A model-based approach for estimating the height distribution of eucalyptus plantations using low-density ALS data

Lauri Mehtätalo¹, Anni Virolainen², Jukka Tuomela² and Jukka Nyblom³

¹ University of Eastern Finland, School of Forest Sciences
 ² University of Eastern Finland, Dept of Mathematics
 ³ University of Jyväskylä, Dept of Mathematics and Statistics

September 15, 2010

< □ > < 同 > < 三

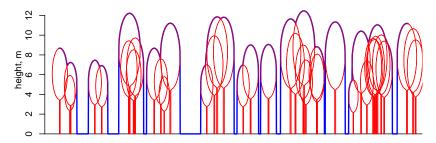
Mehtätalo et al. (UEF)

Model-based approach

September 15, 2010 1 / 16

500

Canopy surface

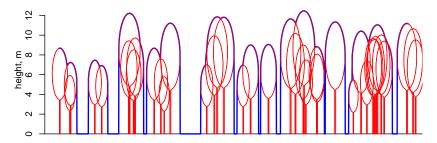


Under certain simplifying assumptions (e.g., a solid top surface of a tree), we can think that

500

< A ▶

Canopy surface

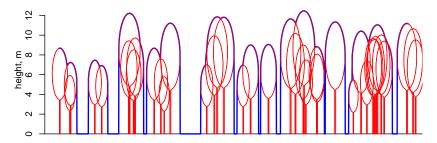


Under certain simplifying assumptions (e.g., a solid top surface of a tree), we can think that

• Individual trees generate the canopy surface (CS) of the stand

A ►

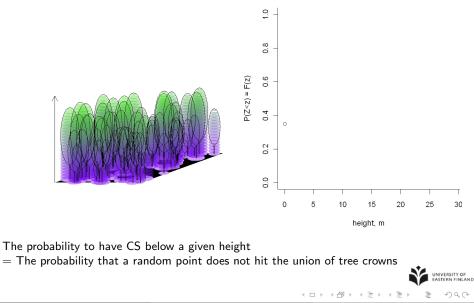
Canopy surface



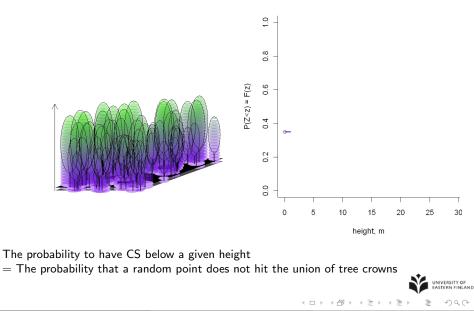
Under certain simplifying assumptions (e.g., a solid top surface of a tree), we can think that

- Individual trees generate the canopy surface (CS) of the stand
- ALS returns are (essentially) observations on that surface

naa



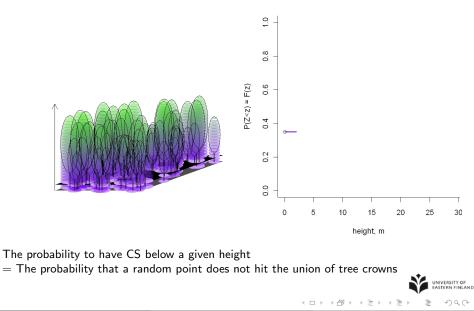
Canopy surface (random spatial pattern)



Mehtätalo et al. (UEF)

September 15, 2010 3 / 16

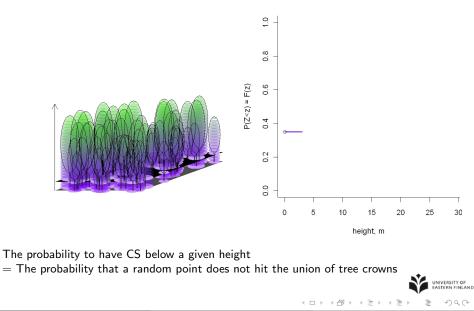
Canopy surface (random spatial pattern)

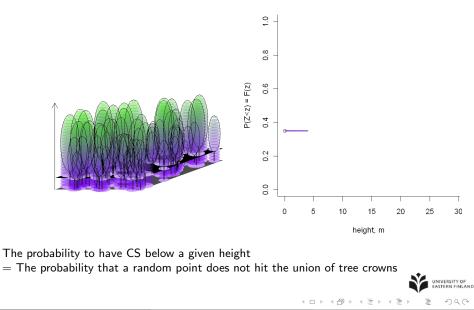


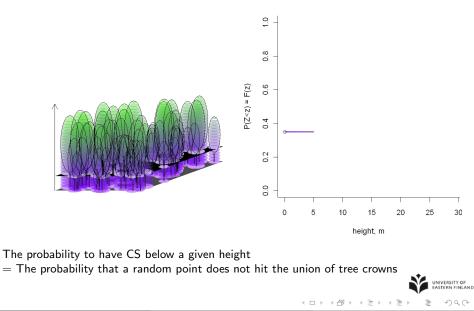
Mehtätalo et al. (UEF)

