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Foreword

This document includes full versions of the Web Examples of our textbook “Biometry for
Forestry And Environmental Data: With Examples in R”, which was published by Chapman
Hall / CRC Press in 2020.

To keep our textbook within the page limitations agreed with the publisher, we had to
leave out quite many of the examples of the original textbook manuscript from the published
textbook. However, we think that those examples may be of use for many readers of the
book, and therefore we decided to make this web extension to the book. This document is
freely available from the textbook website at

http://www.biombook.org.

The website includes also the original R-codes for all examples of the textbook and of this
document.

Throughout this document, we refer to the main textbook Mehtétalo and Lappi| (2020)
by acronym “ML2020”. Numbering of the chapters and examples follows that of ML2020.
Whenever the text refers to material (figures, equation, pages) of ML2020, the textbook
acronym is explicitly mentioned. If the textbook is not mentioned, the reference is to this
document.

Joensuu and Suonenjoki, June 2020

Lauri Mehtdtalo and Juha Lappi


http://www.biombook.org




2

Random Variables

Example 2.5. A commonly used distribution function with tree diameter data is the
Weibull(o, 8) distribution. The two-parameter Weibull distribution function is (also a three pa-
rameter version is used by foresters)

F(zla,B) =1 —exp {— <%>a} x>0,0,8>0, (2.1)

where a and ( are the shape and scale parameters, respectively.
The Weibull density is obtained by differentiating the cdf in (2.1]) with respect to =

f@o,B) = F'(ala,B) ) (2:2)
_ exp{(;>}{a(;) ;} 3)
— %wafle%w/ﬂ)"’ (2.4)

The bottom graphs of Figure on page [2[ show the cdf and pdf of Weibull(5,15) distribution.

Example 2.6. The distribution of ALS return heights on a single tree crown. In
airborne laser scanning (ALS), a forested landscape is explored from an aircraft through laser
measurement techniques. A laser scanning device has been installed to an aircraft and it uses
narrow laser pulses that measure distance from the aircraft to the forest canopy. If the flying
altitude is low and the laser beam is very narrow so that the footprint on the canopy can
be realistically modeled as a point, the measurements provided by the scanner are essentially
observations of forest canopy height at points within the forested area. Alternatively, if the beam
is wide and altitude is high and whole distribution of the returned energy is recorded, the scanner
can provide a measurement of the full distribution of canopy heights within the footprint.

Motivated by ALS, and to illustrate how non-standard distributions could be derived, con-
sider the distribution of crown height within a tree crown. Let us describe the radius of a tree
crown between the height of maximal crown radius and total height h by an ellipse centered at
(zoh, yoh), zo < 1,y0 < 0, with the half-axes ah and bh. However, assume that the observable
crown radius remains constant below the level of maximal crown width, even though the actual
radius decreases. therefore, the crown radius y at height z (0 < z < h) above the ground level
could be described as

h(yo +b) z < xoh
= z_40)? 2.
v(=) h<y0+b 1—W> woh <z<h ’ (25)
where xo, Yo, a and b are parameters. However, we define a = %, which ensures that
0

y(z, h) passes through point (h,0), the tree tip. The assumed function is illustrated in the top
left subfigure of Figure 2.2] for a tree with A = 20 and shape parameters zo = 0.2, yo = —0.1,
and b = 0.25. The three-dimensional crown results by rotating this function about the z-axis.
The cross-sectional area of the crown at height z is then A(z) = my(z)?. Its maximum value
Apaz = mh2(yo + b)? is obtained when z < zoh.

Assume that ALS returns are modeled as the height of canopy surface at given points. For
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FIGURE 2.1 Examples of four different cumulative distribution functions (cdf) (on the
left) and the corresponding probability mass function (pmf) or probability density functions

(pdf) (on the right).
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FIGURE 2.2 Illustration for example using parameter values h = 20, xo = 0.2,
yo = —0.1, and b = 0.25. The upper left subfigure shows the observable crown radius as a
function of height. The cdf of crown height observations is shown in the lower left figure,
and the corresponding density in the upper right figure. The lower right figure illustrates
the density when yo = 0.

simplicity, assume that the tree crown is viewed directly from above. Let random variable Z
describe the height of the observable tree crown at random location within a horizontal projection
of the crown. The cdf of Z is the proportion of the cross-sectional area below z:

Amaa: - A A
FZ (Z) - P(Z S Z) - Amaz (Z) =1- A'rszi
z_.0)2 2z _g0)2
Yo + 2yob\/1—7 (Emzo) 4y (1 ~ () )
=1-
(yo +0)?
The pdf results by differentiating with respect to z
-1/2
1 20% 2z (£ —z0)? 2
52) = Gomye |aan (5 —#0) +oob (1 R A LD

These functions are illustrated in the bottom-left and top-right graphs of Figure An inter-
esting result is obtained when yo = 0, i.e., when the center of ellipsoid is on the z-axis:

f2(2) = 5 (£~ o),
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which is the density of the triangular distribution illustrated in the lower-right plot of Figure
For extension of these ideas to a forest stand with several trees, see Mehtatalo et al.|(2014a).
To further model the penetration of the laser beam to canopies, one could integrate the model
described in Example 2.25 to these models.

Parts of the R-scripts for Figure are shown below

> radius.ellipse<-function(x,b,x0=0,y0=0,h) {

+ x<-X

+ a<-sqrt (b~2%(1-x0)~2/(b~2-y0°2))

+ r<-rep (h*(y0+b) ,length(x))

+ r [x>x0%h&x<=h]<-h* (yO+b*sqrt (1- (x[x>x0xh&x<=h]/h-x0)"~2/a"2))
+ r[x>h]<-0

+ r

+ }

>

> cdf.laser<-function(x,b,x0,y0,h) {

+ a<-sqrt (b~2%(1-x0)~2/(b~2-y0°2))

+ value<-rep(0,length(x))

+ value [x>=x0%h&x<h]<-1-

+ (y0~2+2*y0*b*sqrt (1- (x[x>=x0*h&x<h]/h-x0) ~2/a"~2)+

+ b~2% (1- (x[x>=x0*h&x<h] /h-x0)~2/a~2) )/ (y0+b) ~2

+ value[x>=h]<-1

+ value

+ 3

>

> pdf.laser<-function(x,b,x0,y0,h) {

+ a<-sqrt (b~2%(1-x0) ~2/(b~2-y0°2))

+ value<-rep(0,length(x))

+ value [x>x0*h&x<h]<--1/(yO+b) ~2x

+ (yOxb* (1- (x [x>x0%h&x<h]/h-x0)~2/a~2)~(-1/2)*

+ (-2/(a~2%h) * (x [x>x0*h&x<h] /h-x0) )+

+ b~2* (-2/ (a~2*h) * (x [x>x0*h&x<h] /h-x0)))

+ value

+ }

> x0<-0.2; y0<--0.1; b<-0.25; h<-20

> x<-seq(0,22,0.01)

> r<-radius.ellipse(x,b,x0,y0,h)

> plot(x, r, type="1",xlab="Height, m", ylab="Crown radius, m", ylim=h*c(-0.1,0.15))
> plot(x, cdf.laser(x,b,x0,y0,h), type="1",xlab="Height, m", ylab="Cumulative density")
> plot(x, pdf.laser(x,b,x0,y0,h), type="1",xlab="Height, m", ylab="Density")
> plot(x, pdf.laser(x,b,x0,0,h), type="1",xlab="Height, m", ylab="Density")

Example 2.8. Let X be tree diameter with the Weibull distribution function

Flela, f) = 1 - exp [— (g)} |

with values @« = 5 and 8 = 15 for the shape and scale parameters, respectively. Assume that
tree height above the breast height, ¥ = H — 1.3, depends deterministically on tree diameter
according to the power function

Y =g(X) =aX"’,
where the parameters are ¢ = 8 and b = 0.2. Using these values for parameters, the assumed
height - diameter (H-D) curve is an increasing function of tree diameter and the height for a
zero-diameter tree is equal to the breast height. To find the distribution of Y, the inverse H-D

curve is "
1 o Q)
g (y) = (a :

The distribution of tree height above breast height results by writing the inverse transformation
into the cdf of diameter. We get (see Equation (2.7) on p. 14 of ML2020)

("
F(y|a7ﬂ7a7b)—1—eXP{—[ “ﬁ } } (2.6)

1ol ()]

= F(yla/b,aB"), (2.7)
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which shows that, assuming a Weibull distribution for tree diameter and a power equation as
the H-D curve, the tree height above the breast height is also distributed according to Weibull
distribution, with shape and scale parameters «/b and af3®. Note that this is not a general result,
but it holds only for these specific functions. In general, there is no result that the functional
form of the distributions of tree height above the breast height and diameter would be the same.
In addition, treating height as transformation implies that the height is a deterministic function
of tree diameter, which is not true. For more discussion, see ML2020, Section 11.4.1.
The first derivative of the inverse H-D curve is

Lyw=2 ()"

The density of height can be obtained by using the previously solved ¢g~'(y) in the Weibull pdf
and multiplying it by the derivative function above (see Equation (2.8) on p. 14 of ML2020)
Another possibility is to use the result from the previous example, i.e., use a/b and aB® directly
instead of the original parameters in the Weibull density. Both approaches lead to the same final
result.

Figure illustrates the applied transformations and distributions of diameter and height
above the breast height. The following code shows how the distribution of tree heights above the
breast height can be found either by using the result of the special case of Example and the
general definitions of a transformed random variable. The two alternative ways are compared by
plotting the two vectors on each other; if they are on the line y = z, they are equal. This is often
an useful way to make a quick check of computations.

x<-seq(0,25,0.10)

a<-8

b<-0.2

alpha<-5

beta<-15
Fx<-pweibull(x,alpha,beta)
fx<-dweibull(x,alpha,beta)

vV V.V VYV VYV

A\

# Plot the cdf and density of diameter distribution
plot (x,Fx,xlab="x",ylab=expression(F[X] (x)),type="1",main="cdf of diameter")
plot (x,fx,xlab="x",ylab=expression(f[X](x)),type="1",main="pdf of diameter")

VvV Vv

# Define the power function
powerf<-function(x,a,b){
a*x”b
¥
# The inverse of power function
power.inv<-function(y,a,b){
(y/a)~(1/b)
}
# The 1st derivative of the inverse power function
dpower.inv<-function(y,a,b){
1/(a*b)*(y/a)~(1/b-1)
}

+ +VV+ +VYV++ VYV

# Plot the HD-curve

plot (x,powerf (x,a,b) ,xlab="x",ylab="g(x)",type="1",main="HD-curve")
y<-seq(8,17,0.1)

Fy<-pweibull(y,alpha/b,a*beta~b)

fy<-dweibull(y,alpha/b,a*beta~b)

vV V.V V V

v

# Plot the cdf and density of height distribution
plot(y,Fy,xlab="y, m",ylab=expression(F[Y](y)),type="1",main="cdf of height")
plot(y,fy,xlab="y, m",ylab=expression(f[Y](y)),type="1",main="pdf of height")

Vv Vv

\4

# Compute the cdf in another way without computations with pen and paper
Fy2<-pweibull(power.inv(y,a,b),alpha,beta)
fy2<-dweibull(power.inv(y,a,b) ,alpha,beta)*dpower.inv(y,a,b)

Vv Vv

# Check graphically that the two ways gave the same result

plot(y,Fy2,xlab="y, m",ylab=expression(F[Y](y)),type="1",main="cdf2 of height")
plot(y,fy2,xlab="y, m",ylab=expression(f[Y](y)),type="1",main="pdf2 of height")
plot (Fy,Fy2,main=expression("Match between "*F[XI*({g~-1}(y))*" and "*F[Y](y)))
abline(0,1)

VvV V.V V V
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FIGURE 2.3 Illustration of the Example The two equivalent versions of the pdf and
cdf are computed diferently: the ones with texts “cdf” and “pdf” in the title are based on the
Weibull(c/b, aB%) distribution and the graphs with texts “cdf2” and “pdf2” in the title on
the general results about transformed random variables. The lower-right panel illustrates a
useful graphical comparison to check whether the two cdf’s are identical (see the R-code).
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Statistical Modeling, Estimation and Prediction

Example 3.9. Consider a simulated count data on the number of insects Y; in a trap in a
natural forest reserve. The true dependence of the expected number of insects in the trap on the
decayed tree volume v; in the surrounding area is

E(Y;) = pi = exp (Bo + Bivi)

where the true values of parameters are 5o = —2 and 81 = 0.05. For illustration, we assume that
the true model form is known, and data from 50 traps are used to estimate parameters Sy and
B1. The solution is based on Maximum Likelihood under independence, by writing in Poisson
likelihood (Equation 2.6 on p. 13 of ML2020) with the assumed relationship on the predictor
and expected value.

The resulting ML-estimates of the parameters are Bo = —2.25 and Bl = 0.053, with variances
var(Bo) = 0.117 = 0.343% and var(B;) = 0.0000187 = 0.00432. The resulting estimated relation-
ship is shown in Figure together with the true known relationship and simulated data. For
illustration, the estimation was implemented by using stats: :mle. A more straightforward way
would be to use function glm with family=poisson(link="1log").

