Caiming ZHONG 钟财铭

说明: 说明: 说明: C:\Users\Administrator\Desktop\images\image001.jpg

Visiting Researcher

Department of Computer Science and Statistics
Joensuu University
Joensuu Finland


czhong[at] or zhongcaiming[at]

Research interests

- Clustering
- Graph representation
- Pattern Recognition


[1]      Caiming Zhong, Xiaodong Yue, Jingsheng Lei. Visual hierarchical cluster structure: A refined co-association matrix based visual assessment of cluster tendency. Pattern Recognition 48 (2015).

[2]      Caiming Zhong, Xiaodong Yue, Zehua Zhang, Jingsheng Lei. A clustering ensemble: Two-level-refined co-association matrix with path-based transformation. Pattern Recognition Letters 59 (2015).

[3]      Caiming Zhong, Mikko I. Malinen, Duoqian Miao, Pasi Fränti: A fast minimum spanning tree algorithm based on K-means. Inf. Sci. 295: 1-17 (2015).

[4]      Hongyun Zhang, Witold Pedrycz, Duoqian Miao, Caiming Zhong: A global structure-based algorithm for detecting the principal graph from complex data. Pattern Recognition 46(6): 1638-1647 (2013).

[5]      Caiming Zhong, Mikko I. Malinen, Duoqian Miao, Pasi Fränti: Fast Approximate Minimum Spanning Tree Algorithm Based on K-Means. CAIP (1) 2013: 262-269.

[6]      Xiaodong Yue, Duoqian Miao, Yue Wu, Caiming Zhong, Yufei Chen: Scale selection in roughness based color quantization. GrC 2013: 412-417.

[7]      Yujun Lin, Ting Luo, Sheng Yao, Kaikai Mo, Tingting Xu, Caiming Zhong: An improved clustering method based on k-means. FSKD 2012: 734-737.

[8]      Hongyun Zhang, Duoqian Miao, Caiming Zhong: Modified Principal Curves Based Fingerprint Minutiae Extraction and Pseudo Minutiae Detection. IJPRAI 25(8): 1243-1260 (2011).

[9]      Caiming Zhong, Duoqian Miao, Pasi Fränti: Minimum spanning tree based split-and-merge: A hierarchical clustering method. Inf. Sci. 181(16): 3397-3410 (2011).

[10]    Chen Ye, Caiming Zhong: An improved cohesion self-merging clustering algorithm. FSKD 2011: 1095-1098.

[11]    Ting Luo, Caiming Zhong, Xinyang Ying, Jianjie Fu: Detecting community structure based on edge betweenness. FSKD 2011: 1133-1136.

[12]    Caiming Zhong, Duoqian Miao, Ruizhi Wang: A graph-theoretical clustering method based on two rounds of minimum spanning trees. Pattern Recognition 43(3): 752-766 (2010).

[13]    Ting Luo, Caiming Zhong, Hong Li, Xia Sun: A multi-prototype clustering algorithm based on minimum spanning tree. FSKD 2010: 1602-1607.

[14]    Ting Luo, Caiming Zhong: A Neighborhood Density Estimation Clustering Algorithm Based on Minimum Spanning Tree. RSKT 2010: 557-565.

[15]    Caiming Zhong, Duoqian Miao: A comment on "Using locally estimated geodesic distance to optimize neighborhood graph for isometric data embedding". Pattern Recognition 42(5): 1012-1013 (2009)

[16]    Caiming Zhong, Xueming Lin, Ming Zhang: A Local Outlier Detection Approach Based on Graph-Cut. CSO (1) 2009: 714-718.

[17]    Caiming Zhong, Duoqian Miao, Ruizhi Wang, Xinmin Zhou: DIVFRP: An automatic divisive hierarchical clustering method based on the furthest reference points. Pattern Recognition Letters 29(16): 2067-2077 (2008).

[18]    Zhihua Wei, Duoqian Miao, Jean-Hugues Chauchat, Caiming Zhong: Feature Selection on Chinese Text Classification Using Character N-Grams. RSKT 2008: 500-507.