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ABSTRACT
Matrix factorizations—where a given data matrix is approximated
by a product of two or more factor matrices—are powerful data
mining tools. Among other tasks, matrix factorizations are often
used to separate global structure from noise. This, however, requires
solving the ‘model order selection problem’ of determining where
fine-grained structure stops, and noise starts, i.e., what is the proper
size of the factor matrices.

Boolean matrix factorization (BMF)—where data, factors, and
matrix product are Boolean—has received increased attention from
the data mining community in recent years. The technique has
desirable properties, such as high interpretability and natural sparsity.
But so far no method for selecting the correct model order for BMF
has been available. In this paper we propose to use the Minimum
Description Length (MDL) principle for this task. Besides solving
the problem, this well-founded approach has numerous benefits, e.g.,
it is automatic, does not require a likelihood function, is fast, and,
as experiments show, is highly accurate.

We formulate the description length function for BMF in general—
making it applicable for any BMF algorithm. We extend an existing
algorithm for BMF to use MDL to identify the best Boolean matrix
factorization, analyze the complexity of the problem, and perform
an extensive experimental evaluation to study its behavior.

Categories and Subject Descriptors
H.2.8 [Database management]: Database applications–Data mining

General Terms
Theory, Algorithms, Experimentation

1. INTRODUCTION
A typical task in data mining is to find observations and variables

that behave similarly. Consider, for instance, the standard example
of supermarket basket data. We are given transactions over items,
and we want to find groups of transactions and groups of items such
that we can (approximately) represent our data in terms of these
groups, instead of the original transactions. Such representation is
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called a low-dimensional representation of the data, and is usually
obtained using some form of matrix factorization.

In matrix factorizations the input data (represented as a matrix)
is decomposed into two (or more) factor matrices. Usually the aim
is to have low-dimensional factor matrices whose product approxi-
mates the original matrix well. By imposing different constraints,
one obtains different factorizations. Perhaps the two best-known
factorizations are Singular Value Decomposition (SVD), closely
related to Principal Component Analysis (PCA), and Non-negative
Matrix Factorization (NMF). SVD and PCA restrict the factor ma-
trices to be orthogonal, while NMF requires the data and the factor
matrices to be non-negative.

When the input data is Boolean, (that is, contains only 0s and 1s,
as is typical with supermarket basket data), one can apply Boolean
Matrix Factorization (BMF). Similarly to NMF, it restricts the factor
matrices for added interpretability and sparsity. In BMF, the factor
matrices are required to be Boolean, i.e., contain only 0s and 1s.
Also the matrix product is changed, from normal to Boolean. As a
consequence, it is possible that BMF obtains smaller reconstruction
error than SVD for the same decomposition size—something that
NMF, by definition, cannot do [20]. Furthermore, it can be shown
that for sparse Boolean matrices, there is always a sparse exact
factorization [21].

But no matter what factorization method one applies, one always
has to solve the model order selection problem: what is the correct
number of latent dimensions? In some situations the answer is
obvious, for example, if a user wants to have a three-dimensional
representation of the data (say, for visualization). But when the user
wants a good description of the structure in the data, selecting the
number of latent dimensions comes down to the question: what is
structure and what is noise.

Whereas various methods have been proposed to answer this
question for non-Boolean matrix factorization, varying from sta-
tistical methods based on likelihood scores (such as the Bayesian
Information Criterion, BIC) to subjective analysis of error (so-called
elbow methods), there is no known applicable method for selecting
the model order for BMF (other than visual analysis of errors).

In this paper, we study the model order selection problem in the
framework of BMF. To that end, we merge two orthogonal lines
of research, namely those of Boolean matrix factorizations and
Minimum Description Length (MDL) principle. We formulate de-
scription length functions that can be used for model order selection
with any BMF algorithm. We then extend an existing algorithm
for BMF to use MDL in an effective way, and via extensive ex-
perimental evaluation we show that using our description length
formulation, the algorithm is able to identify the correct number of
latent dimensions in synthetic and real-world BMF tasks.



2. RELATED WORK
Matrix factorization methods such as Singular Value Decomposi-

tion (SVD) [13] or Non-negative Matrix Factorization (NMF) [29]
are ubiquitous in data mining and machine learning. Two of the
most popular uses for matrix factorizations are separating structure
and noise, and learning missing values of matrices.

Boolean matrix factorizations have been studied extensively in
combinatorics (see, e.g., [25] and references therein). The use of
Boolean factorizations in data mining was proposed in [22], and
they are related to many other data mining methods (see below
for some related work and [20] for more). Outside data mining,
Boolean factorizations have found application in, e.g., finding roles
for access control [33, 36].

The Asso algorithm to solve BMF was proposed by Miettinen et
al. [22]. Later, Lu et al. [19] proposed a heuristic based on a mixed-
integer-programming formulation. Independently, Belohlavek and
Vychodil [1] gave an algorithm for computing the Boolean rank of
a matrix based on solving the Set Cover problem. At worst case
this algorithm can take exponential time and does not guarantee any
non-trivial approximation factor, but recently it was shown that with
certain sparsity constraints, the algorithm runs in polynomial time
and provides a logarithmic approximation guarantee [21].