> library(stats4)

> # values of the predictor variable
> V<-c(1,4,5,11,16,18,19,20,22,23,23,24,26,27,27,28,29,29,30,30,31,32,33,46,48,
+ 50,51,51,53,54,55,61,62,62,62,64,65,67,68,69,76,77,81,81,83,84,86,91,92,99)
> # generate the data

> set.seed(1234)

> obs<-rpois(length(V),exp(-2+0.05%V))

>

obs

(11 o 0 0 010001 01002 010O0O0OO0O0O0OO0OO0O0
[26] 3 2 4 3 0 2 2 2 3 1 5 2 210 6 6 7 6 8 7 9 11 12 16 16
>
> # Define the negative log-likelihood
> nll<-function(b0,bl) -sum(log(dpois(obs,exp(b0+b1*V))),na.rm=TRUE)
>
> solution<-mle(minuslogl=nll,start=1list (b0=0.5,b1=0),control=list(trace=TRUE))
>
> coef (solution)

b0 bl
-2.25070964 0.05286306
> vcov(solution)
b0 bl
b0 0.117475398 -1.442781e-03
bl -0.001442781 1.877795e-05
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FIGURE 3.1 The observed number of insects in a trap as a function of decayed wood
volume v; in a simulated data (Example [3.9), and the true and estimated underlying rela-
tionship between p; and v;.
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Linear Model

Example 4.8. Using X and y as defined in Example 4.4. of the textbook, (the object X was
defined before), we get

y<-stumplift$Time

n<-length(y)

p<-dim(X) [2]

betalLS<-solve (t (X)%*%X) h*%t (X) h*%y
ehat<-y-X%*%betalLS

sigma20LS<-t (ehat)%*%ehat/ (n-p)
varbetaOLS<-as.numeric (sigma20LS) *solve (t (X) %*%X)

vV V VYV VVYV

> t(round(betalLS,3))
M2 M3
[1,] -26.826 2.654 -0.014 116.547 -6.75 0.119 77.404 -5.02 0.095

> sqrt(sigma20LS)
[,11
[1,] 24.79195

> round(sqrt (diag(varbetaOLS)),3)
M2 M3
24.489 1.408 0.019 32.803 1.830 0.024 42.519 2.373 0.032

> round(cov2cor(varbetalOLS),3)
M2 M3

1.000 -0.986 0.954 -0.747 0.759 -0.751 -0.576 0.585 -0.568
-0.986 1.000 -0.989 0.736 -0.769 0.778 0.568 -0.594 0.589
0.954 -0.989 1.000 -0.713 0.761 -0.786 -0.550 0.587 -0.595
M2 -0.747 0.736 -0.713 1.000 -0.985 0.949 0.430 -0.437 0.424
0.759 -0.769 0.761 -0.985 1.000 -0.988 -0.437 0.457 -0.453
-0.751 0.778 -0.786 0.949 -0.988 1.000 0.432 -0.462 0.468
M3 -0.576 0.568 -0.550 0.430 -0.437 0.432 1.000 -0.988 0.956
0.585 -0.594 0.587 -0.437 0.457 -0.462 -0.988 1.000 -0.989
-0.568 0.589 -0.595 0.424 -0.453 0.468 0.956 -0.989 1.000

Example 4.10. Consider the multiple regression model
y=XpB+e
with var(e) = ¢*I. The log-likelihood for a linear regression model
y~ N(XB,V)
was given in Equation (4.30) on p. 95 of ML2020. For model
K'y~N(0,K'VK),

the log-restricted likelihood is defined correspondingly as

1=-= > Pinor - %m |[K'VK| - % (K'y-0) (K'VK) ™" (K'y —0) .

Using V' = 2T yields

n 1 ne _
l:—§1n27r—§ln(a2( P>|K’Ky)_ v K (K'K) ' K'y

202
To estimate o2, we differentiate the log-likelihood with respect to o2

ol —

do2 202 204

YK (K'K) 'K'y.
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Setting this to zero and solving for o2 gives the REML estimator
~ 1 _
GrEMmL = my/K (K/K) ' K'y. (4.1)

The following R-code computes the REML estimator for the above-specified model using a
dataset of 5 observations. We use packages Matrix, MASS and nlme in this example.

> library(Matrix)
> library(MASS)
> library(nlme)

First define the vector of response, y, and the model matrix, X.

> y<-¢(10.3,10.3,10.2,16.4,18.8)
> x1<-¢(8.3,8.6,8.8,10.5,10.7)

> x2<-¢(70,65,63,72,81)

> X<-cbind(1,x1,x2)

Formulate 4 different c-vectors of length 5. Using these vectors in Equation (4.31) on p. 96 of
ML2020 provides candidate columns for matrix K, which are stacked into matrix K including
now 5 columns.

> ¢1<-¢(1,0,0,0,0)
> ¢2<-¢(0,1,0,0,0)
> ¢3<-¢(0,0,1,0,0)
> ¢4<-¢(0,0,0,1,0)
> K<-t(rbind(cl,c2,c3,c4)%x*}(diag(rep(1,5)) -X)*)ginv(X)))

Check that K satisfies the condition K'X = 0.

> t(K)h*%X

x1 x2
cl 8.881784e-16 -1.199041e-14 2.486900e-14
c2 0.000000e+00 -1.942890e-14 -3.641532e-14
c3 8.881784e-16 -1.110223e-14 3.019807e-14
c4 -6.661338e-16 -2.486900e-14 -8.171241e-14

This seems to be a null matrix (when rounded to the 14th decimal). Next, check the rank of K.
Based on the result discussed above, it should not be higher than n —p=5—-3 = 2.

> rankMatrix(K,tol=1e-10)
[1]1 2

The rank is 2, meaning that if we appropriately select 2 columns from the matrix, the other rows
are linear combinations of the two selected columns. Let us select two different matrices: one
including first two columns (K1) and another including columns 3 and 4 (K2). They both have
rank 2 (code not shown), and they both lead to the same estimate of 2 = 0.135.

> K1<-K[,1:2]
> K2<-K[,3:4]
> sigmal<-sqrt (t(y) %*%K1%*%solve (t (K1) %*%4K1) %*%t (K1) %*%y/2)
> sigmal
[,1]
[1,] 0.1347088
> sigma2<-sqrt (t (y) %*%K2%*%solve (t (K2) %*%K2) %*%t (K2) %*%y/2)
> sigma2
[,1]
[1,] 0.1347088

The estimate equals to the one produced by function gls of package nlme.

> gls(y~x1+x2,method="REML")
< 00>
Log-restricted-likelihood: -2.634508
<L .02

Degrees of freedom: 5 total; 2 residual

Residual standard error: 0.1347088
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However, our two alternative K-matrices and the fit using gls all provide different value for the
restricted log-likelihood at the solution.

> logLik<-function(X,n=5,p=3){

+ -n/2*log(2*pi)-1/2xlog(sigma2~ (2* (n-p))*det (t (K) 4*%K)) -
+ 1/(2+sigma2~2) *xt (y) %*%hK%*%hsolve (t (K) %*%K) %x%t (K) hx %y
+ }
> logLik(K1)
[,11

[1,]1 -0.3821908

> logLik(K2)
[,11

[1,] -0.507354






5
Linear Mixed-FEftects Models

Example 5.9. Consider the model with random intercept with the following variance function
var(ei;) = o [75]*° (5.1)

where y;; is the group-level prediction from the model. This structure is commonly applicable
for processes where the predictions are nonzero.
With that model, the variance-covariance structure of y; is

var (y;) = Z;D.Z; + R;

1 7611 0 0
1 0 [Tia]?® ... 0
= op[1 1 1]+0? . . .
|1 0 0 N [
o2 + 0?7 |? U§~ ;o o}
o} of +giel®® ... ot
I i i oo 0 A P [Gin, 7

Example 5.12. The model with random intercept and slope:
vis = B+ Bomiy + 0 + 6735 + €45,

for the data of Table (same as Table 5.2 on p. 149 of ML2020) is specified by defining

(1
1 10 0 0 0 0 5%2;
1 13 0 0 0 0 b%)
1
Zz_| 0o 0o 1110 0 b bé) 7
0 0 1 14 0 0 b
0 0 1 15 0 0 bV
0 0 0 0 1 12 b
3
o1 012 0 0 0 0
J12 a% 0 0 0 0
_ 0 0 of o2 0 0
varb) =1 o o L, o2 0 0
0 0 0 0 o o
0 0 0 0 012 O'2

Group y x Group y x Group y X
1 2 10 2 2 11 2 5 15
1 4 13 2 4 14 3 4 12

TABLE 5.2 A small grouped data.

13
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-1.335 -1.330 -1.325
| | |

profile log-likelihood

-1.340
|

12 13 14 15 16 17

FIGURE 5.1 The profile log likelihood as a function of § = ¢ /0% in Example

where Var(bgl)) = 0%, var(bl(g)) = ¢% and cov(bED, b§2>) = o12. The other matrices are as specified

in Example 5.11 of ML2020.
Example 5.15. Counsider the model

Yij = B1 + Baxij + bi + €35
in the dataset of Table (p. .

> dat<-data.frame(group=c(1,1,2,2,2,3),
+ y=c(2,4,2,4,5,4),
+ x=c(10,13,11,14,15,12))

To profile out B and o2 from the log-likelihood, we implement the estimators of 3 and o>
as R-functions. These functions are called from within the function that defines the profile log-
likelihood. The only remaining parameter in matrix V is the ratio of within-group variance and
error variance, therefore  is scalar = o7 /0 (see Example 5.1 on p. 149 of ML2020).

dat<-data.frame(group=c(1,1,2,2,2,3),
y=c(2,4,2,4,5,4),
x=¢(10,13,11,14,15,12))

betagls<-function(X,V,y){
solve (t (X) %*%solve (V) %*%X) %x%t (X) %x%solve (V) %x%hy
}

# A function to profile out sigma~2 from the likelihood in a model with
# single random effect and constant variance
sigma2<-function(y,X,beta,V){

t (y-Xh*%hbeta) %xlsolve (V) %x% (y-X%*%beta) /length(y)
1

loglik<-function(theta,y,X,group){
N<-length(y)
M<-length(unique (group))
D<-diag(rep(theta,M))
Z<-matrix (0,ncol=M,nrow=N)

+ 4+ FVVHEFEVVVVEEVVE Y
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for (i in 1:M){
Z[group==i,i]<-1

R<-diag(rep(1,length(group)))
V<-Z%+%D%*%t (Z)+R
betavalue<-betagls(X,V,y)
sigma2value<-sigma2(y,X,betavalue,V)
11<--N/2*1log(2%pi) -N/2*log(sigma2value) -
1/2*1og(det (V))-
1/(2+sigma2value) *t (y-X%*%betavalue)%*¥%solve (V) %*% (y-X%*%betavalue)
list(betahat=betavalue,sigma=sqrt(sigma2value),logLik=11)
}

theta<-seq(12,17,0.01)

y<-dat$y

X<-cbind(1,dat$x)

group<-dat$group

1<-sapply(theta,function(par) loglik(par,y,X,group)$logLik)

#sratioMLE<-sb2ps[l==max(1)]
#sratioMLE

thetaMLE<-theta[l==max(1)]
thetalLE
1] 15.15

A proper solution would be to differentiate the profile log-likelihood with respect to 6, set
it to zero and solve it. However, for illustration purposes, Figure [5.1] shows the likelihood as a
function of 6. The log-likelihood is maximized at 6 ~ 15.15. We use this estimate to compute the
ML estimates of 3 and o, and oy.

> sol<-loglik(thetaMLE,y,X,group)
> sol
$betahat
[,1]
[1,] -5.1064731
[2,] 0.7047766

$sigma
[,1]
[1,] 0.1304378

$logLik
[,1]
[1,1 -1.324437

> sb<-sqrt(thetaMLE*sol$sigma~2)
> sb

[,1]1
[1,] 0.5077031

The small differences in the estimates compared to Example 5.14 on p. 155 of [Mehtéitalo and
Lappi| (2020) result from rounding the § = 15.15 to the accuracy of two decimals only. Function
1me used the value (0.5076805/0.1304432)% = 15.1474.






