing detectors in the 

presence of additive noise, an important consideration in practical ASV implementations, remains largely 

unknown. To this end, our study provides a comparative analysis of existing state-of-the-art, off-the-shelf 

synthetic speech detectors under additive noise contamination with a special focus on front-end pro- 

cessing that has been found critical. Our comparison includes eight acoustic feature sets, five related to 

spectral magnitude and three to spectral phase information. All the methods contain a number of inter- 

nal control parameters. Except for feature post-processing steps (deltas and cepstral mean normalization) 

that we optimized for each method, we fix the internal control parameters to their default values based 

on literature, and compare all the variants using the exact same dimensionality and back-end system. 

In addition to the eight feature sets, we consider two alternative classifier back-ends: Gaussian mixture 

model (GMM) and i-vector, the latter with both cosine scoring and probabilistic linear discriminant anal- 

ysis (PLDA) scoring. Our extensive analysis on the recent ASVspoof 2015 challenge provides new insights 

to the robustness of the spoofing detectors. Firstly, unlike in most other speech processing tasks, all the 

compared spoofing detectors break down even at relatively high signal-to-noise ratios (SNRs) and fail 

to generalize to noisy conditions even if performing excellently on clean data. This indicates both diffi- 

culty of the task, as well as potential to over-fit the methods easily. Secondly, speech enhancement pre- 

processing is not found helpful. Thirdly, GMM back-end generally outperforms the more involved i-vector 

back-end. Fourthly, concerning the compared features, the Mel-frequency cepstral coefficient (MFCC) and 

subband spectral centroid magnitude coefficient (SCMC) features perform the best on average though the 

winner method depends on SNR and noise type. Finally, a study with two score fusion strategies shows 

that combining different f eature based systems improves recognition accuracy for known and unknown 

attacks in both clean and noisy conditions. In particular, simple score averaging fusion, as opposed to 

weighted fusion with logistic loss weight optimization, was found to work better, on average. For clean 

speech, it provides 88% and 28% relative improvements over the best standalone features for known and 

unknown spoofing techniques, respectively. If we consider the best score fusion of just two features, then 

RPS serves as a complementary agent to one of the magnitude features. To sum up, our study reveals a 

significant gap between the performance of state-of-the-art spoofing detectors between clean and noisy 

conditions. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Automatic speaker verification (ASV) ( Reynolds and Rose, 1995 )

s the task of authenticating users based on their voices. Tradition-

lly, ASV has mostly been applied in specialized surveillance and
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forensics applications but recent methodological advances have

greatly increased interest in mass-market adoption to secure per-

sonal data. For instance, in 2013 a smartphone voice unlock fea-

ture was introduced to a Baidu-Lenovo phone, 1 and similar activi-

ties are being pursued by Google to their Android devices. 2 Some

of the favorable points of ASV over other popular biometric identi-

fiers are wide applicability (no other sensors except microphone

required), natural integration with face authentication in smart-

phones, as well as revocability : if a voice token is compromised or

stolen, another user pass-phrase can be selected. 

A speech-based authentication system to control access to per-

sonal data or physical site will be useful only if it helps to im-

prove the overall system security. A now well-recognized secu-

rity concern with any biometric modality — including fingerprints,

face, and speech — is that they are vulnerable to circumvention by

spoofing attacks ( Jain et al., 2006 ), whereby an attacker attempts to

gain unauthorized access to the system by masquerading herself

as another user. Attacks can naturally be executed at any parts of

the system ( Ratha et al., 2001 ), including software, biometric tem-

plates or features. However, direct attacks, involving an injection

of forged biometric data to the sensor or the transmission point,

are arguably most accessible to even less technology-aware attack-

ers. Consequently, direct spoofing attacks are under active research

across all the major biometric modalities. Specific to ASV, four cur-

rently known types of direct attacks have been identified ( Evans

et al., 2014; Wu et al., 2015a ): (i) replay ( Ergünay et al., 2015; Galka

et al., 2015; Villalba and Lleida, 2010 ), representation of a pre-

recorded target speaker utterance; (ii) impersonation ( Farrús et al.,

2008; Hautamäki et al., 2013 ), human-based mimicry of a target

voice; (iii) text-to-speech synthesis (TTS), artificially generated tar-

get voice from an arbitrary text input ( Leon et al., 2010a ); and (iv)

voice conversion (VC), modification of source speech towards target

speaker characteristics ( Jin et al., 2008 ). 

In this study, we focus on VC and TTS as they are arguably

more flexible and consistent for spoofing both text-independent

and -dependent ASV systems ( Wu et al., 2015a ). The effectiveness

of VC and TTS spoofing attacks were first demonstrated nearly two

decades ago in Pellom and Hansen (1999) and Masuko et al. (1999) .

Further recent studies ( Alegre et al., 2012; Bonastre et al., 2007;

Kons and Aronowitz, 2013; Leon et al., 2010b; Matrouf et al., 2006;

Wu et al., 2015b; Wu and Li, 2014 ) affirm that even state-of-the-

art ASV systems remain highly vulnerable to modern VC and TTS

attacks. State-of-the-art VC and TTS can produce high-quality tar-

get speech using a relatively small amount of training data ( Toda

et al., 2006; Yamagishi et al., 2009 ). Even if implementing such at-

tacks in practice would currently require a dedicated effort or spe-

cial skill-set from the attacker, anytime in near future one should

expect advanced voice transformation tools to be readily available

for end-users in smartphones or other portable devices, thereby

greatly increasing the threats imposed by advanced VC and TTS

spoofing attacks. 

Having recognized the vulnerability problem caused by spoof-

ing attacks, a few first steps to develop various countermeasures

(CMs) have been taken ( Wu et al., 2015a ). The most common ap-

proach (for an exception, see Sizov et al. (2015) ) is to equip an

off-the-shelf ASV system with a stand-alone spoofing attack detec-

tor module. In our case, a classifier that will assign a human or

synthetic label (or a likelihood score) to a given utterance. 3 
1 http://www.signalprocessingsociety.org/technical-committees/list/sl-tc/spl-nl/ 

2013-02/SpeakerVerificationMakesItsDebutinSmartphone 
2 http://thehackernews.com/2015/04/android- trusted- voice.html 
3 For brevity, we use “synthetic speech detection” to refer to detection of both VC 

and TTS attacks. In the present context, such umbrella term is justified as TTS and 

VC systems often employ similar methods for voice coding 
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The novel contribution of this work, which is placed into a

ider ASV context in Section 2 , is briefly stated as follows. We

rovide a detailed analysis on synthetic speech detection under

coustically degraded conditions, namely, additive noise, whose ef-

ects to spoofing detection are so far poorly understood. We do

ot introduce new methods but analyze the state-of-the-art meth-

ds with respect to their potential robustness bottlenecks under

s comparable parameter settings and evaluation data as possible.

n specific, we adopt the now widely-adopted ASVspoof 2015 chal-

enge data ( Wu et al., 2015c ) to our experiments, so as to assess

he joint effect of varied attacks and additive noise. By focusing on

he key part of synthetic spoofing detectors, the feature extractor,

ur aim is to gain improved understanding on generalization ca-

ability of the feature extractors in this task. Our study, being the

ost comprehensive comparative analysis on the topic to date, is

argeted especially for practitioners, such as ASV vendors, and re-

earchers new to ASV spoofing research. The material throughout

he manuscript is intended to be tutorial-like and as self-contained

s possible. 

. Related work, motivation and contributions 

.1. Methods for detecting synthetic speech 

Synthetic speech detection is enabled by imperfections of the

C or TTS systems. For instance, voice coders (vocoders) used for

peech parameterization in VC and TTS systems use greatly sim-

lified models of human voice production, such as all-pole synthe-

is filters driven by impulse train excitation ( SPTK, 2014 ). Process-

ng artifacts affect the spectral, temporal and prosody character-

stics of synthetic speech. Similar to ASV, synthetic speech detec-

ors consist of front-end (feature extraction) and back-end (clas-

ifier) components. Most of the work on synthetic speech detec-

ion focus on the former, including specific/tailored features com-

ined with a simple Gaussian mixture model (GMM) or support

ector machine (SVM) back-end. A substantially different approach,

sing standard MFCC features but focusing on i-vectors and ad-

anced back-end modeling ideas, was carried out in Sizov et al.

2015) with promising results on the voice-converted version of

IST 2006 SRE data (though not performing well on ASVspoof 2015

 Hanilçi et al., 2015 )). 