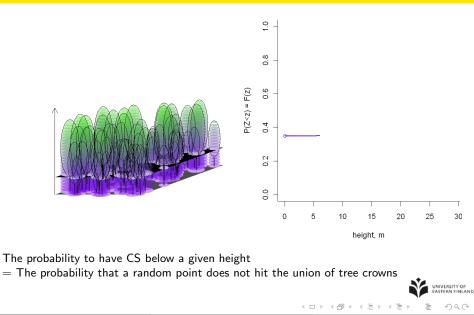
Model-based approach

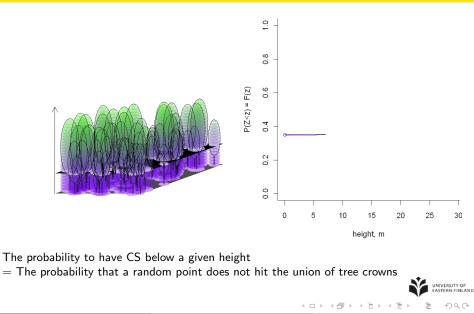
September 15, 2010 3 / 16

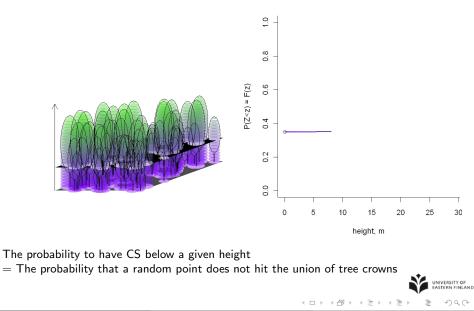


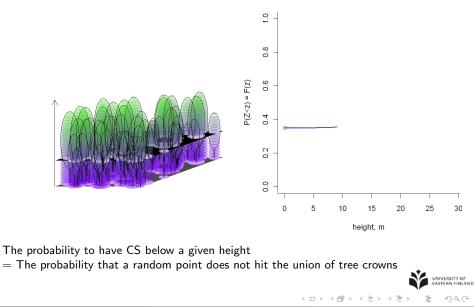


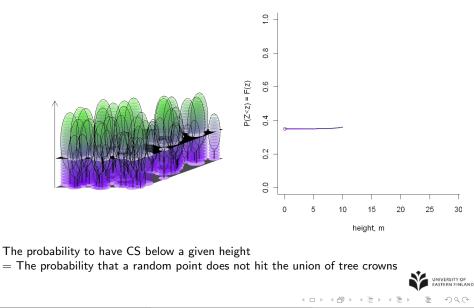


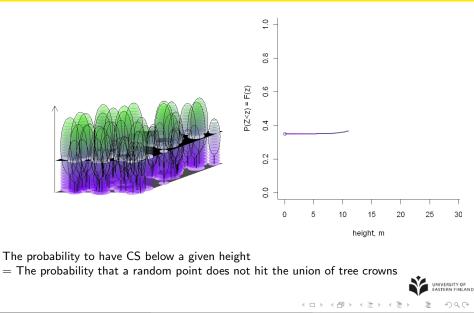


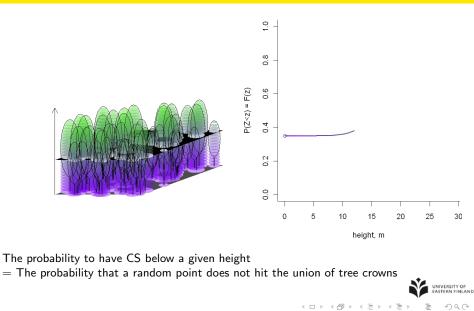




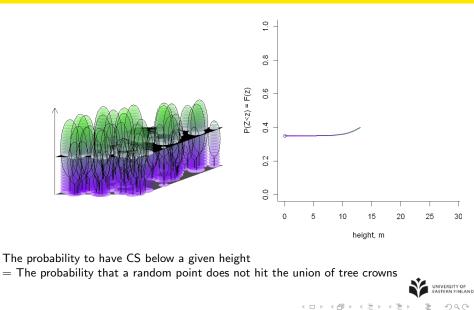








Canopy surface (random spatial pattern)

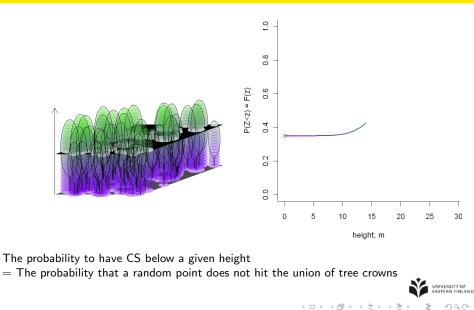


Mehtätalo et al. (UEF)

Model-based approach

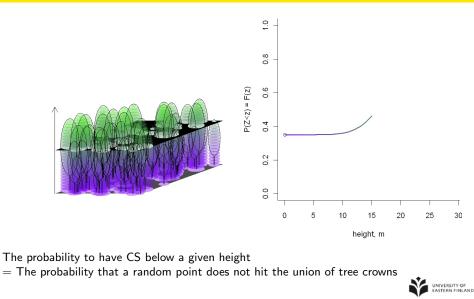
September 15, 2010 3 / 16

Canopy surface (random spatial pattern)



< A ▶

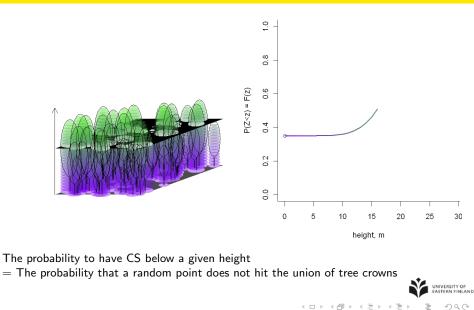
Canopy surface (random spatial pattern)



< A ▶

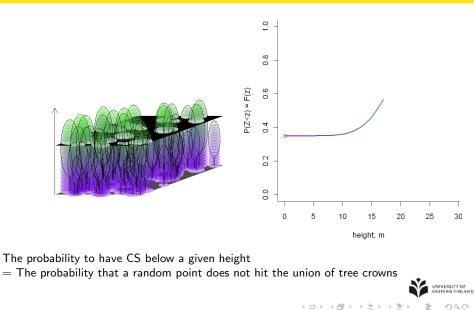
500

Canopy surface (random spatial pattern)



