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Community detection
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Rank-1 matrices
• (Bi-)cliques are rank-1 submatrices 

• Collection of rank-1 submatrices summarizes the 
graph using its cliques 

• Matrix factorizations express the (complex) input as 
a sum of rank-1 matrices 

•      

• Matrix factorizations summarize complex data using 
simple patterns

AB = �1bT
1 + �2bT

2 + · · · + �kbT
k



Beyond blocks
• Cliques are not the only (graph) patterns 

• Biclique cores, stars, chains 

• Koutra et al., SDM ’14. 

• Nested graphs 

• e.g. Junttila ’11, Kötter et al., WWW ’15 

• Hyperbolic communities 

• Araujo et al.,  ECML PKDD ’14
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Fig. 1. Motivation for our work: Real
ground-truth community
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Fig. 2. Result of our work: Commu-
nity found by HyCoM-FIT

degree distributions. As such, they are typically best represented as having an
hyperbolic structure in the adjacency matrix, rather than rectangular (uniform)
structure. We detail HyCoM - the Hyperbolic Community Model - as a bet-
ter representation of communities and the relationships between their members,
and introduce HyCoM-FIT as a scalable algorithm to detect communities with
hyperbolic structure. To illustrate our model and algorithm, Figure 1 represents
the adjacency matrix of a real (ground-truth) community externally provided
when nodes are ordered by degree, and Figure 2 shows the adjacency matrix of
an exemplary community found by our algorithm. Clearly, both communities do
not show uniform density. In a nutshell, the main contributions of our work are:

– Introduction of the Hyperbolic Community Model: We provide empiri-
cal evidence that communities in large, real social graphs are better modeled
using an hyperbolic model. We also show that this model is better from a
compression perspective than previous models.

– Scalability: We develop HyCoM-FIT, an algorithm for the detection of
hyperbolic communities that scales linearly with the number of edges.

– No user-defined parameters: HyCoM-FIT detects communities in a
parameter-free fashion, transparent to the end-user.

– Effectiveness: We applied HyCoM-FIT on real data where we discovered
communities that agree with intuition.

– Generality: HyCoM includes uniform block communities used by other
algorithms as a special case.

2 Background and Related Work

Nodes in real-world networks organize into communities or clusters, which tend
to exhibit a higher degree of ‘cohesiveness’ with respect to the underlying rela-
tional patterns. Group formation is natural in social networks as people organize
in families, clubs and political organizations; see e.g., [19]. Communities also



Limitations of matrix 
factorization

• The matrix-factorization language is useful 

• Recycle ideas, approaches, and results 

• But the other patterns are not rank-1 
matrices 

• It is not easy to express a collection of 
nested matrices as a matrix factorization



Generalized outer products

• Rank-1 matrix = outer product of two vectors 

• A = xyT  

• Define generalized outer product  
 

•  

o(�,y,�) 2 Rn⇥m

o(�,y,�)�j = ��yj or 0

Vectors Parameters



Example: biclique core
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to the pattern

Columns that belong  
to the pattern

The core



Example: nested matrix
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Step function



Generalized decompositions

• Recall,  
is a decomposition of X  

• The generalized decomposition of X is 

• ⊞ is the addition in the underlying algebra 

• sum, AND, OR, XOR, …

X ⇡ AB = �1bT
1 + �2bT

2 + · · · + �kbT
k

X ⇡ F1 Å F2 Å · · ·Å Fk, F� = o(��,y�,��)



o-induced rank
• The smallest k s.t. X = F1 ⊞ … ⊞ Fk is the  

o-induced rank of X   

• Analogous to the standard (Schein) rank 

• Can be infinite if the matrix cannot be expressed 
(exactly) with that kind of outer products 

• If the outer product can generate a matrix that 
has exactly one nonzero at arbitrary position, it’s 
induced rank is always bounded



Decomposability

• Outer product o is decomposable (to f) if, 
for some f,  

• Then we have  
 
 
as in standard matrix multiplication

o(�,y,�)�j = ƒ (��, yj, �, j,�)

��j =
kÅ
�=1

ƒ (���, y�j, �, j,�)



Nice work, but … why?

• So, we can express complex patterns using 
some weird functions 

• What’s the advantage? 

• Using the common language, it’s easy to see 
how some results (and techniques) can be 
generalized as well



How hard can it be…
• …to find the maximum-circumference pattern? 

• I.e. given A, find x, y, and θ s.t. o(x, y, θ) ∈ A and you 
maximize |x| + |y|  

• If o is hereditary and the pattern can have infinitely 
many distinct rows and columns, NP-hard 

• If there’s only fixed number of distinct rows or 
columns, the problem is in P  

• If x = y is required, then it’s almost always NP-hard



How hard can it be…
• …to select the smallest subset that gives an exact 

summarization? 

• I.e. given a set S = {Fi : rank(Fi) = 1},  
⊞F∈S F = X, find the the smallest C ⊆ S s.t.  
⊞F∈C F = X  

• NP-hard for ⊞ ∈ {AND, OR, XOR} 

• hard to approximate within ln(n) for OR and 
within superpolylogarithmic for XOR



How hard can it be…
• …to compute the rank? 

• Well, that depends… (on the underlying 
algebra) 

• Doesn’t depend (only) on the outer product 

• E.g. normal outer product is NP-hard for OR 
but in P for XOR



How hard can it be…

• …to find the decomposition of fixed size that 
minimizes the error? 

• NP-hard if computing the rank is 

• NP-hard to approximate to within 
superpolylogarithmic factors for OR and XOR



Conclusions
• Matrix factorizations are sort-of mixture models 

• Present complex data as an aggregate of 
simpler parts 

• Generalized outer products let us represent 
more than just cliques as ”rank-1” matrices 

• And allow to generalize many results from 
cliques



Future
• More work is needed to see what is the 

correct level of generality for the outer 
products 

• Results for numerical data? 

• Framework with no users isn’t very useful…

Thank You!
Questions?