Matrix factorizations have a long history in various fields of
science. SVD and its close relative PCA have been of particular im-
portance. Hence, it is no surprise that many methods for model order
selection for these two decompositions have been proposed. One of
the earliest suggestions was the Guttman–Kaiser criterion, dating
back to the Fifties (see [41]). In that criterion, one selects those prin-
cipal vectors that have corresponding principal value greater than 1.
It is perhaps not surprising that this simple criterion has shown to
perform poorly [41]. Another often-used method is Cattell’s scree
test [2], where one selects the point where the ratio between two
consecutive singular values (in descending order) is high. Usually,
this is done by visual analysis, but automated methods have also
been proposed (e.g., [42]).

Since these two classical methods, researchers have proposed
many alternative methods. For example, in a probabilistic frame-
work one can use Bayesian model selection (e.g. [23, 32]). For
BMF, however, it would be very hard, if not impossible, to construct
a good likelihood function. Yet another approach is to use cross
validation. While this is perhaps mostly used when learning missing
values of the matrix, it can also applied to the noise removal. As-
sumption is that when the model order is too high, the factors start
to specialize to noise, and hence, the cross-validation error increases.
Normally, hold-out set would contain either rows or columns, but
not both. Recently, Owen and Perry [28] proposed a method to leave
out a sub-matrix. The method is based on the assumption that the
remaining matrix has the same rank as the original matrix, as this is
needed to fit the factors to the test data.

The concept of intrinsic dimension of the data is related to the
model order. While often the intrinsic dimension refers to the num-
ber of variables needed to explain the data completely (e.g., the rank
of a matrix), also noise-invariant approaches have been studied [30].
Tatti et al. [34] defined intrinsic dimensionality to Boolean data
based on fractal dimensions.

As discussed by Faloutsos and Megalooikonomou [8], the Mini-
mum Description Length principle [14] is a powerful, well-founded,
and natural approach to data mining, as it allows us to clearly iden-
tify the most succinct and least redundant model for a dataset. As
such, MDL has been successfully employed for a wide range of
data mining tasks, including, for example, discretization [9], impu-
tation [37], and clustering [4, 16].

Basically, a Boolean matrix factorization gives us a group of
patterns (the left-hand matrix B) and their occurrences (the right-
hand matrix C). As such, BMF essentially describes the data with a
set of patterns. Therefore, pattern set mining techniques are related.

KRIMP [38] pioneered the use of MDL for identifying good
pattern sets, and selects that group of frequent itemsets that describes
the data best. LESS [15] and PACK [35] follow a similar approach,
but respectively describe data using low-entropy sets and decision
trees. A major difference between these methods and BMF is that
rows are only covered using subsets of that row, and approximate
matches are not allowed. Further, KRIMP and LESS do not allow
overlap between patterns covering the same row. All three typically
return many more, and much more specific, patterns than BMF.

Summarization, proposed by Chandola et al. [3], is a compression-
based approach that identifies a group of itemsets such that each
transaction is summarized by one itemset with as little loss of in-
formation as possible. Wang and Parthasararthy [40] find summary
sets, i.e., sets of itemsets such that each transaction is (partially)
covered by the largest itemset that is frequent. In BMF, however,
we do not require every row to be modeled by at least one factor.

More closely related to BMF is Tiling [12], which essentially
employs the well known greedy set-cover algorithm to iteratively
cover the data with that itemset that covers the most uncovered 1s in
the data. Kontonasios and De Bie [17] iteratively discover the most
interesting ‘noisy tile’, where they define interestingness through a
local MDL score. Unlike our situation, it does not return a model
for the data, but rather orders a given collection of itemsets.

3. NOTATION
Before we introduce the theory behind our approach, we introduce

the notation we will use throughout the paper.
Throughout this paper, we identify the datasets with Boolean

matrices. Matrices are denoted by upper-case bold letters (A).
Vectors are lower-case bold letters (a). If A is an n-by-m Boolean
matrix, |A| denotes the number of 1s in it, i.e., |A| =

∑
i,j aij . We

extend the same notation to Boolean vectors. The scalar product of
two vectors x and y is denoted as 〈x,y〉.

Let X be n-by-k and Y be k-by-m Boolean matrices (i.e., X and
Y take values from {0, 1}). Their Boolean matrix product, X ◦Y,
is the Boolean matrix Z with zij =

∨k
l=1 xilylj .

If X and Y are two n-by-m Boolean matrices, we have the
following element-wise matrix operations. The Boolean sum X∨Y
is the normal matrix sum with addition defined as 1 + 1 = 1. The
Boolean subtraction X	Y is the normal element-wise subtraction
with 0 − 1 = 0. Notice that this does not define an inverse of
Boolean sum, as 1+ 1− 1 = 0. The Boolean element-wise product
X ∧ Y is defined as normal element-wise matrix product. The
exclusive or X⊕Y is the normal matrix sum with addition defined
as 1 + 1 = 0 (i.e., addition is done over the field Z2).

The Boolean rank of an n-by-m Boolean matrix A, rankB(A),
is the least integer k such that there exists an n-by-k Boolean matrix
B and a k-by-m Boolean matrix C for which A = B ◦C.

Matrices B and C are factor matrices of A, and the pair (B,C) is
the (approximate) Boolean factorization of A. Lastly, all logarithms
are of base 2, and we employ the usual convention that 0 log 0 = 0.

4. BOOLEAN MATRIX FACTORIZATION
In this section we introduce Boolean matrix factorization (BMF)

and give a short description of Asso, one of the existing algorithms
for Boolean matrix factorization.