< A ▶

Canopy surface (random spatial pattern)

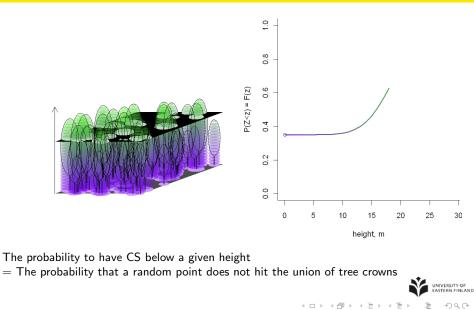


Mehtätalo et al. (UEF)

Model-based approach

September 15, 2010 3 / 16

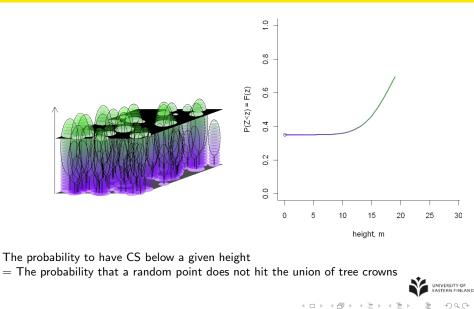
Canopy surface (random spatial pattern)

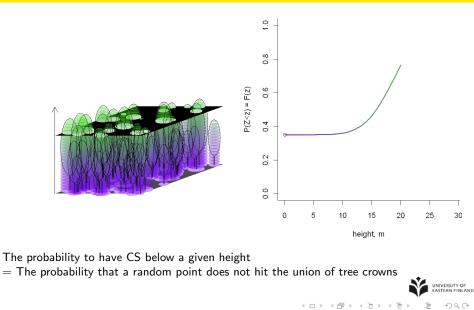


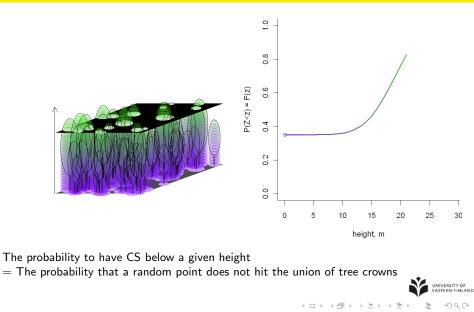
Mehtätalo et al. (UEF)

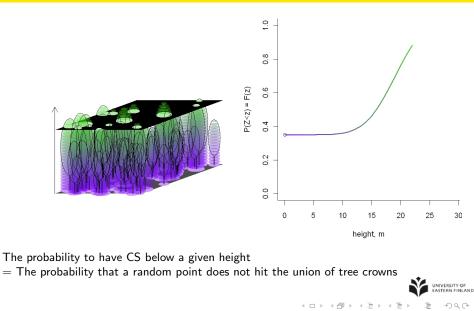
Model-based approach

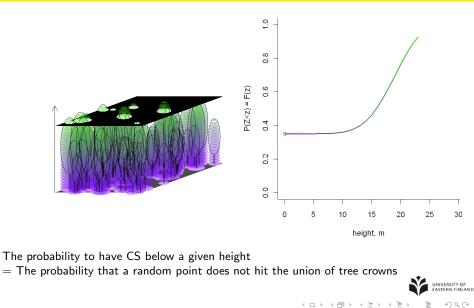
September 15, 2010 3 / 16

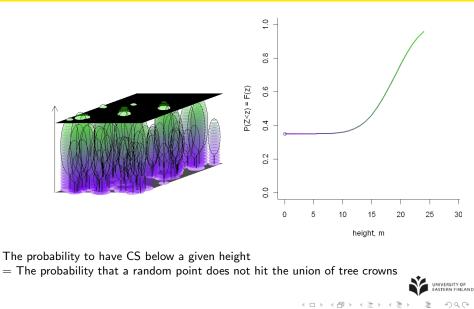


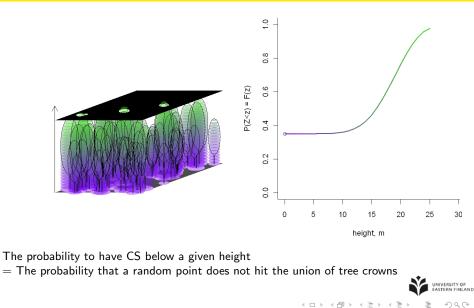




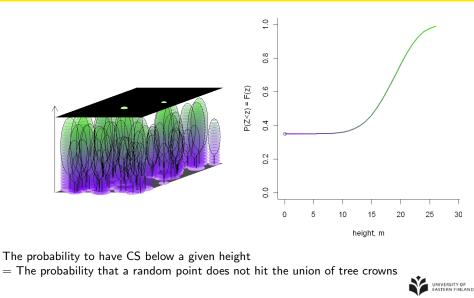








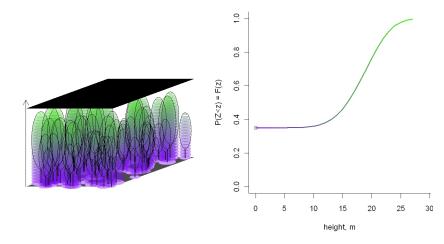
Canopy surface (random spatial pattern)



< A >

500

Canopy surface (random spatial pattern)



The probability to have CS below a given height

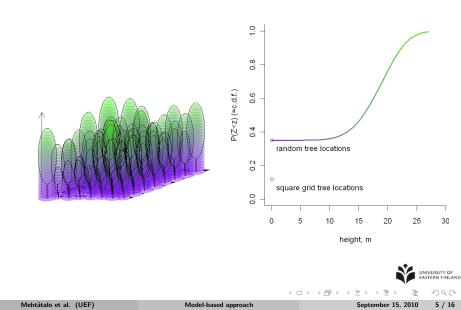
- = The probability that a random point does not hit the union of tree crowns
- \approx The c.d.f. of the random heights of pre-processed ALS returns, denoted by

