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Chapter 1

Time dilation in special
relativity is not transitive -
revised

1.1 Introduction

I show that the time dilation in special relativity is not transitive.

1.2 Derivation

Let elapsed time in a point in space be t0. A spaceship is sent from that point
in space with velocity v̄ to a certain direction. Elapsed time at the initial point
is

t1√
1− v2

c2

. (1.1)

A second spaceship is sent - at he same time moment - from that point with
velocity 2v̄ to the same direction as the first spaceship. Elapsed time at the
initial point caused by the first spaceship and the second spaceship is

t2√
1− v2

c2√
1− v2

c2

=
t2

1− v2

c2

. (1.2)

Elapsed time at the initial point that is caused by the second spaceship is

t2√
1− 4v2

c2

. (1.3)
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Now right-hand side of the Expression (1.2) ̸= Expression (1.3). This shows that
the time dilation in special relativity is not transitive. This raises a question on
the validity of special relativity.

1.3 Graphical Derivation

In Figure 1.1 the spaceships are travelling away from the initial point p0. Elapsed

Figure 1.1: Spaceships travel.

time at the initial point caused by the spaceship 1 is

t1√
1−

v2
1initial

c2

. (1.4)

Elapsed time at the spaceship 1 caused by the spaceship 2 is

t2√
1−

v2
1initial

c2

(1.5)

Elapsed time at the initial point caused by the spaceship 2 is

t2√
1−

4v2
1initial

c2

. (1.6)

In Figure 1.2 the spaceship 2 has slowly returned to the stopped spaceship 1.
When the time to return to the location of the spaceship 1 is denoted by t3, the
elapsed time at the initial point caused by the spaceship 1 is

t1√
1−

v2
1initial

c2

+ t3. (1.7)

Elapsed time at the spaceship 1 caused by the spaceship 2 is

t2√
1−

v2
1initial

c2

+ t3 (1.8)
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Figure 1.2: Spaceship 2 has slowly returned to the location of spaceship 1.

Elapsed time at the initial point caused by the spaceship 2 is

t2√
1−

4v2
1initial

c2

+ t3. (1.9)

When the time to return to the location of the initial point p0 is denoted by

Figure 1.3: Spaceships together start slowly returning to the initial point.

t4, the elapsed time at the initial point caused by the spaceship 1 is

t1√
1−

v2
1initial

c2

+ t3 + t4. (1.10)

Elapsed time at the spaceship 1 caused by the spaceship 2 is

t2√
1−

v2
1initial

c2

+ t3 + t4 (1.11)

Elapsed time at the initial point caused by the spaceship 2 is

t2√
1−

4v2
1initial

c2

+ t3 + t4. (1.12)
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Figure 1.4: Spaceships have slowly returned to the initial point.

Elapsed time at the initial point caused by the second spaceship via the first is

t2√
1−

v2
1initial

c2√
1−

v2
1initial

c2

+ t3 + t4 =
t2

1−
v2
1initial

c2

+ t3 + t4. (1.13)

As we can see, the right-hand sides of the Expressions (1.12) and (1.13) are not
equal. This raises a question of the validity of the Special relativity.

We tried also a numerical example by putting v1initial
= 0, 45 · c and v2initial

=
0, 9 · c and return speeds 100.000m/s. Return times t3 and t4 was used as such
and additionally also relativistically calculated. The numerical results corre-
sponding to the right-hand sides of the Expressions (1.12) and (1.13) support
the theoretical result.



Chapter 2

Efficiency of a heat
exchanger depends on the
direction of flow

2.1 Introduction

Heat exchangers are important f.eg. in distilling and in district heating. See an
example of a heat exchanger in Figure 2.1. See an alternative heat exchanger,
in which the direction of the cooling liquid is reversed, in Figure 2.2. We do a
comparison of these heat exchangers by simulation and find if another of them
is more efficient in exchanging heat.