4.1 BMF, a brief primer
In Boolean matrix factorization, the goal is to (approximately)

represent a Boolean matrix as the Boolean product of two Boolean
matrices. The crux is the Boolean product: as the product is not
over a field, but over a semiring (0, 1,∨,∧), Boolean matrix fac-
torizations have some unique properties. For example, the Boolean
rank of a matrix A can be only a logarithm of the normal matrix
rank of A [25]. As a consequence, Boolean factorizations can yield
smaller reconstruction error than factorizations of same size done
under the normal arithmetic. Unfortunately, unlike normal rank,
computing the Boolean rank is NP-hard [27], and even approxi-
mation is hard [22] (although recent work shows that logarithmic
approximations can be obtained by assuming sparsity [21]).

But even assuming we could compute the Boolean rank efficiently,
this is rarely what we actually want. Similarly to normal rank, one
would assume that most of the real-world data matrices have full or
almost full Boolean rank, due to noise; instead, we often want to
have a low-rank approximation of a matrix. Such approximation is
usually interpreted to contain the latent structure of the data, while
the error it causes is regarded as the noise. When the target rank is
given, we have the Boolean matrix factorization problem:

PROBLEM 1 (BMF). Given n-by-m Boolean matrix A and
integer k, find n-by-k Boolean matrix B and k-by-m Boolean ma-
trix C such that B and C minimize

|A⊕ (B ◦C)| . (1)

Unsurprisingly, also this optimization problem is NP-hard, and
has strong inapproximability results in terms of multiplicative and
additive errors (see [20]). But there is also another, more fundamen-
tal problem: the formulation of the BMF problem requires us to have
a priori knowledge on k, the Boolean rank of the decomposition.
With the structure/noise interpretation above, this means that we
have to have a priori knowledge of the dimensionality of the latent
structure—something we most likely do not have.

This problem is, by no means, unique to BMF. Indeed, the same
issue underlies any matrix factorization method. And also in cluster-
ing, for example, we have to deal with the same problem, known as
the model order selection problem. The main contribution of this
paper is to provide a method to (approximately) solve the model
order selection problem in the BMF framework.

4.2 The Asso Algorithm
Knowing the latent dimensionality of the data is usually not

enough—we also want to know the latent factors, i.e., we want to
solve the BMF problem. As the problem is NP-hard, even to ap-
proximate well, we will solve it using a heuristic approach. We have
opted to use an existing algorithm for BMF, called Asso [22]. We
chose to use Asso as previous studies have shown it performs rea-
sonably well [21, 22, 33], and because the algorithm is hierarchical,
i.e., the rank-(k− 1) decomposition gives the first k− 1 columns of
B (and first k − 1 rows of C) of rank-k decomposition. The latter
property is particularly useful when doing the model order selection,
as we will see later. We emphasize, though, that the proposed model
order selection method is not bound to any specific algorithm for
BMF.

For the sake of completeness, we provide a quick explanation of
how Asso works. For more detailed explanation, see [20, 22]. The
name of Asso stems from it using pairwise association accuracies
to generate so-called candidate columns. More precisely, Asso gen-
erates an n-by-n matrix X = (xij) with xij = 〈ai,aj〉 / 〈aj ,aj〉
where ai is the jth row of A. That is, xij is the association accuracy
for rule aj ⇒ ai.

The columns of B are selected from the columns of X, after the
latter have been rounded to Boolean columns. The threshold t for
the rounding is a user-specified parameter. The selection of columns
of B happens in a greedy fashion: each not-used column of rounded
X is tried, and the selected column is the one that maximizes the
gain, defined being the number of newly-covered 1s of A minus the
number of newly-covered 0s of A. Element aij is newly-covered if
(B ◦C)ij = 0 before adding the new column to B. The row of C
corresponding to the column of B is build using the same technique:
if the gain of using the new column of B to cover a column of A is
positive, then the corresponding element of the new row of C is set
to 1; otherwise it is 0.

As Asso never tracks back its decisions, it clearly has the desired
hierarchical property. But Asso also requires the user to set an extra
parameter: the rounding threshold t. Selecting this parameter can
be daunting, as it is hard to anticipate the difference it makes to the
factorization. To solve this problem, we will use our model order
selection mechanism to slightly larger question of model selection
and in addition to selecting the best k, we also select the best t.

5. MDL FOR BMF
In this section we give our approach for selecting model orders

for BMF by the Minimum Description Length principle.

5.1 MDL, a brief primer
The MDL (Minimum Description Length) [14, 31] principle, like

its close cousin MML (Minimum Message Length) [39], is a practi-
cal version of Kolmogorov complexity [18]. All three embrace the
slogan Induction by Compression. For MDL, this principle can be
roughly described as follows.

Given a set of models1 H, the best model H ∈ H is the one that
minimizes

L(H) + L(D |H)

in which L(H) is the length, in bits, of the description of H , and
L(D |H) is the length, in bits, of the description of the data when
encoded with H .

This is called two-part MDL, or crude MDL. As opposed to
refined MDL, where model and data are encoded together [14].
We use two-part MDL because we are specifically interested in
the compressor: the factorization that yields the best compression.
Further, although refined MDL has stronger theoretical foundations,
it cannot be computed except for some special cases. Note that
MDL requires the compression to be lossless in order to allow for
fair comparison between different H ∈ H.

To use MDL, we have to define what our models H are, how a
H ∈ H describes a database, and how all of this is encoded in bits.
Note, however, that with MDL we are only interested in the length
of the description, and not in the encoded data itself. That is, we are
only concerned with the length of the used codes, and do not have
to materialize the codes themselves.

