MDL4BMF

 $-\alpha -$

how to use the minimum description length principle for solving the model order selection problem for Boolean matrix factorization

Pauli Miettinen & Jilles Vreeken

MATRIX FACTORIZATIONS

A WORD ABOUT BOOLEAN MATRIX PRODUCT

- As normal matrix product, but with addition defined as |+|=| (logical OR)
- Closed under binary matrices
- Corresponds to set union operation

$$(\mathbf{X} \circ \mathbf{Y})_{ij} = \bigvee_{l=1}^{k} x_{il} y_{lj}$$

Definition (BMF). Given an *n*-by-*m* binary matrix **A** and non-negative integer *k*, find *n*-by-*k* binary matrix **B** and *k*-by-*m* binary matrix **C** such that they minimize

$$|\mathbf{A} \otimes (\mathbf{B} \circ \mathbf{C})| = \sum_{i,j} |\mathfrak{a}_{ij} - (\mathbf{B} \circ \mathbf{C})_{ij}$$

BUT WAIT, HOW DO I KNOW WHAT K TO USE?

Definition (BMF). Given an *n*-by-*m* binary matrix **A** and non-negative integer *k*, find *n*-by-*k* binary matrix **B** and *k*-by-*m* binary matrix **C** such that they minimize

$$|\mathbf{A} \otimes (\mathbf{B} \circ \mathbf{C})| = \sum_{i,j} |\mathfrak{a}_{ij} - (\mathbf{B} \circ \mathbf{C})_{ij}$$

BUT WAIT, HOW DO I KNOW WHAT K TO USE?

Definition (BMF). Given an *n*-by-*m* binary matrix **A** and non-negative integer *k*, find *n*-by-*k* binary matrix **B** and *k*-by-*m* binary matrix **C** such that they minimize

$$|\mathbf{A} \otimes (\mathbf{B} \circ \mathbf{C})| = \sum_{i,j} |a_{ij} - (\mathbf{B} \circ \mathbf{C})_{ij}|$$

BUT WAIT, HOW DO I KNOW WHAT K TO USE?

Definition (BMF). Given an *n*-by-*m* binary matrix **A** and non-negative integer *k*, find *n*-by-*k* binary matrix **B** and *k*-by-*m* binary matrix **C** such that they minimize

$$|\mathbf{A} \otimes (\mathbf{B} \circ \mathbf{C})| = \sum_{i,j} |\mathbf{a}_{ij} - (\mathbf{B} \circ \mathbf{C})_{ij}$$

N.B. This is nothing special to BMF!

PRINCIPLES OF GOOD K

- Goal: Separate noise from structure
- We assume data has BMF-type structure
 - There are k factors explaining the BMF structure
 - Rest of the data does not follow the BMF structure (noise)
- But how to decide where structure ends and noise starts?

ENTER MDL

THE MINIMUM DESCRIPTION LENGTH PRINCIPLE

- Selecting k = model order selection problem
- The best model (order) is the one that allows us to represent the data with least number of bits
- Intuition: Using factor matrices to represent the BMF structure in the data saves space, but using them to represent noise wastes space

• MDL requires exact representation

• MDL requires exact representation

A

 $\mathbf{B} \circ \mathbf{C}$

• MDL requires exact representation

A

 $\mathbf{B} \circ \mathbf{C}$

E

• MDL requires exact representation

• Two-part MDL: minimize L(H) + L(D | H)

• Two-part MDL: minimize L(H) + L(D | H)

max planck institut informatik

ENCODING THE MODEL

- Model includes factor matrices B and C and their dimensions (n, m, and k)
- Each factor (row of B and column of C) is encoded using an optimal prefix code

ENCODING THE MODEL

- Model includes factor matrices B and C and their dimensions (n, m, and k)
- Each factor (row of B and column of C) is encoded using an optimal prefix code

ENCODING THE ERROR

Four different methods to encode **E**:

- I. Naïve Factors
- 2. Naïve Indices
- 3. Naïve Exclusive OR
- 4. Typed Exclusive OR

ENCODING THE ERROR

I. Naïve Factors Factor E and encode factors similar to **B** 2. Naïve Indices Send the indices of errors $(\log(nm) \text{ bits each})$ 3. Naïve Exclusive OR Send the value of each element of **E** using optimal prefix codes to I and O

max planck institut

ENCODING THE ERROR

4. Typed Exclusive OR

- Divide error matrix E into over-covering (E⁻) and under-covering (E⁺) parts (E = E⁻ + E⁺)
- Encode E⁻ and E⁺ separately using optimal prefix indices
 - E⁻ cannot have more Is than B o C
- Saves space compared to naïve XOR

EXAMPLE OF TYPED XOR

 $\mathbf{B} \circ \mathbf{C}$

A

HOW HARD CAN IT BE?

- MDL itself is an approximation of Kolmogorov complexity
- Finding minimum-error BMF is NP hard (even to approximate)
- But how hard it is to find the MDL-optimal decomposition?
 - Not necessarily minimum-error decomposition
 - Hardness depends on encoding
 - We know that there exists an encoding for which it is NP-hard to find the MDL-optimal decomposition

AN ALGORITHM FOR BMF: ASSO

The Good

- Asso is hierarchical and deterministic
 - The k^{th} factor does not change the previous k 1 factors

• The Bad

• Asso is heuristic

• The Ugly

• Asso requires extra parameter t — but MDL can be used to find this, too

EXPERIMENTS

HASN'T THIS BEEN DONE BEFORE?

- Model order selection for matrix factorizations is studied before (mostly with SVD/PCA)
- Methods such as Guttman–Kaiser criterion (c. 1950) or Cattell's scree test (1966) are not suitable
 - Poor performance and need for subjective decisions
- We tried Cross Validation, but it did not work
 - Well-known problem with matrix factorizations, recent ECML'II paper to address this

THE DNA DATA

THE DNA DATA

max planck institut informatik

CONCLUSIONS

- MDL works well for BMF, even with many layers of approximations
 - Allows to find new kind of information about the data
 - The MDL formulation can be used with any algorithm, not just Asso
- Future work with better encodings and extending to variations of BMF

Chank You!

- MDL works well for BMF, even with many layers of approximations
 - Allows to find new kind of information about the data
 - The MDL formulation can be used with any algorithm, not just Asso
- Future work with better encodings and extending to variations of BMF