In Wu et al. (2012b) , standard Mel-frequency cepstral coef-

cients (MFCCs), cosine phase and modified group delay fea-

ures were compared for the detection of Gaussian mixture model

GMM) and unit selection based synthetic speech, cosine phase

eatures leading to the lowest error rates. In Wu et al. (2013) ,

FCCs, modified group delay, phase, and amplitude modulation

eatures were compared for detecting synthetic speech, the group

elay features yielding the highest accuracy. One of the most pop-

lar feature sets used for synthetic speech detection are the so-

alled relative phase shift (RPS) features ( Leon et al., 2011; 2012;

ánchez et al., 2015 ). They are calculated based on the phase shift

f the harmonic components of the signal with respect to funda-

ental frequency (F0), and have been reported to be effective in

etecting synthetic speech ( Leon et al., 2012; Sánchez et al., 2015 ).

owever, for instance Leon et al. (2012) suggests that RPS-based

ynthetic speech detection might be sensitive to vocoder mismatch

cross training and test sets, leading to degraded performance.

ore recently in Sánchez et al. (2015) , the RPS features were used

o detect synthetic speech signals provided by Blizzard Challenge.

he authors found out that RPS features outperformed MFCCs on

etecting speech generated by statistical parametric speech syn-

hesis whereas MFCCs yielded higher accuracy when synthetic sig-

als were generated by unit selection, diphone or hybrid methods.

imilar, inconsistent observations were found in our recent study

 Sahidullah et al., 2015 ) where RPS features performed the best

http://www.signalprocessingsociety.org/technical-committees/list/sl-tc/spl-nl/2013-02/SpeakerVerificationMakesItsDebutinSmartphone
http://thehackernews.com/2015/04/android-trusted-voice.html
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ut of 17 compared feature extraction techniques when vocoders

etween training and test were matched, but yielded the highest

rror rates in the opposite case. 

In Wang et al. (2015) , another robust phase-related feature sim-

lar to RPS, termed relative phase information (RPI) ( Nakagawa et al.,

012 ), was used for synthetic speech detection using ASVspoof

015 database. It was found to outperform both MFCC and MGD

eatures. RPI processing aims at normalizing the phase changes re-

ulting from frame positioning. In specific, with the aid of discrete

ourier transform (DFT), phase information is estimated relative to

 fixed base frequency ( ω b = 2 π × 10 0 0 Hz was used in Wang et al.

2015) and Nakagawa et al. (2012) ) in contrast to the RPS repre-

entation that is based on sinusoidal modeling with phase shifts

omputed relative to estimated F0. 

.2. Towards varied spoofing attacks: SAS corpus and ASVspoof 2015 

hallenge 

As the above review indicates, a large number of potentially

seful methods to detect synthetic speech have been investigated.

he user’s dilemma , however, is that their relative performances

re either incomparable or under-representative of real-world de-

loyment, for many reasons. Firstly, no single study compares the

arious methods on a common set of data or using a unified ob-

ective evaluation metric, making unbiased performance assess-

ent challenging, if not impossible. Secondly, the studies usu-

lly contain only a handful of attacks, making conclusions attack-

ependent. Thirdly, most studies involve a closed-world evaluation

etting where the synthetic test samples originate from the same

ethods, channels and environments as used in training. This cor-

esponds to a scenario where the ASV system administrator (de-

ender) knows in advance what spoofing technique the attacker

ill employ. While such an oracle evaluation scenario may pro-

ide experimental bounds to the highest performance achievable

sing a specific attack detector, it is unlikely to be representative

f an actual attack scenario where the attacker may employ novel

presently unknown) attacks. Fourthly, differently from the tradi-

ional NIST speaker verification scenarios involving channel- and

ondition-mismatched data, most of the datasets used for synthetic

peech detection have consisted of high-quality (wideband) noise-

ree signals. As a result, it is largely unknown how well the state-

f-the-art synthetic speech detectors generalize to non-ideal con-

itions involving not only varied spoofing materials but extrinsic

istortions induced by the environment or channel, important fac-

ors in any real-world deployment of ASV technology. 

To address the first three concerns — incomparability of re-

ults, limited set of attacks and closed-world evaluation bias — a

ew speaker verification spoofing and anti-spoofing (SAS) corpus

as introduced recently in Wu et al. (2015b) and used in ASVspoof

015: Automatic Speaker Verification Spoofing and Countermeasures

hallenge ( Wu et al., 2015c ), 4 that focused on stand-alone syn-

hetic speech detection involving both known and unknown at-

acks. The findings of ASVspoof 2015 were disseminated at a spe-

ial session of the latest edition of Interspeech conference in Dres-

en, Germany 5 . 

During the special session, several participating sites reported

ndependently that spectral phase-based features (such as cosine

hase ( Wu et al., 2012b ), modified group delay ( Wu et al., 2012b )

nd RPS ( Sánchez et al., 2015 )) outperformed spectral magnitude-

ased features in synthetic speech detection ( Novoselov et al.,

015; Villalba et al., 2015; Wang et al., 2015; Xiao et al., 2015 ).
4 www.spoofingchallenge.org 
5 http://www.signalprocessingsociety.org/technical-committees/list/sl-tc/spl-nl/ 

015-11/2015- 11- ASVspoof/ 

c  

e

t

MM-based system ( Reynolds and Rose, 1995 ) was used for mod-

ling both natural and synthetic speech classes in most of the stud-

es presented at the special session ( Sanchez et al., 2015; Villalba

t al., 2015; Wang et al., 2015 ). Though in Villalba et al. (2015) ,

ore advanced support vector machines (SVM) and deep neural

etworks (DNN) are utilized as their back-ends, the performance

f GMM systems was found to be similar or better. Similar obser-

ation was made in our preliminary study on ASVspoof 2015 data

 Hanilçi et al., 2015 ). An i-vector with Gaussian back-end and DNN

ased approach was also investigated in Zhang et al. (2016) with-

ut improvement in performance compared to GMM. In most re-

ent studies using ASVspoof 2015 data, fundamental frequency (F0)

ontour and strength of excitation (SoE) were also used in com-

ination with MFCCs and cochlear filter cepstral coefficients and

nstantaneous frequency (CFCCIF) features ( Patel and Patil, 2016 ).

n Todisco et al. (2016) , constant Q cepstral coefficient (CQCC) was

roposed for synthetic speech detection. 

.3. Contribution of the present study: joint effect of varied attacks 

nd noise 

In our two preliminary studies on ASVspoof 2015 data, we did

xtensive comparative evaluation of several front-end ( Sahidullah

t al., 2015 ) and back-end ( Hanilçi et al., 2015 ) synthetic speech

etectors. In our experiments, the simplest ideas tended to out-

erform more elaborate ones. For instance, raw power spectrum

eatures and maximum likelihood (ML) trained Gaussian mixture

odels (GMMs) did a decent job both in detecting both unknown

nd known attacks, while i-vector ( Dehak et al., 2011 ) based spoof-

ng detection ( Khoury et al., 2014; Sizov et al., 2015 ) yielded much

igher error rates. 

The present study extends Sahidullah et al. (2015) and Hanilçi

t al. (2015) towards an extended and self-contained compara-

ive evaluation of synthetic speech detectors. Unlike Sahidullah

t al. (2015) and Hanilçi et al. (2015) , where we used the orig-

nal high-quality ASVspoof 2015 samples, in this study, we ad-

ress the fourth concern missing from most of the prior stud-

es: robustness of synthetic speech detection under acoustically de-

raded conditions. In general, an acoustic signal reaching a recog-

izer can be subjected to many extrinsic imperfections, induced by

dditive noise, transmission channel (including compression arti-

acts and low bandwidth), and reverberation, to name a few. A

imited number of earlier studies have executed spoofing experi-

ents on 8 kHz telephony data ( Khoury et al., 2014; Wu et al.,

012a ), though under somewhat artificial scenario in which an ex-

sting telephone-quality corpus has been post-processed through

oice conversion attacks, as opposed to the more likely case of

poofing attacks taking place before signal transmission. We argue

hat it is difficult, if not impossible, to isolate the relative impact

f spoofing artifacts and extrinsic distortions without an access to

he original, undistorted signal. Therefore, there is a clear need to

xamine spoofing attacks under controlled extrinsic distortions to

ain improved insight as to what might be the important consid-

rations in developing practical countermeasures. A recent study

 Wester et al., 2015 ) addressed the impact of bandwidth to syn-

hetic speech detection accuracy on the same ASVspoof 2015 cor-

us as used in the present study. 

In contrast to the above prior studies, we focus solely on ar-

uably one of the most common and relevant sources of distor-

ions, additive noise. It has received almost no prior attention to

he best of our knowledge. 6 Specifically, using the ASVspoof 2015

orpus, we provide a detailed performance assessment of several
6 An independent study, made publicly available almost in parallel to ours Tian 

t al. (2016) , considers the same ASVspoof2015 database under additive noise con- 

amination. Their noise contamination design is similar to ours though spoofing 

http://www.spoofingchallenge.org
http://www.signalprocessingsociety.org/technical-committees/list/sl-tc/spl-nl/2015-11/2015-11-ASVspoof/
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Fig. 1. Natural and synthetic speech signals of the same speaker and their noisy counterparts. 
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spoofing detectors under additive noise contamination. Special at-

tention is paid in making the compared methods as comparable as

possible with respect to feature dimensionalities, frame rate and

other control parameters. 