6
More About Linear Mixed-FEffects Models

Example 6.2. Using the dataset shown in Table (same as Table 6.1 on p. 184 of ML2020)
and assuming random intercept and slope at both levels of grouping, the model for group 1 can
be written as

y1= X108+ Z1b1 + &

by defining
al
1 13 1 13 0 0 0@
1 26 1 26 0 0 &
Zi=|1 18 1 18 0 0 |,bi=]| Y |,
1 2 0 0 1 22 C<111>
1 12 0 0 1 12 Cig
e
12
1 13
1 26
X,=|1 18 ,B:{Bl}.
1 22 P2
1 12

The model for the entire data can be written as
y=XpB+Zb+e€

by using the group-specific model matrices, from Example 6.1 (p. 184 of ML2020) in

Z, 0 0 b X,
Z=|0 Z, 0 |,b=|b |, X=| X,
0 0 2 bs X

Example 6.6. Mehtétalo et al.| (2014b)) used linear mixed-effects models with crossed tree and
year level random effects to estimate the pure effects of silvicultural thinning on tree-specific
growth time series. The data are the same as in Examples 6.3 and 6.5 of ML2020, except that
it also includes observations of ring basal area before the thinning, which happened after the
growth period of year 1986. For the unthinned plot, the analysis uses for all years. For thinned
plots, only observations for the years before thinning are used. Such a data allows prediction

Group (i) Subgroup (j) =« y  Group (i) Subgroup (j) =« y

1 1 13 194 2 2 28 36.3
1 1 26 321 2 3 18 25.3
1 1 18 214 3 1 16 31.0
1 2 22 31.8 3 1 15 30.3
1 2 12 20.1 3 2 19 299
2 1 27 339 3 2 24 344
2 2 12 22,6 3 3 25 35.8

TABLE 6.1 A small grouped data set with two nested levels of grouping.

17
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of tree effects for all trees of the data and year effects for all calendar years of the data. Those
are estimated using a mixed-effects model with crossed year and tree level random effects. The
model is used to predict the hypothetical RBA for the trees of thinned plots without thinning
also for years after thinning, from which the tree and year effects in undisturbed growth has
been eliminated. The effect of thinning on RBA is then estimated as the difference between the
observed RBA and the prediction. The model was fitted for logarithmic basal area growths, and
the age trend was modeled using a restricted (natural) cubic spline with three knots (Harrell
2001)), see Example 4.14 on p. 108 and Section 10.4.1 of ML2020.
Start by reading the data and computing the transformation for the spline.

> data(patti)

> # use only data of year 1982 ->

> patti<-pattil[patti$Year>1982,]

> # Use 3 knots to model the age trend using a regression spline.
> # Compute the required spline component.

> te<-quantile(patti$CA,probs=c(0.1,0.5,0.9))

> patti$el<-natspline(X=patti$CA,t=te,j=1)

Next, we formulate the model fitting dataset patti2, which includes only (1) observations
for thinned plots before thinning and (2) observations of control plots for all years and fit the
model with crossed tree and year effects.

> patti2<-pattilpatti$SDClass==1|patti$Year<1987,]
> extmod<-lmer(log(RBA) "CA+el+(1|Tree)+(1|Year),data=patti2)

The model is used to make the logarithmic predictions for dataset patti, which includes
also observations after the year of thinning for the thinned plots. Back-transforming the log-
arithmic growths to original scale introduces transformation bias, which is adjusted using the
two-point bias correction (see Section 10.2.3 of ML2020). The estimation errors of fixed effects,
the prediction errors of random effects and their covariance are ignored in the bias correction;
implementation of a correction including also these components is left as an exercise (See Section
5.4.2 of ML2020 for details about computing the required variances and covariances). The esti-
mated thinning effects, obtained by subtracting the predicted RBA’s from the observed RBA’s,
are shown in Figure (right). These effects will later be modeled using nonlinear mixed-effects
model in Chapter 7.

> patti$logpred<-predict(extmod,newdata=patti,
+ re.form="(1|Tree)+(1|Year))

> # Back-transformation with the two-point bias correction
> patti$trend<- (exp(patti$logpred+summary (extmod) $sigma)+
+ exp(patti$logpred-summary (extmod)$sigma))/2

> # Compute the thinning effects to the dataset.
> patti$ThEf<-patti$RBA-patti$trend
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FIGURE 6.1 The ring basal areas for all trees over all years since 1982 (left) and the
extracted thinning effects (right). The thin solid lines show the observations from thinned
plots before thinning and control plots for the entire period. The thin dashed lines show
observations of thinned plots after the thinning. The thick lines show the average trend,
based on a lowess smoother, separately for each thinning treatment. The grayscale indicates

the thinning treatment (black=heavy ... lightgray=control).
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Nonlinear (Mixed-FEffects) Models

Example 7.5. To demonstrate the Gauss-Newton algorithm (see p. 217 of ML2020), this ex-
ample fits the model of Example 7.4 (p. 219 of ML2020) manually without using the function
nls.

The partial derivatives of the response function with respect to ¢1 and ¢2 are

8f(1}7¢) _ :

e - f(T%, ¢)

af(Ti, b) _ 8T exp(4 — 8T exp (—p2) + 1 — ¢2)
O¢2 [1+ exp (4 — 8T exp (—¢2)))°

The Jacobian X23x2 at each iteration is obtained by evaluating these derivatives for the observed
values (n = 23) at the current estimate of ¢. The following script implements the modified Gauss-
Newton estimation of the parameters. The iteration is continued until the sum of squared change
in parameter estimates gets smaller than 1070,

data(thinning)

# Reparameterized logistic function

mylogis<-function(x,phil,phi2){
ephil<-exp(phil)
ephi2<-exp(phi2)
ephil/(1+exp(4-8*x/ephi2))
}

+ 4+ +V VYV

# The Jacobian
mylogisJ<-function(x,phil,phi2){
temp<-8*x*exp(-phi2)
di<-exp(phil)/(1+exp(4-temp))
d2<--8*x*exp (4-temp+phil-phi2)*(1+exp(4-temp))~{-2}
cbind(d1,d2)
}

+ 4+ 4+ ++ VYV

# Modified Gauss-Newton algorithm
y<-thinning$ThEf
x<-thinning$Year-1986
phi<-0
phinew<-c(log(320),1log(5))
i<-0
while (sum((phi-phinew)~2)>1le-10){
phi<-phinew
i<-i+1
u<-y-mylogis(x,phi[1],phi[2])
RSS<-RSSnew<-sum(u~2)
cat("Iteration: ",i,exp(phi),RSS,"\n")
X<-mylogisJ(x,phi[1],phi[2])
psi<-coef (lm(u~X-1))
lambda<-2
while (RSSnew>=RSS){
lambda<-lambda/2
phinew<-phi+lambda*psi
unew<-y-mylogis (x,phinew[1],phinew[2])
RSSnew<-sum(unew~2)

}

+ 4+ 4+ FEVVVVV VY

+ }

Iteration: 1 320 5 70072.44

Iteration: 2 331.1573 4.789681 67144.78
Iteration: 3 330.4498 4.703177 67062.88
Iteration: 4 330.2351 4.666695 67048.41
Iteration: 5 330.1442 4.651719 67045.97

21
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Iteration: 6 330.1068 4.645636 67045.57
Iteration: 7 330.0916 4.643176 67045.5
Iteration: 8 330.0855 4.642183 67045.49
Iteration: 9 330.083 4.641783 67045.49
Iteration: 10 330.082 4.641621 67045.49
Iteration: 11 330.0816 4.641556 67045.49

> sigma2<-RSSnew/(23-2)
> varbeta<-sigma2xsolve (t (X)%*%X)

> phinew # Parameter estimates
Xd1 Xd2
5.799339 1.535044
> sqrt(sigma2) # Residual standard error

[1] 56.50347

> sqrt(diag(varbeta)) # Standard errors of parameter estimates
d1 d2

0.04371602 0.13834707

Example 7.7. Consider the model
Yi; = 657 + €ijs (7.1)

where ¢;; = B+bi, bi ~ N(0,02), €i; ~ N(0,02), the random effects b; are mutually independent,
residual errors ¢;; are mutually independent, and random effects are independent of residual
errors. The use of this function might be justified for a process where y approaches asymptotically
zero; in that case we should have ¢;; > 0. To minimize the probability for a negative values of ¢;;,
B should be much larger than sd(b;;). Negative values could be completely prohibited through
model formulation, for example, by using a gamma distribution for the random effects (with the
minimum of —f), or reparameterizing the model as y;; = exp(6;;zi;) + €;; where 6;; = 8+ b;
and b; is normally distributed.

The R-script below generates a small balanced data of 25 observations (5 groups with 5
observations per group) from this model using parameter values § = 0.5, of =0.15%, 0% = 0.052
for values x; = (0,2,4,6,8)" of the predictor in all groups. The simulated true values of the
random effects are b = (0.0878,0.1064, —0.0164, —0.0680, 0.0909)". Figure shows the data.

set.seed(12345)

beta<-0.5

b<-rnorm(5,0,0.15)
phi<-betatrep(b,each=5)
x<-rep(seq(0,8,2),5)
group<-rep(1:5,each=5)
y<-phi~x+rnorm(25,0,0.05)
nlmeData<-data.frame(x,y,group)

VvV VVVVYVVYV

We can write the model in form
Yis = f(ivij, ¢z‘j) + €5
where
¢ij = AijB + Bijb;
by defining
Aijj=1,8=08, Bj;=1,b; =bs.

The model has only one primary parameter and only one fixed second-order parameter, therefore
all these matrices and vectors became scalars.
For group 1, the model can be written in the form of Equation (7.19) of ML2020 by defining

0.909 b11 €11
0.377 D12 €12

Yy = 0.106 i ¢1 = (}313 , €1 = €13 B
0.027 P14 €14

—0.032 P15 €15
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o1 0 1
b1z 2 1
fil,g)=| ¢is |.a1=| 4 [, Ai=Bi=] 1
i 6 1
15 8 1
For the entire data, the model can be written in form Equation (7.20) of ML2020 by defining
B=25 )
0909 ()2311 €11 ¢11
—0.032 ¢15 €15 ¢§5
0994 ¢)21 €21 (;5(2)1
V=1 0010 |27 b |67 e TP s |
1.090 @51 €51 %
0.007 5 s s
0 1 1 0 0 00
8 1 1 0 0 O
0 1 1 0 0 0 by
: : : bs
z=l g ["A=| 1 ['B=| 0100 0|00
ba
: bs
0 1 0 0 0 0 1
8 1 0 0 0 0 1

Now var(e) = 02I25 and var(b) = Is ® D., where D, = of.

Note that if model were used in analysis of real data, it would be justified to parameterize
it in terms of 6;; = In(¢:;) to ensure that ¢;; is always positive. One could then assume that
¢ij is a linear function of predictors and random effects. Of course, such model would not be the
correct model for the data of Figure

Example 7.9. Consider the simulated data from Example[7.7] shown in Figure[7.4] To compute
matrices X; and Z;, we need to differentiate the model function with respect to 8 and b. These

become B(6 + bo)™
+ 0; Tij T
55— —culB+b)TT
(B + b;)*i o
. Ab; S o (B4 by

In addition, we need starting values of the estimates for the first PNLS step. It is easy to notice
that f(1) = ¢' = ¢. Therefore, ¢ can be interpreted as the mean of y; at z;; = 1. Our data
does not include observed values of y;; for x;; = 1, but we approximate them by the means
of y;; for values 0 and 2 of x;; for each group. Thereafter we compute the mean and variance
of these and use them as the initial guesses of 8 and o7. To find the initial guess for o2, we
fit a nonlinear fixed-effects model for each group separately and use the mean of the estimated
residual variances of these models. For more general strategies for finding the initial guesses, see
Lindstrom and Bates| (1990). The script below implements the algorithm.

> # Starting values
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1.0

0.8

Yij
0.6

0.4
|

0.2

0 2 4 6 8
Xij
Lij Yij

1=1 =2 1=3 1=4 i=5
0 0909 0994 1.041 1.039 1.090
2 0377 0459 0.190 0.259 0.325
4 0106 0.154 0.038 0.003 0.153
6
8

0.027 0.076 0.069 -0.071 0.073
-0.032 -0.019 0.018 -0.079 0.007

FIGURE 7.4 A simulated small data set that follows model (7.1)) with 8 = 0.5, o7 = 0.152,
02 =0.052, and b’ = (0.0878,0.1064, —0.0164, —0.0680, 0.0909).

b0<-rep(0,5)

groupmeans<-with(nlmeData[nlmeData$x<=2,],tapply(y,group,mean))

betaO<-mean(groupmeans)

D<-var (groupmeans)

s2<-rep(NA,5)

for (i in 1:5) {
s2[i]l<-summary(nls(y~phi~x,start=1ist (phi=beta0),

data=nlmeData[nlmeData$group==i,]))$sigma~2

}

sigma2<-mean(s2)

L<-chol(D/sigma2)

DeltaO<-diag(rep(solve(L),5))

VVV+++VVYVYVYVYV

> # Matrices A and B and the pseudo-data for the PNLS-step.
> fun<-function(x,phi) phi~x

> A<-matrix(1,ncol=1,nrow=25)

> Bi<-matrix(1,ncol=1,nrow=5)

> library(magic)

> B<-adiag(Bi,Bi,Bi,Bi,Bi)

> y<-nlmeData$y

> x<-nlmeData$x

> group<-nlmeData$group

> ypseudo<-c(y,rep(0,5))