5.2 Encoding BMF
We now proceed to define how we can use MDL to identify the

best Boolean factorization (B,C) for a given dataset A.
Recall that an essential requirement of MDL is that the encoding

is lossless. That is, whether or not a factorization (B,C) ∈ H
for A is exact, we need to be able to reconstruct A without loss.
We do this by explicitly encoding the difference, or error, between
the original data A and its approximation as given by the Boolean
product of its factor matrices B and C, i.e., B ◦ C. That is, we
1MDL-theorists talk about hypothesis in this context, hence theH.



define error matrix E for A, B, and C, to be the unique Boolean
matrix of dimensions n-by-m such that

E = A⊕ (B ◦C) . (2)

Vice versa, when we are given matrices B, C, and E we can recon-
struct A without loss. Then, the total compressed size L(A, H),
in bits, for a Boolean dataset A and a Boolean matrix factorization
H = (B,C), with H ∈ H, is defined as

L(A, H) = L(H) + L(E) , (3)

where E follows from A and H , using Eq. 2. Following the MDL
principle, the best factorization for A is found by minimizing Eq. 3.
As we will discuss later, this is not as simple as it sounds. But let
us first discuss how we encode H and E, or most importantly, how
many bits this requires.

We start by defining how to compute the number of bits required
for a factorization H = (B,C), of dimensions n-by-k and k-by-m,
for B and C respectively, as

L(H) = L(n) + L(m) + L(k) + L(B) + L(C) . (4)

That is, we encode the dimensions n, m, k, and then the content of
the two factor matrices. By explicitly encoding the dimensions of
the matrices, we can subsequently encode matrices B and C using
an optimal prefix code [5]. To encode m and k, we use the Elias-
Delta code, which is a Universal code for integers [5]. A Universal
code is a code that can be decoded unambiguously without requiring
the decoder to have any background information, but for which the
expected length of the code words are within a constant factor of
the true optimal code [14]. Elias-Delta coding requires

L(x) = log(x) + log log(x) (5)

bits to encode an integer x. Note that, as desired, L(n) + L(m)
is constant between any (B,C) ∈ H with B ◦ C of dimensions
n-by-m. (Which is the case when we regard Boolean matrix factor-
izations of an n-by-m matrix A.)

As we want the selection for the best factorization to depend
strictly on the structure of the factorization and the error it introduces
—and do not want to introduce any bias to small k by the encoding
of the value of k—we do not encode k using the ED code (Eq. 5).
Instead, we use a fixed number of bits, i.e., block-encoding, which
gives us

L(k) = log(min(m,n)) . (6)

This gives us a number of bits in which we can encode values for
k up to the minimum of m and n. Note that larger values do not
make sense in BMF, as for k = min(m,n) there already is a trivial
factorization (B,C) of A with B = A and C the identity-matrix,
or vice-versa.

With the dimensions encoded, we continue by encoding the factor
matrices B and C. To not introduce bias between different factors,
these are encoded per factor. That is, we encode B per row and C
per column. For transmitting the Boolean values of each factor we
use an optimal prefix code, for which Shannon entropy, − logP (x),
gives us the optimal code lengths. In order to use this optimal code,
we need to first encode the probability pbi

1 = P (1 | bi) = |bi|/n
of encountering 1 in column i of B. As the maximum number of 1s
in a column of B is n, we need k times log(n) bits to encode these
probabilities. This gives us, for B of n-by-k,

L(B) = k log(n) +

k∑
i=1

(
|bi|lbi

1 + (n− |bi|)lbi
0

)
(7)

in which k log(n) is the number of bits to transmit the number of
1s in each column vector bi, and

lbi
1 = − log(

|bi|
n

) and lbi
0 = − log(

n− |bi|
n

)

are the optimal prefix code lengths for 1 and 0, respectively, for
vector bi corresponding to the ith column of B.

Analogously, we encode C, of k-by-m, per row and have

L(C) = k log(m) +

k∑
j=1

(
|cj |l

cj
1 + (m− |cj |)l

cj
0

)
(8)

with

l
cj
1 = − log(

|cj |
m

) and l
cj
0 = − log(

m− |cj |
m

)

where cj corresponds the jth row of C.
With the above definitions we now have all elements to calculate

L(H). By H , the receiver knows B and C, and only needs E to be
able to lossless reconstruct A. We will now discuss four increasingly
involved alternatives for encoding E; we will explore their quality
experimentally in Section 6.

5.2.1 Encoding E: Naïve Factors
As we are scoring Boolean matrix factorizations, it would be

natural to also encode the entries of E as a factorization, e.g., such
that E = F ◦G. Of course, we have to keep in mind that B and C
encode the structure in A, whereas E encodes the noise, and noise
by definition is unstructured. Hence, we have to encode each 1 in
E in a separate factor, i.e., separate columns/rows in F and G. The
amount of bits this requires is given by

Lf (E) = logmn+ |E|
(
− (n− 1) log

(
n− 1

n

)
− log

(
1

n

)
− (m− 1) log

(
m− 1

m

)
− log

(
1

m

))
(9)

in which we essentially use the same encoding for the factors as in
Eq. 7 and 8 (but with the extra knowledge that every row/column in
the factor matrices contains only one 1). We refer to this encoding
as the Naïve Factor encoding for E.

Quick analysis of this encoding tells us it is monotonically increas-
ing for larger error, which is good, but also that we are spending too
many bits, as we essentially encode full rows and columns, whereas
we only want to transmit the locations of the 1s in E.

5.2.2 Encoding E: Naïve Indices
This observation suggests that we should simply transmit the

coordinates of the 1s in E. Clearly, this takes logm+ logn bits per
entry. Then,

Li(E) = |E| (logm+ logn) , (10)

gives us the total cost for transmitting E. We refer to this encoding
as Naïve Indices.