We expect this to be a notoriously difficult task that could

serve as a useful evaluation test-bench for developing new robust

countermeasures more relevant for end-user applications. As state-

of-the-art TTS and VC methods can produce high-quality speech,

sometimes close to or indistinguishable from authentic human

speech ( unit selection Sündermann et al. (2006) is a good exam-

ple), we expect additive noise to mask further the already small

differences between human and synthetic speech. As a motivation,

Fig. 1 displays spectrograms of natural and synthetic speech sig-

nals of the same speaker and their noisy counterparts. While dif-

ferences of natural and synthetic speech are apparent for the clean

data, additive noise makes it difficult to tell the difference. 

It is not obvious, for instance, whether standard speech en-

hancement techniques as a pre-processing method will be helpful:

as noise suppression is always traded-off with speech distortion

( Benesty et al., 2008 ), processing artifacts due to speech enhance-

ment could be confused with artifacts due to synthesis vocoders.

Similarly, as indicated above, the popular RPS ( Leon et al., 2012;

Sánchez et al., 2015 ) feature requires fundamental frequency track-

ing whose performance is affected by additive noise ( Rabiner et al.,

1976 ). For these reasons, it is not obvious what type of front-end or

back-end modeling ideas will work comparatively better for syn-

thetic speech detection under noisy conditions. To answer these

questions, we have selected state-of-the-art or otherwise popu-

lar feature extraction methods based on both our preliminary re-

sults ( Sahidullah et al., 2015 ) and those of the ASVspoof 2015

participants. Our eight feature sets, detailed below, include both

magnitude- and phrase-related features. From the classifier side,

we use GMMs trained via maximum likelihood (ML), reported as

the best-performing one in Hanilçi et al. (2015) , as well as the i-

vector approach ( Khoury et al., 2014; Sizov et al., 2015 ). 
detection features are mostly different, and our manuscript provides a more thor- 

ough analysis. 

s  

l  

a  

a  

r  

w  

(

. Spoofing detection 

Given a speech signal s , synthetic speech detection task is to

ecide whether s belongs to a natural speech class — hypothesis

 0 , or a synthetic speech class — hypothesis H 1 . The decision is

ased upon the log-likelihood ratio score, �: 

(s ) = log p(s |H 0 ) − log p(s |H 1 ) . (1)

To estimate the probabilities p(s |H 0 ) and p(s |H 1 ) we need to

rain an acoustic model for each hypothesis. In our recent anti-

poofing study on ASVspoof 2015 ( Hanilçi et al., 2015 ), we evalu-

ted a number of different classification techniques. Gaussian mix-

ure models (GMM), trained with maximum likelihood (ML) prin-

iple, was found the best choice. 

GMM is a well-known probabilistic model that is extensively

sed for speaker recognition ever since it was introduced for

he task ( Reynolds and Rose, 1995 ). We separately use natural

nd synthetic training data to train two GMMs. Each GMM con-

ists of a mixture weight w i , a mean vector μi and a covariance

atrix �i for each mixture component i . We use expectation-

aximization (EM) algorithm to estimate the model parameters

= { w i , μi , �i } M 

i =1 
, where M is the number of mixture compo-

ents. 

After the two acoustical models are trained, the log-likelihood

or each hypothesis and a sequence of feature vectors X =
 x 1 , . . . x T } , that represent the speech signal s , takes the following

orm 

og p(s |H k ) = 

1 

T 
log p({ x 1 , . . . x T }| λk ) = 

1 

T 

T ∑ 

t=1 

log (x t | λk ) . 

Besides GMM, we also consider the i-vector paradigm ( Dehak

t al., 2011 ), that became state-of-the-art technique for text-

ndependent speaker verification. Recently, it was also used to per-

orm speaker verification and anti-spoofing jointly in the i-vector

pace ( Sizov et al., 2015 ). In essence, i-vector w is a fixed-sized

ow-dimensional vector per utterance that contains both speaker-

nd channel-specific variability. To extract an i-vector, we factorize

 GMM mean supervector μ as μ = m + Tw , where T is a low-rank

ectangular matrix, m is a speaker-independent mean vector and

 has a standard normal prior distribution. Refer to Dehak et al.

2011) for more details. 
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Fig. 2. Long-term average power spectra of synthetic and human speech signals 

(we used 2525 speech files per each method to compute an average). The spectra 

have been shifted by 10 dB with respect to each other. 
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We use two different i-vector based classifiers to compute the

nal score (1) : cosine similarity measure and probabilistic linear dis-

riminant analysis (PLDA) ( Prince and Elder, 2007 ). Given two i-

ectors, extracted from target ( w tgt ) and test ( w tst ) utterances, we

ompute cosine similarity between them using 

osine (w tgt , w tst ) = 

w 

T 
tgt w tst 

‖ w tgt ‖‖ w tst ‖ 

. (2)

As the cosine similarity measure does not compute likelihoods,

nstead of Eq. (1) we form the detection score as follows: 

core = cosine ( ̂  w nat , w tst ) − cosine ( ̂  w synth , w tst ) , (3)

here ˆ w nat and 

ˆ w synth represent the average training i-vectors for

atural and synthetic speech classes, respectively. 

Besides cosine scoring, we also consider the so-called simpli-

ed PLDA ( Kenny, 2010 ). The idea behind PLDA is to split total i-

ector variability into speaker and channel components, which al-

ows efficient inference during a test stage. To train the model, we

rouped together i-vectors from each synthesis method and from

 natural speech which gave us 6 classes (“speakers”). For more

etails on the data, refer to Section 6.1 . 

. Natural vs. synthetic/converted speech 

Before proceeding to recognition experiments, we first wish to

nderstand the acoustic signal properties of the natural and syn-

hetic speech signals. To analyze the characteristics of natural and

ynthetic speech, long-term average spectra (LTAS) is utilized. LTAS

omewhat represents the physical characteristics of the speaker re-

ated the vocal tract resonances ( Linville and Rens, 2001 ) and is

ostly used in audio forensics ( Grigoras, 2010 ) and for measur-

ng the audibility of speech to compute speech intelligibility index

 Byrne et al., 1994 ). LTAS is computed by time averaging the short-

erm Fourier magnitude spectra of all frames: 

TAS (k ) = 

1 

T 

T ∑ 

t=1 

| S t (k ) | 2 , (4)

here S t ( k ) denotes the windowed discrete Fourier transform of

 th speech frame of the signal, s , at DFT bin k and T is the total

umber of speech frames after voice activity detection (VAD). We

ompute the average LTAS of human and synthetic speech signals

sing the training portion of the ASVspoof 2015 dataset for each

ynthesis/conversion technique (S1-S5) to visualize their differ-

nces in frequency domain. Fig. 2 displays the LTAS computed us-

ng synthetic and natural speech signals (average LTAS is computed

sing 2525 speech files per method). Synthetic speech power is at-

enuated below 4 kHz compared to natural speech. For f > 4 kHz,

he opposite happens and the difference between human and syn-

hetic speech signals are larger. Especially for S3 and S4, hidden

arkov model (HMM)-based speech synthesis techniques, the rel-

tive difference between human and synthetic speech are higher

han for the other synthesis/conversion techniques. Interestingly,

hen f > 7 kHz, larger differences occur between other conversion

echniques and natural speech. 

It is well known that additive noise drastically reduces the

peaker, language and speech recognition performances. Several

ethods to cope with the adverse effects of additive noise con-

amination have been proposed. Speech enhancement techniques

im to improve the quality of the signal corrupted by noise in

he signal level. Cepstral mean subtraction (CMS) ( Atal, 1974 ), cep-

tral mean and variance normalization (CMVN) and RASTA filtering

 Hermansky and Morgan, 1994 ) are the popular feature level meth-

ds to suppress linear channel bias in cepstral features, often yield-

ng increased speaker recognition accuracy. Speaker, language and

peech recognition under additive noise and mismatched channel
onditions are well-studied and several techniques have been pro-

osed to improve the performance. However, since spoofing detec-

ion has only recently been drawn attention, its performance under

egradation and possible solutions for mismatched conditions are

nknown. Thus, a thorough analysis on the effect of noise is nec-

ssary for the anti-spoofing research. 

In this study, we consider three noise types: (i) white noise, (ii)

abble noise and (iii) car noise. The LTAS variations of each noise

ype are shown in Fig. 3 . 

. Feature extraction methods 

Speech features representing short-term spectral features, 

hich are mostly used for speech and speaker recognition, are also

mployed in speech-based spoofing detection. A comparative eval-

ation of a large number of speech features for this task is avail-

ble in Sahidullah et al. (2015) . In this paper, we focus on the most

romising (or otherwise popular) features for noise-robust spoof-

ng detection, namely, mel-frequency cepstral coefficients (MFCCs),

nverted mel-frequency cepstral coefficients (IMFCCs) ( Chakroborty

t al., 2007 ), spectral centroid magnitude coefficients (SCMCs)
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Table 1 

Summary of the features and their parameters used in this study. Check marks represents corresponding post processing 

is applied whereas empty entries correspond to opposite. 