200

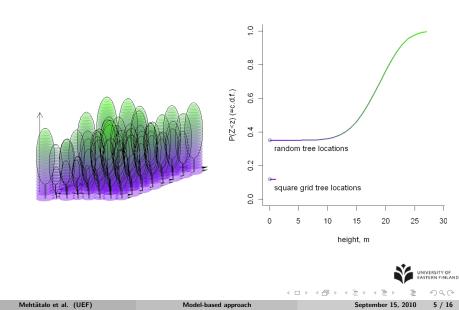
The observed height of canopy surface, Z, is a random variable. The distribution depends on (Mehtätalo and Nyblom, 2009)

- The stand density (trees per ha)
- The stand-specific distribution of tree heights
- The crown shape of a tree with given total height
- The spatial pattern of tree locations

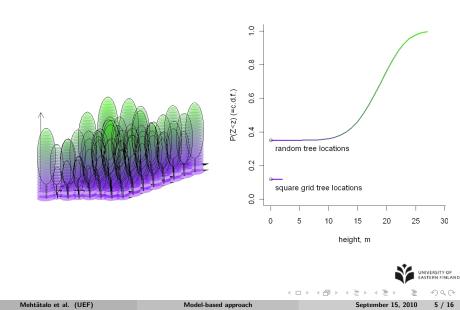
Canopy surface for square grid pattern

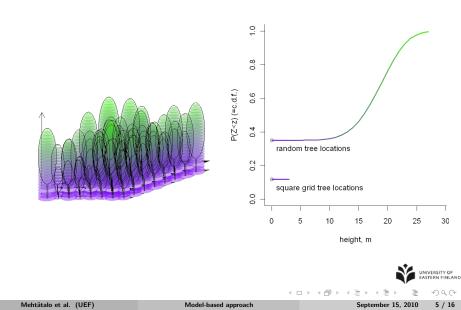


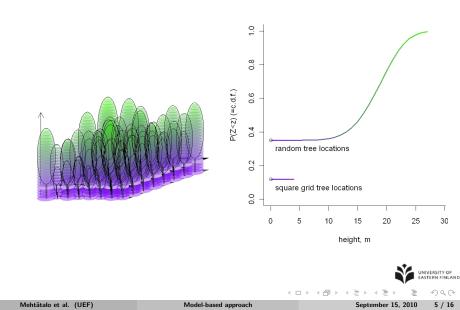
Canopy surface for square grid pattern

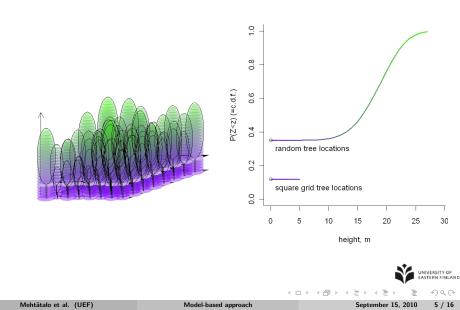


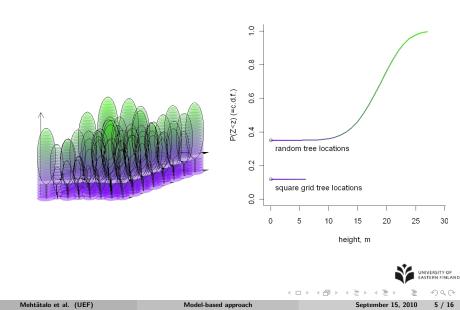
Canopy surface for square grid pattern

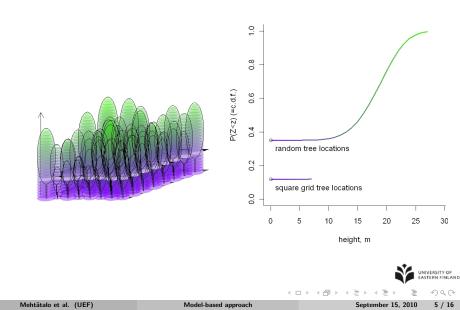


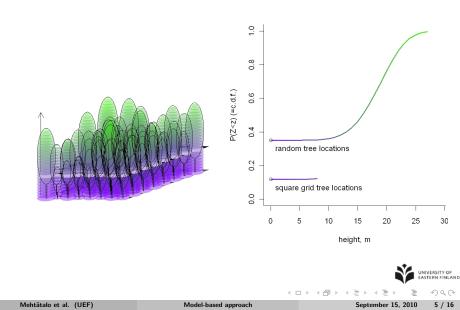


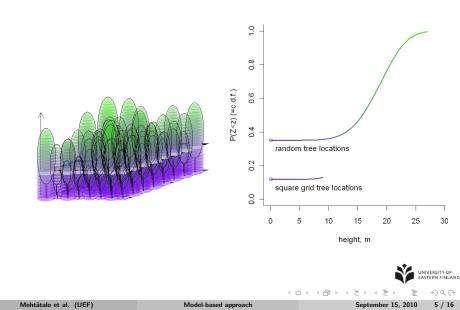


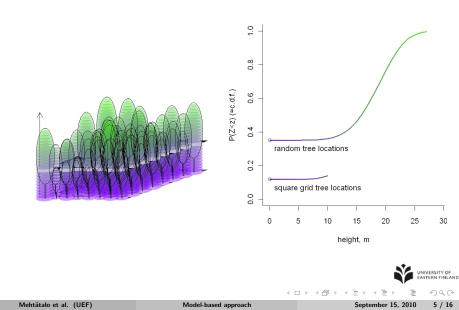


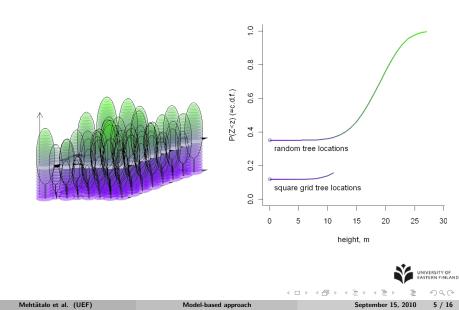


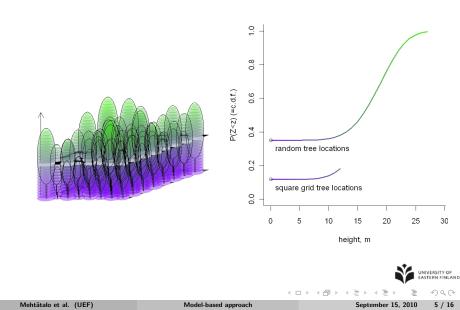


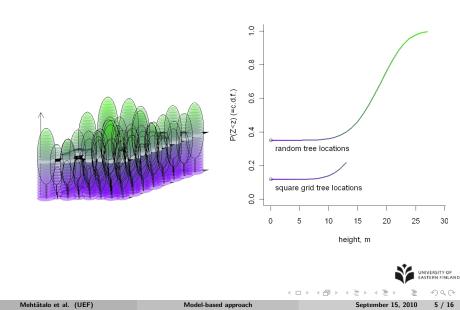


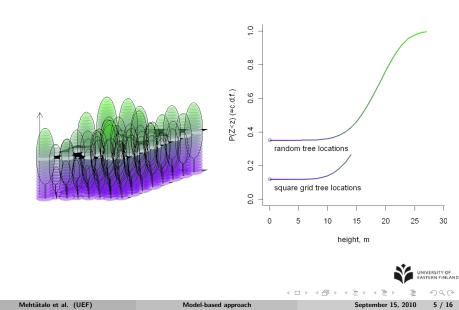


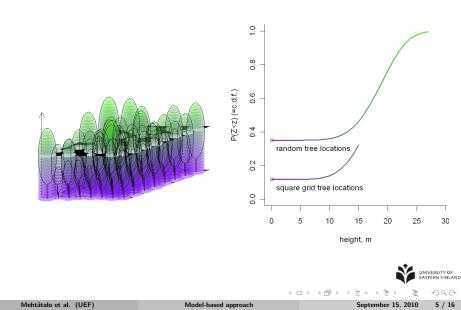