> betaold<-0 # initialize to control the stopping criteria
> i<-0

> while ((beta0-betaold)~2>le-16) {

+ i<-i+1
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fn<-function(x,beta,bl,b2,b3,bd,b5) {
b<-c(b1,b2,b3,b4,b5)
phi<-A%*%beta+B%*%b
c(fun(x,phi) ,Delta0%*%b)

pnlsmod<-nls(ypseudo~fn(x,beta,bl,b2,b3,bs,b5),
start=1ist(beta=betal,b1=b0[1],b2=b0[2],b3=b0[3],b4=b0[4],b5=b0[5]))

betaold<-betal

betalO<-coef (pnlsmod) [1]

b0<-coef (pnlsmod) [-1]

cat ("PNLS-step",i,": beta:",betal,"\n")
cat ("PNLS-step",i,": b:",b0,"\n")
phiO<-A%*%beta0+B)*%b0
X1<-matrix(x*phiO~(x-1),ncol=1)
z<-x*phi0~(x-1)
Z1<-matrix(0,ncol=5,nrow=25)

for (j in 1:5) Zilgroup==j,jl<-z[group==j]

wl<-y-fun(x,phi0) +X1%*%beta0+Z1%*%bO0
Imemod<-1me(w1~X1-1,random="z-1|group,method="ML")
L<-chol(getVarCov(lmemod)/Imemod$sigma™2)

Delta0<-diag(rep(solve(L),5))

betaO<-fixef (Imemod)

cat ("LME-step",i,": sigmab~2 and sigma~2",sqrt(getVarCov(lmemod)), lmemod$sigma,'\n")

e e

}

PNLS-step 1 : beta: 0.5611208
PNLS-step 1 : b: 0.02092517 0.06586918 -0.05736649 -0.05107781 0.02164995
LME-step 1 : sigmab~2 and sigma~2 0.06791626 0.05047221

< part of the output was removed >
PNLS-step 5 : beta: 0.5581621
PNLS-step 5 : b: 0.02764707 0.07910986 -0.07360078 -0.06215649 0.02900033
LME-step 5 : sigmab~2 and sigma”2 0.06711578 0.05063212

> round(summary (pnlsmod)$parameters[1,],5)
Estimate Std. Error t value Pr(>ltl)
0.55816 0.03511 15.89650 0.00000
> VarCorr (1memod)
group = pdLogChol(z - 1)
Variance StdDev
z 0.004504527 0.06711578
Residual 0.002563612 0.05063212
> coef (pnlsmod) [-1]
bl.bl b2.b2 b3.b3 b4.b4d b5.bb
0.02764707 0.07910986 -0.07360078 -0.06215649 0.02900033

The algorithm converged after 5 iterations, with following parameter estimates: E = 0.558,
62 = 0.0671%, and 6% = 0.05062. The predicted values of random effects were b =
(0.0276,0.0791, —0.0736, —0.0622, 0.0290).






9
Multivariate (Mixed-Effects) Models

Example 9.8. Consider the model system that was estimated in Example 9.6 on p. 303 of
ML2020. Assume that three trees have been measured for DBH, HDB, and HCB, with the
following measurements and values of the predictors.

> obs

plot tree DBH HDB HCB hmax h20 h30 h70 h80 a_hmean a_veg a_h30 a_h70
2 1 30 24.60 0.75 12.3 20.87 13.74 14.94 18.42 18.84 14.44 0.8952 14.51 17.53
5 1 43 28.25 0.40 13.0 20.00 13.33 14.77 17.77 18.47 14.75 0.8533 14.89 18.52
7 1 18 25.40 2.30 14.1 21.50 13.43 15.58 18.63 19.50 14.51 0.9268 14.25 17.84

The aim is to predict the random effects of all five models of the system by using these data.
We extract 3, D, and X from the fitted model (Equation (9.11), p 301 of ML2020). Thereafter
we construct the required matrices and vectors and predict the random effects. The constructed
matrices are printed to show their structure. The predicted values of random effects and their
prediction errors are then computed to objects b and varbb.

D<-getVarCov(syssur)
corepsilon<-corMatrix(syssur$modelStruct[2]$corStruct) [11[[1]]
sdepsilon<-syssur$sigma*c(1,exp(coef (syssur$modelStruct [3]$varStruct)))
Sigma<-diag(sdepsilon)%*%corepsilon¥*%diag(sdepsilon)

vV V V VvV

library(magic)

ntrees<-3
Z1234<-cbind(1,obs[, "hmax"])
Z5<-cbind(1,0bs[,"h20"])
Zo<-adiag(Z1234,71234,25)

vV V.V V VvV

C<-D[,-¢c(3,4,5,6)]

Do<-D[-¢(3,4,5,6),-c(3,4,5,6)]

Ro<-Sigmal-c(2,3),-¢(2,3)14x%diag(ntrees)

Xo<-adiag(cbind(1,obs$hmax,obs$a_hmean,sqrt (obs$h30)),
cbind (1, obs$hmax,obs$a_h70),
cbind(1,0bs$h20,0bs$a_hmean,log(obs$a_veg)))

+ + VV VYV

beta<-fixef (syssur)
betao<-beta[-seq(5,11)]
muo<-Xo%*%betao
yo<-c(obs$DBH, sqrt (obs$HDB) , obs$HCB)

VvV VvV V VvV

> round (D, 3)
Random effects variance covariance matrix

conD hmaxD conH hmaxH conV hmaxV conHDB hmaxHDB conHCB h20HCB
conD 20.978 -1.199 -1.794 0.098 -0.306 0.029 4.375 -0.222 -2.078 -0.086
hmaxD -1.199 0.079 0.096 -0.005 0.026 -0.001 -0.263 0.015 0.122 0.003

conH -1.794 0.096 0.520 -0.032 0.023 0.001 -0.413 0.014 0.098 -0.002
hmaxH 0.098 -0.005 -0.032 0.002 0.000 0.000 0.021 -0.001 -0.009 0.001
conV -0.306 0.026 0.023 0.000 0.161 -0.009 -0.177 0.011 -0.030 -0.002

hmaxV 0.029 -0.001 0.001 0.000 -0.009 0.001 0.012 -0.001 -0.001 0.000
conHDB  4.375 -0.263 -0.413 0.021 -0.177 0.012 1.057 -0.060 -0.424 -0.012
hmaxHDB -0.222 0.015 0.014 -0.001 0.011 -0.001 -0.060 0.004 0.029 0.000
conHCB -2.078 0.122 0.098 -0.009 -0.030 -0.001 -0.424 0.029 0.367 -0.001
h20HCB -0.086 0.003 -0.002 0.001 -0.002 0.000 -0.012 0.000 -0.001 0.003
Standard Deviations: 4.58 0.2811 0.7211 0.04472 0.4013 0.03162 1.028 0.06325 0.6058 0.05477
> Ro
[,1] [,2] [,3] [,4] [,5] [,6] [,71 [,8] [,9]

[1,] 7.75667 0.0000 0.0000 -0.1420 0.0000 0.0000 -0.8723 0.0000 0.0000
[2,] 0.0000 7.7567 0.0000 0.0000 -0.1420 0.0000 0.0000 -0.8723 0.0000
[3,1 0.0000 0.0000 7.7567 0.0000 0.0000 -0.1420 0.0000 0.0000 -0.8723
[4,]1 -0.1420 0.0000 0.0000 0.1196 0.0000 0.0000 0.0279 0.0000 0.0000
[6,] 0.0000 -0.1420 0.0000 0.0000 0.1196 0.0000 0.0000 0.0279 0.0000
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[6,] 0.0000
[7,] -0.8723

[8,1 0.0000 -

[9,1 0.0000
> round(C,3)

conD

conD 20.978

hmaxD -1.199

conH -1.794
hmaxH 0.098
conV -0.306

hmaxV 0.029
conliDB  4.375
hmaxHDB -0.222
conHCB -2.078
h20HCB -0.086
> Zo

0.0000
0.0000
0.8723
0.0000

hmaxD
-1.199
0.079
0.096

[,11 [,21 [,3]

[1,1 1 20.87 0
[2,] 1 20.00 0
[3.] 1 21.50 0
[4,]1 0 0.00 1
[5,1 0 0.00 1
[6,1 0 0.00 1
[7,1 0 0.00 0
[s,1] 0 0.00 0
[9,1 0 0.00 0
> Xo
[,11 [,21 I[,3]
[1,] 1 20.87 14.44
[2,] 1 20.00 14.75
[3,1 1 21.50 14.51
[4,1 0 0.00 0.00
[5,] 0 0.00 0.00
6,1 0 0.00 0.00
[7,1 0 0.00 0.00
[8,1 0 0.00 0.00
[9,1 0 0.00 0.00
>y0
[1] 24.6000 28.2500 25.

> t(muo)

[,11 [,21 I,3]
[1,] 27.25 25.24 28.47 1.385 1.453 1.43 12.21 11.97 12.09
> b<-Clh*%t (Zo) h*solve (Zo%*hDo%*%t (Zo) +Ro) %*% (yo-muo)
> varbb<-D-Cl*%t (Zo) %*Y%solve (Zo¥%*)t (Do) %*%t (Zo) +Ro) %*%Zo%*%t (C)

> t(b)

conD hmaxD co
[1,] -2.874 0.1077 0.245 -0.01338 -0.09844
> round(varbb,3)
variance covariance matrix

Random effects

conD
conD 9.898
hmaxD -0.515
conH -1.363
hmaxH 0.086
conV -0.364

hmaxV 0.032
conHDB 2.262
hmaxHDB -0.107
conHCB -0.975
h20HCB 0.011

hmaxD
-0.515
0.030
0.071
-0.004
0.020
-0.001
-0.119
0.006
0.048
-0.001

Standard Deviations:
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-0.1420 0.0000 0.00
0.0000 0.0279 0.00
0.0000 0.0000 0.02

-0.8723 0.0000 0.00

conHDB hmaxHDB conHCB
4.375 -0.222 -2.078

-0.263 0.015 0.122

-0.413 0.014 0.098
0.021 -0.001 -0.009

-0.177 0.011 -0.030
0.012 -0.001 -0.001
1.057 -0.060 -0.424

-0.060 0.004 0.029

-0.424 0.029 0.367

-0.012  0.000 -0.001
[,41 [,5] [,6]

0.00 0 0.00
0.00 0 0.00
0.00 0 0.00

20.87 0 0.00

20.00 0 0.00

21.50 0 0.00
0.00 1 13.74
0.00 1 13.33
0.00 1 13.43

[,41 [,51 [,61 I,
3.865 0 0.00 0.
3.843 0 0.00 O.
3.947 0 0.00 O.
0.000 1 20.87 17.
0.000 1 20.00 18.
0.000 1 21.50 17.
0.000 0 0.00 O.
0.000 0 0.00 O.
0.000 0 0.00 O.

[,41

[,5] [,6]

nH hmaxH

conH
-1.363
0.071
0.457
-0.029
0.036
-0.001
-0.368
0.017
0.102
-0.007
3.146

hm

-0.
-0.
0.

axH

.086
.004
.029
.002
.001
.000
.021

001
011
001

[+

c
-0.
0.
0.
-0.
0.
-0.
-0.
0.
-0.
0.

L,

onV

onV
364
020
036
001
145
009
160
008
041
001

00 0.1196 0.0000 0.0000
00 0.0000 1.1346 0.0000
79 0.0000 0.0000 1.1346
00 0.0279 0.0000 0.0000
h20HCB

-0.086

0.003

-0.002

0.001

-0.002

0.000

-0.012

0.000

-0.001

0.003
71 [,81 [,9] [,10] [,11]
00 0 0.00 0.00 0.00000
00 0 0.00 0.00 0.00000
00 0 0.00 0.00 0.00000
53 0 0.00 0.00 0.00000
52 0 0.00 0.00 0.00000
84 0 0.00 0.00 0.00000
00 1 13.74 14.44 -0.11073
00 1 13.33 14.75 -0.15863
00 1 13.43 14.51 -0.07604

71 [,8]

hmaxV

4000 0.8660 0.6325 1.5166 12.3000 1

[,91

conHDB

0.0279
0.0000
0.0000
1.1346

3.0000 14.1000

hmaxHDB conHCB h20HCB
0.002137 -0.3629 -0.0003529 0.1384 0.04219

hmaxV conHDB hmaxHDB

0.032 2.
-0.001 -0.
-0.001 -0.

0.000 O.
-0.009 -0.

0.001 0.

0.011 0.
-0.001 -0.

0.000 -0.

0.000 O.

262 -0.
119 0.
368 0.
021 -0.
160 0.
011 -0.
594 -0.
029 0.
165 0.
002 0.

107
006
017
001
008
001
029
001
008
000

0.1732 0.676 0.04472 0.3808 0.03162

conHCB
-0.975
0.048
0.102
-0.011
-0.041
0.000
-0.165
0.008
0.205
-0.009
0.7707

h20HCB
0.011
-0.001
-0.007
0.001
0.001
0.000
0.002
0.000
-0.009
0.002
0.03162 0.4528 0.04472

To illustrate the benefit from using the predicted random effects, Table[9.I|shows the observed
values of all five response variables for 5 new trees of the same target stand. Predictions were
made using fixed part only and using fixed and random parts, with the predicted random effects
from vector b. In most cases, the predictions using fixed and random effects are closer to the
observed values than the predictions based on fixed part only. The scripts for the prediction are
shown below. The predictions of V and HDB were not adjusted for the back-transformation
bias; an improved analysis should do this; see Section 10.2 and Example 5.19 (p. 163) of ML2020
and Example [6.6] on p. [I7] of this document.