Features Frame length/shift # DFT bins Filters Coefficients Post processing 

# Type Scale � �� CMS 

MFCC 20 ms/10 ms 512 32 Triangular Mel c 0 − c 31 � � � 

IMFCC 20 ms/10 ms 512 32 Triangular Mel c 0 − c 31 � � � 

SCMC 20 ms/10 ms 512 32 Rectangular Linear c 0 − c 31 � � � 

MHEC 20 ms/10 ms - 32 Gammatone ERB c 0 − c 31 � � � 

RPS 20 ms/10 ms 512 32 Triangular Mel c 0 − c 31 

MGD 20 ms/10 ms 512 - - - c 0 − c 31 � � � 

CosPhase 20 ms/10 ms 512 - - - c 0 − c 31 
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7 http://audio.eurecom.fr/software/CQCC _ v1.0.zip 
8 For the CQCCs, the number of feature vectors implied by the default parameters 

used in Todisco et al. (2016) is slightly different from the other features. On average, 

CQCCs produces about 17% more feature frames. 
( Kua et al., 2010 ), recently proposed constant Q cepstral coeffi-

cients (CQCC) ( Todisco et al., 2016 ) and relative phase shift (RPS)

( Leon et al., 2011; 2012; Sánchez et al., 2015 ), modified group de-

lay (MGD) ( Murthy and Gadde, 2003 ) and cosine phase (CosPhase)

( Wu et al., 2012b ) features. MFCC and IMFCC are based on fil-

ter bank analysis, SCMC contains detailed information of subband

while RPS, MGD and CosPhase carry phase-related information. In

addition to magnitude and phase based features, we also evaluate

recently proposed mean Hilbert envelope coefficient (MHEC) fea-

ture used successfully for robust speaker and language recognition

( Sadjadi and Hansen, 2015 ). 

The features and their parameters used in this study are sum-

marized in Table 1 . All the features have been made as compa-

rable as possible: their frame rates, DFT sizes, number of filters

and dimensionality are the same (where applicable). Feature post-

processing techniques (none or deltas followed by cepstral mean

subtraction) were optimized for each feature set separately. In the

following, we briefly describe each of the features. 

5.1. Mel-frequency cepstral coefficients (MFCCs) 

In short-term speech processing, the speech signal is first di-

vided into short overlapping frames (here 20 ms frames with

10 ms overlap is used). Then, the power spectrum of each Ham-

ming windowed frame is computed using discrete Fourier trans-

form (DFT) by 

| X [ k ] | 2 = 

∣∣∣∣∣
N−1 ∑ 

n =0 

x [ n ] e − j2 πkn/N 

∣∣∣∣∣

2 

0 ≤ k ≤ K − 1 , (5)

where, k is the DFT bin and x = [ x [0] , . . . , x [ N − 1] ] is a windowed

speech frame (assumed to be zero outside of the interval [0 , N −
1] ). In standard filterbank based feature extraction schemes, the

power spectrum is processed using a set of overlapping band-pass

filters. Logarithmic filter bank outputs are then converted into cep-

stral coefficients by applying discrete Cosine transform (DCT). Gen-

erally, triangular filters spaced in mel-scale are used as filterbank

and the resulting features are the mel-frequency cepstral coeffi-

cients (MFCCs). 

5.2. Inverted Mel-frequency cepstral coefficients (IMFCCs) 

In MFCCs, filters have denser spacing in low-frequency re-

gion. The IMFCC features are extracted using an inverted Mel scale

( Chakroborty et al., 2007 ), implemented in practice by flipping the

Mel-scaled filter bank in frequency axis giving more emphasis on

the high-frequency region. Fig. 4 shows an example of triangular

filters spaced on Mel and inverted Mel scales. Otherwise, all the

processing steps remain the same as in MFCC extraction. 
.3. Spectral centroid magnitude coefficients (SCMCs) 

Spectral centroid magnitude contains speech information simi-

ar to magnitude at the formant frequencies ( Kua et al., 2010 ). The

pectral centroid magnitude coefficients (SCMCs) are computed as

ollows. First, spectral centroid magnitude (SCM) for the i th sub-

and of speech frame is computed as: 

CM i = 

∑ K/ 2 

k =0 
f [ k ] | X [ k ] | w i [ k ] 

∑ K/ 2 

k =0 
f [ k ] w i [ k ] 

, (6)

here f [ k ] is the normalized frequency (0 ≤ f [ k ] ≤ 1) and w i [ k ]

s a window function in the frequency domain (here rectangular

indow is used) for computing the centroid of the i th subband.

n the next step, the logarithm of SCM values are computed and

onverted into feature coefficients (SCMCs) by using DCT. This sub-

and feature outperformed other related features in our prelimi-

ary comparison ( Sahidullah et al., 2015 ). 

.4. Constant Q cepstral coefficients (CQCCs) 

CQCC is another magnitude-based feature proposed very re-

ently to spoofing detection Todisco et al. (2016) . It was reported

o achieve the lowest EERs for known and unknown attacks on the

SVspoof 2015 corpus. CQCC uses a wavelet-like, perceptually mo-

ivated time-frequency analysis known as the constant Q transform

CQT) Brown (1991) . In contrast to the fixed time-frequency reso-

ution of the short-term Fourier transform, CQT provides a higher

requency resolution for the lower frequencies and a higher tempo-

al resolution for the higher frequencies. In order to compute the

epstrum, the CQT-based power spectrum is first uniformly sam-

led in linear frequency scale. Finally, CQCCs are computed by per-

orming DCT. In this work, we have used the implementation of

QCC made publicly available by EURECOM. 7 The default values of

he control parameters were used in our experiments. 8 

.5. Mean Hilbert envelope coefficients (MHECs) 

Gammatone filterbank based features are sometimes used in

peech and speaker recognition especially under mismatched and

everberated speech conditions ( Mitra et al., 2014; Sadjadi and

ansen, 2015; Yin et al., 2011 ). In general, the speech signal is first

rocessed by a bank of Gammatone filters that are equally spaced

n the equivalent rectangular bandwidth (ERB) scale between 100

nd 80 0 0 Hz (assuming the speech signal is sampled at 16 kHz).

n this study, we used the Gammatone filterbank implementation

rovided by Auditory toolbox ( Slaney, 1998 ). 

http://audio.eurecom.fr/software/CQCC_v1.0.zip
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Mean Hilbert envelope coefficients (MHECs) were recently pro-

osed for noise robust speech, speaker, and language recognition

 Sadjadi et al., 2012; Sadjadi and Hansen, 2015 ). It uses the out-

ut of each filter in the filterbank. Calculation of MHEC features is

erformed through the following steps: 

1. First, the speech signal is passed through a Gammatone filter-

bank consisting of 32 filters and for each Gammatone filter out-

put, the temporal envelope, the squared magnitude of the ana-

lytical signal is obtained using the Hilbert transform. 

2. The envelope is smoothed by applying a low pass filter with

cut-off frequency of f c = 20 Hz. 

3. Short-term energy is computed from each smoothed envelope

by framing and windowing. 

4. MHECs are computed from the energies using logarithmic com-

pression followed by DCT. 

.6. Relative-Phase shift (RPS) features 

The relative phase shift (RPS) features Leon et al. (2011) ; 2012 );

ánchez et al. (2015) are based on harmonic modeling of the

peech signal. In harmonic modeling, each frame is approximated

s the sum of sinusoids in the form: 

 [ n ] = 

∑ 

k 

A k [ n ] cos (φk [ n ]) , (7)

here A k [ n ] is the amplitude and 

k [ n ] = 2 πkF 0 n + θk (8)

s the instantaneous phase of the k th harmonic. F 0 is the funda-

ental frequency and θ k is the initial phase of the k th harmonic.

he instantaneous phase depends on the time instant n and har-

onic, k , whereas the initial phase, θ k , is independent of the time

nstant. The RPS value is the phase shift of the k th harmonic com-

onent with respect to fundamental frequency ( Leon et al., 2011;

012; Sánchez et al., 2015 ). It is calculated by solving for θ k by

quating the time instants n i in (8) between the k th harmonic and

he reference fundamental frequency, assuming θ1 = 0 : 

k = φk [ n i ] − kφ1 [ n i ] , (9)

We used COVAREP tool ( Degottex et al., 2014 ) to compute the

PS values. COVAREP tool uses 100 ms frames with 10 ms frame

hift for computing the F 0 . The RPS features are computed from

he RPS values by performing phase unwrapping and then differen-

iation followed by Mel-scale integration and DCT as in Leon et al.
2011) ; 2012 ). Similar to other front-end configurations, the 0th co-

fficient is included. 