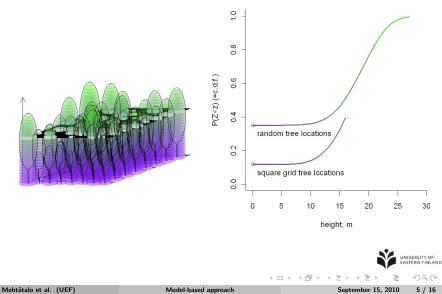


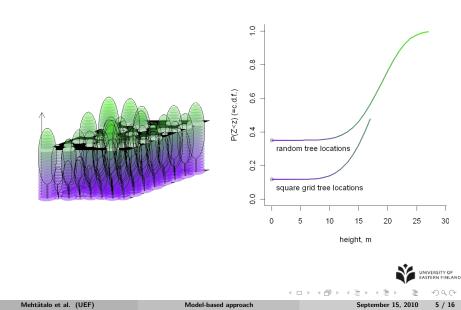


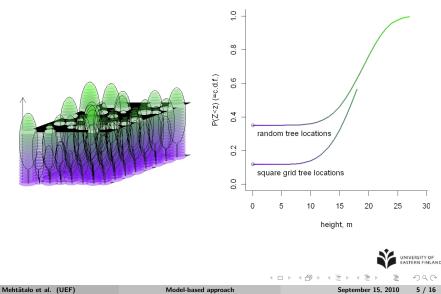


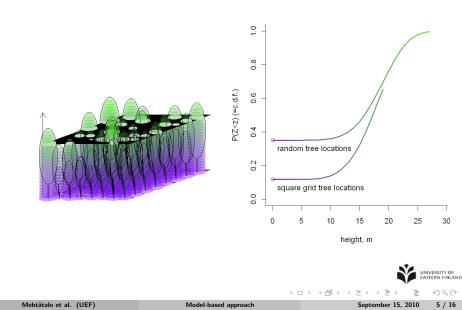


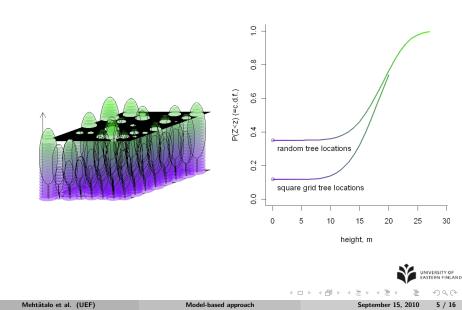


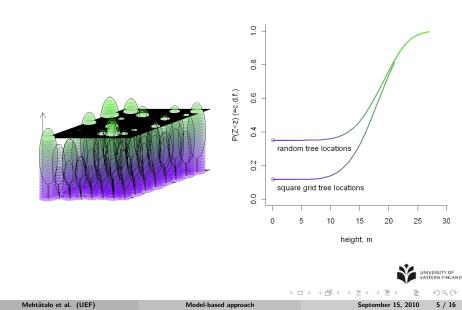


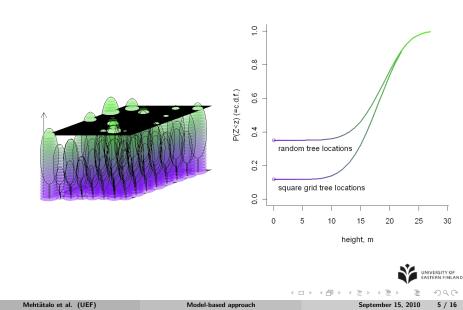


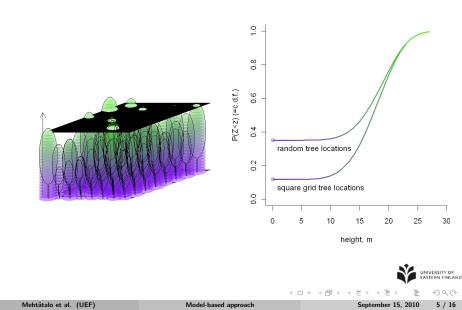


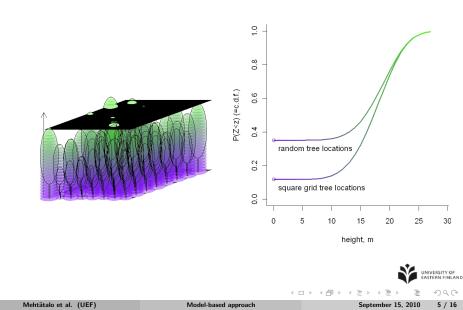


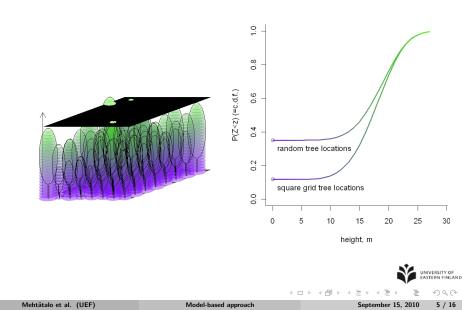


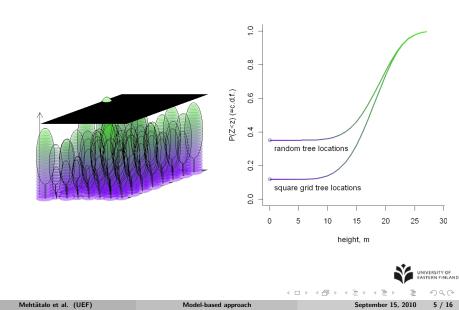


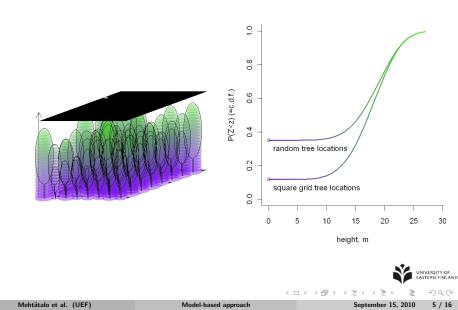




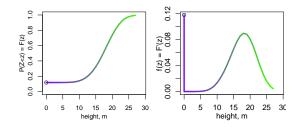






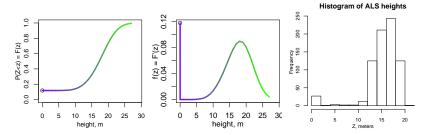


The p.d.f. is the first derivative of the c.d.f.



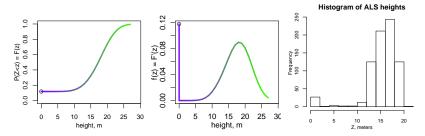
< □ > < 同 >

The p.d.f. is the first derivative of the c.d.f. \approx The histogram of ALS data



< □ > < 同 >

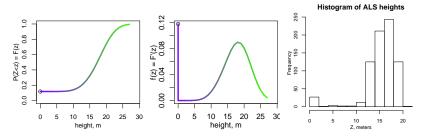
The p.d.f. is the first derivative of the c.d.f. \approx The histogram of ALS data



For an assumed spatial pattern, the p.d.f is $f(z|\theta, \xi, \lambda)$, where

- 4