2.2 Theory

The heat exchange between two objects may be modelled by an equation

dQ

dt
= kA

TH − TC

L
(2.1)

Figure 2.1: An example of a heat exchanger
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Figure 2.2: An alternative heat exchanger

from [1, 2, 3], where Q is the heat energy of object 2, k is thermal conductivity,
A is the cross-section area of the conducting material, TH is the temperature
of object 1, TC is the temperature of object 2 and L is the distance between
objects 1 and 2. This may be written shortly

dQ

dt
= b(T1(t)− T2(t)) (2.2)

from [2, 3], where Q is the heat energy of object 2, b is a positive proportionality
constant, T1 and T2 are temperatures of objects 1 and 2, and t is time (or
location). Because heat energy is comparable to temperature, we can write

dT2(t)

dt
= a(T1(t)− T2(t)) (2.3)

from [2, 3], where a is a proportionality constant.

2.3 Calculation

Without losing generality we divide both the hot pipe and the cold pipe to 100
elements, see Figure 2.3, set a = 0.01, iterations = 100.000, temperature of fresh
hot liquid = 100 [oC] and temperature of fresh cold liquid = 10 [oC]. Index t
expresses the number of element and varies 1..100 depending on the location in
the pipe. Increasing the number of iterations does not change the result. See
algorithm in Figure 2.4.

2.4 Results

Output temperature from hot liquid pipe is 61.0897oC when the directions of
flows are the same and 58.671oC when the directions of flows are opposite. This
means −2.4625oC difference in temperatures. It is around 4% cooler when the
flows are in opposite directions. See plots of T1, T2, T3 and T4 in Figures 2.5
and 2.6.
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Figure 2.3: Dividing pipes to 100 elements each

-Initialize all elements to temperatures 100 (hot pipe) and 10 (cold pipe).
for iterations = 1 to 100.000
-Transfer proportion of temperature difference from all elements in hot
pipe to corresponding elements in cold pipe, that is,
T2(t) = T2(t) + a · (T1(t)− T2(t))
-Transfer proportion of temperature difference from all elements in cold
pipe to corresponding elements in hot pipe, that is,
T1(t) = T1(t)− a · (T1(t)− T2(t))
-Propagate values of elements in hot pipe in to next elements in
the hot pipe following the direction of flow, that is,
T1(t+ 1) = T1(t).
-Propagate values of elements in cold pipe into next elements of cold
pipe following the direction of flow, that is,
T2(t+ 1) = T2(t)
-Set the temperature value of first elements to 100 (hot pipe) or 10
(cold pipe). This corresponds to new liquid coming in. That is,
T1(1) = 100, T2(1) = 10.

end for
-Plot T1(t) and T2(t)

Figure 2.4: The simulation algorithm
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Figure 2.5: Temperature distributions, same direction of flows.
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Figure 2.6: Temperature distributions, opposite directions of flows.
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2.5 Summary

We have shown that putting flows opposite in heat exchanger we get more
efficient exchange of heat.
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Chapter 3

Dependency of power of
four in physics

3.1 Introduction

It has been said that there are very few dependencies of power of three of higher
in physics. I here show one example of dependency of power of three and one
example of dependency of power of four.

3.2 Dependency of power of three

Volume of a sphere (Figure 3.1) is

V =
1

3
πr3 (3.1)

Figure 3.1: A sphere and its radius
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Figure 3.2: A needle and its radius.

3.3 Dependency of power of four

Flow through a needle of a pipe (Figure 3.2) is by Poiseuille’s equation [1]

dV

dt
=

π

8
(
R4

η
)(
p1 − p2

L
), (3.2)

where R is radius, η is viscosity and p1 and p2 are pressures in ends. This
equation contains R4, a dependency of power of four.
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Chapter 4

Exploding growth is
polynomial growth

4.1 Theory

The term ”exploding growth” is often used for something that grows very fast,
f.eg. exponential growth, that is,

f(n) = abn, (4.1)

where f(n) grows exponentially with respect to n. But, actually, exploding
growth is polynomial growth. Lets consider an explosion in the air. The frag-
ments form a ball, of which radius grows linearly. It is known that the volume
of a ball is

V (r) =
1

3
πr3, (4.2)

where r is the radius. We do not know anything in explosion that grows faster
than the volume, so we can say that exploding growth is polynomial growth.
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