a
o
v
a
o)
-
a
it
-
a
it
v
it

Lauri Mehtatalo' ~ Anna Laine?

Heli Peltola®
Antti Kilpelainen®

Eeva-Stiina Tuittila®
! University of Eastern Finland, School of Computing

2University of Oulu, Department of Biology

3University of Eastern Finland, School of Forest Sciences

IUFRO 125th Anniversary Congress, Freiburg
September 18-22, 2017

RN Ge




1 Models for nonlinear relationship

2 Example 1: Peatland photosynthesis

3 Example 2: Modeling the thinning effects

4 Conclusions

«or < Fr o« QA



Models for nonlinear natural processes
I—Models for nonlinear relationship

Models for a nonlinear relationship

There are two options to model a nonlinear relationship between a response variable
y and predictor (vector) x:

1 The linear model
yi = Bo+ Bifi(xi)+ ...+ Bxfu(xi) + e,

where (i, ..., Bk are parameters to be estimated, f(x;), ..., fx(x;) are
nonlinear transformations of predictors x;, y; is the (possibly transformed)
response, and e; is residual error for sampling unit /.
m Often fx()’s are one-to-one nonlinear functions of a single component of x;, such as
logarithmic and power transformations or spline components'.
m Term linear in the model refers to linearity in Bx’s, not in x;.
m Can successfully model any nonlinear relationship between y and x through
transformations ().

1HameH F., 2001: Regression modeling strategies. Springer.
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I—Models for nonlinear relationship

Models for a nonlinear relationship

There are two options to model a nonlinear relationship between a response variable
y and predictor (vector) x:

1 The linear model

yi = Bo+ Bifi(xi)+ ...+ Bxfu(xi) + e,

where (i, ..., Bk are parameters to be estimated, f(x;), ..., fx(x;) are
nonlinear transformations of predictors x;, y; is the (possibly transformed)
response, and e; is residual error for sampling unit /.
m Often fx()’s are one-to-one nonlinear functions of a single component of x;, such as
logarithmic and power transformations or spline components'.
m Term linear in the model refers to linearity in Bx’s, not in x;.
m Can successfully model any nonlinear relationship between y and x through
transformations ().

2 The nonlinear model
yi = f(x;; B) + e,

m Where f() is a function of predictors and model parameters.

1HameH F., 2001: Regression modeling strategies. Springer.
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Models for nonlinear natural processes
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Models for nonlinear natural processes

I—Models for nonlinear relationship

Why nonlinear models?

No improvement to model fit is expected with nonlinear models compared to the linear
model. Why then to use a nonlinear model?

m Building the model on the subject-matter theory on the process is elegant (recall
what Géran Stahl said on Monday),

m leads to parameters that are as such of interest and have interesting
interpretations, and

m allows in-depth analyses on the effects of different predictors (e.g. treatments or
continuous predictors) on the parameters of the process.

m The models are also more robust in extrapolation and

m parameter-parsimonious.

Mehtétalo et al. Models for nonlinear natural processes



Models for nonlinear natural processes
I—Models for nonlinear relationship

Nonlinear mixed-effect model formulation

m In a nonlinear fixed-effects model, one of the predictors (f;) is often a primary
predictor of the process (e.g. time in a growth model, or photosynthetically active
radiation (PAR) in a model of net photosynthesis). The other secondary
predictors x; describe the variability in the primary parameters of the process.
This leads to model

yi = f(t; i) + e,

where @ = (oz,m7 .. ,aEK)) and afk) = ,B,ixfk) fork=1,...,K.

Mehtétalo et al. Models for nonlinear natural processes
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Nonlinear mixed-effect model formulation

m In a nonlinear fixed-effects model, one of the predictors (f;) is often a primary
predictor of the process (e.g. time in a growth model, or photosynthetically active
radiation (PAR) in a model of net photosynthesis). The other secondary
predictors x; describe the variability in the primary parameters of the process.
This leads to model

yi = f(t; i) + e,
where @ = (a,m7 .. ,aEK)) and afk) = ,B,ixfk) fork=1,...,K.
m The nonlinear mixed-effect model for a single level of grouping is defined as

yi = f(tj; o) + &5,

(k)

where the linear sub-models of c; ™ include also random group effects:

,@l (k k)/z('k) )

]

We assume b, = (b ..., be)’)’ ~ N(0, D) and e; ~ N(0, o%) with an
appropriate variance function. Also spatial or temporal dependence of residual
errors can be modeled parametrically. The extension to multiple levels is

straightforward.

Mehtétalo et al. Models for nonlinear natural processes
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The model for the process

Hyperbolic light saturation curve
Pmax x PAR

L where

m PAR: photosynthetically active
Pmax radiation
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Models for nonlinear natural processes

Research question and data

m The effect of some categorical predictors (treatments) on the parameter Pmax,
R and a.

m The nuisance caused by varying Leaf Area Index (LAI), air temperature, and soil

temperature on these parameters should also be taken into account (and this
was the most interesting part to me).