The p.d.f. is the first derivative of the c.d.f. \approx The histogram of ALS data



For an assumed spatial pattern, the p.d.f is $f(z|\theta, \xi, \lambda)$, where

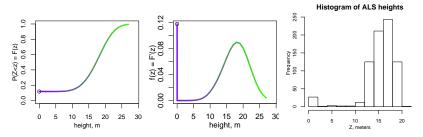
- heta includes the parameters for individual crown shape, e.g.,
 - the relative crown width (w)
 - the relative crown length (1) and
 - the crown shape (s) for a given tree height.

Mehtätalo et al. (UEF)

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

500

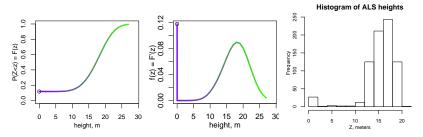
The p.d.f. is the first derivative of the c.d.f. \approx The histogram of ALS data



For an assumed spatial pattern, the p.d.f is $f(z|\theta, \xi, \lambda)$, where

- heta includes the parameters for individual crown shape, e.g.,
 - the relative crown width (w)
 - the relative crown length (1) and
 - the crown shape (s) for a given tree height.
- $\boldsymbol{\xi}$ includes the parameters of the stand-specific distribution of tree heights, e.g.,
 - \circ the shape (lpha) and
 - scale (β) parameters of an assumed Weibull height distribution.

