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Introduction

Canopy surface
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Under certain simplifying assumptions (e.g., a solid top surface of a tree), we can think
that

Individual trees generate the canopy surface (CS) of the stand

ALS returns are (essentially) observations on that surface
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Introduction

Canopy surface

The probability to have CS below a given height
= The probability that a random point does not hit the union of tree crowns

≈ The c.d.f. of the random heights of pre-processed ALS returns, denoted by Z
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A model for canopy height

Canopy height within a stand

We think of a forest stand as a realization of a random process.

The canopy height at a given point is jointly specified by the following components
1 The model that generates tree locations
2 The model that generates tree size
3 The model that generates the crown for a tree with given size
4 The assumptions on how trees interact
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A model for canopy height

Canopy height within a stand

We think of a forest stand as a realization of a random process.

The canopy height at a given point is jointly specified by the following components
1 The model that generates tree locations - random
2 The model that generates tree size - random
3 The model that generates the crown for a tree with given size - fixed
4 The assumptions on how trees interact - no interaction
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A model for canopy height Model for tree locations

Possible models for tree locations
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Random tree locations
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(mixed stand)

Parameter to be estimated: stand density λ

Other possibilities: Gibbs process.
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A model for canopy height Model for tree size

Possible models for tree size
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FMWeibul(α1,β1,α2,β2,ρ)

Parameters to be estimated: α and β or α1,β1,α2,β2,ρ

Other possibilities: Normal (2 parameters), logit-logistic distribution (4 parms), Jonson’s
SB (4 parms).
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A model for canopy height Model for crown shape

Possible models for crown shape
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Parameters p,q,x0, and y0 are known species-specific constants.

Other possibilities: Rautianen ym. 2008.
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A model for canopy height The model for canopy surface

Canopy surface for square grid pattern
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A model for canopy height The model for canopy surface

The probability density function (p.d.f.)

The p.d.f. is the first derivative of the c.d.f.

≈ The histogram of ALS data
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For an assumed spatial pattern, the p.d.f is g(z |θ, ξ, λ), where

θ includes the parameters for individual crown shape, e.g.,
the relative crown width (w)
the relative crown length (l) and
the crown shape (s) for a given tree height.

ξ includes the parameters of the stand-specific distribution of tree heights, e.g.,
the shape (α) and
scale (β) parameters of an assumed Weibull height distribution.

λ is the stand density (trees per ha)
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For an assumed spatial pattern, the p.d.f is g(z |θ, ξ, λ), where

θ includes the parameters for individual crown shape, e.g.,
the relative crown width (w)
the relative crown length (l) and
the crown shape (s) for a given tree height.

ξ includes the parameters of the stand-specific distribution of tree heights, e.g.,
the shape (α) and
scale (β) parameters of an assumed Weibull height distribution.

λ is the stand density (trees per ha)
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A model for canopy height The model for canopy surface

Example: Single-species forest, square grid tree locations

Assume that λ trees per m2 are located at the
nodes of a square grid.

The c.d.f and density of Z become

Gf (z |λ,θ) =

{
4λ
∫
v∈S

∏N
i=i F

[
Y−1

z (‖ui − v‖)|θ
]
dv z ≥ 0

0 z < 0
,

gf (z |λ,θ) =



4λ
∫
v∈S

∑N
i=1

[
f
[
w(‖ui − v‖)|θ

]
d
dz
w(‖ui − v‖)∏N

j=1,j 6=i F
[
w(‖uj − v‖)|θ

]]
dv z > 0

Gf (z |λ,θ) z = 0
0 z < 0

.
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A model for canopy height The model for canopy surface

Single-species Poisson forest

Assume that we have λ trees per m2 randomly
located.