Photo: Juho Kettunen.
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Models for nonlinear natural processes
1: Peatland

Research question and data

m The effect of some categorical predictors (treatments) on the parameter Pmax,
R and a.

m The nuisance caused by varying Leaf Area Index (LAI), air temperature, and soil
temperature on these parameters should also be taken into account (and this
was the most interesting part to me).

m The data are collected using chamber
measurements. At a given time, the
net CO, exchange has been
measured at 1-7 different levels of
PAR.

m A total of 210 plots. Each plot is
monitored for two years, with 5-10
measurements per year.

m LAl is also monitored by counting all
plants of the plot and measuring the
mean area of the leaves in
surrounding plants. Photo: Juho Kettunen. _ .
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The raw data
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where

R Pmax; X PAR;
Vi T T PAR;

IOQ(H,'/) _ ﬂ;qx,(jﬂ)/ + bi(R)
log(Pmax;) = ﬂ;:x,(-jp)' + bfp)
log(cty) = fta + b

We start with the model where the predictor vectors include treatments only.
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where

R Pmax; x PAR;
Vi T T+ AR

log(Ry) = Bax{"" + b

log(Pmax;) = ﬂfax,(-jp)' + bfp)
log(y) = fta + b
We start with the model where the predictor vectors include treatments only.

Let us see whether the predicted random effects have trends with respect to the
plot-specific candidate predictors.
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[ 1:

The random effect on potential predictors + a lowess curve
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Include log(LA/) and air T to log(R) and a polynomial air T to log(Pmax)
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The random effects on potential predictors + a lowess curve
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Aif temperature:

Include log(1 — exp(—LAl)) to model the self-shading LAl of leaves in log(Pmax).

Soi temperature:

Mehtitalo et al.
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The random effects on potential predictors + a lowess curve

Pmax

alpha

05

-05 00

00 05 10 15

-10

E =2 £
£ ° £

° °
« ° « ©

Air temperature:

Soi temperature:

alpha

alpha

Air temperature:

Soil temperature:

Leaf area index

Soil temperature still seems to affect on Respiration, add it
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[ 1:

The random effects on potential predictors + a lowess curve
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Air temperature:

Seems to be quite ok.

Soil temperature:
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1: tlal

The final model

mod4co2<-nlme (nee~valovasse(par,1p, 1R, la),
fixed=list(lP~1l+Year+treatl+treat2+group+tcham+I(tchan*2)+1lai2,
1R~1+Year+treatl+treat2+group+tcham+log(lai)+pmin(t15,10),
la~1),
random=1ist{occasion-pddiag(1P+1R+1a~1)),
data=coldat, Random effects:
start=c(log(1000),8,0,9,0,9,8,8,8, ornula: 1ist(1P ~ 1, 1R ~ 1, la ~ 1)

1og(5€0),0,0,0,8,0,0,8,0, | ayel: occasion

log(300)), Structure: Diagonal
verbose=TRUE) 1P. (Intercept) 1R.(Intercept) la Residual
StdDev: ©.262121 ©.3063666 ©.3239001 78.14503
Fixed effects: list(1P ~ 1 + Year + treatl + treat2 + group +
Value Std.Error DF t-value p-value
1P. (Intercept) 6.471230 ©.12974689 2241 49.87588 ©.0000
1P.Year2013 ©.152669 ©.024444%2 2241 6.24544 ©9.0000
1P.treat12 -0.804140 ©.92765285 2241 -0.14570 ©.8816
1P.treatl3 -0.96152% ©.03045692 2241 -2.02020 ©.0435
I0_0716/(2*0_00146):24_5I 1P_treat21 -9.855281 ©.02328987 2241 -2.37362 0.0177
1P. group2 -0.097561 0.02371712 2241 -4.11354 ©.0000
©.87165810.00994940 2241 7.208220 ©.0000
00146510.00021403 2241 -6.84522 0.0000
L 0.41%8 ©.83855223 2241 108.85215 ©.0000
1IR. (Intercept) 4.050615 ©.10769026 2241 37.61357 ©0.0000
1R.Year2013 ©.248282 ©.02461425 2241 10.08698 ©.0000
1R.treat12 -0.946315 ©.03004181 2241 -1.54168 ©.1233
1R.treat13 ©.282602 ©.02936815 2241 9.62274 ©.0000
1R.treat21 -0.157959 ©.02393427 2241 -6.59%97@ ©.0000
1R.group2 -0.362806 0.02344484 2241 -15.47487 ©.0000
1R.tcham 0.030448 ©.00210702 2241 14.45084 0.0000
1R.log(lai) 9.1026899 ©.02229588 2241 4.57942 ©.0000
1R.pmin(t15, 1@) ©.147759 ©.01140993 2241 12.95000 ©.0000
©.82891320 2241 198.55275 ©.0000

la 5.748796
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The raw data and fitted values
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Models for nonlinear natural processes
I—Example 2: Modeling the thinning effects