It saves us bits compared to Naïve Factors, albeit a marginal
amount, and hence by MDL it is a better encoding. Further, it is
monotonically increasing with the amount of 1s in E.

5.2.3 Encoding E: Naïve Exclusive-Or
Although perhaps counter-intuitive, typically we can encode E

more succinctly if we transmit the whole matrix instead of just the
1s. That is, we can save bits by transmitting, in a fixed order, and
using an optimal prefix code, not only the 1s but also the 0s.



We do this by first transmitting the number of 1s in E, i.e., |E|, in
logmn bits, which allows the receiver to calculate the probability
pE1 = |E|

mn
, and hence, the optimal prefix codes for 1 and 0. Then,

using these codes, and in a fixed order, we transmit the value of
every cell of E. The total number of bits required by this approach,
which we refer to as Naïve XOR, is given by

Ln(E) = logmn+ |E| l1 + (mn− |E|)l0 , (11)

where the lengths of the codes for 1 and 0 respectively are

l1 = − log pE1 and l0 = − log(1− pE1 ) .

By this approach, we consider every cell in E independently, yet,
importantly, with regard to pE1 . This means that Ln is not strictly
monotonic with regard to the number of 1s in E, as once pE1 >
(1 − pE0 ), adding 1s to E decreases its cost. In practice, however,
this is not a problem, as it only occurs if A is both extremely large
and extremely dense, yet contains so little structure that encoding it
in factors costs more bits than one gains. Besides a pathological case,
this situation could be avoided by spending 1 extra bit to indicate
whether we are encoding E or its Boolean inverse—a cost that is
dwarfed by the total number of bits to describe E.

5.2.4 Encoding E: Typed Exclusive-Or
Our last refinement is to differentiate between noise in the part

of E that falls within the modeled part of A, i.e., the 1s we have
modeled but do not occur in A, E− = E∧(B◦C), and those 1s that
are part of A but not included in the model, i.e., E+ = E	(B◦C).
Trivially, this gives us E = E+ ∨E−. We refer to this approach as
Typed XOR.

We encode each of these two parts analogously to Naïve XOR,
but can transmit the number of 1s in the additive and subtractive
parts in respectively log(mn− |B ◦C|) and log |B ◦C| bits. We
define the probability of a 1 in E+ as p+1 =

∣∣E+
∣∣ /(mn−|B ◦C|),

and similarly for E−, p−1 =
∣∣E−∣∣ / |B ◦C|. When we combine

this, we can calculate the number of bits required to encode E by
the Typed XOR encoding as

Lx (E) = L(E+) + L(E−) (12)

where

L(E+) = log(mn− |B ◦C|) +
∣∣E+

∣∣ l+1
+ (mn− |B ◦C| −

∣∣E+
∣∣)l+0

and

L(E−) = log(|B ◦C|) +
∣∣E−∣∣ l−1 + (|B ◦C| −

∣∣E−∣∣)l−0
respectively give the number of bits to encode the additive and
subtractive parts of E. We calculate l+1 , l+0 , l−1 , l−1 analogous to
how we calculate l for Naïve XOR.

Like Naïve XOR, in general this encoding is monotonically in-
creasing for larger error |E|. However, it is more efficient than its
naïve cousin when the noise is not uniformly distributed over the
modeled and not modeled parts of A. That is, when the probability
of a 1 being part of a true pattern being recorded as a 0 is not equal
to the probability of a true 0 being recorded as a 1. Clearly, in many
situations this may be the case.

By making a choice for one of the four encoding strategies of
E, we can now calculate the total compressed size L(A, H) for a
dataset A and its factorization. As out of the four strategies, Typed
XOR compresses E most efficiently given the available information,
we expect it to be the best choice for identifying the correct model
order. In Section 6 we will empirically evaluate performance, but

first we discuss the complexity of finding the factorization that
minimizes L(A, H).

5.3 Computational Complexity
Finding the minimum description length Boolean matrix factor-

ization is a computationally hard task. To start with, the shortest
encoding corresponds to the Kolmogorov complexity, which is non-
computable. But even when we try to minimize some given encod-
ing, like one of the above, the problem does not necessarily become
easy. In particular, we cannot have a polynomial-time algorithm that
minimizes the description length in any given encoding.

PROPOSITION 1. Unless P = NP, there exists no polynomial-
time algorithm that, given an encoding length function L and an
n-by-m Boolean matrix A, finds Boolean matrices B and C such
that L(A, (B,C)) is minimized.

PROOF. Consider function L(A, H) = L(H) + L(E) that has
L(H) < L(E) for any E with |E| > 0. Furthermore, let L(H)
be such that if B is n-by-k and B′ is n-by-k′ with k < k′, then
L(B) < L(B′) (and same for C). (Such encoding could, for
example, encode every value of B and C with one bit, and then
send more than 2nm bits for each 1 in E.) Then clearly, if B and C
are such that A = B◦C and they are as small as possible, they also
minimize L(A, H). But if such B is n-by-k, then we know that
rankB(A) = k. As finding the Boolean rank of A is NP-complete
problem, if a polynomial-time algorithm can minimize L, it must
be that P = NP.

The encoding used in the above proof is, of course, something we
would not use in practice. Also, Proposition 1 does not say that all
encoding lengths would be hard to minimize (indeed, it is not very
hard to come up with an encoding that is trivial to minimize). What
Proposition 1 does say, however, is that if we can minimize some
encoding length in polynomial time, that must be because of some
specific properties of the encoding (or because P = NP).