The p.d.f. is the first derivative of the c.d.f. \approx The histogram of ALS data



For an assumed spatial pattern, the p.d.f is $f(z|\theta, \xi, \lambda)$, where

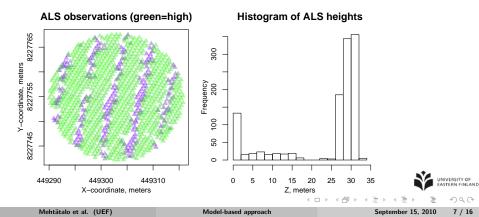
- heta includes the parameters for individual crown shape, e.g.,
 - the relative crown width (w)
 - the relative crown length (I) and
 - the crown shape (s) for a given tree height.
- $\boldsymbol{\xi}$ includes the parameters of the stand-specific distribution of tree heights, e.g.,
 - \circ the shape (lpha) and
 - scale (β) parameters of an assumed Weibull height distribution.
- λ is the stand density (trees per ha)

naa

Material

Study material

- 18 pairs of sample plots from the Veracel data (18 training and 18 evaluation plots).
- ${\, \bullet \, }$ Distance between trees and stand density λ are known
- Three heights known for every 7th tree, and imputed for others using a stand-specific model
- ALS data were pre-processed and thinned to include ≈ 122 uniformly placed observations of canopy height (Z) for each plot (0.23 pulses/m²)



1 Training stage using training sample plots

2 Prediction stage using evaluation plots

・ロト ・ 戸ト ・ ヨト

- Training stage using training sample plots 1
 - **①** Estimate $\xi = (\alpha, \beta)'$ by fitting Weibull distribution to the measured tree heights
 - **2** Using the known $\boldsymbol{\xi}$ and stand density λ , fit the density function $f(\boldsymbol{z}|\boldsymbol{\theta},\boldsymbol{\xi},\lambda)$ to the z-values to estimate the parameter $\theta = (w, l, s)'$ for each plot.
 - 3 Model the plot-specific estimates of w, I, and s on mean of ALS observations \overline{z}
- Prediction stage using evaluation plots 2

September 15, 2010

- Training stage using training sample plots
 - **①** Estimate $\xi = (\alpha, \beta)'$ by fitting Weibull distribution to the measured tree heights
 - 2 Using the known $\boldsymbol{\xi}$ and stand density λ , fit the density function $f(\boldsymbol{z}|\boldsymbol{\theta},\boldsymbol{\xi},\lambda)$ to the *z*-values to estimate the parameter $\boldsymbol{\theta} = (w, I, s)'$ for each plot.
 - 3 Model the plot-specific estimates of w, l, and s on mean of ALS observations \bar{z}
- Prediction stage using evaluation plots
 - **1** Predict $\theta = (w, l, s)'$ for the evaluation plots
 - 2 Using the predicted θ and stand density λ , fit the density function $f(z|\theta, \xi, \lambda)$ to the z-values to estimate the distribution of tree heights (i.e parameter $\xi = (\alpha, \beta)$) for each plot.
 - Ocmpute interesting stand characteristics, such as mean or dominant height and compare to the true known values.

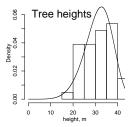
- Training stage using training sample plots
 - **①** Estimate $\xi = (\alpha, \beta)'$ by fitting Weibull distribution to the measured tree heights
 - **2** Using the known $\boldsymbol{\xi}$ and stand density λ , fit the density function $f(\boldsymbol{z}|\boldsymbol{\theta},\boldsymbol{\xi},\lambda)$ to the *z*-values to estimate the parameter $\boldsymbol{\theta} = (w, I, s)'$ for each plot.
 - 3 Model the plot-specific estimates of w, l, and s on mean of ALS observations \bar{z}
- Prediction stage using evaluation plots
 - **1** Predict $\theta = (w, l, s)'$ for the evaluation plots
 - 2 Using the predicted θ and stand density λ , fit the density function $f(z|\theta, \xi, \lambda)$ to the z-values to estimate the distribution of tree heights (i.e parameter $\xi = (\alpha, \beta)$) for each plot.
 - Ocmpute interesting stand characteristics, such as mean or dominant height and compare to the true known values.
- In an alternative pairwise fitting approach, steps 1.3 and 2.1 were omitted. Instead, the estimates $\theta = (w, l, s)'$ of the corresponding pair of the training dataset were used.

Application to area-based inventory

- Training stage using training sample plots
 - **①** Estimate $\xi = (\alpha, \beta)'$ by fitting Weibull distribution to the measured tree heights
 - **2** Using the known $\boldsymbol{\xi}$ and stand density λ , fit the density function $f(\boldsymbol{z}|\boldsymbol{\theta},\boldsymbol{\xi},\lambda)$ to the z-values to estimate the parameter $\theta = (w, l, s)'$ for each plot.
 - **3** Model the plot-specific estimates of w, l, and s on mean of ALS observations \overline{z}
- Prediction stage using evaluation plots
 - **①** Predict $\theta = (w, l, s)'$ for the evaluation plots
 - 2 Using the predicted θ and stand density λ , fit the density function $f(z|\theta, \xi, \lambda)$ to the z-values to estimate the distribution of tree heights (i.e parameter $\boldsymbol{\xi} = (\alpha, \beta)$) for each plot.
 - 3 Compute interesting stand characteristics, such as mean or dominant height and compare to the true known values.
- In an alternative pairwise fitting approach, steps 1.3 and 2.1 were omitted. Instead, the estimates $\theta = (w, l, s)'$ of the corresponding pair of the training dataset were used
- If maximum likelihood is used in fitting, then asymptotic standard errros of estimates can be computed, too.