> new
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Fixed effects only Fixed part + random effects
DBH H V HDB HCB DBH H V HDB HCB
31.2 244 1.0 4.8 134 30.8 244 0.9 3.3 14.2
273 228 0.6 45 125 26.7 228 0.6 3.1 132
25.3 21.7 0.5 41 123 245 21.7 0.5 2.9 13.0
30.7 249 1.0 4.7 147 303 248 1.0 3.2 15.6
30.3 23.8 0.8 4.7 124 29.8 238 0.8 3.3 13.1

Field measurements
DBH H V HDB HCB
26.9 24.1 0.63 0.4 15.9
283 224 065 1.7 13.2
21.2 21.2 0.34 0.8 12.4
29.8 24.2 0.77 4.0 14.0
324 239 090 04 13.1

TABLE 9.1 Predictions using the fixed part only, using the fixed part and the predicted
random effects, and field-measured values of the five trees on the five response variables from
the target stand. The random effects were predicted by using the observatoins of DBH,
HDB, and HCB for three sample trees in Example

plot tree DBH H V HDB HCB hmax h20 h30 h70 h80 a_hmean a_veg a_h30 a_h70
10 1 29 26.9 24.1 0.627 0.40 15.9 23.0 15.6 16.9 19.8 20.3 14.9 0.906 15.6 18.8
11 1 8 28.2 22.4 0.645 1.70 13.2 21.3 13.9 14.7 18.7 19.2 16.5 0.901 15.6 18.6
12 1 46 21.1 21.2 0.345 0.75 12.4 20.1 13.7 15.5 17.8 18.4 14.9 0.9056 15.1 18.1
13 1 14 29.8 24.2 0.769 4.00 14.0 23.0 17.5 18.3 21.1 21.5 16.5 0.935 15.8 18.7
14 1 45 32.4 23.9 0.899 0.40 13.1 22.7 13.8 14.9 18.5 19.3 16.1 0.906 15.7 18.9

> X<-adiag(cbind(1,new$hmax,new$a_hmean,sqrt(new$h30)),

+ cbind (1,new$hmax,new$h80),

+ cbind(1,new$hmax,log(new$a_h30) ,log(new$h70)),
+ cbind(1,new$hmax,new$a_h70),

+ cbind(1,new$h20,new$a_hmean, log(new$a_veg)))

> Z1234<-cbind(1,new[, "hmax"])
> Z5<-cbind(1,new[,"h20"])
> Z<-adiag(Z1234,71234,71234,721234,Z5)

> predf<-X¥%*)beta
> predfr<-predf+Z¥%*b

The script below predicts also the residual errors for all responses. For DBH, HDB, and
HCB, the predicted residuals are equal to the observed residuals e, = yo — (X080 + Zobo), as
shown below. For H and V they are also nonzero because the cross-model correlations of residual
€ITOrs are NONZero.

> B<-Sigmal,-c(2,3)]%x%diag(ntrees)

> Vi<-adiag(R,D)

> V12<-rbind (B, Cl*%t (Zo))

> V2<-Zo¥%*%Do%*%t (Zo)+Ro

> hlhat<-V12%x%solve (V2)%*% (yo-muo)

> # The predicted residuals for DBH, H, V, HDB, and HCB
matrix(hihat[1:15],nco0l=5)

(.11 [,2 [,31 [,4 [,5]
[1,] -1.95 -0.197 -0.204 -0.146 -0.639
[2,] 3.78 0.133 0.402 -0.448 0.331
[3,] -2.43 0.140 -0.257 0.461 1.304
> # For observed responses, the residuals above equal to y-(xbeta+zb)
> t(yo-muo-Zo%*%b[-c(3:6)])

(,11 ,21 [,31 .41 ([,8] [,61 [,71 [.,8] [,9]

[1,] -1.95 3.78 -2.43 -0.146 -0.448 0.461 -0.639 0.331 1.3

v
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Additional Topics on Regression

Example 10.1. Consider the OLS model of example[4.8] The sample mean and sample variance-

covariance matrix of vector ( z ) are computed below:

data(stumplift)
M2<-as.numeric(stumplift$Machine==2)
M3<-as.numeric(stumplift$Machine==3)
D<-stumplift$Diameter

X<-cbind (D,M2,M3,D~2,M2*D,M3*D,M2+xD~2,M34D"2)
y<-stumplift$Time

yX<-cbind(y,X)

vV V VYV VVYV

v

yXbar<-apply(yX,2,mean)
> SigmaHat<-var (yX)

The script below shows that these matrix include all information that is needed to construct the
model. BLUP leads to the same estimates of regression coefficients than OLS. The prediction
variances are related through

n

~2 n—p—1_,
oML =

OREML 5

~2
OBLP =
n n—1

where p is the number of predictors excluding the intercept.

n<-dim(stumplift) [1]
V12<-SigmaHat [1,-1]
V1<-SigmaHat[1,1]
V2<-SigmaHat[-1,-1]
mul<-yXbar[1]
mu2<-yXbar[-1]

vV V.V V VYV

v

# Intercept
> mul-V12%*%solve (V2)%*%mu2

[,1]
[1,] -26.82633
> # other regression coefficients
> V12%x%solve (V2)

D M2 M3

[1,] 2.653878 116.5469 77.40427 -0.01414773 -6.749991 -5.020219 0.1189522

[1,]1 0.09462626

> sqrt (V1-V12)*%solve (V2)%*%V12)
[,1]
[1,] 24.58621

> mod1ML<-gls(Time~Diameter+Machine*Diameter+Machine*I(Diameter~2),
+ data=stumplift,method="ML")

>

> sqrt(n/(n-1)*modl$sigma~2)

[11 24.58621

> coef (mod1ML)

(Intercept) Diameter Machine2
-26.82632510 2.65387823 116.54694066
Machine3 I(Diameter~2) Diameter:Machine2
77.40426665 -0.01414773 -6.74999139
Diameter:Machine3 Machine2:I(Diameter~2) Machine3:I(Diameter~2)
-5.02021866 0.11895223 0.09462626

31
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Modeling Tree Size

Example 11.4. Moment-based estimation of logit-logistic function parameters. We
may not have expressions for the population moments available, but one may use general numer-
ical integration. For example, finding computationally convenient expressions for the moments of
the logit-logistic distribution (Equation 11.1, p. 338 of ML2020) might be rather time-consuming.
However, that is not necessary, generally applicable numerical integration algorithms can be used
instead. The following script was developed to implement the method of moments for all param-
eters of the log-logistic distribution.

dmin<-min(d22)-1
range<-max (d22) -min(d22) +2
LLmom<-function(n,lxi,llambda,lsigma,mu) {
sigma<-exp(lsigma)/(1+exp(lsigma))
xi<-exp(1lxi)
lambda<-exp(1llambda)
f<-function(x) x"n*dll(x,mu,sigma,xi,lambda)
integrate(f,exp(1xi),exp(1lxi)+exp(llambda))$value

fnlist<-list(function(theta) {
print (theta) ;LLmom(1,thetal[1],thetal[2],thetal3],thetal4])-mean(d22)
3,
function(theta) LLmom(2,thetal[1],thetal[2],thetal[3],thetal[4])-mean(d22"2),
function(theta) LLmom(3,thetal[1],thetal[2],theta[3],thetal[4])-mean(d22~3),
function(theta) LLmom(4,thetal[1],thetal[2],thetal[3],thetal4])-mean(d22~4))

>
>
>
+
+
+
+
+
+
>
>
+
+
+
+
+
>
> NRnum(c(log(dmin) ,log(range),0,0),fnlist)
[1] 1.740466 3.529297 0.000000 0.000000
[11 -446.250623 5.964379  -3.062894 1.816521
Error in solve.default(grad, -value) :

Lapack routine dgesv: system is exactly singular: U[1,1] = 0

As seen in the output, we run to computational problems, where we are trying to invert a
singular matrix. We do not make further efforts to find moment estimates for all parameters.
Instead, we simplified the task by setting the minimum and maximum of the distribution to

min(d) — 1 and max(d) + 1, respectively. Using these restrictions, the moment estimates of the
remaining parameters are oaprom & 15;% ~ 0.574 and fipyom ~ 0.589. The pdf based on these

parameter estimates is shown in Figure using the gray solid line; see also Figure 11.2 on p.
339 of ML2020.

> fnlist<-list(function(theta) LLmom(1,log(dmin),log(range),thetal[1],theta[2])-mean(d22),

+ function(theta) LLmom(2,log(dmin),log(range),thetall],thetal2])-mean(d22°2))
>

> print (estMOMLL<-NRnum(c(0,0) ,fnlist))

$par

[1] 0.2980984 0.5891041

$value
[1] 6.274092e-12 2.429374e-09

The numerical approximation of the population moments using integrate worked nicely in
this example. However, one should bear in mind the possibility of large approximation errors
especially if the endpoints of integral are +oo.

Example 11.12. We define a dominant tree as a tree that is among the 100 largest trees per
ha. The dominant height is defined as the expected value of dominant tree heights. The diameter

33
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FIGURE 11.2 The histogram of tree diameters on plot 22 of dataset spati and the fitted
logit-logistic and Weibull functions from Examples 11.2 — 11.7.

distribution of the dominant trees is obtained by left-truncating the diameter distribution at the
quantile that corresponds the limit of dominant trees and rescaling so that the area under the
pdf is unity. The height distribution of the dominant trees can be computed correspondingly by
using the height limit of dominant trees.

Assuming that the stand density is N=500 stems/ha and the dominant trees are the 100
tallest trees per hectare, the height limit of dominant trees is the 80'" percentile of the height
distribution: Hyim = Fg'((N — 100)/N). Computing this would require evaluations of Fir(h) =
foh fu(h) and further computing its inverse. These all would be possible, e.g., by using function
integrate and lmfor: :updown, but a much easier way to find the limit is to determine the height
that corresponds to the 80" percentile of the diameter distribution as

Higm = h(Fp" (N = 100)/N)).
> N<-500
> domlim<-korfhd(qweibull((N-100)/N,alpha,beta))

> domlim
[1] 19.89572

The dominant height is the mean height of the dominant trees,
Hiom = E(H|H > Hlim)
N oo
= du ~ 20.45m .
100/, ufp(u)du ~ 20.45m

Another option would be to use equation (2.10) (p. 15 of ML2020). For this purpose, we need to
compute the diameter limit of dominant trees,
Diim = Fp' (N = 100)/N) ~ 16.90cm .
The expected value of h(d) over the diameter distribution of dominant trees yields
Haom = E(h(D)|D > Dyim)
= % Dim fo(u)h(u)du ~ 20.45m .

The numerical values from both approximations are the same up to the 5" decimal place.
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> N/100#integrate (function(y) y+*dhdist(y,alpha,beta,a,b),domlim,26.3)$value
[1] 20.44752

> Domlim<-qweibull((N-100)/N,alpha,beta)
> Domlim
[1] 16.89506

> integrate(function(x) korfhd(x)*dweibull(x,alpha,beta)*N/100,
+ qweibull ((N-100)/N,alpha,beta),Inf)
20.44752 with absolute error < 3e-07

Example 11.13. The distribution of volume Let us consider tree volume as a transforma-
tion, which is obtained from tree diameter using the volume function of |[Laasasenaho| (1982) for

Scots pine,
_ _—5.394+43.4811n(241.25d) —0.0399d
v=g(d)=e )

where, following the notations of Section 2.2.3 of ML2020, function g defines a transformation
of tree diameter. The distribution of volume becomes

Fy(v) = Fp(g '(v)).

Unfortunately, the inverse transformation ¢~'(v) cannot be computed in a closed form. However,
an easy way to compute the inverse transformation is to use the step halving algorithm of
Imfor: :updown. The step halving algorithm can be used to solve equations of form f(z) = 0
numerically. The user needs to give endpoints of an interval from which the root is searched
for so that the sign of a continuous f(z) changes between the endpoints. If the function is
continuous and there is only one root at the interval, the algorithm will find it. The Newton-
Raphson algorithm of 1mfor::NR or lmfor::NRnum would be a faster option, implementation
using that is left as an exercise. To compute the value of the inverse volume function for volume
v, we solve g(d) —v = 0 for d to get the diameter that corresponds to volume v. This diameter is
then substituted into the Weibull edf to get the edf of volume. Figure [[1.3] shows the graphs of
the inverse transformation and the distribution of volume. Making a graph of the density would
have required the use of numerical differentiation (one could use R-function numericDeriv for
this), but it is left as an exercise for those interested in doing it. The code below produces the
graph of cdf shown in Figure The applied volume function is available at 1mfor: :predvol.