The c.d.f and density of Z become

Gr (z |λ,θ) =

{
e−λπE

[
Y (z,Hi )

2
]

z ≥ 0
0 z < 0
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gr (z |λ,θ) =

 −λπG(z |λ,θ)
∫ b−1(z)

z
d
dz

[Y (z , h)2]f (h)dh z > 0
Gr (z |λ,θ) z = 0
0 z < 0

,

where b(h) gives the height of maximum crown radius as a function of tree height.
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A model for canopy height The model for canopy surface

Example: Two-species Poisson forest

Assume a mixed stand with density λ and proportions
ρ and 1− ρ for species 1 and 2. The crown shape and
distribution of tree height for species 1 are Y1(z , h)
and f1(h|θ1) and correspondingly for species 2.
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The c.d.f. and density of Z become

Gm(z |λ, ρ,θ) =


exp

[
− λπ

[
ρ
∫∞

0
[Y1(z , h)2]f1(h|θ1)dh

+(1− ρ)
∫∞

0
[Y2(z , h)2]f2(h|θ2)dh

]]
z ≥ 0

FZ (z |λ,θ) = 0 z < 0

gm(z |λ, ρ,θ) =


−λπGm(z |λ, ρ,θ)

[
ρI1(z |θ1) + (1− ρ)I1(z |θ2)

]
z > 0

Gm(z |λ, ρ,θ) z = 0
0 z < 0

,

where

Ij(z |θj) =

∫ b−1
j (z)

z

d

dz
[Yj(z , h)2]fj(h|θj)dh .
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A model for canopy height Estimation

Estimation

The parameters are estimated by using the method of maximum likelihood. The log
likelihood under independnce of observations is

`(λ, ρ,θ) =
M∑
j=1

I (zj > 0) log g(zj |λ, ρ,θ) + M0 logG(0|λ, ρ,θ)

The values of λ, ρ, and θ that maximize the log likelihood are the ML-estimates for
stand density, species proportions, and parameters of the height distribution. Asymptotic
properties of ML-estimator can be used for to assess their accuracy and make inference.
Other mathematically less demanding possibilities

Method of pecentiles or moments

Spline approximation of the pdf (Virolainen 2010)
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Simulation results and example fits Simulation results

Evaluation with simulated data

Simulation results (Mehtätalo and Nyblom 2009, 2011) showed that the method finds
good estimates for stand density and tree height distribution with simulated datasets
where all the assumptions are met and crown shape functions are known.
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Simulation results and example fits The effect of spatial pattern

The effect of spatial pattern on the distribution
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The same values for stand density and Weibull
parameters were used using

Square grid pattern (black), and
Random spatial pattern (gray)

The graphs on the left show the c.d.f.’s of all
observations

The graphs on the right show the p.d.f.’s of
canopy hits

The values on the left show
shape (α) and
scale (β) parameters of the Weibull parameters,
as well as
the stand density (λ, 100 trees per ha).

The crown shape was ellipsoid with half axes
0.1H and 0.4H.
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Simulation results and example fits Examples with real data

Tests with real data

Laser data 40 pulses/m2 and aerial photographs from Tielaitos.

Ground data (20 plots of size 20*20m). Species and dbh known for each tree.

Single tree from 18 plots were used for modeling crown shape (the models I showed
earlier)

Thinned “laser” data (0.25 pulsesper m2) of the rest two plots were used for method
testing.

Crown shape function was extracted from detected Norway spruce trees and applied
for one pure Spruce stand to estimate stand density and tree height distribution.
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Simulation results and example fits Examples with real data

Models for crown shape

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

Average crown shape for Spruce (solid) and Pine (dashed)

Relative height

R
el

at
iv

e 
cr

ow
n 

ra
di

us
 (

C
ro

w
n 

ra
di

us
 / 

tr
ee

 h
ei

gh
t)

r
H

=


y0 + b h

H
≤ x0

y0 + b

√
1− ( h

H
−x0)2

a2 x0 <
h
H
≤ 1

0 h
H
> 1

where a =

√
b2(1−x0)2

b2−y2
0

Mehtätalo (UEF) Model-based approach March 22, 2011 19 / 30



Simulation results and example fits Examples with real data

Evaluation plots

8

Pure spruce stand
H̄=17.77 m
N=700 stems/ha

28

Mixed spruce-pine stand
¯Hspruce=9.87 m

¯Hpine=15.66 m
N=1350 stems/ha
ρ=0.70 (70% were spruces)
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Simulation results and example fits Examples with real data

