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Abstract. Probabilistic linear discriminant analysis (PLDA) is com-
monly used in biometric authentication. We review three PLDA variants
— standard, simplified and two-covariance — and show how they are re-
lated. These clarifications are important because the variants were intro-
duced in literature without argumenting their benefits. We analyse their
predictive power, covariance structure and provide scalable algorithms
for straightforward implementation of all the three variants. Experiments
involve state-of-the-art speaker verification with i-vector features.
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1 Introduction

Biometric person authentication — recognizing persons from their physiologi-
cal or behavioral traits — plays an increasingly important role in information
security [1]. Face [2] and speaker [3] recognition are particularly attractive due
to their unintrusiveness and low costs. Unfortunately, both involve prominent
sample-to-sample variations that lead to decreased recognition accuracy; face
images can be shot under differing lighting conditions or cameras and speech
signals acquired using different microphones. Compensating for these nuisance
variations is crucial for achieving robust recognition under varying conditions.

From various techniques studied, generative probabilistic models are among
the top-performing ones for both face and speaker verification. A powerful, yet
simple technique is factor analysis [4]. Given a feature vector that represents
a single speech utterance or a face image, factor analysis captures the main
correlations between its coordinates. A successful recent extension is the prob-
abilistic linear discriminant analysis (PLDA) model [2,5], where we split the
total data variability into within-individual and between-individual variabilities,
both residing on small-dimensional subspaces. Originally introduced in [2] for
face recognition, PLDA has become a de facto standard in speaker recognition.
We restrict our focus and experiments to speaker recognition but the general
theory holds for arbitrary features.

Besides the original PLDA formulation [2], we are aware of two alternative
variants that assume full covariance: simplified PLDA [6] and two-covariance
model [7]. Tt is worth noting that the three models are related in terms of their
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predictive power (degrees of freedom), covariance structure and computations.
The main purpose of the current study is to provide a self-contained summary
that elaborates the differences. The main benefit in doing so is that, instead of
three different PLDA variants and learning algorithms, we show how to apply the
same optimizer by merely modifying the latent subspace dimensions appropri-
ately. As a further practical contribution, we provide an optimized open-source
implementation®.

2 Unified formulation of PLDA and its variants

We assume that the training set consists of K disjoint persons. For the i-th
person we have n; enrolment samples, each being represented by a single feature
vector 4 ¢,. The PLDA models described below assume these vectors to be
drawn from different generative processes.

2.1 Three types of a PLDA model

The first one is a standard PLDA as defined in the original study [2]:
¢i; = p+ Vy; + Ux;; + €55, (1)

yi ~N(0,I), (2)

Xij ~ N(07 I) ) (3)

Eij NN(0>A_1)7 (4)

where ¢ € RPX! A is a diagonal precision matrix, p is a global mean, columns
of the matrices V. € RP*F and U € RP*M gpan the between- and within-

individual subspaces. The second one is a simplified PLDA introduced in [6]
and used in [9], [10], [11]:

¢i; = n+Syi + €&, (5)
yi ~N(0,1), (6)
€5 ~ N(07A;1) 5 (7)

where Ay is a full precision matrix instead of the diagonal matrix in the stan-
dard PLDA case and S € RP*L, The third one is a two-covariance model
introduced in [7] and used extensively in [12]:

Yi NN(yi“'LaB_l)a (8)
¢ijb’i ~ N(¢ij|§’ivw_1) ) )

where both B and W are full precision matrices. Thus, unlike the two previous
models, we no longer have any subspaces with reduced dimensionality.

3 https://sites.google.com/site/fastplda/

4 Traditionally, speech utterances have been represented as a sequence of acoustic
feature vectors. In this paper we use the i-vector [8] representation that produces a
fixed length vector from the variable length sequence. More on this in Section 4.
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2.2 Exploring the structure of the models

All the latent variables in the standard PLDA formulation (1) have a Gaussian
distribution. Thus, the distribution of the observed variables is also a Gaussian:

OiilyisXij NN(QSUW"‘V%-FUXU,AA)’ (10)

and an integration of the channel latent variables {x;;} leads to a closed-form
result:

bi;lyi NN(¢ij|“+VwaUT+A71)' (11)
We can now formulate (11) in a similar style as the two-covariance model:
|y ~ N(9;;1¥i, UU" + A7), (13)

