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Height-Diameter (H-D) relationship is one of the first models one
need to fit in forest inventories.
The aims of this study were
m To emphasize the differences between
m marginal (population-averaged of one kind) and plot-specific H-D
relationship and
m simple and generalized relationship
m Explore the fit of 16 nonlinear functions for the H-D relationship
in 28 different datasets of different tree species from different
regions.
m Develop generalized models for four example datasets for
demonstration purposes

m Produce easy-to-use R functions with sensible defaults for height
imputation
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Simple fixed-effects model

hij = f(dyjs B) + e
B An easy way to estimate the marginal relationship.
m The model is improperly formulated: the model ignores the

grouped structure
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Marginal vs. plot-specific relationship

Plot-specific H-D relationship

Simple random-effects model

hij =f<d,'j;ﬁi) + eij, where ﬁi =B-+b;and b; ~ N(O,D)
B An easy way to estimate the plot-specific relationship.
m Still improperly formulated model: the random effect mean
depends on the mean diameter of the plot.
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Plot-specific H-D relationship and fixed part

simple random-effects model
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Two fixed-effect predictions

Simple FE and RE model
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hij = f(dij: Bi) + eij, where B; = B+b; and b; ~ N(0,D)
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A generalized model: fixed part

Generalized RE model
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A generalized model: fixed + random part

Generalized RE model
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A generalized model: fixed + random part

Generalized RE model

hij :f(d,'j;ﬁi) + eij, where ﬂ,’ = ﬁ’X,‘ +b; and b; ~ N(O,D)
m Model properly formulated




Generalized RE model

hij :f(d,'j;ﬁi) + eij, where ﬂ,’ = B’X,‘ +b; and b; ~ N(O,D)
m Model properly formulated
m Could provide also marginal relationship (not shown).




The applied functions

Table 2. The applied H-D functions.

Number Function name Equation References
2-parameter functions
1 Nislund H(D) = BH + ——— Niislund (1937), Peschel (1938)
(aD + by
2 Curtis HD) - BH + —2 - Curtis (1967)
(1 + Dy
3 Schumacher H(D) = BH + a exp(—bD ™", Schumacher (1939), Michailoff (1943), Curtis (1967)
4 Meyer H(D) = BH + a(1 — exp(—bD)) Meyer (1940), Curtis (1967)
5 Power H(D) = BH + aD" Stoffels and van Soest (1953)
6 Michaelis-Menten H(D) = BH + aD|(b + D) Menten and Michaelis (1913), Huang et al. (1992)
7 Wykoff H(D) = BH + exp(a — b(D + 1)”") Wykoff et al. (1982)
3-parameter functions
2
8 Prodan HD)=BH+ — 2 Strand (1959)
aD® + bD + ¢
9 Logistic H(D) = BH + #ﬂ_m} Pearl and Reed (1920), Huang et al. (1992)
10 Chapman-Richards H(D) = BH + a(1 — exp(—bD))° Richards (1959), Huang et al. (1992)
1 Weibull H(D) = BH + a(l — exp(—bD))  Weibull (1951), Huang et al. (1992)
12 Gomperz H(D) = BH + a exp(~bexp(—cD)) Gomperz (1825), Huang et al. (1992)
13 Sibbesen H(D) = BH + aD™" Sibbesen (1981), Huang et al. (1992)
14 Korf H(D) = BH + a exp(—bD™) Lundqvist (1957), Flewelling and de Jong (1994)
15 Ratkowsky H(D) = BH + a exp D_+ - Ratkowsky (1990), Huang et al. (1992)
16 Hossfeld IV H(D) = BH + a - Peschel (1938)
1+ —
bD"

Note: The references give the original reference and the first use in H-D modeling. Naming follows Zeide (1993} when applicable.
H = tree height, D = tree diameter at breast height, BH = breast height, a, b, c = parameters of the equation.
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Material

Table 1. Summary of the modeling datasets.