With MDL in general, and our encodings specifically, we have
the problem that the total encoded size is not monotonic with regard
to addition and removal of factors—or, moving of 1s from E into
the factors. Adding a factor always costs bits, but depending on how
many 1s it replaces, and how much error it introduces, it may or not
lead to a decrease of the total encoded size. Another problem with
the more efficient XOR encodings is that introducing error at one
iteration influences the cost of introducing error later on: a locally
optimal decision may turn out to be quite bad. Moreover, there is
no usable structure that we can exploit for a direct search for the
MDL-optimal BMF.

Intuitively, however, it would make a good heuristic to iteratively
minimize the MDL cost by finding the factor that will save us most
bits. This means that we are essentially trying to move as many
1s possible from E into a new factors in B and C, while keeping
the complexity of those factors in mind. (In fact, the MDL optimal
factorization can be the same as the zero-error factorization, the
latter known to be NP-hard to compute in general.) Basically, this
strategy means minimizing the error, while favoring factors with
short description lengths. If we drop the latter, non-monotonic
requirement, our strategy is to minimize error, which is the same
strategy Asso follows to solve BMF heuristically, and is one reason
why we choose to employ Asso here.

5.4 Merging MDL and Asso
The most straightforward way to decide the model order, given an

encoding method, is to compute the BMF for each value of k, and to
report the k at which L(A, H) was found to be minimal. This naïve



strategy, however, may be very slow in practice, as, if we do not
set a maximum k ourselves, we would have to re-start min(n,m)
times—with n and m in the order of thousands, this would mean a
significant computational task. But here the hierarchical nature of
Asso comes to help: instead of having to re-start every time, we can
start by computing the first factor, compute its description length,
add the second factor, compute the new encoded length, and so on.
To compute L(A, H), we can use the fact that at any point we know
the cost of encoding the previous k − 1 factors, and thus only have
to compute the cost for the new factor. Further, as Asso calculates
per step how much it reduces the error, we can use this information
when encoding the error matrix.

As we minimize the error, we cannot guarantee that the descrip-
tion length is a convex function with respect to k. Nevertheless, if
we assume the cost to be approximately convex we can implement
an early-stopping criterion: stop the algorithm if compression has
not improved during the last c steps.

The benefits of using Asso with MDL are not restricted to only
selecting the model order. Recall that Asso requires a user-provided
parameter t to generate the candidate factors. Selecting the value
for this parameter can be a daunting task. Here MDL also helps:
by computing the decompositions for different values of t, we can
select the pair (k, t) that minimizes the total description length.
Hence, we can use MDL not only for BMF model order selection in
general, but also for BMF model selection.

6. EXPERIMENTS
In this section we experimentally evaluate how well our descrip-

tion length functions identify the correct model orders. While we
naturally also investigate the factors discovered at these orders, note
that this is not specifically the topic of this paper; rather, our main
concern is the model order selection.

We implemented the scoring models and the Asso algorithm
in Matlab/C, and provide the source code for research purposes
together with the generator for the synthetic data.2

6.1 The Other Option: Cross Validation
We selected 10-fold cross-validation (CV) as our benchmark

method. As we are not trying to predict missing values, hold-out
data are columns of the original data. While CV is an appealing
and simple approach, it has one major drawback in the context
of BMF: generalizing the column factors to the hold-out data is
NP-hard. Namely, finding the best possible way to express the
given column with the factors is called Basis Usage Problem, and is
known to be NP-hard even to approximate better than with super-
polylogarithmic factor [20]. To solve this problem, we used the same
greedy process used by Asso (see Section 4.2). The overall error for
each k and t was averaged over the folds, and the parameters that
gave the least average error were selected.

Notice that we cannot use Owen and Perry’s bi-cross-validation
approach [28], as their method to generalize the learned factors to
test data does not apply to BMF.

6.2 Synthetic Data
We start our experimental analysis in a controlled environment by

using synthetic data. For these experiments, we generate n-by-m
matrices, in which we plant k random itemsets, of random cardi-
nality, and random frequency. We also add noise to the matrix by
flipping values from 0 to 1, and vice-versa, with respective probabil-
ities of n+ and n−.

2http://www.mpi-inf.mpg.de/~pmiettin/src/
mdl4bmf.zip
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Figure 1: Model order estimates for varying amounts of addi-
tive noise (top, true k = 10) and varying true model order (bot-
tom). The bars represent the estimates of, from left to right,
Typed XOR, Naïve XOR, Naïve Indices, and Naïve Factor. All
values averaged over 5 datasets.

First, we investigate sensitivity to noise. To this end, for n+ from
5% to 25% in steps of 5%, we generate 5 matrices of 8000-by-100
planting 10 random itemsets, each of random cardinality between
4 and 6, and random frequency between 10% and 40%. We fix
n− to 5%. Note that at the highest noise levels, more than twice
as many 1s are due to noise than to structure. For each of these
datasets, we run Asso for k from 1 to 30, and t from 0.1 to 0.9 in
increments of 0.025. For each of the 30× 32 = 960 factorizations
this gives us per dataset, we calculate L(A, H) for each encoding,
and per encoding we record the values for k associated with the
minimal encountered description length. For the same datasets, we
also estimate k by running Asso with 10-fold cross-validation.