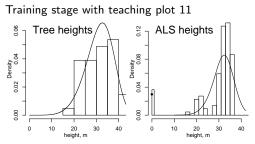
SQA

Training stage with teaching plot 11



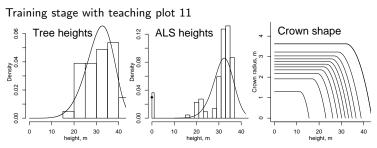
Prediction stage with evaluation plot 11

A D > <
 A D >
 A



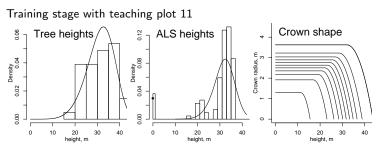
Prediction stage with evaluation plot 11

< □ > < 同 >

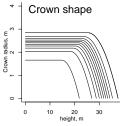


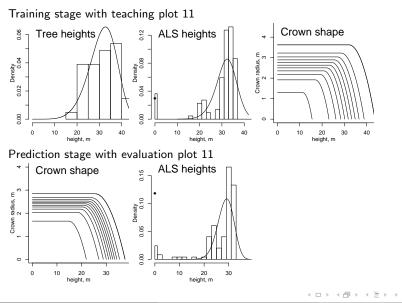
Prediction stage with evaluation plot 11

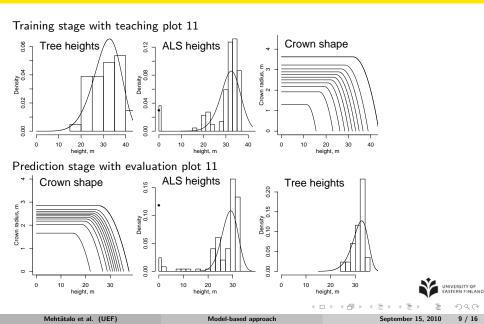
< A



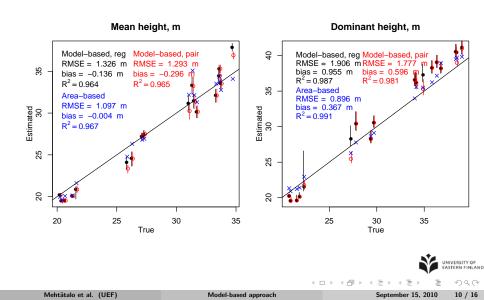
Prediction stage with evaluation plot 11







Results

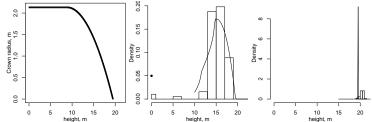


Discussion

• The developed model could provide a theoretical basis for the widely used area-based approach. This study reported the first empirical test of the approach.

Discussion

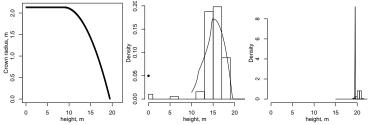
- The developed model could provide a theoretical basis for the widely used area-based approach. This study reported the first empirical test of the approach.
- Results not as good as we hoped. The next step is to include penetration into the model of individual tree shape



SQA

Discussion

- The developed model could provide a theoretical basis for the widely used area-based approach. This study reported the first empirical test of the approach.
- Results not as good as we hoped. The next step is to include penetration into the model of individual tree shape



• Currently, heavy computations make estimation and model development slow. Efforts are underway to approximate the likelihood with less intensive functions. R and Matlab have been used for estimation.

Publications

- Mehtätalo, L. and Nyblom, J. 2009. Estimating forest attributes using observations of canopy height: A model-based approach. For. Sci. 55(5): 411-422.
- Mehtätalo, L. 2006. Eliminating the effect of overlapping crowns from aerial inventory estimates. Canadian Journal of Forest Research 36(7): 1649-1660.
- Mehtätalo, L. and Nyblom, J. A model-based approach for ALS inventory: Application to square grid spatial pattern. Revised MS.

Thank you for your interest

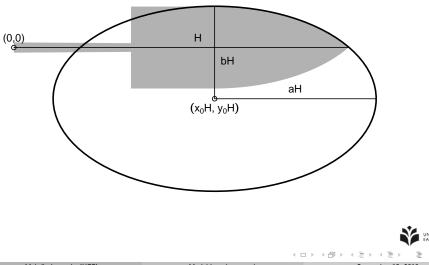
Silvilaser 2010 The 10th International Conference on LiDAR Applications for Assessing Forest Ecosystems September 14th - 17th, 2010 Freiburg, Germany

< □ ▶ < @ ▶

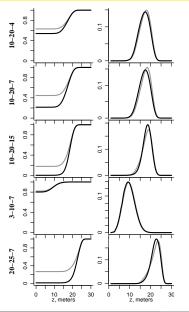
nac

lauri.mehtatalo@uef.fi

The applied model for crown shape



The effect of spatial pattern on the distribution

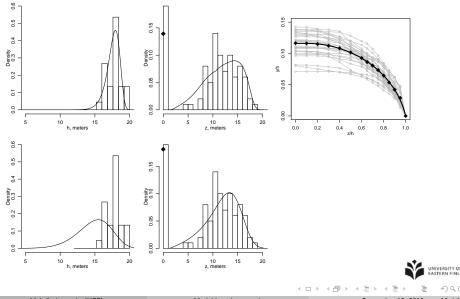


- The same values for stand density and Weibull parameters were used using
 - Square grid pattern (black), and
 - Random spatial pattern (gray)
- The graphs on the left show the c.d.f.'s of all observations
- The graphs on the right show the p.d.f.'s of canopy hits
- The values on the left show
 - shape (α) and
 - $\circ\,$ scale (β) parameters of the Weibull parameters, as well as
 - the stand density (λ , 100 trees per ha).
- The crown shape was ellipsoid with half axes 0.1*H* and 0.4*H*.

naa

Mehtätalo et al. (UEF)

An example with a Norway spruce plot



Mehtätalo et al. (UEF)

Model-based approach

September 15, 2010 16 / 16