# diameter for a given volume, scalar argument v
ginv.scal<-function(v) {
voldif<-function(d) predvol(species=1,d=d)-v
updown (0,80,voldif)
}

# as above, for vector argument v
ginv<-function(v) sapply(v,ginv.scal)

# cdf of volume

Fv<-function(x,alpha,beta) pweibull(ginv(x),alpha,beta)

v<-seq(1,400,1)

plot (v,Fv(v,alpha,beta) ,type="1",xlab="Volume, liters",ylab="Cumulative density")

VVVVVVYV++ + VYV

Example 11.17. Fitting basal area weighted Weibull function to an angle count sam-
ple. We now assume that the basal-area weighted diameter distribution is of the Weibull form,
and the data are collected using angle-count sampling. We fit the Weibull distribution to the
angle count sample of Example 11.15 on p. 354 of ML2020, ignoring the fact that the Weibull
form was assumed for the unweighted diameter distribution when the data were generated. The
log-likelihood is similar to that of Example 11.16 on on p. 354 of ML2020:

o, Blda, ... dn) =Y In(ff(d|a, B)), (11.1)

where the basal-area weighted density f7, is assumed to be of the Weibull form. The ML-fit gives
the estimates @ = 3.60 and 3 = 23.27. We cannot compare these to the true values; the true
values cannot be specified because a basal-area weighted Weibull distribution was not assumed
when the data were generated.
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FIGURE 11.3 Tree diameter as a function of volume (left) and the resulting cdf of volume
when diameter follows Weibull(4,15) distribution (right). See Example for details.

> 112<-function(shape,scale) {

+ -sum(log(dweibull(dsample,shape,scale)))

+ 3}

>
> print(est.ml2<-mle(112,start=1ist (shape=3,scale=20)))

Call:
mle(minuslogl = 112, start = list(shape = 3, scale = 20))

Coefficients:
shape scale
5.133115 24.426388
> vcov(est.ml2)
shape scale
shape 0.7116284 0.261183
scale 0.2611830 1.039362

Example 11.18. Another alternative for model fitting in the situation of Example is the
method of moments (see Section 11.2.2 of ML2020). The two first moments of the angle count
sample are computed and set equal to the theoretical moments of the sampling distribution:

/ ufd (ula, B)du — %Zdz =0
0 i=1

/ u? 9 (ula, B)du — %de =0.
0 i=1

The samplg\moments were 22.41 cm and 529.94 cm?. Solution using Imfor: : NRnum gave Qyon =
3.739 and ﬁ]u@]u = 21.36.

> ml<-mean(dsample)

> m2<-mean(dsample~2)
> ml

[1] 22.41906

> m2

[1] 529.9396

> # A function that numerically computes the moments of the sampling distribution
> wmom2<-function(n,alpha,beta) {

+ fi<-function(x) x"n*dsampling(x,alpha,beta)

+ integrate(f1,0,qweibull(1-1e-10,alpha,beta))$value

+ }
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> # Define the individual functions and put them into a list
> fni<-function(parms) wmom2(1,parms[1],parms([2])-ml

> fn2<-function(parms) wmom2(2,parms[1],parms[2])-m2

> fnlist<-1list(fnl,fn2)

> # Solve the parameters
> NRnum(c(3,20) ,fnlist)
$par

[11 3.73890 21.35684

$value
[1] 6.449273e-09 3.786901e-07

Example 11.21. Overlapping crowns in aerial forest inventory. In an aerial forest inven-
tory, tree size can be described by the crown projection at the ground. For simplicity, we call
this projection the crown, its area the crown area, and the radius of a disc with that area the
crown radius. Let us assume that the radii Z within a sample plot are independent identically
distributed random variables with the pdf fz(z). Furthermore, assume that tree crowns are discs
centered at the tree locations, and a tree remains undetected in the inventory if the tree location
falls within a crown of a larger tree. Otherwise, the tree is detected and the radius of the crown
is determined correctly. Assume a complete spatial randomness with density A trees per m? for
a forest stand (recall Example 8.6, p. 266 of ML2020). This model is a special case of so-called
Boolean model, which is discussed in more detail in the literature of stochastic geometry (Chiu
et al2013).

Under the above-specified assumptions, the probability of a tree being detected, the de-
tectability, depends on the crown radius according to (Mehtatalo|[2006)

w(z) = exp {—)nr /00 thZ(t|o¢,/j')dt} , (11.2)

z

see the left panel of Figure for illustration.
An interesting feature of the Boolean model is that the area fraction (the proportion of the
area covered by the crowns, i.e. the theoretical canopy closure) can be expressed as

p=1—exp{—Ar E(ZQ)}

Solving it for X gives
_In(1-p)
mE(Z?)

Using this in ((11.2) gives such expression for the detectability that does not include A:

A= (11.3)

1 (o042 o
w(z) = (1 — p) B IR,
Here p is the expected canopy closure, which can be replaced by its observed value in applications.
The sampling distribution in aerial inventory is that of the detectable crown radii. In our model,

it is
w(zle, B) fz(2|ev, B)

f()(X> w(u|a, B)fZ (u‘a7 ﬂ)du .
Parameters «, 8 and A can be estimated by fitting the above distribution to the observed sample
of crown radii. An alternative estimator for X is based on Equation .

For illustration, consider a one-hectare forest stand that follows the above-specified model, us-
ing stand density of 1000 trees per hectare (0.01 trees per m?) and crown radii from Weibull(3,2)
distribution. A realization of such a forest stand is shown in Figure [TT.4]

fz (2], B) = (11.4)

> # Diameters follow Weibull(shape,scale) distribution
> simulate.trees<-function(n,plot=TRUE,shape=3,scale=2) {
+ n<-rpois(1,n*(110°2/100"2)) # A 5 meter buffer
+ # generate crown radii and tree locations
+ radius<-rweibull(n,shape,scale)

+ xk<-runif(n,-5,105)

+ yk<-runif(n,-5,105)

+ data.frame(x=xk,y=yk,r=radius,r2=radius~2)
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FIGURE 11.4 An illustration of the detectability condition in Example in a one-
hectare stand where stand density is 1000 trees per ha and crown radius follows the
Weibull(3,2) distribution. The crowns with red borders and gray shading are detectable,
whereas the crowns with black thin borders are not.

}

# this function determines whether a tree in data "trees" is visible
# and adds binary column ""
detectable<-function(n=500,trees=simulate.trees(n)) {

dtable<-rep(NA,dim(trees) [1]) # binary vector, is tree detectable

for (i in 1:dim(trees)[11) {

treesl<-trees[trees$r>trees$rlil,]

dtable[i]l<-sum(sqrt ((trees1$x-trees$x[i]) ~2+(treesiPy-trees$y[il) ~2)<treesi$r)==0
H

cbind(trees,detectable=dtable)

}

VV4+4+++4+++VVVYV L+

trees<-detectable (1000)

We compute the empirical canopy closure by placing a 400 by 400 point square grid over
the area and computing the proportion of nodes covered by tree crowns. For this particular
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FIGURE 11.5 The plot on the left shows the probability of a tree being observed, w(z)
in the population illustrated in Figure The histograms illustrate the distribution of
crown radii for all trees and for detectable trees; the solid lines show the corresponding true
pdf.

realization, we got p = 0.681, i.e. about 68% of the area is covered by tree crowns. The theoretical
canopy closure in this model is 0.678.

> # Compute empirical canopy cover by exploring which proportion
> # of the nodes of rectangular grod are covered by tree crown discs.
> canopyCover<-function(trees,xlim=c(0,100),ylim=c(0,100) ,dens=c(400,400) ,plot=TRUE) {
stepx<- (x1im[2]-x1im[1])/(dens[1]+1)
stepy<-(ylim[2]-ylim[1])/(dens[2]+1)
xpt<-seq(xlim[1]+stepx/2,x1im[2],stepx)
ypt<-seq(ylim[1]+stepy/2,ylim[2],stepy)
grid<-matrix(0,length(ypt),length(xpt))
# Count how many tree crowns cover each point
for (x in (1:length(zpt))) {
for (y in (1:length(ypt))) {
gridly,x]<-sum(sqrt ((trees$x-xpt[x]) ~2+(trees$y-ypt[yl) ~2)<=trees$r)

¥
grid[grid>=1]<-1
sum(grid) /length(grid)

print (p<-canopyCover (trees))
1] 0.6814137

VeV VYV +F o+ 4+

> # theoretical caopy cover
> Ez2<-2"2xgamma (1+2/3)

> 1-exp(-0.1*pi*Ez2)

[1] 0.6783924

The left panel of Figure illustrates the detectability as a function of crown radius for the
assumed true model, and the right-hand graph illustrates the distribution of crown radii both
for all trees and for the detectable ones. The distributions are clearly different, for example the
expected value is clearly higher for the detectable trees than for all trees. In the simulated stand,
the mean squared radius is 3.61 m? for all trees and 4.42 m? for detectable trees.

> # remove the buffer zone trees

> trees<-trees[trees$x>0&trees$x<100&trees$y>0ktrees$y<100,]
> print(meanr2<-mean(trees$r~2))

[1] 3.607218

> print (meanr20bs<-mean(trees$r[trees$detectable]~2))

[1]1 4.420905

We could estimate the stand density by using Equation (11.3), but it requires knowledge
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about the expected squared crown radius in the population of all trees. If the mean squared
crown radius of the generated stand is used, we get the estimate 1009 trees per ha, which is very
close to the true density of 1000 trees per ha. If the mean squared radius of detectable trees
is used, we get much larger underestimation, 823 trees per ha. The additional underestimation
results from the difference in the means of all trees and detectable trees.

> lambdaest<--log(l-p)/(pi*meanr2) # density, trees per m~2

> lambdaestWrong<--log(l-p)/(pi*meanr20bs) # density, trees per m~2
> 10000#c (lambdaest ,lambdaestWrong)

[1] 1009.3720 823.5927

In practice, the expected crown radius could be estimated by fitting the weighted density
(Equation ) to the observed crown data and using the resulting parameter estimates to find
the unweighted expected value Z. The functions below implement the weighted pdf (Equation
(T1.4)) in this situation; they were used to produce the gray lines in Figure

# detectability as a function of crown radius
w<-function(r,shape,scale,p=0) {
Ex2<-scale~2*gamma(1+2/shape)
lambda<--log(1-p)/(pi*Ex2)
fun<-function(r0) exp(-lambda*pi*integrate(function(x) x~2*dweibull(x,shape=shape,
scale=scale) ,r0,Inf,rel.tol=10e-8)$value)
sapply (r,fun)
}

# Censored pdf
# parameters are weibull shape, scale and logit of the canopy cover
cenpdf<-function(r,shape,scale,p) {
denom<-integrate (function(x) dweibull(x,shape,scale)*w(x,shape,scale,p),0,Inf,
rel.tol=10e-8)$value
dweibull(r,shape,scale)*w(r,shape,scale,p)/denom

>
>
+
+
+
+
+
+
>
>
>
>
+
+
+
+ }

ML fitting of the weighted distribution was also implemented by (1) estimating only the
Weibull parameters and conditioning on the observed canopy closure p and (2) by estimating
also the p using ML. Essential difference between these two methods is that the former uses
information about canopy closure and the size distribution of the detectable trees in estima-
tion, whereas the latter does not utilize information about the canopy closure. The estimated
stand densities using these approaches were 1025 and 2248 trees per ha, respectively. The large
overestimation in the latter case is caused by severe overestimation of canopy closure parameter
(pmr = 0.870), of which the observed sample of detectable crown radii does not provide that
much information.

> r<-trees$r[trees$detectablel

> pobs<-p

> # Use the empirical canopy closure as p

> 111<-function(shape=3,scale=2) {

+ cat (shape,scale," ")

+ value<--sum(log(cenpdf (r,shape,scale,pobs)))

+ cat(value,"\n")

+ value

+ }

>

> estl<-try(mle(11l1,method="L-BFGS-B",lower=c(0.1,0.1)))

3 2 515.6248

< 0>

2.933559 1.9782561 515.3752

> 10000%* (-log(1-pobs)/(pi*coef (estl) [2] ~2*gamma(1+2/coef (est1) [11)))
scale

1025.618

# Estimate also p using ML
112<-function(shape=3,scale=2,p=0.5) {

cat (shape,scale,p," ")
value<--sum(log(cenpdf (r,shape,scale,p)))
cat(value,"\n")

value

}

VV 44+ ++4+VY

est2<-try(mle(112,method="L-BFGS-B",lower=c(0.1,0.1,0.1)))
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FIGURE 11.11 The unweighted, basal-area weighted, and volume-weighted densities of
the diameter distribution when the unweighted distribution is Weibull(4,15) (case A) and
when the basal-area-weighted distribution is Weibull(4,15) (case B). The gray shading
illustrates the diameter class (16, 20]

3 2 0.5 519.0886
< >

2.63801 1.779568 0.8704597 514.8365
> 10000%* (-log(1-coef (est2) [3]1)/(pi*coef (est2) [2]~2*gamma(1+2/coef (est2) [11)))

p
2247.573

This example was based on [Mehtéatalo| (2006). The approach has also been extended to the
situation where the assumption about complete spatial randomness is significantly relaxed and
no parametric distribution is assumed for crown radii, see Kansanen et al.| (2016) and function
Imfor: :HTest for details.