In this experiment, as well as in all other experiments, cross-
validation always always estimates k to full-rank. Hence, we draw
the conclusion that CV does not give good estimates in combination
with Asso, and is not a good choice for solving the BMF model
order selection problem, and do not further report on it (but see
Section 7 for discussion why CV fails).

In the top graph of Figure 1 we plot the average k per encoding
strategy for each level of noise. We see that Naïve Factor and Naïve
Indices perform equal, and over-estimate k strongly. Naïve XOR
and Typed XOR do provide very good estimates: exact at 5% and
10%, still very good at 15%, and underestimate when the large
majority of the 1s in the data are due to noise at 20% and 25%.

While under-estimation is clearly preferred to over-estimation—
we do not want to model noise—yet it does raise the question
whether the effect is due to the scoring function or the search strat-
egy; by iteratively minimizing error, Asso may simply not consider
any H of correct k that remotely resemble the true model, and hence,
making it impossible to detect the correct model order.

To see what is the case, we manually compare the encoded sizes
of the true model to that of the best model found by Asso. The
results are clear: for low noise, Asso finds models that compress as
well as the true model, sometimes even better, e.g., by not to mod-



eling damaged parts of a structure. Unsurprisingly, the discovered
itemsets match the underlying model very well.

For high noise levels, on the other hand, we see that Asso returns
models that compress worse, typically requiring 10% more bits. The
discovered itemsets, however, do consist of combinations of the true
itemsets; specifically, those with relatively large overlap in items
and rows. So, while the true itemsets are in fact detected, by the
iterative minimization of error, Asso does not report them separately.
Hence, it is clear that the scoring function performs very well; even
for the highest levels of noise, the true model compresses much
better, and hence, if it (or any model remotely resembling it) would
be considered, the model order would be identified correctly.

Next, we experiment for varying model orders. We again generate
matrices of 8000-by-100, and plant random itemsets of cardinality
between 2 and 10 and frequencies between 10% and 40%, fixing
n+ to 10%, and n− to 5%. We experiment with datasets in which
we plant 2, 5, 10, 15, and 20 itemsets. The bottom graph of Figure 1
shows the averaged results for each of these datasets. We see again
that the Factor and Indices encodings overestimate, and may dismiss
these as good encodings for the model order selection problem.
The much more efficient XOR encodings, on the other hand, do
consistently give very good estimates. Only for 20 planted itemsets
we see a slight under-estimation, of which inspection shows is again
due to overlap (due to chance, and the small number of columns,
i.e., 100) between itemsets, which makes Asso’s greedy strategy
group some of these together. (Also, for k = 10, we note that Naïve
Indices is either correct or strongly overestimates.)

These two experiments show that Naïve XOR and Typed XOR
provide highly accurate BMF model order estimates, even for large
amounts of noise and densely populated matrices. Further experi-
ments show these encodings also identify k accurately for datasets
of varying density, numbers of columns, and data rows. As over
all experiments, Typed XOR gives the best results, we will use this
encoding for the remainder of this section.

6.3 Real Data
Now that we know that the model order is accurately identified

for synthetic data, we proceed to real data. We first consider 7
datasets, most of which are publicly available. The 859-by-3933
Abstracts dataset represents the words for all abstracts of the ac-
cepted papers at the ICDM conference up to 2007, where the words
have been stemmed and stop words removed [17]. The 6980-by-19
DBLP dataset contains records of in which of the 19 conferences
the 6980 authors had published. The dataset is collected from the
DBLP database3 and it is pre-processed as in [20]. Dialect is a
1334-by-506 presence data of dialectical linguistic properties in
506 Finnish municipalities [7]. The DNA Amplification data, of
4590-by-392, contains information on DNA copy number amplifi-
cations. Such copies activate oncogenes and are hallmarks of nearly
all advanced tumors [26]. Amplified genes represent attractive tar-
gets for therapy, diagnostics and prognostics. This dataset exhibits
a banded structure [11]. The Mammals presence data4 consists of
presence records of 124 European mammals within 2183 geograph-
ical areas of 50 × 50 kilometers [24]. Newsgroups is a subset of
the 20Newsgroups dataset,5 containing, for 400 posts from 4 news-

3http://www.informatik.uni-trier.de/~ley/db/
4Available for research purposes from the Societas Europaea Mam-
malogica at http://www.european-mammals.org
5http://people.csail.mit.edu/jrennie/
20Newsgroups/
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Figure 2: A 3D plot of the number of bits (y-axis), for varying
values of k (x-axis) and t (z-axis) for the DNA dataset. Minimal
description length attained at k = 57 and t = 0.325.

groups6, the usage of 800 words. Finally, the 501-by-139 Paleo
dataset consists of fossil records per location.7

Before we discuss the identified model orders, we look at the
sensitivity to Asso’s parameter t. In Figure 2, we plot a typical
example of the space of total encoded lengths, L(A, H). For the
DNA data, we show all L(A, H) for every considered k and t. The
figure shows the landscape to be a valley, with extreme high values
for overly complex and overly simplistic models, and the model
order is to be found in the distinct minimum around k = 57; which
is the value for k at which L(A, H) for Asso is minimized. Further,
the plot tells us that t does not (strongly) influence the detected
model order k. Over all considered datasets the landscape is of
similar shape, with the exception of the highly noisy synthetic data.
Hence, in practice, we can do with a coarse sweep over t.

In Figure 3 we show, for each of the datasets, the total encoded
size per k, fixing t to the value at which the minimum description
length was found. The identified model orders (i.e., values for k at
which the minimum was reached) are given in each figure. As the
plots show, our description length function is close-to-convex for
Asso’s greedy heuristic search. This means that the early-stop crite-
rion c can validly be employed. It also suggests that binary search
might be a valid search strategy for non-hierarchical algorithms.

