
Time-series Clustering by Approximate Prototypes

Ville Hautamäki, Pekka Nykänen and Pasi Fränti
Speech and Image Processing Unit,

Department of Computer Science and Statistics,
University of Joensuu, Finland

{villeh,pnykanen,franti}@cs.joensuu.fi

Abstract

Clustering time-series data poses problems, which
do not exist in traditional clustering in Euclidean space.
Specifically, cluster prototype needs to be calculated,
where common solution is to use cluster medoid. In this
work, we define an optimal prototype as an optimiza-
tion problem and propose a local search solution to it.
We experimentally compare different time-series clus-
tering methods and find out that the proposed prototype
with agglomerative clustering followed by k-means al-
gorithm provides best clustering accuracy.

1 Introduction

The goal of clustering is to group given N data ob-
jects into k clusters. When the data objects are fixed-
dimensional feature vectors in an Euclidean space, stan-
dard clustering techniques such as k-means can be ap-
plied. However, when each data object is a sequence
of observations forming a time-series, clustering ap-
proaches become rather scarce. Recently, traditional
point-clustering techniques have been generalized for
clustering time-series data [6]. Sequences appear com-
monly for example in bioinformatics [3], handwrit-
ing recognition [9], medical data [4] and multimedia
data [7].

If all time-series are of equal length (which is not
a common case), standard clustering techniques can be
applied by considering each time-series as a long vec-
tor using Euclidean distance. However, this approach
would not take into account the similarities in shape dif-
ferent sequences could possess.

Definition of distance between time-series objects
can be divided into three categories: feature, model
and shape-based methods [6]. In feature-based distance,
equal length feature vector is calculated from each time-
series, followed by Euclidean distance measurement.

Model-based techniques fit a parametric model to each
time-series, where distance can be any suitable model-
model distance. Finally, shape- or raw data based-
distance tries to match the shape of the two time-series
as well as possible, by non-linearly stretching and con-
tracting the time axes.

In this work, we apply the shape matching approach
and in particular we define the distance between two
time-series as the dynamic time warping (DTW) dis-
tance [8]. Analoguously to the k-means clustering in
Euclidean space, we define our clustering cost function
to be a sum of DTW distances from each input time-
series to it’s cluster prototype. Immediately, it follows
that we need a way to compute the prototype time-series
of a cluster. Or analogously, we need to compute an av-
erage time-series from the set of sequences. Due to the
difficulty in computing the optimal prototype, typically
a medoid is used instead. Medoid is the time-series in
the cluster that minimizes the sum of distances to other
sequences within the same cluster [9].

Moreover, we propose an iterative optimization
scheme to compute a locally optimal prototype. In addi-
tion, we apply two Euclidean space clustering methods
to time-series clustering: random swap (RS) [2] and hi-
erarchical clustering followed by k-means finetuning.

2 Clustering methods

Clustering time-series data can be defined as an op-
timization problem, where the goal is to partition N
time-series into k disjoint subsets. Each time-series is a
sequence of vectors si = (s1, . . . , sMi), where the di-
mensionality (D) of the vectors is fixed, but the length
Mi depends on the sequence i. The set of all time-series
is denoted by S, and Sj ⊂ S contains time-series in the
cluster j.

We define the cost of the clustering as a sum of dy-
namic time warping distances between the time-series

1

1 5 10
0

20

40

60

80

100
Medoid as a prototype

Time

S
am

pl
e

va
lu

e

1 5 10
0

20

40

60

80

100
Averaging prototype

Time

S
am

pl
e

va
lu

e

1 5 10
0

20

40

60

80

100
Proposed prototype

Time

S
am

pl
e

va
lu

e

Figure 1. Example of prototype computations for one-dimensional time-series: medoid (E(S) = 159), averaging
(E(S) = 138) and proposed after 10 iterations (E(S) = 118).

observation and its cluster prototype:

E(S) =
1
N

N∑

i=1

dDTW(si, cp(i)). (1)

Here p(i) is the index of the cluster where the si belongs
to, and cj is the prototype time-series representing the
cluster j.

Dynamic time warping distance between two se-
quences, s of length M and c of length L, is initialized
by first calculating a M -by-L distance matrix. Element
(i, j) in the matrix is defined as d(si, cj) = ‖si−cj‖2.
Warping path between two sequences is defined as W =
(w1, . . . , wK), where wk = (i, j)k = d(si, cj) from
the distance matrix. The goal of the dynamic time warp-
ing is to find the monotonically increasing path from
(1, 1) to (M, L) that minimizes:

∑K
k=1 wk.

