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Introduction
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Under certain simplifying assumptions (e.g., a solid top surface of a tree), we can think
that

Individual trees generate the canopy surface (CS) of the stand

ALS returns are (essentially) observations on that surface
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Introduction

Canopy surface (random spatial pattern)

The probability to have CS below a given height
= The probability that a random point does not hit the union of tree crowns

≈ The c.d.f. of the random heights of pre-processed ALS returns, denoted by Z
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Introduction

Canopy surface

The observed height of canopy surface, Z , is a random variable. The distribution
depends on (Mehtätalo and Nyblom, 2009)

The stand density (trees per ha)

The stand-specific distribution of tree heights

The crown shape of a tree with given total height

The spatial pattern of tree locations
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Canopy surface for square grid pattern
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Introduction

The probability density function (p.d.f.)

The p.d.f. is the first derivative of the c.d.f.

≈ The histogram of ALS data
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For an assumed spatial pattern, the p.d.f is f (z |θ, ξ, λ), where

θ includes the parameters for individual crown shape, e.g.,
the relative crown width (w)
the relative crown length (l) and
the crown shape (s) for a given tree height.

ξ includes the parameters of the stand-specific distribution of tree heights, e.g.,
the shape (α) and
scale (β) parameters of an assumed Weibull height distribution.

λ is the stand density (trees per ha)
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Material

Study material

18 pairs of sample plots from the Veracel data (18 training and 18 evaluation plots).

Distance between trees and stand density λ are known

Three heights known for every 7th tree, and imputed for others using a
stand-specific model

ALS data were pre-processed and thinned to include ≈ 122 uniformly placed
observations of canopy height (Z) for each plot (0.23 pulses/m2)
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Methods

Application to area-based inventory

1 Training stage using training sample plots

1 Estimate ξ = (α, β)′ by fitting Weibull distribution to the measured tree heights
2 Using the known ξ and stand density λ, fit the density function f (z|θ, ξ, λ) to the

z-values to estimate the parameter θ = (w , l , s)′ for each plot.
3 Model the plot-specific estimates of w , l , and s on mean of ALS observations z̄

2 Prediction stage using evaluation plots

1 Predict θ = (w , l , s)′ for the evaluation plots
2 Using the predicted θ and stand density λ, fit the density function f (z|θ, ξ, λ) to the

z-values to estimate the distribution of tree heights (i.e parameter ξ = (α, β)) for each
plot.

3 Compute interesting stand characteristics, such as mean or dominant height and
compare to the true known values.

In an alternative pairwise fitting approach, steps 1.3 and 2.1 were omitted. Instead,
the estimates θ = (w , l , s)′ of the corresponding pair of the training dataset were
used.

If maximum likelihood is used in fitting, then asymptotic standard errros of
estimates can be computed, too.
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3 Model the plot-specific estimates of w , l , and s on mean of ALS observations z̄

2 Prediction stage using evaluation plots
1 Predict θ = (w , l , s)′ for the evaluation plots
2 Using the predicted θ and stand density λ, fit the density function f (z|θ, ξ, λ) to the

z-values to estimate the distribution of tree heights (i.e parameter ξ = (α, β)) for each
plot.

3 Compute interesting stand characteristics, such as mean or dominant height and
compare to the true known values.

In an alternative pairwise fitting approach, steps 1.3 and 2.1 were omitted. Instead,
the estimates θ = (w , l , s)′ of the corresponding pair of the training dataset were
used.

If maximum likelihood is used in fitting, then asymptotic standard errros of
estimates can be computed, too.

Mehtätalo et al. (UEF) Model-based approach September 15, 2010 8 / 16



Results and discussion

Example fit

Training stage with teaching plot 11
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Results
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Results and discussion

Discussion

The developed model could provide a theoretical basis for the widely used area-based
approach. This study reported the first empirical test of the approach.

Results not as good as we hoped. The next step is to include penetration into the
model of individual tree shape
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Currently, heavy computations make estimation and model development slow.
Efforts are underway to approximate the likelihood with less intensive functions. R
and Matlab have been used for estimation.
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Results and discussion

The applied model for crown shape
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Results and discussion

The effect of spatial pattern on the distribution
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The same values for stand density and Weibull
parameters were used using

Square grid pattern (black), and
Random spatial pattern (gray)

The graphs on the left show the c.d.f.’s of all
observations

The graphs on the right show the p.d.f.’s of
canopy hits

The values on the left show
shape (α) and
scale (β) parameters of the Weibull parameters,
as well as
the stand density (λ, 100 trees per ha).

The crown shape was ellipsoid with half axes
0.1H and 0.4H.
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Results and discussion

An example with a Norway spruce plot
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