Material

Data set Latin name Country N K [ [ — ;- |1 [
Scots pine A Pinus Sylvestris Finland 4234 103 41 15 14.5 51.0 14 13.2 351
Norway spruce A Picea abies Finland 2513 51 49 29 17.2 57.0 21 13.7 29.8
Scots pine B Pinus Sylvestris Finland 1644 66 25 3.0 20.0 491 16 173 331
Norway spruce B Picea abies Finland 3020 66 46 09 115 52.3 14 99 332
Birch A Betula pendula. B. pubescens  Finland 1673 72 23 16 8.7 48.8 18 10.0 298
Norway spruce C Picea abies Finland 1252 31 40 5.0 14.3 68.8 15 129 343
Turkish red pine Pinus brutia Syria. Lebanon 1283 114 1m 5.0 273 96.9 3.5 13.7 351
Aleppo pine Pinus halepensis Spain 16378 1016 16 75 326 1740 20 146 410
Canarian island pine Pinus canariensis Spain 7327 870 8 7.5 195 74.8 2.0 7.9 23.0
Loblolly pine 1 Pinus taeda VA, USA 5634 9 57 13 13.9 343 15 10.9 238
Loblolly pine 2 Pinus taeda VA, USA 4895 99 49 3.3 18.2 37.6 46 15.8 26.8
Loblolly pine 3 Pinus taeda VA, USA 171 99 42 51 208 429 49 18.8 314
Lodgepole pine 1 Pinus contorta BC, Canada 10817 140 77 01 6.0 25.5 13 7.4 213
Lodgepole pine 2 Pinus contorta BC, Canada 9336 141 66 03 89 310 13 87 228
Lodgepole pine 3 Pinus contorta BC, Canada 5903 93 63 07 12.6 29.8 14 124 242
Eucalyptus clone Eucalyptus urograndis Brazil 1141 191 6 6.2 194 341 12.0 30.0 410
Blue gum A Eucalyptus globulus Bolivia 6554 50 131 01 3.8 18.2 14 6.0 19.1
Blue gum B1 Eucalyptus globulus Bolivia 884 6 147 10 95 317 19 96 285
Blue gum B2 Eucalyptus globulus Bolivia 1261 6 210 10 10.1 337 17 1 300
Centrolobium 1 Centrolobium tomentosum Bolivia 2199 46 48 12 112 283 18 11 205
Centrolobium 2 Gentrolobium tomentosum Bolivia 2167 46 47 12 12.6 303 2.2 126 221
Centrolobium 3 Centrolobium tomentosum Bolivia 2023 44 46 2.5 134 313 22 136 258
Brasilian firetree Schizolobium parahyba Bolivia 2631 46 57 08 8.8 33.2 14 87 270
Teak 1 Tectona grandis Bolivia 4928 62 79 1.0 6.6 415 14 6.5 29.6
Teak 2 Tectona grandis Bolivia 3444 43 80 1.0 81 443 14 7.9 295
Mixed tropical Multi-species Bolivia 15049 41 367 82 237 115.6 2.5 126 369
Balsa 1 Ochroma pyramidale Bolivia 2943 53 56 0.8 87 198 15 8.6 217
Balsa 2 Ochroma pyramidale Bolivia 715 23 31 15 9.9 22.7 14 9.8 17.5

Note: Whenever two datasets of same species have been used, a capital letter is used to denote different independent datasets and an Arabic number to denote

different measurement occasions of the same dataset. N: the number of trees; K: the number of sample plots; if;: mean number of trees per plot; d,y,, .

minimum, mean and maximum diameter, cm; hyy,, . By, the minimum, mean and maximum height, m.
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Results

Ranking of the functions

Table 3. Evaluation of the simple two-parameter models according to the four criteria.

Criteria Naslund Curtis Schumacher Meyer Power Mic.-Ment. Wykoff
Mixed-effects 1st ranks 12 7 8 0 1 0 1
Ranks 1-3 15 26 20 5 2 3 16
Mean rank (sd) 2.7 (1.5) 2.3(1.2) 3.0 (1.9) 4.7 (1.4) 5.9 (15) 5.8 (1.4) 3.6(13)
Conv. Prob's o o o o o 1 o
Fixed-effects 1st ranks 13 5 0 6 2 3 0
Ranks 1-3 23 19 8 12 6 10 8
Mean rank (sd) 1.9 (1.1) 2.8 (1.3) 42(15) 2.5 (1.5) 43(2.0) 2.5(15) 41(11)
Conv. Prob’s 4 3 5 12 11 16 3

Note: The criteria are: Ist ranks is the number of first ranks among the datasets; ranks 1-3 gives the number of rankings among three best models; mean rank gives
the mean rank of the model (the number in parentheses is the standard deviation of the ranks; Conv. Prob's gives the number of unsuccessful fits. The three best
models according to each criteria are highlighted.

Table 4. Evaluation of the simple three-parameter models according to the four criteria.

