Collected Papers 2020 - A Special Issue on Fermat's Last Theorem

Mikko I. Malinen

 $29\mathrm{th}$ December, 2020

A Special Case of Fermat's Last Theorem

A Special Case of Fermat's Last Theorem is Proved.

1.1 Introduction

Fermat's Last Theorem states that no three positive integers a, b, and c satisfy the equation $a^n + b^n = c^n$ for any integer value of n greater than 2 [1]. We will prove a special case of this theorem: no two integers a and c other than zeros satisfy the equation $a^n + a^n = c^n$ for any integer value of n greater than 1.

1.2 A Proof

Let's assume that

Then

 $2a^n = c^n$

 $a^n + a^n = c^n.$

and from this we get

 $\sqrt[n]{2}^n a^n = c^n$

and from this

$$(\sqrt[n]{2} \cdot a)^n = c^n.$$

Taking nth root from both sides we get

 $\sqrt[n]{2}a = c$

or

 $\sqrt[n]{2}a = -c.$

Now the left sides of these equations are irrational and the right sides of the equations are integers so the only integers a and c that satisfy either of these are a = c = 0.

The proof is now complete.

A Theorem Related to Fermat's Last Theorem

We present a theorem related to Fermat's Last Theorem.

2.1 Introduction

Fermat's Last Theorem states that $a^n + b^n \neq c^n$, $a,b,c \in Z_+, n \in Z, n \geq 3$. We will prove that $a^n + b^n < c^n$, when $a,b \leq c$ and $\sqrt[n]{2} - \frac{1}{c-1} < 1$.

2.2 A Proof

It has to be that a, b < c. The left side of the inequation is biggest, when a, b = c - 1. Let us show when $a^n + b^n < c^n$: Let r + 1 = c. We show when $(r + 1)^n > 2r^n$. This is the same as $(r + 1)^n - 2r^n > 0$.

$$(r+1)^n - 2r^n > 0$$

$$\Leftrightarrow (r+1)^n - (\sqrt[n]{2}r)^n > 0$$

$$\Leftrightarrow r+1 - \sqrt[n]{2}r > 0$$

$$\Leftrightarrow r(1 - \sqrt[n]{2}) + 1 > 0$$

$$\Leftrightarrow r(1 - \sqrt[n]{2} + \frac{1}{r}) > 0$$

$$\Leftrightarrow 1 - \sqrt[n]{2} + \frac{1}{r} > 0$$

$$\Leftrightarrow (\sqrt[n]{2} - \frac{1}{r}) < 1.$$

This concludes our proof. This equation holds when n is large and r is small.

6CHAPTER 2. A THEOREM RELATED TO FERMAT'S LAST THEOREM

Infinity Is Not an Integer

3.1 Introduction

Fermat's Last Theorem states that $a^n + b^n \neq c^n$, $a, b, c \in Z_+, n \in Z, n \ge 3$. We will prove that infinity is not an integer using this theorem.

3.2 A Proof

Let us write the Fermat's Last Theorem in the form $c = \sqrt[n]{a^n + b^n}$. We can then write also $\lim_{n\to\infty} \sqrt[n]{a^n + b^n} = \max(a, b)$, that is, the infinity norm. Let us assume that infinity would be an integer. Then infinity were a number and we can write $\lim_{n\to\infty} \sqrt[n]{a^n + b^n} = \sqrt[\infty]{a^\infty + b^\infty} = \max(a, b)$. Since *a* and *b* are integers, *c* would be an integer. But this is a contradiction to Fermat's Last Theorem. So infinity is not an integer.

References

[1] Wiles, Andrew (1995). "Modular elliptic curves and Fermat's Last Theorem", Annals of Mathematics. 141 (3): 448.