An example with a Norway spruce plot

Assuming square grid spatial pattern
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Simulation results and example fits Examples with real data

A mixed stand by assuming random locations
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Application to area-based inventory Methods

Application to area-based inventory

1 Training stage using training sample plots

1 Estimate ξ = (α, β)′ by fitting Weibull distribution to the measured tree heights
2 Using the known ξ and stand density λ, fit the density function f (z|θ, ξ, λ) to the

z-values to estimate the parameter θ = (w , l , s)′ for each plot.
3 Model the plot-specific estimates of w , l , and s on mean of ALS observations z̄

2 Prediction stage using evaluation plots

1 Predict θ = (w , l , s)′ for the evaluation plots
2 Using the predicted θ and stand density λ, fit the density function f (z|θ, ξ, λ) to the

z-values to estimate the distribution of tree heights (i.e parameter ξ = (α, β)) for each
plot.

3 Compute interesting stand characteristics, such as mean or dominant height and
compare to the true known values.

In an alternative pairwise fitting approach, steps 1.3 and 2.1 were omitted. Instead,
the estimates θ = (w , l , s)′ of the corresponding pair of the training dataset were
used.

If maximum likelihood is used in fitting, then asymptotic standard errros of
estimates can be computed, too.
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Application to area-based inventory Material

Study material

18 pairs of sample plots from the Veracel data (18 training and 18 evaluation plots).

Distance between trees and stand density λ are known

Three heights known for every 7th tree, and imputed for others using a
stand-specific model

ALS data were pre-processed and thinned to include ≈ 122 uniformly placed
observations of canopy height (Z) for each plot (0.23 pulses/m2)
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Application to area-based inventory Results

Example fit

Training stage with teaching plot 11
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Application to area-based inventory Results

Results
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Discussion

Discussion

The developed model could provide a theoretical basis for the widely used area-based
approach. This study reported the first empirical test of the approach.

Results from the area-based application were not as good as we hoped. Possible
reasons are:

Penetration of laser pulse was not modelled
Possibly unrealistic crown shape function
No randomnes assumed to crown shape
The effect of non-circular cross-section of tree crowns
The scanning angle was not taken into account
. . .

Currently, heavy computations make estimation and model development slow.
Solution: spline (Virolainen and Tuomela) or percentile-based method (not yet
implemented).

The model could be generalized to many interesting situations, e.g., to mixed stands
or to bivariate observations of canopy height and return intensity.
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Discussion

Modelling the penetration

1 Ajatellaan, että jokaiseen havaintoon liittyy vakio penetraatio (esim 1 metri), jokaon
estimoitava parametri.

2 Ajatellaan, että uppoama on eksponentiaalisesti jakautunut satunnaismuuttuja (Beer
Lambertin laki). Silloin penetroituneiden laserkorkeuksien tiheysjakauma on

gp =

{ ∫∞
0

g(z |λ, ξ,θ)f (z − h|ρ)dh z > 0
G(z |λ, ρ,θ) +

∫∞
0

g(z |λ, ξ,θ)[1− F (z |ρ)]dz z = 0
jossa g ja G ovat aiemmin johdetut jakaumat ilman uppoamaa, f ja F ovat
eksponentiaalisen jakauman tiheys- ja kertymäfunktiot, ja parameri ρ kuvaa
latvuston reikäisyyttä (vrt Lauri K:n esitys).
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Discussion

Eksponentiaalisen penetraation vaikutus jakaumaan (1 m vs 3 m)
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Discussion
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