# Collected Papers Second Half of 2024 - A Special Issue on Physics

Mikko I. Malinen mikko.i.malinen@gmail.com

 $11\mathrm{th}$  November, 2024

## Preface

This is an article collection of Mikko I. Malinen from second half of year 2024. The articles in the collection share the same field - they are all about physics. To cite an article in this collection, you may do it the following way:

Mikko I. Malinen, "The Article Name Comes Here", in Collected Papers Second Half of 2024 - A Special Issue on Physics, Mikko I. Malinen, Joensuu, Finland, November 2024

Joensuu, Finland 11th November, 2024

Mikko I. Malinen

# Contents

| 1        | $\mathbf{Tim}$                         | e dilation in special relativity is not transitive - revised | 7  |
|----------|----------------------------------------|--------------------------------------------------------------|----|
|          | 1.1                                    | Introduction                                                 | 7  |
|          | 1.2                                    | Derivation                                                   | 7  |
|          | 1.3                                    | Graphical Derivation                                         | 8  |
| <b>2</b> | Effic                                  | iency of a heat exchanger depends on the direction of flow   | 11 |
|          | 2.1                                    | Introduction                                                 | 11 |
|          | 2.2                                    | Theory                                                       | 11 |
|          | 2.3                                    | Calculation                                                  | 12 |
|          | 2.4                                    | Results                                                      | 12 |
|          | 2.5                                    | Summary                                                      | 16 |
| 3        | Dependency of power of four in physics |                                                              | 17 |
|          | 3.1                                    | Introduction                                                 | 17 |
|          | 3.2                                    | Dependency of power of three                                 | 17 |
|          | 3.3                                    | Dependency of power of four                                  | 18 |
| <b>4</b> | $\mathbf{Expl}$                        | oding growth is polynomial growth                            | 19 |
|          | 4.1                                    | Theory                                                       | 19 |

CONTENTS

# Time dilation in special relativity is not transitive revised

#### 1.1 Introduction

I show that the time dilation in special relativity is not transitive.

#### 1.2 Derivation

Let elapsed time in a point in space be  $t_0$ . A spaceship is sent from that point in space with velocity  $\bar{v}$  to a certain direction. Elapsed time at the initial point is

$$\frac{t_1}{\sqrt{1 - \frac{v^2}{c^2}}}.$$
 (1.1)

A second spaceship is sent - at he same time moment - from that point with velocity  $2\bar{v}$  to the same direction as the first spaceship. Elapsed time at the initial point caused by the first spaceship and the second spaceship is

$$\frac{\frac{t_2}{\sqrt{1-\frac{v^2}{c^2}}}}{\sqrt{1-\frac{v^2}{c^2}}} = \frac{t_2}{1-\frac{v^2}{c^2}}.$$
(1.2)

Elapsed time at the initial point that is caused by the second spaceship is

$$\frac{t_2}{\sqrt{1 - \frac{4v^2}{c^2}}}.$$
 (1.3)

Now right-hand side of the Expression  $(1.2) \neq$  Expression (1.3). This shows that the time dilation in special relativity is not transitive. This raises a question on the validity of special relativity.

#### **1.3** Graphical Derivation

In Figure 1.1 the spaceships are travelling away from the initial point  $p_0$ . Elapsed



Figure 1.1: Spaceships travel.

time at the initial point caused by the spaceship 1 is

$$\frac{t_1}{\sqrt{1 - \frac{v_{1_{initial}}^2}{c^2}}}.$$
 (1.4)

Elapsed time at the spaceship 1 caused by the spaceship 2 is

$$\frac{t_2}{\sqrt{1 - \frac{v_{1initial}^2}{c^2}}}\tag{1.5}$$

Elapsed time at the initial point caused by the spaceship 2 is

$$\frac{t_2}{\sqrt{1 - \frac{4v_{1_{initial}}^2}{c^2}}}.$$
 (1.6)

In Figure 1.2 the spaceship 2 has slowly returned to the stopped spaceship 1. When the time to return to the location of the spaceship 1 is denoted by  $t_3$ , the elapsed time at the initial point caused by the spaceship 1 is

$$\frac{t_1}{\sqrt{1 - \frac{v_{1_{initial}}^2}{c^2}}} + t_3. \tag{1.7}$$

Elapsed time at the spaceship 1 caused by the spaceship 2 is

$$\frac{t_2}{\sqrt{1 - \frac{v_{1_{initial}}^2}{c^2}}} + t_3 \tag{1.8}$$



Figure 1.2: Spaceship 2 has slowly returned to the location of spaceship 1.