Criteria Prodan Logistic ~ Ch-Ri Weibull ~Gomperz  Sibbesen  Korf Ratkowsky — Hossf. IV
Mixed-effects 1st ranks 11 6 1 o 4 o o 6 o

Ranks 1-3 18 12 10 8 18 o 2 14 2

Meanrank (sd) 3.0 (2.3) 4.0(22) 4.3(18) 48(17) 2.8(1L4) 8.1(13) 73(17) 3.6 (2.0) 6.1(13)

Conv. Prob's 0 1 o o 18 6 o 1
Fixed-effects 1st ranks 3 3 4 3 3 0 3 3 4

Ranks 1-3 9 4 13 9 1 4 4 9 10

Meanrank (sd) 3.3(16) 53(26) 27(14) 33(17) 39(22) 3.5(1.6) 41(21)  2.8(16) 2.7 (15)

Conv. Prob's 10 10 13 6 22 15 16 13

Note: For notations, see Table 3.
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Results

The best-fitting functions for plot-specific relationship

Table 5. The best plot-specific fits of the 2- and 3 parameter models
and the related RMSE in different datasets.

Model name and RMSE (m)

2-parameter 3-parameter
Dataset model model

Scots pine A Curtis 139 Logistic 137
Norway spruce A Nislund 162 Prodan 1.60
Scots pine B Naslund 164  Prodan 164
Norway spruce B Nislund 127 Prodan 121
Birch Naslund 197  Logistic 192
Norway spruce C Nislund 201  Gomperz 195
Turkish red pine Wykoff 195  Prodan 195
Canarian island pine ~ Curtis 199  Logistic 194
Aleppo pine Naslund 097  Prodan 0.97
Loblolly pine 1 Naslund 082 Comperz  0.82
Loblolly pine 2 Schumacher 097  Gomperz  0.97
Loblolly pine 3 Schumacher 114  Prodan 13
Lodgepole pine 1 Curtis 061  Ratkowsky  0.61
Lodgepole pine 2 Curtis 068  Ratkowsky ~ 0.68
Lodgepole pine 3 Schumacher 085  Ratkowsky  0.85
Eugalyptus clone Schumacher 090  Prodan 0.83
Blue gum A Nislund 117 Prodan 116
Blue gum Bl Neislund 227 Ratkowsky 226
Blue gum B2 Nislund 229 Logistic 2.20
Centrolobium 1 Curtis 126  Prodan 125
Centrolobium 2 Schumacher ~ 128  Ratkowsky 125
Centrolobium 3 Schumacher ~ 142  Ratkowsky 139
Brasilian firetree Curtis 154 Prodan 153
Teak 1 Curtis 110 Logistic 108
Teak 2 Nislund 110 Gomperz 108
Mixed tropical Naslund 281 Logistic 2.79
Balsa 1 Schumacher 123  Ratkowsky 123
Balsa 2 Schumacher 124 Prodan 124

Note: The model with lower BIC value between the 2- and 3- parameter
models is indicated by boldface and the model with lower AIC by italics.
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Results

Best generalized model for four datasets

m Scots Pine A/ Logistic:
(g + ad; + a)
1+ (B + B1a| + bjexp((v, + 'Ylal + ¢)dy]

+ ey

(7)  hy=13+

m Loblolly pine/ Nislund:
4

®) hy=13+ - —— ey
[lap + oy Ind, + a)d; + By + b; + B; In 7]

m Teak / Curtis:

_ (ag + ad; + a)d;
9  hy=13+ "t
(1 + dforBdd

m Centrolobium / Schumacher:
(10)  hy =13+ (@ + ad; + a)expl(B, + b)dy"] + ¢

m Some data sets had constant residual variance, others had
increasing or decreasing as a function of fitted value.
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in most cases. Two parameters was usually enough.
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m Differences between two and three-parameter models were slight
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m Curtis’ and Néslunds functions were most commonly the best
functions for plot-specific H-D relationship

m The generalized models were very different in different datasets
with respect to functional form, random effects and variance
function.




Discussion and conclusions

Discussion and conclusions

m Differences between two and three-parameter models were slight
in most cases. Two parameters was usually enough.

m Curtis’ and Néslunds functions were most commonly the best
functions for plot-specific H-D relationship

m The generalized models were very different in different datasets
with respect to functional form, random effects and variance
function.

m Functions for height imputation are available in R-package
Imfor.
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