Example 11.25. Scaling basal-area-weighted diameter distribution by total volume.
Consider a forest stand where the basal-area-weighted diameter distribution is of the Weibull
form with parameters « = 4 and 8 = 15. The volume function and H-D curve are the same
as in Example 11.24 (on p. 362 of ML2020). The total volume per ha is available and used for
scaling the basal-area weighted diameter distribution so that any the class densities based on the
distribution give the total basal area per ha in the class, and the total volume of the growing
stock equals to the given volume per ha.

The ratio of the total volume and basal area in the assumed diameter distribution is 8.89
m (i.e., if the tree stems were cylinders of equal height, they would be 8.89 meters tall), giving
Ti2 = 1/8.89. The volume 200 m®/ha therefore corresponds to basal area 22.50 m?/ha. The
diameter-class specific number of stems, basal area, and volume were N6 20) = 216 trees/ha,
G (16,20 = 5.21 m*/ha, and V{6 20) = 50.56 m®/ha, which correspond to 9.6%, 23.2%, and 25.3%
of the total N, G, and V, respectively. The stand density corresponding to the known volume is
2256 trees/ha. The gray lines in Figure demonstrate the unweighted, basal-area weighted,
and volume-weighted densities; see also Figure 11.11 on p. 363 of ML2020.

> print (VperG<-integrate (function(d) 40000/pi*vol2(d)/d"2*dweibull(d,4,15),
> 0,Inf)$value/1000)
[1] 8.890101
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> taul2<-1/VperG

> print (G<-taul2*V)

[1] 22.49693

> print (Nclass<-Gxintegrate (function(d) 1/(pi*d~2/40000)*dweibull(d,4,15),16,20)$value)
[1] 215.8777

> print (Gclass<-G*(pweibull(20,4,15)-pweibull(16,4,15)))

[1] 5.21073

> print(Vclass<-G*integrate (function(d) vol2(d)/1000%1/(pi*d~2/40000)*dweibull(d,4,15),
> 16,20) $value)

[1] 50.55984

> print (N<-G*integrate (function(d) 1/(pi*d~2/40000)*dweibull(d,4,15),0,50)$value)

[1] 2256.451

> c(Nclass/N, Gclass/G, Vclass/V)

[1] 0.09567134 0.23161956 0.25279918

Example 11.30. Assume that FJ is a two-parameter Weibull distribution. Recover such values
for o and 3 that yield V=200 m®/ha, G=20 m?/ha and, k=16 m. The volume function and H-D
curve are as specified in Example 11.24 on p. 362 of ML2020.

The parameter estimates should simultaneously fulfil

40000 /Oo Fh(uler, Byu*v(u, h(u))du — V =0
™ 0

Js" fh (o pu*h(wdu
I £ (uler, Byu—2du =0.

Solving the system using the bivariate Newton’s method gave & = 2.95 and B = 29.8.

V<-200; G<-20; H<-16
a<-25; b<--5

# The height-weighted density, sums up to the total height/m~2
hHw<-function(x,alpha,beta,a,b) {
hNw(x,alpha,beta)*korfhd(x,a,b)

+ + V.V V VYV

}

# The corresponding distribution function with numerical integration.
HHw<-function(x,alpha,beta,a,b) {
integrate (f=function(u) hHw(u,alpha,beta,a,b),lower=0,upper=x)$value

+ + VvV VvV

fi<-function(theta) {
val<-G*HVw(1000,theta[1],thetal[2],a,b)/1000-V
cat (theta[1],theta[2],val,'"\n")
val
}
f2<-function(theta) {
val<-HHw(1000,theta[1] ,theta[2],a,b) /HNw(1000,theta[1],theta[2])-H
cat (theta[1],theta[2],val,'"\n")
val

}

+ 4+ 4+ F VAV

> fn<-list(f1,£2)
> NRnum(c(4,15) ,fn)
4 15 -22.19466
4 15 -0.4595083
< part of the output has been removed >
2.950265 29.80601 0
2.950265 29.80601 7.105427e-15
$par
[11 2.950265 29.806012

$value
[1] 0.000000e+00 7.105427e-15

Example 11.31. Simultaneous recovery of the H-D curve and diameter distribution
(Mehtitalo et al.|[2007). Assume that a forest inventory has been carried out by using ALS,

and estimates of the number of stems (), total volume (V'), basal-area median diameter (@),

and height of basal-area median tree (HGM ) are available for a sample plot. In addition, a ground
based survey has been conducted, including diameter and height measurements for all trees on
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the circular, 9-meter radius plot. The ALS- and ground- based estimates for the characteristics
are tabulated below.

Variable ALS  Ground
N, trees per ha 473.41 747
DGM, cm 28.69 25.60
HGM, m 20.60 19.80
V, m® per ha  248.60 288.02

Let us assume that diameter follows the Weibull distribution and the stand-specific H-D

curve is of form
h(d|A) = max(1.4,exp(A — By(d))),
where (d+7)° — (DGM +17)
+ c _ + c

d) =
y(d) Tre — 370 ;
and ¢ = 0.98+0.058 DG M. The shape parameter of the H-D curve was predicted on DGM using
B = 0.62 — 0.027DGM + 0.00094DGM? (Mehtitalo|[2005a). The same volume model was used
as in Example Example 11.24 on p. 362 of ML2020.

We implement a recovery algorithm based on the following system of equations

gV(a7ﬂ7A|]/\7)/_\‘7 = 0
gDG]u(Cl, ﬂ, A) — DGM = 0
gHGM(Oé,B7A)—HGM = 07

where the functions gv, gpaam, and gaeum give the standing volume, DGM, and HGM , respec-
tively, as a function of Weibull parameters o and  and the asymptote parameter A of the H-D
curve for known N. The functions are defined as follows:

gv(a, B, AN)
gDGM(/Otﬂ)
gHGM(av B7 A) - HGM

N [ fo(ula, B)v(u, h(d|A))du
F&%7H0.5]a, B)
h(gpam (o, B)|A),

where Ff)’_l is the quantile function corresponding to the basal-area weighted diameter distri-
bution and fp(u|a, 8) the assumed unweighted Weibull pdf. See equations 11.5 and 11.7 on p.
353 of ML2020 for the definition of f{(u).

A simple but computationally inefficient way for estimation is to minimize the sum of squared
differences

(ov (@8, 418) = )" + (9003 (e 5, 4) ~ DG )’
+ (gHGM(Oé,ﬁ,A) - H/GT4)2

with respect to «, (B, and A. The solution fulfils the recovery equations if the value of the
function is 0 at the solution. If the objective function is nonzero at the optimum, the solution
might be useful if the weights for the three components in a wise way; the above definition
uses unit weights for each so that one-unit squared difference in squared volume, diameter, and
height (in the applied units) are equally harmful. Function recov2 implements this procedure.
The function will find estimates even with quite poor starting values. Another alternative is the
Newton’s method implemented in lmfor: :NRnum, which is used in function recov below. This
is a quick algorithm, but requires good initial estimates. It converges to a solution only if all
equations are fulfilled. Function recov3 combines these two, doing the estimation using recov
by using initial estimates found using recov2.

Using starting values A = 3, a = 5, and 8 = 15, recov does not converge. However, function
recov?2 finds estimates, but the value of the objective function is not exactly zero in the solution.
Function recov converges if the estimates from recov2 are given as the initial estimates, which
confirms that a solution to the system exists but recov2 just did not find it. The final estimates
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are a = 4.872, B = 28.16, and A=3. 073, which differ shghtly from the initial estimates obtained
using recov2. The estimates based on ﬁeld data are a = 4.064, B = 24.603, and A =3.047.

Figure |1 shows the observed diameter distribution of the plot, as well as the tree heights.
In addition, the recovered diameter distribution and H-D curve are shown based on ALS-estimates
(solid) and field measurements (dashed). Because ALS overestimated DG M, the recovered dis-
tribution is located to the right from the true distribution. The H-D curves match well with each
other and the true data. The shape of the diameter distribution is quite ok, because the ratio of
N and V was quite well estimated, even though both these characteristics were underestimates.
The distribution based on ground-based values fits well to the observed data.

# Reparameterize tree diameter for the height model of Mehtatalo (2005)
dexf<-function(x,DGM) {

1da<-7

¢c<-0.98227850+0.05753439*DGM

((x+1da)~(-c) - (DGM+10+1da)~ (-c))/ ((10+1lda)~ (-c) - (30+1lda)~(-c))

H

+ 4+ + VvV

# Predict height for trees with given diameters x.
# Uses a given scale parameter A for the H-D curve.
# The shape parameter (B) is predicted using the model of Mehtatalo (2005)
korfhd2<-function(x,A,DGM) {
B<-0.6156-0.02707*DGM+0.000935*%DGM~2
pmax (1.4,exp(A-B*dexf (x,DGM)))
}

# Predict volume for a given diameter and scale parameter of the height curve
volf<-function(x,A,DGM) {

h<-korfhd2(x,A,DGM)

predvol(l,x,h,2)

}

# Basal-area weighted distribution when unweighted is weibull.
# Provides a scaled distribution that sums up to total basal area
hG<-function(x,shape,scale,N) {

N+*pi/40000*dweibull (x,shape,scale)*x~2

# CDF corresponding to hG.

# Scaled so that FG(Inf)=G

HG<-function(x,shape,scale,N) {
sapply (x,function(y) integrate(function(u) hG(u,shape,scale,N),0,y)$value)
}

# The median of hG,
# i.e solution to HG=0.5%G
DGMf<-function(shape,scale,N) {
G<-HG(qweibull(1l-1le-10,shape,scale) ,shape,scale,N)
updown(1=qweibull (0.01, shape,scale),
u=qweibull(0.99,shape,scale),
fn=function(u) HG(u,shape,scale,N)-0.5%G,
crit=10)
}

# The height of a DGlM-tree, meters

HGMf<-function(shape,scale,A,N,DGM) {
korfhd2 (DGMf (shape,scale,N) ,A,DGM)
}

# The distribution weighted by volume

hV<-function(x,shape,scale,A,DGM,N) {
N/1000*dweibull(x, shape,scale)*volf (x,A,DGM)
}

# The cdf corresponding to hV

HV<-function(x,shape,scale,A,DGM,N) {
sapply (x,function(y) integrate(function(u) hV(u,shape,scale,A,DGM,N),0,y)$value)
}

recov<-function(N,DGM,HGM,V,start=c(5,15,3)) {
theta<-log(start)
fi<-function(theta) HV(qweibull(l-le-10,exp(thetal[1]),exp(thetal2])),
exp(thetal1]),exp(thetal[2]),exp(thetal[3]),DGM,N)-V
f2<-function(theta) DGMf (exp(theta[1]),exp(thetal[2]),N)-DGM

+ +++VV+H+FYVYVV++T+H+HVVV+EI+FVVVYVYE+FHF++H+HFHFVVVVEHSVYVVVVYHE+HVVVY 4+ S+ VYV +H 4+ 4+ VYV VY
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f3<-function(theta) HGMf (exp(theta[1]),exp(theta[2]),exp(theta[3]),N,DGM)-HGM
fn<-list (£1,£2,£3)
exp (NRnum (theta,fn) $par)

recov2<-function(N,DGM,HGM,V,start=c(5,15,3)) {
theta<-log(start)
fi<-function(theta) HV(qweibull(l-le-10,exp(thetalll),exp(thetal2])),
exp(thetal1]) ,exp(thetal2]),exp(thetal3]) ,DGM,N)-V
f2<-function(theta) DGMf (exp(theta[1]),exp(theta[2]),N)-DGM
f£3<-function(theta) HGMf (exp(theta[1]),exp(theta[2]),exp(theta[3]),N,DGM)-HGM
fn2<-function(theta) {
f1(theta) ~2+f2(theta)~2+f3(theta)"2
}
est<-optim(log(start),fn2)
structure (exp(est$par) ,value=est$value)

}

+
+

+

+

>

>

+

+

+

+

+

+

+

+

+

+

+

>

> recov3<-function(N,DGM,HGM,V,start=c(5,DGM,3)) {
+ start2<-try(recov2(N,DGM,HGM,V,start=start))
+ if (class(start2)=="try-error") start2=start
+ result<-try(recov(N,DGM,HGM,V,start=start2))
+ if (class(result)=="try-error") result<-rep(lNA,3)
+ result

+

>

>

>

>

>

+

>

+

>

>

>

>

>

>

>

>

}

N<-473.41; DGM<-28.69; HGM<-20.60; V<-248.60
plotArea<-pi*0.09~2

d<-c(6.4,16.2,19.2,19.7,20.0,20.1,20.2,20.3,20.8,20.8,
21.5,21.6,23.0,25.6,25.9,29.6,30.6,31.1,35.6)

h<-c(6.1,17.0,19.1,15.9,18.8,18.9,17.8,17.9,18.0,17.7,
18.3,17.8,18.4,19.8,20.8,20.3,20.0,19.7,20.2)

Nt<-length(d)/plotArea

cs<-cumsum(d~2)

DGMt<-min(d[cs>max(cs)/2])
HGMt<-h[d==min(d[cs>max(cs)/2]1) 1
Vt<-sum(predvol(1l,d,h,model=2))/plotArea/1000

recov(N,DGM,HGM, V)
Error in solve.default(grad, -value)
Lapack routine dgesv: system is exactly singular: U[1,1] = 0
> recov2(N,DGM,HGM,V)
[1] 4.863375 28.154893 3.073311
attr(,"value")
[1] 0.0001629323
> recov3(N,DGM,HGM,V)
[1] 4.871530 28.161714 3.072694
attr(,"value")
[1] 4.017425e-07
> recov3(Nt,DGMt ,HGMt,Vt)
[1] 4.064351 24.603225 3.046871
attr(,"value")
[1] 5.320013e-07

Example 11.33. The calibration procedure of[Mehtatalo| (2005b)) is illustrated by the percentile-
based models published by Kangas and Maltamo| (2000) for Norway spruce stands. The model
is a seemingly unrelated system of linear models for 11 logarithmic percentiles of the basal-area
weighted diameter distribution. Because the distribution is basal-area weighted, the observed
quantiles also need to have the same weighting, i.e. they should be based on angle count sample
plots, not on fixed area plots. The known basal-area weighted median diameter is used directly
as the 50*® percentile. The model is described by percentiles that correspond to the following
values of the basal-area weighted cdf:

> F<-¢(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,1)

For each percentile, the fixed part of the model is of form

E(lnffj)) =p1+ BIn(T;/G;) + BsIn G + Baln DGM,; + B5InT;
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FIGURE 11.13 The histogram of field-measured diameters and observed heights, and the
recovered Weibull pdf and H-D curve using ALS based predictions (solid) and field estimates
(dashed) of N, V, DGM, and HGM in Web example [11.31

where Gy, T; and DGM; are the basal area (m?/ha), age (years) and basal-area median diameter
(cm) of the target stand. The parameter estimates and the variance-covariance matrix of residual
errors are in the objects beta and D.