.7. Modified group delay function 

Group delay function representing phase information shows

purious high amplitude spikes at zeros of short-term magnitude

pectrum due to excitation sources. Modified group delay function

MGDF) Murthy and Gadde (2003) is formulated by suppressing

eros of the magnitude spectrum. It is defined as, 

(k ) = sgn ×
∣∣∣∣

[ X R (k ) Y R (k ) + X I (k ) Y I (k )] 

H(k ) 2 γ

∣∣∣∣
α

(10) 

here sgn is the sign of X R (k ) Y R (k ) + X I (k ) Y I (k ) , X R ( k ) and X I ( k )

epresent real and imaginary part of DFT for a speech frame x ( n )

nd Y R ( k ) and Y I ( k ) represent the real and the imaginary parts of

FT for nx ( n ). H ( k ) is the speech spectrum after cepstral smooth-

ng, while α and γ are two control parameters. Cepstral like fea-

ures are computed from MGDF using DCT. This feature was used

or synthetic speech detection in Wu et al. (2012b) . In the experi-

ents, the parameters α and γ are set to 0.3 and 0.1, respectively.

.8. Cosine phase (CosPhase) features 

The phase spectrum computed using short-time Fourier trans-

orm can be used for speech feature extraction. Since the phase

pectrum calculated directly from the complex STFT parameters is

iscontinuous with respect to frequency, we first unwrap the phase

pectrum. The cosine function is then applied to the unwrapped

hase spectrum to normalize the range in [ −1 . 0 , 1 . 0 ]. Then discrete

osine transform (DCT) is applied to the cosine normalized phase

pectrum. This feature is called as CosPhase and used in spoofing

etection ( Wu et al., 2012b ). 

. Experimental setup 

.1. Database 

The experiments are conducted on the ASVspoof 2015 database

 Wu et al., 2015c ) which consists of speech data with no channel

r background noise collected from 106 speakers (45 male and 61

emale) and three subsets with non-overlapping speakers: 
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Fig. 5. Distributions of estimated SNR levels for each subset of ASVspoof 2015 dataset. 

Table 2 

Statistics of the ASVspoof 2015 database, used in the experiments 

Wu et al. (2015c) . 

Subset Number of speakers Number of utterances 

Male Female Natural Synthetic 

Training 10 15 3750 12 ,625 

Development 15 20 3497 49 ,875 

Evaluation 20 26 9404 184 ,0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I  

p  

o  

s  

N  

t  

s  

h  

n  

i  

p  

n  

s  

p  

n  

i

 

b  

i  

t  

n  

v

6

 

f  

f  

a  

d  

l  

d  

l  

n

 

s  

G  

i  
• Training subset is used to train genuine and spoofed classes

for spoofing detection. It contains natural and five different

types of spoofed speech: three are generated using voice con-

version and the rest using speech synthesis. Voice conversion

algorithms are (i) frame-selection (S1), (ii) spectral slope shift-

ing (S2) and (iii) Festvox (S5) system 

9 whereas the speech syn-

thesis spoofs are based on hidden Markov model-based meth-

ods (S3 and S4). 
• Development subset is used to optimize spoofing detectors. It

contains the same five spoofing methods (S1-S5) as the training

subset. 
• Evaluation subset is used for evaluating the final performance

of the system. It contains five “known” algorithms seen in the

training and development subsets (S1-S5) as well as five “un-

known” algorithms (S6-S10). 

Table 2 summarizes speaker and utterance information for each

subset. 

To analyze the original ASVspoof 2015 data regarding noise

level and to show the quality of recordings in the database be-

fore interpreting the results, we computed the SNR level of record-

ings. Fig. 5 shows the histograms of estimated SNR levels 10 for

each subset of the original ASVspoof 2015 dataset. All the speech

files from the training set are used to plot the histogram for this

subset, whereas randomly selected 30,0 0 0 speech signals are used

to generate histograms for Evaluation and Development subsets. A

vast majority of the signals have a relatively high SNR exceeding

20 dB. The evaluation subset contains also signals with very high

SNRs (approximately 8% of 30,0 0 0 files have SNR > 50 dB). 

We use Filtering and Noise Adding Tool (FaNT) 11 to corrupt the

original ASVspoof 2015 signals with noise for introducing con-

trolled degradation. FaNT is an open-source tool which follows the
9 http://www.festvox.org 
10 SNREval Toolkit from http://labrosa.ee.columbia.edu/projects/snreval/ is used to 

estimate the SNR levels. 
11 http://dnt.kr.hsnr.de/ 

p

 

u  

u  

f  

t  
TU recommendations for noise adding and filtering. To be more

recise, it uses psychoacoustic speech level computation based

n the ITU recommendation P.56 ( objective measurement of active

peech level ). We digitally add white, babble and car noises from

OISEX-92 database ( Varga and Steeneken, 1993 ). For each noise

ype we consider 3 SNR levels: 0, 10 and 20 dB. The reasons for

electing these types of noise are the following: (i) White noise

as a flat spectral density and it masks all the frequency compo-

ents uniformly. Although it rarely represents a real-case scenario,

t is a commonly used control noise in studying robust speech

rocessing methods. (ii) Babble noise is one of the most difficult

oise types in speech applications containing a mixture of multiple

peakers — a situation that occurs on a daily basis in any crowded

lace ( Krishnamurthy and Hansen, 2009 ). (iii) Car noise is another

oise type that may frequently occur in our daily life such as mak-

ng a phone call while driving. 

In the experiments, we consider noise mismatched condition

y training the natural and synthetic speech models using the orig-

nal clean training files, but test them on noisy files. The reason for

his choice is practicality: in a real-world deployment of ASV tech-

ology in smartphones or other portable devices, the operation en-

ironment of the user would be rarely known precisely. 

.2. Classifier and features 

We use 32 coefficients (including c 0 ) and 32 filters in filterbank

or every method. This is done to have comparable results for dif-

erent feature extraction methods. We apply energy-based voice

ctivity detection (VAD) (Kinnunen and Li, 2010, p. 24) on clean

ata to get speech/non-speech labels. Using clean VAD labels al-

ows us to focus merely on the effect of noise on synthetic speech

etection rather than mixed effects of VAD and feature set. These

abels are used to discard non-speech frames for both clean and

oisy speech. 

For GMM-based classification, we use two models to repre-

ent natural and synthetic speech classes (see details in Section 3 ).

MM for each class has 512 components and is trained using 5 EM

terations (the performance differences for larger number of com-

onents were negligible in our initial experiments). 

For i-vector based classification, we train a gender-independent

niversal background model (UBM) consisting of 512 Gaussians

sing 90 0 0 utterances from 150 male and 150 female speakers

rom the WSJ0 & 1 corpora Wall Street Journal Corpus (2015) . To

rain the T -matrix, we select 8945 utterances from 178 male and

http://www.festvox.org
http://labrosa.ee.columbia.edu/projects/snreval/
http://dnt.kr.hsnr.de/
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77 female speakers from the WSJ0 & 1 databases 12 and run EM-

lgorithm for 5 iterations. The extracted 600 dimensional i-vectors

re further processed by applying within-class covariance normal-

zation (WCCN) Hatch et al. (2006) , followed by projection to the

nit sphere Garcia-Romero and Espy-Wilson (2011) . The logic be-

ind WCCN is not to normalize within-speaker variation Dehak

t al. (2011) , like it is done for speaker recognition, but to nor-

alize within-class (natural or synthetic) variation. To this end, we

eparate the training data into natural and synthetic classes and

se them to compute WCCN transformation matrix B (Dehak et al.,

011, p. 791) . PLDA model trained on original (clean) data is used

n noisy spoofing detection experiments. 

.3. Combined countermeasures via score fusion 

Given the wide diversity and varied difficulty of existing and fu-

ure spoofing attacks, it might be difficult to come up with a sin-

le feature set to detect all possible attacks. As an example, phase-

elated features might be suited to detect attacks whose vocoder

iscards natural phase information while other methods may pos-

ess superior noise robustness. This motivates exploration towards

ountermeasures that includes a bank of different front-ends, some

eing potentially specialized to detect particular types of attacks.

o this end, here we consider two score level fusion strategies

o maximally benefit from the complementarity of our features:

) Fusion 1: Score averaging — a simple technique, which does

ot require any training, 2) Fusion 2: weighted sum , where fu-

ion weights and a bias term are estimated using logistic regres-

ion ( Brümmer et al., 2007 ). We use the development data to train

he parameters for each noise type and SNR level. 

.4. Performance measure 

Following the evaluation plan of ASVspoof 2015, equal error

ate (EER) is used as the objective performance criterion in the ex-

eriments. EER corresponds to the threshold at which false accep-

ance ( P fa ) and miss rate ( P miss ) are equal. P fa is the ratio of num-

er of spoof trials detected as genuine speech to the total num-

er of spoof trials and P miss is the ratio of number of genuine

rials detected as spoofed to the total number of genuine trials.

he EERs reported in this work were computed using the bosaris

oolkit 13 which computes the EER on receiver operating character-

stics (ROC) convex hull (ROCCH) that is an interpolated version of

tandard ROC. 