Comparing (12) with (8) and (13) with (9) reveals that the structure of a stan-
dard PLDA and a two-covariance model is the same and their only difference is
in the covariance matrices. Let us call within- and between-individual covariance
matrices of the n-th model as W1 and B,,;! (see Table 1), so that,

wWil=w, (14)
B;'=B7'. (15)
From (12) and (13) we conclude that
W l=UU"+ A, (16)
B;'=VV'. (17)

Applying the same analysis to the simplified PLDA leads to the following equa-
tions:

Wyl =AGt, (18)
B,'=8s". (19)

2.3 Calculating the degrees of freedom

We have seen that all the three models have the same structure, but their predic-
tive powers differ because they have different number of independent parameters.
It is a known fact that for a factor analysis model latent subspace has rotational
invariance (see [4, Page 576]). If R is an arbitrary orthogonal matrix (that is,
RRT =R'R =1) then

B;!=VVT=VRR") V' = (VR)(VR)", (20)

so that V and V = VR lead to the same covariance matrix and the same model.
This ambiguity means that a particular solution is not unique.
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In the two-covariance model both Wy ! and B3 U are full and symmetric
matrices so each of them has D(D + 1)/2 degrees of freedom. In the case of
standard PLDA, W;* = UU" + A~ has DM + D — M(M — 1)/2 degrees of
freedom, where the second term is due to diagonal noise matrix and the last term
is due to rotational invariance property. The same argument can be applied to
the remaining matrices. Table 1 summarizes the degrees of freedom for each of
the three models.

Table 1. Degrees of freedom for each model. Here, D is the dimensionality of the feature
vectors, P and L are the number of basis vectors for between-individual subspaces of the
corresponding models, M is a number of basis vectors for within-individual subspace,
B,, and W,, are a between-individual and within-individual precision matrices for n-th
model.

PLDA ype 1 B -
(st;lnflalrd) D+DP—@+DM+D_WMf—1)
(tWO-CZ\ZI‘?ance) D+ D(DT_FD + %

Regarding the degrees of freedom, we conclude the following from Table 1:

1. When L = D (factor loadings matrix is of full rank) the simplified PLDA is
equivalent to the two-covariance model.

2. When P = D and M = D — 1 the standard PLDA model is equivalent to
the two-covariance model.

3. When P =L and M = D — 1 the standard PLDA model is equivalent to
the simplified PLDA.

To sum up, the standard PLDA is the most general model, and a two-
covariance is the least general model.

2.4 Over-complete case

It is important to note that the above equations hold only when the dimension-
ality of the latent variables is less or equal to the dimensionality of the data.
Otherwise, we have an over-complete basis for a latent variable subspace and
we need an additional step before analysing the model. To this end, suppose
that the matrix V. € RP*¥ has more columns than D, then this matrix affects
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generative process (12) only in the form VVT. When P > D, this D x D matrix
has a rank D. As a symmetric positive-definite matrix, we may apply Cholesky

decomposition to get,
VVT =LLT, (21)

where L € RPXP is an upper triangular matrix. Without loss of generality, we
can choose V = L and transform an over-complete case to a complete one. The
same argument holds for matrices U and S.

2.5 Scoring

At verification stage we are given a pair of individual models: one created from
the test features and the other from enrolment features of the claimed person
and we need to decide whether these models belong to the same person. To do
this in a PLDA approach we need to calculate a log-likelihood ratio between two
hypothesis: both models share the same latent identity variable or they share a
different identity variables. The scoring equations are the same for all models
but due to lack of space we do not present them here. For an optimized scoring
procedure please consult [13].

3 EM-algorithms

The original EM-algorithm proposed in [2] has a serious drawback: at the E-step
we need to invert a matrix whose size grows linearly with the number of samples
per individual. For large datasets this algorithm becomes highly impractical. A
number of solutions for this problem have been introduced. In [14], the authors
utilize a special matrix structure of PLDA model and manually derive equations
for the required matrix inversions. In [15], the authors proposed a special change
of variables that lead to a diagonalized versions of the required matrices. The
most detailed derivations are given in [16]. Our version was based on [14] and
accelerated in a similar style as in [16]. The algorithm 1 summarizes it and the
details are presented in the appendix A.

Incomplete algorithm (only E-step) for the two-covariance model is given
in [7]. Here we present complete solution in the form of short summary (see
algorithm 2). The details are available in the appendix B.

Technical notes:

— The rank of matrix V is equal to the rank of Ty, which is just the number
of individuals in the training set. So, this is an upper bound for the number
of columns of matrix V that we should choose.

— If in the algorithm 1 we set matrix U to zero and do not constrain noise
precision matrix A to be diagonal we get EM-algorithm for the simplified
PLDA model [17].