Optimal path is found using dynamic programming
by evaluating the following recurrence:

γi,j = d(si, cj)
+ min{γi−1,j−1 + γi−1,j + γi,j−1}. (2)

2.1 k-means

The k-means algorithm (KM) consist of two steps
that are iterated: i) partition step and ii) prototype step.
In partition step, each time-series is mapped to its near-
est prototype time-series. Then a new prototype is com-
puted for each subset Si. The algorithm iterates be-
tween these two steps until convergence.

2.2 Random swap

Random swap (RS) [2] has been successfully applied
for the clustering problem in Euclidean space. In the
following, we apply the same design principles in the
case of sequences. The idea of the method is to avoid

getting stuck to local optimum by swapping randomly,
one cluster to a new location. Cluster swapping is per-
formed by first randomly selecting one cluster to be
deleted, and then selecting one time-series from the in-
put data set to be a new prototype of the moved cluster.
After swapping, k-means is used to fine tune the solu-
tion. If the new solution is better than the previous best,
it will replace the current best; otherwise it will be dis-
carded.

2.3 Agglomerative clustering

Agglomerative clustering generates the clusters by
a series of merge operations. Agglomeration process
starts by initializing each data vector as its own cluster.
Average linkage agglomerative clustering has been pro-
posed for the time-series data [4]. In each iteration it
will merge two clusters that minimize the distance be-
tween the pairs of time-series:

dAL(Sa, Sb) =
1

|Sa|+ |Sb|
|Sa|∑

i=1

|Sb|∑

j=1

dDTW(si, sj),

(3)
where Sa and Sb are two clusters considered for the
merge.

After k clusters have been formed, cluster prototype
is computed for each partition, we denote this method
as hierarchical clustering (HC). k-means can also be
used to fine tune the solution of the hierarchical meth-
ods. This variant we then denote as HC+KM.

3 Prototype computation

In the partitioning stage, each time-series from the
input set is given a cluster label. Given these labels, we
compute new prototype. Given sequences in a cluster, it
is clear that the cluster’s prototype c minimizing (1) is

2

1

15 1

15
1

15

s3
s2

s 1

Figure 2. Performing optimal dynamic time warp-
ing on three time-series simultaneously (solid line).
Pairwise warping paths are also shown (dashed
lines).

such that:

E(Sj , c) =
∑

si∈Sj

dDTW(si, c), (4)

is minimized. Sequence c that minimizes E(Sj , c) is
called a Steiner sequence [3].

In time-series clustering, most common way to ap-
proach this problem is to use cluster medoid as the pro-
totype [5]. Which is a time-series of the cluster, defined
as:

cj = arg min
sj∈Si

∑

sk∈Si\sj

dDTW(sk, sj). (5)

Three different ways to compute the cluster prototype
are shown in Fig. 1. First panel shows the medoid as a
prototype, which is one of the time-series in the cluster.
Other two methods use medoid as the initial guess.

3.1 Optimal prototype

Steiner sequence can be computed from the
|Sj |-dimensional dynamic time warping, where
|Sj | is the number of sequences in the cluster.
Fig. 2 shows optimal alignment of three time-
series s1, s2 and s3 using DTW. Three dimensional
DTW alignment will produce warping path w =
((f1(1), f2(1), f3(1)), . . . , (f1(K), f2(K), f3(K)))
where fi() gives an index to the vector in time-series
si, and K is the length of the warping path. Optimal
prototype is the time-series of length K, where each
vector is the average of the original ones given by the
warping path.

Unfortunately, the search space grows exponentially
as a function of |Si|, as shown in Fig. 2. In fact, find-
ing the Steiner sequence has been proven to be NP-
complete in the discrete case [3].

3.2 Averaging method

A common way to compute average time-series of
the set of sequences is to combine two sequences at the
time, using DTW, until only one time-series is left. Un-
fortunately, the order in which the pairing is performed
affects the final prototype [7].

Abdulla et al. [1] proposed a cross-words reference
template (CWRT), which uses medoid as the reference
time-series as follows. First, all sequences are aligned
by DTW to a single medoid, and then the average time-
series is computed. The resulting time-series has the
same length as the medoid, but the method is invariant
to the order of processing sequences.