Study material

m Scots pine plots where one of the four following thinning treatments were applied
to each plot in 1986: Control, Light, Moderate and Heavy.

m 88 trees were felled in 2006, and the diameter increments between 1983 and
2006 was measured for each tree using an X-ray densiometer.

m The diameter growths were transformed to basal area growths (assuming
circular boles), because Volume ~ Diameter? Height

Mehtétalo et al. Models for nonlinear natural processes
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I—Example 2: Modeling the thinning effects

Raw data and the estimated thinning effects in Ring Basal Area (RBA)

Ring Basal area, mm”

The raw data Extracted thinning effects 2

Thinning effect of Ring Basal Area
200
|

19‘85 19‘90 1%;95 20‘00 20‘05 19‘85 19‘90 19‘95 ZU‘OU 20‘05
Year Year
Thick lines: the treatment-specific trends. Thin lines: 12 randomly selected trees.
Treatments: Control, Light, , and Heavy.

2Extraction was based on a mixed-effect model with crossed random effects, see Mehtéitalo et al. (2014) for details.
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I—Example 2: Modeling the thinning effects

Nonlinear mixed-effects model for thinning effect

Annual effect in tree growth, area / yr

The thinning effect of tree i at time j was
modeled using a logistic curve

dj = 7y T €j where
")

M;
1+exp (478

|

m g - thinning effect
m x; - time since thinning

m M= po+ i T+ p2 T + paxy + my
- maximum thinning effect
m Tp,..., T3 -treatments
Cumulative
thinning
effect at year t

® R = po + p1zi + r - reaction time

Maximum thinning effect

m z - standardized diameter

m;
™ ~ N(0, D2y2)
Reaction time t li

Time since thinning, yr

m g; - normal heteroscedastic residual
with AR(1) structure within a tree.

Mehtétalo et al. Models for nonlinear natural processes
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I—Example 2: Modeling the thinning effects

The fitted model

m The reaction time was 6 years. It did not significantly vary among treatments but
was shorter for large trees.

Fixed parameters Estimate s.e. p-value
o 112.8 23.29  0.0000
I 30.45 0.0026
H2 32.14  0.0000
3 -3.214 1.006 0.0014
Po 5.749 0.4458  0.0000
P1 -1.461 0.4568 0.0014
Random parameters
var(r) 93.012
var(m) 2.0852
cor(rk,mg) 0.203
Residual
o 8.157*10-4
&1 8.746*104
b2 1.886
03 0.5888

Mehtétalo et al. Models for nonlinear natural processes
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I—Example 2: Modeling the thinning effects

The fitted model

m The reaction time was 6 years. It did not significantly vary among treatments but
was shorter for large trees.

m The maximum thinning effect , being 282 mm/yr
for treatment 1V, which indicates a 87% increase in the basal area growth
compared to the control.

Fixed parameters Estimate s.e. p-value
o 112.8 23.29  0.0000
I 30.45 0.0026
H2 32.14  0.0000
3 -3.214 1.006 0.0014
Po 5.749 0.4458  0.0000
P1 -1.461 0.4568 0.0014
Random parameters
var(r) 93.012
var(m) 2.0852
cor(rk,mg) 0.203
Residual
o 8.157*10-4
&1 8.746*104
b2 1.886
03 0.5888
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m Nonlinear models are an elegant tool for processes where a theoretically justified
function for the process is nonlinear with respect to its parameters is.
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m The models are both process-based and statistical..
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m Nonlinear models are an elegant tool for processes where a theoretically justified
function for the process is nonlinear with respect to its parameters is.
m The models are both process-based and statistical..

models.

m ..and random effects make them a compromise between Bayesian and frequentists
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58 Conclusions

Conclusions

m Nonlinear models are an elegant tool for processes where a theoretically justified
function for the process is nonlinear with respect to its parameters is.

m The models are both process-based and statistical..
m ..and random effects make them a compromise between Bayesian and frequentists
models.
m | especially like the formulation where the process is driven by a primary
predictor and the parameters of this process are linear combinations of other
predictors (recall also Sonja Vospernik’s talk on Tuesday evening)

m If you want to play with CO2 data modeling, see data foto of R- package
Imfor.
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Thank you for your interest!

lauri.mehtatalo@uef fi
http://cs.uef.fi/ lamehtat/
https://www.researchgate.net/profile/Lauri_Mehtaetalo

Would like to see you in the International Biometric Conference, Barcelona, Spain in
July 2018, where | will organize an invited session “Modeling grouped environmental
data”
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