— For the two-covariance model the number of individuals in the training set
should be bigger than the dimensionality of feature vectors (i-vectors, in our
case).
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Algorithm 1: Scalable PLDA learning algorithm

Input: & = {gbij}f(:’f"jzl, where K is a total number of persons, and n; is
the number of samples for i-th person.
Output: Estimated matrices V, U and A.
Sort persons according to the number of samples {n;} ;
Find total number of samples N and center the data (eq. A.1 and A.2) ;
Compute data statistics {f;} and S (eq. A.3 and A.4) ;
Initialize V and U with small random values, A < NS~! ;
repeat
E-step:
Set R+ 0;
Compute auxiliary matrices Q, J (eq. A.5 and A.6) ;
fori=1 to K do
if n; # n;_; then compute M; (eq. A.7);
else Ml <— Mi—l ;
Find Ely;] (eq. A.8) ;
Update Ry, (eq. A.13);
| Calculate T, Ryyx and Rxx (eq. A.12, A.14 and A.15) ;

M-step:
| Find V, U, A (eq. A.16 and A.17) ;
MD-step:
Compute auxiliary matrices Y, G, X (eq. A.18, A.19 and A.20) ;
Update U, V (eq. A.21 and A.22) ;

until Convergence ;

Algorithm 2: Two-covariance model learning algorithm

Input: & = {q&ij}fi’i}:l, where K is a total number of persons, and n; is
a number of samples for i-th person.
Output: Estimated matrices u, B and W.
Sort persons according to the number of samples {n;} ;
Compute data statistics N, {f;} and S (eq. B.1, B.2 and B.3) ;
Initialize p, B, W ;
repeat
E-step:
Set T+ 0, R+ 0,Y«0;
for:=1 to K do
if n; # n;_; then compute L; (eq. B.4);
else Ll — Li—l X
Find E[y;] and E[y;y]] (eq. B.5, B.6) ;
Update T, R and Y (eq. B.8, B.9 and B.10);

M-step:
| Find p, B and W (eq. B.11, B.12 and B.13) ;

until Convergence ;
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4 Experiments

4.1 System setup

In modern speaker and language recognition, a speech utterance can be repre-
sented using its i-vector [8]. Briefly, variable-duration feature sequences are first
mapped to utterance-specific Gaussian mixture models (GMMs). The i-vector is
a low-dimensional latent representation of the corresponding GMM mean super-
vector [18], typical dimensionality varying from 400 to 600. This is sufficiently
low to robustly estimate a full within-individual variation covariance matrix [6].

Our i-vector system uses standard Mel-frequency cepstral coefficient (MFCC)
features involving RASTA filter, delta and double delta coefficients, energy-based
speech activity detector [19] and utterance level cepstral mean and variance
normalization (CMVN), in this order. Gender-dependent universal background
models (UBMs) were trained with data from NIST 2004, 2005 and 2006 data and
gender-dependent i-vector extractors from NIST 2004, 2005, 2006, Fisher and
Switchboard. For more details, see [20]. For the experiments we used only female
subset which has 578 train speakers, 21216 train segments, 459 test speakers,
10524 target trails and 6061824 non-target trials.

The UBM has 1024 Gaussians and i-vector dimensionality is set to 600. The
i-vectors are whitened and length-normalized [9]. Speaker verification accuracy
is measured through the equal error rate (EER) corresponding to the operating
point with equal false acceptance and false rejection rates.

4.2 Comparison of different PLDA configurations

We made a thorough comparison of different PLDA configurations. Since PLDA
training uses random initialization, we made 10 independent runs for each tested
configuration and averaged the EERs. Although usually PLDA models achieve
the best performance when they are slightly under-trained, the number of iter-
ations and relative increase in a log-likelihood at the optimal point are different
for every configuration. That is why in this experiment we set the number of
iterations to 50, that was more than enough for the convergence in all cases.

The averaged EERs are presented in Fig. 1. Here, we fix the number of
columns of one subspace matrix and vary the other. Our training dataset has
only 578 unique speakers that is why to compare standard and simplified PLDA
to the two-covariance model we applied LDA to reduce the dimensionality to be
550.

The figures clearly show that for the 600-dimensional i-vectors channel sub-
space should be as large as possible whereas after LDA projection the channel
variability is compensated and the best performance is achieved when matrix U
is set to zero.