. Results 

We conduct the experiments separately on the development

nd evaluation parts of ASVspoof 2015. The development part is

rst used for optimizing the system parameters and configurations.

he feature extraction method that yield the lowest EERs is then

elected for further experiments on the evaluation part. 

.1. Effect of feature post-processing 

In our first experiment on the development set, we study the

ffect of f eature post-processing. Specifically, we study the ap-

ending � and �� features and cepstral mean subtraction (CMS).

he results on MFCC and CosPhase features are shown in Fig. 6 .

ere, MFCC and CosPhase features are selected as representatives
12 Usually 283 speakers from WSJ0 & 1 databases are used in most studies which 

s the official training set of the corpora. In our experiments, we included test sets 

f WSJ0 & 1 corpora in addition to training set which yields a total of 177 male and 

78 female speakers. 
13 https://sites.google.com/site/bosaristoolkit/ 
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f magnitude and phase-based features, respectively. The upper

ow corresponds to the MFCC and the lower row to the CosPhase

eatures. For the original (clean) case, 2.24% EER is obtained using

nly the base MFCCs. Appending � and �� features to the MFCCs

educes the EER to 0.49%. Applying CMS slightly reduces the per-

ormance for the clean case (0.84% EER). For the CosPhase features,

n turn, the lowest EER (1.09%) is obtained with the base features

n clean data in contrast to MFCCs. Appending � features to the

ase CosPhase features almost doubles the EER (2.16%). Append-

ng �� or applying CMS does not help to increase the synthetic

peech detection performance with CosPhase features. 

For the noisy case, appending the � and �� coefficients con-

iderably improves the accuracy in most cases. For example, we see

8% relative improvement over the base MFCCs for babble noise

t 20 dB SNR (EER 16.29% → 3.61%). Similarly, applying CMS on

op of the dynamic features improves performance considerably.

hereas, post-processing shows an opposite effect with CosPhase

eatures where the smallest EERs are obtained with the base fea-

ures independent of the noise type and SNR. 

The results in Fig. 6 are for the MFCC and CosPhase features.

he results were similar for the other studied features. Namely,

or the magnitude (MFCCs, IMFCCs, SCMC and CQCC) and MHEC

eatures, the best performance is obtained with the full post-

rocessing (included deltas followed by CMS) whereas for the

hase-based features the raw features yield the smallest EERs ex-

ept for MGD. Out from the 10 conditions evaluated (3 SNRs ×
 noise types plus the clean data), MGD features with deltas and

eature normalization yielded the lowest EERs in 6 cases. Thus,

n all the remaining experiments, we will adopt the raw RPS and

osPhase features. For all the rest of the features, we include deltas

nd CMS. 

.2. Comparison of features 

The results on development set for different f eatures using

MM are summarized in Table 3 . For the clean (original) case, the

PS features yield the lowest EER. However, under additive noise,

specially for white noise and at low SNR levels of car and babble

oises, the performance of RPS is relatively poor. This could be be-

ause RPS requires estimated F 0 values that are difficult to extract

eliably from noisy data. For babble and car noises at high SNRs

20 dB), RPS yields reasonable accuracy. The SCMC features per-

orm well for the babble and car noises, whereas for white noise,

HEC yields lower EERs. To sum up Table 3 , none of the feature

ets is consistently superior to others. In most cases, SCMC out-

erforms the other features. Out of the three phase features (RPS,

GD and CosPhase), CosPhase features are superior to RPS and

GD under white noise case. However, RPS outperforms MGD and

osPhase for babble and car noises. In general, magnitude features

utperform phase-related features independent of noise type and

NR. 

Applying score fusion to the eight feature extraction methods

onsiderably improves the accuracy for all cases including the orig-

nal (clean) condition as Table 3 indicates. Weighted sum technique

here the weights of each individual system are estimated with

ogistic regression (indicated as Fusion2 in Table 3 ) yield lower

ERs than score averaging fusion (Fusion1). The effect of each in-

ividual feature set on the fusion performance has been investi-

ated and it was found that excluding RPS from the fusion (apply-

ng score fusion to the six remaining feature sets) dramatically in-

reases the EERs irrespective of noise and SNR. This suggests that

PS consists of complementary information even though it gives

oor stand-alone performance compared to other features. 

https://sites.google.com/site/bosaristoolkit/
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Fig. 6. Effects of � and �� MFCC features and Cepstral Mean Subtraction on synthetic speech detection. First row, MFCC features. Second row, CosPhase Features. 

Table 3 

Comparison (EER, %) of different front-end features in noisy conditions on development set using Gaussian Mixture Model 

classifier. The results for clean original condition are presented as well as the average results for all noisy sub-conditions. 

Noise SNR MFCC IMFCC SCMC CQCC MHEC RPS MGD CosPhase Fusion1 Fusion2 

type (dB) 

Original 0 .84 0 .91 0 .38 0 .44 3 .92 0 .15 1 .25 1 .09 0 .02 0 .00 

White 20 15 .75 34 .17 21 .91 33 .41 12 .08 37 .64 28 .35 22 .12 12 .17 8 .45 

10 24 .13 44 .56 32 .19 38 .13 22 .2 41 .37 39 .23 30 .02 18 .84 16 .09 

0 31 .42 48 .86 39 .86 45 .55 33 .37 43 .61 46 .45 40 .73 29 .42 27 .69 

Babble 20 7 .23 5 .66 2 .71 18 .07 11 .06 5 .26 13 .77 13 .97 1 .89 0 .56 

10 15 .32 15 .4 9 .36 29 .49 25 .58 20 .04 26 .26 25 .33 7 .72 4 .96 

0 31 .05 37 .73 30 .09 41 .60 40 .87 39 .90 40 .12 34 .22 26 .58 22 .85 

Car 20 3 .51 1 .94 0 .87 9 .26 8 .96 0 .74 9 .30 15 .14 0 .39 0 .03 

10 7 .48 4 .69 2 .48 18 .04 19 .47 5 .75 15 .84 25 .05 2 .56 0 .67 

0 16 .44 14 .27 8 .74 29 .42 33 .12 24 .03 29 .72 38 .23 11 .83 7 .12 

Average 16 .92 23 .03 14 .85 26 .34 21 .06 21 .84 25 .02 24 .58 11 .14 8 .84 
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7.3. Effect of speech enhancement 

Next, we study the effect of speech enhancement techniques.

To this end, magnitude and power spectral subtraction algorithms

( Berouti et al., 1979; Boll, 1979 ) and Wiener filtering ( Lim and Op-

penheim, 1979 ) approaches are adopted. Detection error trade-off

(DET) curves for different speech enhancement methods for each

noise type, at 0 dB SNR and using MFCC features with deltas and

CMS as well as CosPhase features, are shown in Fig. 7 . Here, the

DET curves are generated by pooling the scores of all the individual

attacks. 14 Fig. 7 indicates that the attempted speech enhancement

techniques do not yield any performance gains for MFCC features.

For CosPhase features, magnitude spectral subtraction slightly im-

proves the performance for white noise whereas for babble and
14 Although in ASVspoof 2015 the evaluation metric is averaged EER over different 

attacks, producing a single DET curve that would coincidence with this operating 

point is not obvious. Thus, here the scores are pooled to generate the DET plot and 

to compute the corresponding EERs in Fig. 7 legends. 

n  

t  

(  

m  

i  
ar noises speech enhancement methods do not improve the per-

ormance. These three methods were applied to SCMC features as

ell in order to analyze the effect of speech enhancement on dif-

erent features and to check whether the observations can be gen-

ralized and the similar results have been obtained. Apart from

hese three popular methods, other methods including minimum

ean square error (MMSE), logarithmic MMSE (logMMSE) and it-

rative Wiener filtering techniques (as available in the Appendix of

oizou (2007) ) were studied, without success. The reduction on the

erformance after speech enhancement might be because speech

nhancement introduces musical noise and other processing arti-

acts that mask the synthesis or conversion artifacts. 