Elapsed time at the initial point caused by the spaceship 2 is

$$\frac{t_2}{\sqrt{1 - \frac{4v_{1_{initial}}^2}{c^2}}} + t_3. \tag{1.9}$$

When the time to return to the location of the initial point  $p_0$  is denoted by



Figure 1.3: Spaceships together start slowly returning to the initial point.

 $t_4$ , the elapsed time at the initial point caused by the spaceship 1 is

$$\frac{t_1}{\sqrt{1 - \frac{v_{1initial}}{c^2}}} + t_3 + t_4. \tag{1.10}$$

Elapsed time at the spaceship 1 caused by the spaceship 2 is

$$\frac{t_2}{\sqrt{1 - \frac{v_{1initial}^2}{c^2}}} + t_3 + t_4 \tag{1.11}$$

Elapsed time at the initial point caused by the spaceship 2 is

$$\frac{t_2}{\sqrt{1 - \frac{4v_{1_{initial}}^2}{c^2}}} + t_3 + t_4. \tag{1.12}$$



Figure 1.4: Spaceships have slowly returned to the initial point.

Elapsed time at the initial point caused by the second spaceship via the first is

$$\frac{\frac{t_2}{\sqrt{1-\frac{v_{1_{initial}}^2}{c^2}}}}{\sqrt{1-\frac{v_{1_{initial}}^2}{c^2}}} + t_3 + t_4 = \frac{t_2}{1-\frac{v_{1_{initial}}^2}{c^2}} + t_3 + t_4.$$
(1.13)

As we can see, the right-hand sides of the Expressions (1.12) and (1.13) are not equal. This raises a question of the validity of the Special relativity.

We tried also a numerical example by putting  $v_{1_{initial}} = 0, 45 \cdot c$  and  $v_{2_{initial}} = 0, 9 \cdot c$  and return speeds 100.000m/s. Return times  $t_3$  and  $t_4$  was used as such and additionally also relativistically calculated. The numerical results corresponding to the right-hand sides of the Expressions (1.12) and (1.13) support the theoretical result.

# Efficiency of a heat exchanger depends on the direction of flow

#### Introduction 2.1

Heat exchangers are important f.eg. in distilling and in district heating. See an example of a heat exchanger in Figure 2.1. See an alternative heat exchanger, in which the direction of the cooling liquid is reversed, in Figure 2.2. We do a comparison of these heat exchangers by simulation and find if another of them is more efficient in exchanging heat.

#### 2.2Theory

The heat exchange between two objects may be modelled by an equation

10

$$\frac{dQ}{dt} = kA\frac{T_H - T_C}{L}$$
(2.1)
Hot in  $\longrightarrow$  Mild out
Cold in Mild out

Figure 2.1: An example of a heat exchanger



Figure 2.2: An alternative heat exchanger

from [1, 2, 3], where Q is the heat energy of object 2, k is thermal conductivity, A is the cross-section area of the conducting material,  $T_H$  is the temperature of object 1,  $T_C$  is the temperature of object 2 and L is the distance between objects 1 and 2. This may be written shortly

$$\frac{dQ}{dt} = b(T_1(t) - T_2(t))$$
(2.2)

from [2, 3], where Q is the heat energy of object 2, b is a positive proportionality constant,  $T_1$  and  $T_2$  are temperatures of objects 1 and 2, and t is time (or location). Because heat energy is comparable to temperature, we can write

$$\frac{dT_2(t)}{dt} = a(T_1(t) - T_2(t)) \tag{2.3}$$

from [2,3], where a is a proportionality constant.

#### 2.3 Calculation

Without losing generality we divide both the hot pipe and the cold pipe to 100 elements, see Figure 2.3, set a = 0.01, iterations = 100.000, temperature of fresh hot liquid = 100 [°C] and temperature of fresh cold liquid = 10 [°C]. Index t expresses the number of element and varies 1..100 depending on the location in the pipe. Increasing the number of iterations does not change the result. See algorithm in Figure 2.4.