Another interesting finding is that usually deviations from the standard
PLDA show better performance even when they are supposed to be theoretically
equivalent. It could be the result of simpler EM-algorithms with less intermediate
steps and matrices.
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Fig. 1. Comparison of different configuration of the standard PLDA model with simpli-
fied and two-covariance models. Here, Vdim is a number of basis vectors for between-
individual subspace (number of columns in matrix V), Udim is a number of basis
vectors for within-individual subspace (number of columns in matrix U). Experiments
a) and b) is done on the uncompressed i-vectors with 600 dimensions, ¢) and d) — on
the LDA-projected 550-dimensional i-vectors.

5 Conclusion

We compared the standard, simplified and two-covariance PLDA variants. We
have shown that the standard PLDA is the most general formulation and that,
for certain configurations, it is equivalent to the other two models in terms of
the predictive power. Our experimental results suggested that it is better to use
the simplest possible model suited for the particular application. We presented
the algorithms for all three models and shared their implementation online.
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A EM-algorithm for standard/simplified PLDA
Suppose that we have K individuals in total and the i-th person has n; enrolment

samples {¢;; ;‘;1. It is more convenient to subtract the global mean from the
data before learning the model. Let

M= %Z@ja (A-l)
%,J

where N = Zfil n; is a global zero-order moment (total number of PLDA
training vectors). We centralize the data

Pij = Pi; — 1 (A.2)

and define the first-order moment for the i-th person as
j=1
and the global second-order moment as
S = Z%jsofj- (A4)
ij

In the E-step we first pre-compute the following matrices:

Q= (UTAU+I)! (A.5)
J=UTAV (A.6)
M; = (n; VTA(V -UQJ) + 1), (A7)

where the matrices U, V and A as defined in (1) and (4). After that we can
easily find the first moments of the latent variables:

Ely,] = M;(V - UQJ)"Af; (A.8)

Efxi;] = Q<UTA‘PU‘ — JEfyi]) (A.9)
Let us define ziTj = [yZT X;I;] In the M-step, we need an aggregated second
moment of the compound variables z;;:

wpel)ora]- g o

where

M; -M;JTQ"
E[ZijZT] = |:—QJM1‘ Q+QIM,JTQT

j

:| +E[Zij]E[Zij]T (All)
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=S sl = X8 |7 T =[] = |quras_ar,)| 42
Ryy = Z n; (M + Elyi]E[y:] ") (A.13)
Ryx = (TyAU - R,,J")Q (A.14)

Ryx = QUTASAU —UTATJJT —JT,AU +JR,, J)Q+ NQ  (A.15)
At the M-step we update the matrices V, U and A as following
VU] =T'R' (A.16)

Al = %diag{s - [vu]T} (A.17)

To speed up convergence it is highly recommended to apply a so-called
minimum-divergence (MD) step as well [21], [22]. During this step we assume
that a prior for the latent variables {y;} and {x;;} could be in a non-standard
Gaussian form, maximize w.r.t. its parameters and then find equivalent represen-
tation but with a standard prior. This step is very efficient against saddle-points.
For MD-step we need a number of auxiliary matrices:

Y = 2 30 M+ Elyi ey, (A1)

G=R,.R,,, (A.19)
1

X = —(Rox — GRyo) (A.20)

After that it is enough to apply the following transformations:

U « Uchol(X), (A.21)
V + Vchol(Y) + UG. (A.22)

where chol(X) is a Cholesky decomposition of the matrix X. The algorithm 1
presents a compact version of the derivations above.

B EM-algorithm for two-covariance model

As before we have K individuals in total and the i-th person has n; enrolment
samples {¢, ; ?;1. Let’s define a global zero-order moment:

K
N=> n, (B.1)
1=1
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the first-order moment for the i-th person as

ng
fi=) o
j=1
and the global second-order moment as
T
S= Z d)ij ¢ij :
ij
In the E-step we first pre-compute the following matrices

L,=B+n,W,

(B.3)

(B.4)

where the matrices B and W are defined in (8) and (9). After that we can

easily find the first and second moments of the latent variables:

Ely;] =L ',
Ely:y]] = L' + E[y:|Ely:]",

where
Y= BLL + Wfl .

At the M-step we need to compute the following matrices

R = Zm]E[.Yzsz] )
After that we update the parameters g, B and W as follows
1
M= Ny7
_ 1
B = S(R- (YT +Yu") +pu’,
1
Wl = ~(8- (T+TH+R).

The algorithm 2 presents a compact version of the derivations above.

—
w
ot

=

(B.11)
(B.12)

(B.13)