As mentioned above, the purpose of these experiments is to assess
the quality of our model-order selection approach, not that of BMF
or Asso per se. Nevertheless, we have to analyze whether the se-
lected model orders make sense, and can best do this by investigating
the factors Asso discovers at the identified model orders.

For the DBLP dataset, our method proposes k = 4. This yields
four disjoint sets of conferences as row factors: (1) SIGMOD, VLDB,
ICDE, (2) SODA, FOCS, STOC, (3) KDD, PKDD, ICDM, and (4) ICML,
ECML. These four factors clearly correspond to four different field
of computer science, namely (1) databases, (2) theoretical computer
science, (3) data mining, and (4) machine learning. The suggested
number of factors for Newsgroups, 17, might seem high given that
the data is about four newsgroups. But it would be overly simplistic
to assume that each newsgroup could be represented with just one (or
even two) topic. Instead, there are some general topics (i.e., factors
containing words appearing across the data, such as ‘question’),
and three to four subtopics per newsgroup. The estimate for DNA,

6The authors are grateful to Ata Kabán for pre-processing the data;
the pre-processing in explained in [20]
7NOW public release 030717, available from http://www.
helsinki.fi/science/now/ [10].
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k = 57, returns factors that model the known chromosomal regions
(or, bands [11]) of interest very well [26], only missing some of the
smallest itemsets. What comes to Paleo (k = 19), Tatti et al. [34]
computed its normalized correlation dimension to be 15. While
this normalized correlation dimension has no direct connection to
BMF, we consider it interesting that these two methods designed
for Boolean data give rather similar results. Even more so, as Tatti
et al. [34] report that explaining 90% of the variance with PCA
requires 79 factors.

We also checked the error curves for these data sets. In most of
the cases, error decreases smoothly as k increases, and hence we
cannot find any ‘elbow’ that would suggest the model order.

We also experimented with NSFAbstracts dataset. The data8

contains 4894 terms used in 12 841 project abstracts. The pre-
processing is explained in [20]. The resulting data is extremely
sparse (0.9%).The model selection procedure resulted to t = 0.8
and k = 1848. Here, k is of course too large for humans to inter-
pret the factors. Yet, it seems that the data indeed requires quite
large k, as the model cost decreases steeply when k is increased.
Furthermore, using PCA, 1848 factors explain only about 69% of
the variance, and in order to explain at least 90% of the variance,
PCA needs to have 3399 factors. While these numbers are not di-
rectly comparable, they do indicate that the data has very complex
structure (e.g., very little overlap between the rows). This can, at
least partly, explain also the need for high k with BMF.

7. DISCUSSION
The experiments show our approach to solve the BMF model

order selection problem by MDL works very well. By the MDL
principle, and hence by employing the most efficient encoding for
the error matrix, Typed XOR, we find highly accurate estimates.

We also applied cross-validation. While intuitively appealing, it
failed to produce any reasonable results. Why was that? There are
(at least) two possible reasons. First, generalizing the learned factors
to new columns is a hard problem, as we already mentioned. But
it might be that cross-validation fails even if we could generalize
in an optimal way. The problem is that when we generalize to
new columns (or rows), we do not have to use all factors. The
8http://kdd.ics.uci.edu/databases/nsfabs/
nsfawards.html

consequence is most obvious in hierarchical decompositions, such
as those returned by Asso: adding a new factor reduces the error
on training data, but it will never increase the error on test data
(if it would, we would not use it to explain the test data). This is
not special to Boolean factorizations, as similar behavior has been
reported with PCA [6].

Of our error matrix encoding strategies, the inefficient Naïve
Factor and Naïve Indices do not work well in practice—except when
noise is low and a model closely resembling the true model is offered.
Naïve XOR and Typed XOR, on the other hand, consistently provide
highly accurate model order estimates. Neither overestimate model
complexity, and naturally provide underestimation in high-noise
situations; highly desirable properties for model (order) selection.
As it is the most efficient encoding, our overall recommendation is
to use Typed XOR to encode E.

Experiments on real data show that meaningful factors are dis-
covered at the selected model orders, as well as that the score is
near-convex. This means that, even for the heuristic BMF algo-
rithm we employed in our experiments, we can confidently employ
a greedy early-stopping criterion.

We did not investigate data-to-model codes in this paper. Such
codes are very efficient, and hence we expect these to work badly
with Naïve Factors and Naïve Indices, while not providing signif-
icant benefits compared to the current encoding when used with
Typed XOR. Space constraints, however, prevent us from exploring
these hypotheses here.

Finally, we note that our encoding length functions are easily
adaptable for different variations of BMF, such as Boolean column
subset-selection [20] and dominated BMF [21].

8. CONCLUSION
We proposed a general solution to the model order selection prob-

lem for Boolean matrix factorization. By the Minimum Description
Length principle, we formulate the number of bits required to loss-
less encode the model and the error it introduces, and report the
order of the model for which this sum is minimized. We empiri-
cally evaluated its performance in combination with the Asso BMF
algorithm. The experiments show that the correct model orders are
reliably selected for varying amounts of noise and model orders, and



moreover, that the models at which the MDL score is minimized
consist of meaningful factors.

Future work includes the development of good heuristics that
optimize the MDL score directly, instead of the error, when finding
Boolean matrix factorizations of a given rank, as well as further
analysis of the complexity of problem.
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