A recent independent study ( Yu et al., 2016 ) confirms the inef-

ectiveness of traditional unsupervised speech enhancement tech-

iques for spoofing detection in noisy condition. Currently, similar

o most speech processing tasks, the use of deep neural network

DNN) based techniques is extensively studied on speech enhance-

ent ( Han et al., 2015; Xu et al., 2014; 2015 ) and could be an

nteresting approach. However, as DNNs require large amounts of



C. Hanilçi et al. / Speech Communication 85 (2016) 83–97 93 

  10   20   40   60

  10

  20

  40

  60

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

White Noise

No Enh. (EER = 33.0%)
Mag. Spect. Subt. (EER = 34.4%)
Power Spect. Subt. (EER = 37.1%)
Wiener Filt. (EER = 35.7%)

  10   20   40   60

  10

  20

  40

  60

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

Babble Noise

No Enh. (EER = 32.4%)
Mag. Spect. Subt. (EER = 35.0%)
Power Spect. Subt. (EER = 35.2%)
Wiener Filt. (EER = 35.5%)

  10   20   40   60

  10

  20

  40

  60

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

Car Noise

No Enh. (EER = 18.9%)
Mag. Spect. Subt. (EER = 22.3%)
Power Spect. Subt. (EER = 21.7%)
Wiener Filt. (EER = 25.0%)

  10   20   40   60

  10

  20

  40

  60

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

White Noise

No Enh. (EER = 40.8%)
Mag. Spect. Subt. (EER = 37.6%)
Power Spect. Subt. (EER = 40.7%)
Wiener Filt. (EER = 40.8%)

  10   20   40   60

  10

  20

  40

  60

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

Babble Noise

No Enh. (EER = 35.3%)
Mag. Spect. Subt. (EER = 36.6%)
Power Spect. Subt. (EER = 36.3%)
Wiener Filt. (EER = 38.6%)

  10   20   40   60

  10

  20

  40

  60

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

Car Noise

No Enh. (EER = 38.4%)
Mag. Spect. Subt. (EER = 42.3%)
Power Spect. Subt. (EER = 43.1%)
Wiener Filt. (EER = 43.2%)

Fig. 7. DET curves for different speech enhancement techniques under additive noise (0 dB). First row, MFCC features. Second row, CosPhase features. 
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dditional training data from different noisy conditions for super-

ised training, they are not addressed in this study that focuses

n DSP-based unsupervised speech enhancement techniques. Fur-

her, achieving performance improvement in unseen noisy condi-

ion appears challenging even with DNN-based speech enhance-

ent methods ( Sun et al., 2016 ). 

.4. i-vector countermeasures from different features 

Up to this point, we have utilized the computationally light

MM classifier to study different feature configurations. In our last

xperiments with the development set, we study an i-vector based

ountermeasure. To this end, i-vector extractors are trained from

cratch for all the seven acoustic feature sets. The results are pro-

ided in Table 4 for both cosine and PLDA scoring. For clean (origi-

al) case, the recently proposed CQCC features yield the smallest

ER among the eight methods. While the performance of CQCC

eatures with i-vector back-end is superior to GMM classifier on

lean data, for the remaining seven feature extraction methods,

MM back-end outperforms the i-vector back-end. For additive

oise cases, i-vector is inferior to GMM independent of the noise

ype and feature extraction method. Similar results for GMM and

-vector techniques were found in our recent comparative study

f classifiers for synthetic speech detection ( Hanilçi et al., 2015 ).

his could be because of the short duration of recordings (approxi-

ately 3 seconds) that ASVspoof 2015 consists of. Similar observa-

ion for i-vector performance on short utterances were found in Li

t al. (2016) where GMM and i-vector systems were compared for

peaker verification task using short data and it was found GMM

ecognizer outperforms i-vector system. 
Similar to GMM experiments under additive noise ( Table 3 ),

one of the features are systematically superior to others. The fea-

ures that yield the lowest EERs are different for each noise type

nd SNR level. MHEC yields the highest performance for white

oise whereas, for the babble and car noises, RPS is superior to

ther features at high SNRs (20 and 10 dB). Concerning the two i-

ector back-end variants, PLDA does not bring substantial improve-

ents in comparison to cosine scoring. The most considerable per-

ormance improvement with PLDA is obtained with CosPhase fea-

ures using original (clean) data (EER reduced from 11.80% to 4.54%

ith PLDA). Similar to the results with GMM classifier, CosPhase

eatures outperform the other phase features (RPS and MGD) un-

er white noise. However, for the babble and car noises, RPS out-

erforms other phase features. The performance of MGD features,

n turn, lies between RPS and CosPhase. In the next experiments

n Evaluation set, MFCC and SCMC features as two magnitude and

PS and MGD features as phase based features using GMM and i-

ector techniques will be considered. 

.5. Results on evaluation set 

In the experiments with the evaluation portion of ASVspoof

015, we first study the performance of each individual attack us-

ng clean data with two magnitude (MFCC and SCMC) and two

hase (RPS and MGD) based features. The EERs obtained with

MM and i-vector techniques for the individual attacks are sum-

arized in Table 5 . Similar to observations found on the develop-

ent set, GMM outperforms both i-vector scoring variants inde-

endent of the attack type and the features. 
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Table 4 

Comparison (EER, %) of different front-end features in noisy conditions on development set using Cosine/Probabilistic Linear Discriminant Analysis i-vector 

classifiers. The results for the clean (original) condition are presented as well as the average results for all noisy sub-conditions. The lower half of the table 

presents a difference between the corresponding EERs for PLDA and cosine scoring. Blue cells indicate conditions where PLDA scoring is advantageous to 

cosine scoring, whereas red cells indicate the opposite. 

Table 5 

Comparison (EER, %) of Gaussian Mixture Model classifier and two i-vector based classifiers: Cosine scoring and Probabilistic 

Linear Discriminant Analysis. We consider individual attacks on clean evaluation set using selected two magnitude (MFCCs and 

SCMC) and two phase (RPS and MGD) based features. 

Features Classifier Known attacks Unknown attacks Avg. 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 (S6-S9) 

MFCC GMM 0 .00 3 .54 0 .00 0 .00 0 .70 1 .10 0 .80 0 .53 0 .11 27 .34 0 .63 

Cosine 2 .89 9 .26 2 .67 2 .66 6 .01 8 .07 3 .64 5 .03 3 .07 46 .49 4 .95 

PLDA 3 .26 9 .67 2 .16 2 .39 5 .84 8 .23 3 .55 6 .97 3 .29 47 .11 5 .51 

SCMC GMM 0 .00 1 .22 0 .05 0 .02 0 .60 0 .46 0 .07 0 .31 0 .02 29 .92 0 .21 

Cosine 4 .24 12 .31 2 .08 2 .27 5 .46 7 .64 3 .03 2 .73 2 .45 44 .17 3 .96 

PLDA 5 .29 12 .72 2 .61 2 .90 5 .76 8 .33 3 .76 4 .72 3 .14 46 .47 4 .98 

RPS GMM 0 .00 0 .02 0 .10 0 .10 0 .04 2 .00 0 .01 0 .92 0 .00 45 .18 0 .73 

Cosine 3 .73 3 .32 5 .06 4 .90 6 .25 10 .62 9 .03 17 .21 3 .79 46 .11 10 .16 

PLDA 4 .20 3 .74 4 .46 4 .12 4 .49 11 .11 14 .38 17 .03 4 .53 46 .93 11 .76 

MGD GMM 0 .10 3 .45 0 .08 0 .11 2 .42 4 .26 0 .96 2 .42 1 .74 24 .32 2 .34 

Cosine 7 .19 14 .74 5 .04 5 .48 11 .42 12 .42 11 .82 13 .00 11 .09 36 .59 12 .08 

PLDA 8 .17 15 .33 4 .88 5 .33 11 .74 13 .37 13 .01 13 .53 11 .03 38 .94 12 .73 

Fusion1 GMM 0 .00 0 .02 0 .00 0 .00 0 .02 0 .11 0 .04 0 .01 0 .00 21 .44 0 .04 

Cosine 0 .29 1 .33 0 .24 0 .27 1 .13 2 .11 0 .88 1 .39 0 .38 41 .50 1 .19 

PLDA 0 .51 2 .26 0 .24 0 .26 0 .94 2 .34 1 .25 2 .08 0 .50 44 .39 1 .54 

Fusion2 GMM 0 .00 0 .00 0 .00 0 .00 0 .00 8 .36 8 .48 8 .61 8 .35 8 .27 8 .45 

Cosine 0 .96 0 .91 0 .87 0 .92 0 .91 14 .26 14 .41 14 .53 14 .26 14 .45 14 .36 

PLDA 0 .76 0 .80 0 .70 0 .76 0 .73 15 .00 15 .02 15 .21 14 .89 15 .08 15 .03 
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Independent of the classifier and features, S10 —the speech syn-

thesis algorithm that uses MARY text-to-speech system 

15 — is the

most difficult attack type to detect in comparison to the other un-

known attacks (S6-S9). This could be because S10 does not use

any vocoder in generating the synthetic speech signals whereas the

popular STRAIGHT vocoder Kawahara et al. (1999) is used in most

of the remaining attacks. Thus, spoofing detectors trained with a

STRAIGHT vocoder but tested without it will induce a mismatch
15 http://mary.dfki.de/ 

t  

t  
etween the training and the test samples ( Wu et al., 2015c ), mak-

ng detection of S10 relatively more difficult. 