#### 2.4 Results

Output temperature from hot liquid pipe is  $61.0897^{\circ}C$  when the directions of flows are the same and  $58.671^{\circ}C$  when the directions of flows are opposite. This means  $-2.4625^{\circ}C$  difference in temperatures. It is around 4% cooler when the flows are in opposite directions. See plots of  $T_1, T_2, T_3$  and  $T_4$  in Figures 2.5 and 2.6.



Figure 2.3: Dividing pipes to 100 elements each

-Initialize all elements to temperatures 100 (hot pipe) and 10 (cold pipe). for iterations = 1 to 100.000

-Transfer proportion of temperature difference from all elements in hot pipe to corresponding elements in cold pipe, that is,

 $T_2(t) = T_2(t) + a \cdot (T_1(t) - T_2(t))$ 

-Transfer proportion of temperature difference from all elements in cold pipe to corresponding elements in hot pipe, that is,

 $T_1(t) = T_1(t) - a \cdot (T_1(t) - T_2(t))$ 

-Propagate values of elements in hot pipe in to next elements in the hot pipe following the direction of flow, that is,  $T_1(t+1) = T_1(t)$ .

-Propagate values of elements in cold pipe into next elements of cold pipe following the direction of flow, that is,

$$T_2(t+1) = T_2(t)$$

-Set the temperature value of first elements to 100 (hot pipe) or 10 (cold pipe). This corresponds to new liquid coming in. That is,  $T_1(1) = 100, T_2(1) = 10.$ 

end for

-Plot  $T_1(t)$  and  $T_2(t)$ 

Figure 2.4: The simulation algorithm



Figure 2.5: Temperature distributions, same direction of flows.



Figure 2.6: Temperature distributions, opposite directions of flows.

#### 2.5 Summary

We have shown that putting flows opposite in heat exchanger we get more efficient exchange of heat.

#### References

[1] Hugh D. Young and Roger A. Freedman, University Physics, 9th Edition, Addison-Wesley, 1996

[2] Mikko Malinen, "Dynamiikkaa, derivaattoja ja ennustavia kuumemittareita",

in Mikko Malinen, Collected Papers 2000-2009, 2012

[3]Mikko Malinen, "Dynamiikkaa, derivaattoja ja ennustavia kuumemittareita", Matematiikkalehti Solmu, 3/2008

# Dependency of power of four in physics

#### 3.1 Introduction

It has been said that there are very few dependencies of power of three of higher in physics. I here show one example of dependency of power of three and one example of dependency of power of four.

#### 3.2 Dependency of power of three

Volume of a sphere (Figure 3.1) is

$$V = \frac{1}{3}\pi r^3 \tag{3.1}$$



Figure 3.1: A sphere and its radius



Figure 3.2: A needle and its radius.

#### 3.3 Dependency of power of four

Flow through a needle of a pipe (Figure 3.2) is by Poiseuille's equation [1]

$$\frac{dV}{dt} = \frac{\pi}{8} (\frac{R^4}{\eta}) (\frac{p_1 - p_2}{L}), \tag{3.2}$$

where R is radius,  $\eta$  is viscosity and  $p_1$  and  $p_2$  are pressures in ends. This equation contains  $R^4$ , a dependency of power of four.

#### References

[1] Hugh D. Young and Roger A. Freeman, "University Physics", 9th Edition, Addison-Wesley, 1996

# Exploding growth is polynomial growth

#### 4.1 Theory

The term "exploding growth" is often used for something that grows very fast, f.eg. exponential growth, that is,

$$f(n) = a^{bn},\tag{4.1}$$

where f(n) grows exponentially with respect to n. But, actually, exploding growth is polynomial growth. Lets consider an explosion in the air. The fragments form a ball, of which radius grows linearly. It is known that the volume of a ball is

$$V(r) = \frac{1}{3}\pi r^3,$$
 (4.2)

where r is the radius. We do not know anything in explosion that grows faster than the volume, so we can say that exploding growth is polynomial growth.