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BACKGROUND: BOOLEAN 
MATRIX FACTORIZATIONS

• Given a binary matrix X and a positive integer R, find two 
binary matrices A and B such that A has R columns and B 
has R rows and X ≈ A o B.

• A o B is the Boolean matrix product of A and B, 

(A ◦ B)ij =
R�

r=1
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BOOLEAN TENSOR 
FACTORIZATIONS: THE IDEA

1. Take existing (normal) tensor factorization

2. Make everything binary and define summation as 1 + 1 = 1

3. Try to understand what you just did.

Research problem. What can we say about Boolean 
tensor factorizations and how do they relate to normal tensor 
factorizations and Boolean matrix factorizations?
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THE CP TENSOR 
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DIGRESSION: FREQUENT TRI-
ITEMSET MINING

• Rank-1 N-way binary tensors define an N-way itemset

• Particularly, rank-1 binary matrices define an itemset

• In itemset mining the induced sub-tensor must be full of 1s

• Here, the items can have holes

• Boolean CP decomposition = lossy N-way tiling



TENSOR RANK
The rank of a tensor is the minimum number of rank-1 

tensors needed to represent the tensor exactly.

X

a1 a2 aR

bRb2b1

c1 c2 cR

+ + · · ·+=



BOOLEAN TENSOR RANK
The Boolean rank of a binary tensor is the minimum 

number of binary rank-1 tensors needed to represent the 
tensor exactly using Boolean arithmetic.
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SOME RESULTS ON RANKS

• Normal tensor rank is NP-
hard to compute

• Normal tensor rank of 
n-by-m-by-k tensor can be 
more than min{n, m, k}

• But no more than 
min{nm, nk, mk}
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SPARSITY

• Binary matrix X of Boolean rank R and |X| 1s has Boolean 
rank-R decomposition A o B such that |A| + |B| ≤ 2|X| 
[M., ICDM ’10]

• Binary N-way tensor    of Boolean tensor rank R has Boolean 
rank-R CP-decomposition with factor matrices A1, A2, …, AN 
such that ∑i |Ai| ≤ N|   |

• Both results are existential only and extend to approximate 
decompositions
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THE ALGORITHMS

• The normal CP-decomposition can be solved 
using matricization and ALS

• ⊙ is the Khatri–Rao matrix product

• (C ⊙ B)T is R-by-mk

• For normal matrices, we can use standard least-
squares projections

• One projection per mode

• Similar algorithms for the Tucker decomposition

X(1) = A(C⊙ B)T

X(2) = B(C⊙A)T

X(3) = C(B⊙A)T



THE ALGORITHMS

• For Boolean case, matrix product must be 
changed

• Khatri–Rao stays as it

• Finding the optimal projection is NP-hard 
even to approximate

• Good initial values are needed due to 
multiple local minima

• Obtained using Boolean matrix 
factorization to matricizations

X(1) = A ◦ (C⊙ B)T

X(2) = B ◦ (C⊙A)T

X(3) = C ◦ (B⊙A)T



THE TUCKER CASE

• The core tensor has global effects

• Updates are hard

• Core tensor is usually small

• We can afford more time per 
element

• In Boolean case many changes 
make no difference
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SYNTHETIC EXPERIMENTS
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REAL-WORLD EXPERIMENTS
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CONCLUSIONS

• Boolean tensor decompositions are a bit like normal tensor decompositions 

• And a bit like Boolean matrix factorizations

• They generalize other data mining techniques in many ways

• The playing field between Boolean and normal tensor factorizations is more 
level
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