In general, the SCMC features yield lower EERs than MFCCs with

he GMM classifier except for S10. Concerning the two phase-based

eatures, RPS outperforms MGD in most cases. Notably, MGD yields

onsiderably better performance than RPS for S10, therefore for un-

nown attacks, on average. For the unknown attacks, MFCCs are

uperior to phase based MGD features. However, for known at-

acks RPS yields better accuracy than magnitude based MFCCs. For

he two scoring variants of i-vector, in turn, MFCCs outperform the

http://mary.dfki.de/
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Table 6 

Comparison (EER, %) of known and unknown attacks for Gaussian Mixture model classifier on evaluation set. In each row, the lowest 

EERs for the known (K) and unknown (U) attacks (S6-S9 attacks) are bolded and underlined, respectively. 

Noise SNR MFCC SCMC RPS MGD Fusion1 Fusion2 

type (dB) K. U. K. U. K. U. K. U. K. U. K. U. 

Original 0.85 0.63 0.38 0.22 0.05 0.73 1.23 2.35 0.01 0.04 0.00 0.04 

White 20 16.43 17.94 19.92 15.40 38.53 40.62 27.25 36.24 13.39 13.93 16.76 16.40 

10 25.45 29.78 33.36 32.14 42.16 44.98 37.42 38.66 22.78 26.13 25.91 27.71 

0 35.07 39.66 43.73 42.27 44.56 46.64 44.42 45.88 34.29 38.53 34.96 38.90 

Babble 20 7.48 6.49 2.15 1.39 6.09 10.62 14.20 23.55 1.13 1.81 0.69 1.97 

10 15.59 12.76 8.32 5.30 21.17 23.71 26.30 35.65 5.81 6.52 5.36 8.08 

0 33.54 28.40 29.74 25.13 40.66 40.81 37.59 40.77 24.90 23.75 25.23 23.95 

Car 20 3.57 2.83 0.79 0.52 0.74 3.67 9.39 16.12 0.11 0.45 0.05 0.38 

10 7.31 6.03 2.16 1.67 5.28 9.93 15.99 24.44 1.00 2.07 0.72 1.95 

0 17.33 14.69 8.59 7.36 24.66 25.67 30.32 36.63 8.17 9.38 7.11 8.03 
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CMC features, except for S10. Overall, S10 yields extremely high

ERs while reasonable accuracies are obtained for the other at-

acks. In most studies that report their findings on the ASVspoof

015 data, the performance of countermeasures is reported by av-

raging the EER of individual unknown attacks (S1-S10), which was

he official evaluation metric of the challenge. However, the aver-

ge EER of unknown attacks becomes highly dependent on the per-

ormance of S10 attack. Therefore, in Table 5 , the performance of

nknown conditions are reported by averaging the S6-S9 attacks

ather than S6-S10. Since GMM outperformed i-vectors systemati-

ally, only the GMM results are presented in the remaining exper-

ments on the Evaluation set. 

Note that in Table 5 , simple score averaging (Fusion 1) performs

onsiderably better than fusion with weights optimized using lo-

istic regression (Fusion 2). This stems from the fact that, during

he training of Fusion 2, we pool all scores together and look for

 joint transformation for all the attack types. This results in al-

ost equal performance of the system to each attack type. Unfor-

unately, due to a very high EER for S10, this performance could be

alled as being “equally bad”. 

The results for the noise-contaminated evaluation set obtained

ith GMM using selected magnitude and phase based features are

iven in Table 6 . MFCCs yield lower EERs than SCMCs under white

oise for both known and unknown attacks. For the babble and

ar noises, in turn, SCMCs outperform MFCCs. Similar to results on

evelopment Set ( Table 4 ), a considerable reduction in EERs is ob-

ained using SCMC features over MFCCs under car and babble noise

ases. For phase features, RPS is superior to MGD features for both

nown and unknown attacks under babble and car noises whereas

GD shows better performance than RPS under white noise case.

n general, magnitude features (MFCCs and SCMCs) yield lower

ERs than phase features independent of noise and SNR. 

. Conclusion 

In this study, our goal was to analyze the robustness of exist-

ng state-of-the-art countermeasure systems for synthetic speech

etection in the presence of additive noise. Extensive experiments

ere conducted using different front-ends and back-ends for three

ype of noises (white, babble and car) with three different noise

evels (20 dB, 10 dB, and 0 dB). We evaluated the perfor-

ance with five different short-term magnitude features (MFCC,

MFCC, SCMC, CQCC and MHEC) and three short-term phase fea-

ures (RPS, MGD, and CosPhase). These features have success-

ully been used for spoofing detection in clean conditions whereas

ur study addresses their performance under additive noise back-

rounds. As a back-end, we have experimented with two well-

nown approaches: Gaussian mixture model (GMM) and i-vector.

e also explored the effect of various speech enhancement tech-
iques as well as the impact of different feature post-processing

ethods. Finally, we have investigated fusion techniques to com-

ine the strength of multiple systems. 

Our extensive results on ASVspoof 2015 dataset indicate that

dditive noise contamination considerably complicates the task

f synthetic speech detection. Applying standard speech enhance-

ent techniques, such as magnitude spectral subtraction, power

pectral subtraction, and Wiener filtering were not found helpful

n improving the accuracy. In recent studies, it was reported that

NN-based speech enhancement techniques outperforms stan- 

ard methods such as MMSE and Wiener filtering ( Sun et al.,

016 ). Therefore, applying DNN-based speech enhancement for

nti-spoofing under additive noise would be interesting for the

uture work. We also found that phase-based features, RPS, and

osPhase, perform better in the absence of any feature post-

rocessing schemes like delta features or cepstral mean subtrac-

ion (CMS). But those post-processing steps were found crucial for

he other features. 

White noise degrades the accuracy the most. For example, in

n experiment on the development set, EER increased from 0.84%

o 31.42% with MFCC features and GMM back-end in the presence

f white noise with 0 dB SNR. The severity of white noise can be

xplained with the help of comparative long-term average spectra

LTAS) of different noises. We have shown that it has a consider-

ble effect on the entire speech spectrum unlike other two types

f noises where the effect on speech spectrum is mostly partial. 

Concerning the back-ends, we have observed the GMM-based

lassifier to consistently outperform the more sophisticated i-

ector method. Poor results for the i-vector systems could be ex-

lained by short utterances or possibly suboptimal data selection

o train UBM and T-matrix. Our findings on spoofing detection task

lso agree with the results from the previously conducted indepen-

ent studies, but on the clean condition. 

In the study of features using GMM as the classifier, MFCCs

ive best recognition accuracy in most cases in the presence of

hite noise while SCMCs perform better for babble and car. How-

ver, this observation is not consistent when we take i-vector sys-

ems into account. For example in an experiment with the devel-

pment set, MHEC feature outperforms the other features for the

-vector-cosine system whereas MFCCs win when PLDA scoring is

mployed. We have also observed that RPS feature — which was

uccessfully used in many spoofing detection studies and outper-

orms other features such as MFCC in clean conditions — gener-

lly yield higher EERs than standard MFCC features in the presence

f additive noise. However, its performance is still superior to the

ther two phase based features compared: MGD and CosPhase. 

The results on the evaluation section of ASVspoof 2015 further

eveals that detecting unknown attacks is much harder than de-

ecting known attacks in noisy condition. Moreover, from a detailed
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study on attack-specific performances with clean speech data, we

find that the notable performance difference between known and

unknown attacks is mostly due to one specific spoofing attach, S10

(i.e., MARY TTS) which does not use any vocoder as the other syn-

thetic speech generation techniques used in ASVspoof 2015. This

was the general observation regarding different systems submitted

to ASVspoof 2015 ( Wu et al., 2015c ). 

Finally, we have observed considerable gain in spoofing detec-

tion performance due to fusion of multiple front-ends. For exam-

ple, in the presence of 10 dB car noise, the EERs of known and

unknown attack using score-average fused system are 0.99% and

7.82%, respectively, whereas best individual system (here, SCMC)

gives 2.16% and 8.49%. We have also noticed that improvement

for the known attack condition is relatively higher than the im-

provement in unknown attack. We further observe that logistic re-

gression based fusion scheme is better for known attacks, however,

score average based method is more appropriate for unknown at-

tacks. This is because for the logistic regression approach the fu-

sion parameters are optimized on development set, i.e., for known

attacks, and those optimized parameters are used for fusion of

evaluation set scores consisting known and unknown attack. Ap-

plying score average based fusion strategy is a compromise to re-

duce the generalization error. Preventing fusion overfitting is an

important practical consideration and clearly deserves further at-

tention. 

Our results suggest that synthetic speech detection becomes

more challenging in noisy conditions, similar to speaker verifica-

tion in a noisy environment. This study opens a few potential di-

rections for future work. The first one is a development of robust

approaches for both front-end and back-end sides of spoofing de-

tection systems. In front-end side, we used the most promising (or

otherwise popular) features in this study. Other phase based tech-

niques, such as RPI that was reported to perform well under noisy

conditions in other speech processing tasks, would be interesting

to study in antispoofing under additive noise. The other direction is

a study of trustworthiness of voice biometric systems under a joint

presence of spoofing attacks and noise that calls for joint optimiza-

tion and evaluation of ASV and spoofing countermeasure systems. 
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