> round(t(beta),3)
[,11 [,2] [,3] [,4] r,51 C[,61 [,71 [,8] [,9]1 [,10]1 [,111 [,12]
[1,] -0.356 -0.212 -0.167 -0.320 -0.132 0 0.177 0.324 0.477 0.777 0.900 1.382
[2,] -0.118 -0.074 -0.079 -0.038 -0.031 0 0.000 0.000 0.000 0.000 0.000 0.000
[3,] -0.126 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000
[4,] 0.835 0.883 0.968 1.053 1.027 1 0.969 0.896 0.838 0.750 0.702 0.624
[6,] 0.000 0.000 0.000 0.000 0.000 0 0.000 0.035 0.060 0.079 0.101 0.083
> round(D, 3)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,91 [,10]1 [,111 [,12]

[1,] 0.162 0.050 0.022 0.011 0.007 0 0.000 -0.003 -0.005 -0.007 -0.007 -0.010
[2,] 0.050 0.075 0.035 0.016 0.009 0 -0.003 -0.005 -0.007 -0.008 -0.008 -0.009
[3,] 0.022 0.035 0.029 0.015 0.009 0 -0.003 -0.004 -0.006 -0.007 -0.007 -0.008
[4,] 0.011 0.016 0.015 0.014 0.009 0 -0.002 -0.002 -0.004 -0.004 -0.005 -0.005
[6,1 0.007 0.009 0.009 0.009 0.010 0 -0.001 -0.001 -0.002 -0.003 -0.004 -0.004
[6,1] 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000
[7,1 0.000 -0.003 -0.003 -0.002 -0.001 0 0.003 0.003 0.003 0.003 0.003 0.003
[8,] -0.003 -0.005 -0.004 -0.002 -0.001 0 0.003 0.006 0.006 0.006 0.006 0.006
[9,] -0.005 -0.007 -0.006 -0.004 -0.002 0O 0.003 0.006 0.009 0.008 0.008 0.009
[10,]1 -0.007 -0.008 -0.007 -0.004 -0.003 0O 0.003 0.006 0.008 0.011 0.011 0.011
[11,1 -0.007 -0.008 -0.007 -0.005 -0.004 0 0.003 0.006 0.008 0.011 0.014 0.014
[12,1 -0.010 -0.009 -0.008 -0.005 -0.004 0 0.003 0.006 0.009 0.011 0.014 0.025

Consider a forest stand with the following values of the predictors: DGM = 20, 60 and
G = 20. The resulting predicted logarithmic percentiles are computed below to vector xi. The
resulting percentile-based distribution of logarithmic diameters is illustrated in the top-left corner

of Figure

> DGM<-20;T<-60;G<-20
> x<-cbind(1,log(T/G),log(G),log(DGM) ,1log(T))
> t(round(xi<-t(pred<-x¥*%beta),3))
[,11 [,21 [,31 [,41 [,51 [,61 [,71 [,81 [,9]1 [,10]1 [,11] [,12]
[1,] 1.638 2.352 2.646 2.792 2.91 2.996 3.079 3.151 3.234 3.349 3.417 3.593
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Assume then that a total of five trees were measured for diameter on two angle-count sample
plots with n; = 7 and nes = 9 trees. On the first plot, the observed diameters were 10 cm for
the smallest tree, 11 cm for the third smallest tree and, 27 cm for the second largest tree. On
the second plot, the smallest and second smallest tree had the diameters 8 and 12 cm. Recalling
that the models treat diameters in logarithmic scale, we had therefore the following observations
Y1.7 = In(10), Y3.7 = In(11), and Ys.7 = In(27). On the second plot, Yi.9 = In(8) and Ya2.9 = In(12)
were observed. The expected values of these quantiles are the expected values of the distribution
presented in Equation 11.24 on p. 374 of ML2020. We get become

w=(2.27,2.83,3.21,2.19,2.53)’

implying
p* = (0.089,0.338,0.769,0.077,0.161)" .

The sampling error associated with each quantile is the variance of the above-mentioned pdf
11.24, and the covariance between two observations from the same plot can be found based
on the joint density 11.25 on p. 374 of ML2020. These computations have been implemented
in function lmfor::qtree.varcov, which further calls functions lmfor::qtree.moments and
Imfor::qtree.exy. The marginal distributions of Yi.7 and Y3.7 and their joint distribution are il-
lustrated in the top-right and middle panel of Figure[I1.14} the joint density was computed using
Imfor::qtree. jointdens. Because we had trees from two plots, the variance-covariance matrix of
sampling errors, var(e) (element R below), includes two blocks. The variances on the diagonal are
the smaller the larger the number of trees on the plot is, e.g. var(Y1.7) = 0.14 > var(Yi1.9) = 0.13.
Within an individual sample plot, successive quantiles are more strongly correlated than the
quantiles that are far from each other. For example, cor(Yi.g, Y2.9) = 0.61 on plot 2, whereas
cor(Y1.7, Ys:7) = 0.20 on plot 1.

> obs<-data.frame(r=c(1,3,6,1,2),n=c(7,7,7,9,9),plot=c(1,1,1,2,2),d=c(10,11,27,8,12))
> print(qtrees<-qtree.varcov(obs,xi,F))

$obs

r n plot d Ed pEd
117 1 10 2.271087 0.08860375
237 1 11 2.836980 0.33807139
367 1 27 3.208331 0.76861726
419 2 8 2.189040 0.07711348
529 2 12 2.532421 0.16127920
$R

[,11 [,21 [,31 [,4] [,5]

[1,] 0.14301084 0.04049206 0.01012148 0.00000000 0.00000000
[2,] 0.04049206 0.04528762 0.01263340 0.00000000 0.00000000
[3,] 0.01012148 0.01263340 0.01845891 0.00000000 0.00000000
[4,1 0.00000000 0.00000000 0.00000000 0.12807488 0.06553978
[5,1 0.00000000 0.00000000 0.00000000 0.06553978 0.08950899

> cov2cor(qtrees$R)

[,1] [,2] [,3] [,4] [,5]
[1,]1 1.0000000 0.5031478 0.1969957 0.0000000 0.0000000
[2,] 0.5031478 1.0000000 0.4369459 0.0000000 0.0000000
[3,] 0.1969957 0.4369459 1.0000000 0.0000000 0.0000000
[4,]1 0.0000000 0.0000000 0.0000000 1.0000000 0.6121243
[5,1 0.0000000 0.0000000 0.0000000 0.6121243 1.0000000

OO OO

The calibration procedure has been implemented below. Matrix D* is a 5 by 5 square
variance-covariance matrix of stand effects at the values p* of the observed percentiles. Ma-
trix C = cov(e,e*’) is a 5 by 12 matrix. These matrices are obtained from D through linear
interpolation using lmfor::interpolate.D.

obs<-qtrees$obs
mustar<-obs$Ed
ystar<-log(obs$d)
R<-qtrees$R
Dtayd<-interpolate.D(D,obs$pEd)
round (Dstar<-Dtayd$D1,4)
[,1] [,2] [,3]1 [,4] [,5]
[1,] 0.0845 0.0126 -0.0064 0.0817 0.0483

vV V V V VYV
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[2,] 0.0126 0.0125 -0.0028 0.0122 0.0129
[3,] -0.0064 -0.0028 0.0078 -0.0061 -0.0058
[4,] 0.0817 0.0122 -0.0061 0.0945 0.0464
[6,] 0.0483 0.0129 -0.0058 0.0464 0.0468
> round (C<-Dtayd$D2,4)

[,1] [,2] [,3] [,4] [,5]

[1,] 0.0628 0.0093 -0.0046 0.0756 0.0331
[2,] 0.0718 0.0130 -0.0066 0.0690 0.0503
[3,1] 0.0335 0.0128 -0.0053 0.0320 0.0315
[4,] 0.0151 0.0123 -0.0032 0.0145 0.0152
[6,] 0.0086 0.0095 -0.0021 0.0083 0.0091
[6,1 0.0000 0.0000 0.0000 0.0000 0.0000

[7,1 -0.0024 -0.0013
[8,1 -0.0048 -0.0020
[9,] -0.0071 -0.0032
[10,] -0.0080 -0.0040
[11,]1 -0.0080 -0.0043
[12,1 -0.0091 -0.0047

.0030 -0.0020 -0.0027
.0059 -0.0046 -0.0044
.0078 -0.0069 -0.0065
.0075 -0.0078 -0.0072
.0076 -0.0078 -0.0075
.0079 -0.0092 -0.0082

OO OO OO

The predicted plot effects are computed below to vector ehat, and calibrated percentiles
to xil. The variance-covariance matrix of calibrated 0", 30", 70" and 100*" percentiles are
shown below together with corresponding elements from matrix D. The differences between
these variances quantify the gain obtained from the sample information of the quantile trees.
The original and calibrated cdf and pdf’s are shown in the bottom panel of Figure linear
interpolation is used in the illustrations also in the back-transformed scale even though the
calibration procedure is based on a percentile-based distribution with linear interpolation in
the logarithmic scale. The calibrated distribution has clearly a bimodal shape, even though the
original PPM models led to (practically) unimodal shape.

> ehat<-Cx*%solve (Dstar+R)%*%(ystar-mustar)
> t(round(xil<-xit+ehat,3))
r,11 fr,21 [,31 [,41 [, ([,61 [,71 [,8] [,9] [,10] [,11] [,12]
[1,] 1.622 2.331 2.552 2.67 2.809 2.996 3.108 3.204 3.307 3.428 3.5 3.68
> D[c(1,4,8,12),c(1,4,8,12)]
[,11 [,2] [,3] [,4]
[1,] 0.161652909 0.010707222 -0.002739361 -0.009819052
[2,] 0.010707222 0.014182608 -0.002448765 -0.005410252
[3,] -0.002739361 -0.002448765 0.005924280 0.006247869
[4,] -0.009819052 -0.005410252 0.006247869 0.024965960
> (varxil<-D-CY%x%solve (Dstar+R)%*%t (C)) [c(1,4,8,12),c(1,4,8,12)]
[,1] [,2] [,3] [,4]
[1,] 1.285930e-01 0.0046329856 -5.332619e-05 -0.005027418
[2,] 4.632986e-03 0.0095018613 -5.153176e-04 -0.002148230
[3,] -5.332619e-05 -0.0005153176 4.248145e¢-03 0.003808720
[4,] -5.027418e-03 -0.0021482303 3.808720e-03 0.021328241

In practice, it would be justified to iterate the procedure because the improved stand-level
diameter distribution will lead to different values of p* and p*; this is left as an exercise. [Mehté-
talo and Kangas| (2005)) developed the algorithm further to take into account the measurement
errors of stand characteristics. Mehtétalo et al.|(2006)) analyzed the optimal choice of percentiles
for measurements.
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FIGURE 11.14 The percentile-based diameter distribution of logarithmic diameters, the
corresponding marginal pdf’s of the minimum y;.7 and third smallest trees ys.7 in a sample
of size 7, and the joint pdf of y1.7 and ys.7. The bottom graphs illustrate the percentile-
based diameter distribution using back-transformed diameters based on the PPM model
(solid) and the distribution calibrated by using the five quantile trees from two sample
plots (dashed). The observed quantile trees are illustrated by the dots in the bottom left
graph, with plot-specific symbols.
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