Algorithm 1 Local search prototype (LS)
cold ← Compute medoid of the cluster using (5).
repeat

Compute warping paths to cold

cnew ← compute new time-series using paths
until (E(S, cnew) < E(S, cold))

3.3 Prototype by local search

We propose an iterative heuristic to the problem
of finding time-series clustering prototype as follows.
Starting from the medoid, we iterate between the aver-
aging stage and the mapping stage: i) calculate averaged
prototype based on warping paths and ii) calculate new
warping paths to the averaged prototype. The averaging
stage is the same as discussed in Section 3.2

We can view the method as the generalization of the
centroid step in the k-means clustering in Euclidean
space. In that case, the result of the proposed method
corresponds to cluster centroid.

Table 1. Summary of datasets.
Char. Speech Synthetic

N 925 640 600
k 59 9 6
D 2 12 1
Min. length 15 7 60
Max. length 155 29 60
Avg. length 54 16 60

4 Experiments

Clustering algorithms were tested on three data sets
from the UCI Machine Learning Repository1, includ-
ing hand-written characters, speech and synthetic data.
Summary of data sets is found in the Table 1.

1http://www.ics.uci.edu/˜mlearn/MLrepository.html

3

Figure 3. Results for Char. dataset.

All reported results are averages over 10 test runs,
using the same setup. We fixed the number of k-
medoids iterations for each data set to keep the process-
ing time reasonable. Running until convergence had
only little benefit for the clustering quality.

We first compare the clustering algorithms using
medoids as prototypes. The results in Fig. 3 show that
HC+KM gives the best clustering result among these
methods. Using this algorithm, we then compare the
methods for calculating the prototypes. The average
and local search heuristics clearly outperform the use
of medoids.

Results for the other test sets have been summarized
in Table 2. and similar observations can be made. For
further tests, we select the HC+KM algorithm, and the
local search heuristic for calculating the cluster proto-
types. The best combination (HC+KM with LS proto-
types) is compared with existing methods in Table 3. In
case of all data sets, the proposed variant outperforms
the others in quality.

5 Conclusions

We formulated the prototype computation problem
as a optimization task, and proposed an local search so-
lution to solve it. It provides 10-22% improvement to
k-medoids.

Table 2. Clustering accuracy results.
Char. Speech Synthetic

Method Protype k = 59 k = 9 k = 6
Medoid 537 8.17 160

KM Aver. 449 6.72 150
LS 430 6.68 147
Medoid 523 7.69 156

RS Aver. 439 6.57 146
LS 422 6.56 144
Medoid 555 7.80 156

HC Aver. 466 6.67 147
LS 439 6.64 144
Medoid 504 7.68 155

HC+KM Aver. 434 6.58 147
LS 417 6.53 144

Table 3. Summary of results, where time is in sec.
Char. Speech Synthetic

k = 59 k = 9 k = 6
Method Err. Time Err. Time Err. Time
k-medoids [5] 537 25 8.17 3 160 24
HC [4] 555 433 7.80 76 156 399
CWRT [1] 449 76 6.72 20 150 99
Proposed 417 515 6.53 80 144 499

References

[1] W. H. Abdulla, D. Chow, and G. Sin. Cross-words ref-
erence template for DTW-based speech recognition sys-
tems. In Proc. TENCON, volume 2, pages 1576–1579,
Bangalore, October 2003.

[2] P. Fränti and J. Kivijärvi. Randomized local search al-
gorithm for the clustering problem. Pattern Analysis &
Applications, 3(4):358–369, 2000.

[3] D. Gusfield. Algorithms on strings, trees and sequences:
computer science and computational biology. Cambridge
University Press, 1997.

[4] S. Hirano and S. Tsumoto. Empirical comparison of clus-
tering methods for long time-series database. In LNCS,
volume 3430, pages 268–286. 2005.

[5] L. Kaufman and P. J. Rousseeuw. Finding groups in data:
an introduction to cluster analysis. John Wiley Sons,
New York, 1990.

[6] T. W. Liao. Clustering of time series data – a survey.
Pattern Recognition, 38:1857–1874, 2005.

[7] V. Niennattrakul and C. A. Ratanamahatana. On cluster-
ing multimedia time series data using k-means and dy-
namic time warping. In Proc. MUE, 2007.

[8] H. Sakoe and S.Chiba. Dynamic programming algorithm
optimization for spoken word recognition. IEEE Trans.
Ac., Sph., and Sig. Proc., 26:143–165, 1978.

[9] V. Vuori and J. Laaksonen. A comparison of techniques
for automatic clustering of handwritten characters. In
Proc. ICPR, volume 2, pages 168–171, 2002.

4

