
Content-independent steganography and steganalysis

of JPEG images

Mohammad Rezaei

Security Analysis Laboratory

Tehran, Iran

rezaei@salab.ir

M. Bagher Salahshoor

Security Analysis Laboratory

Tehran, Iran

salahshoor@salab.ir

Abstract— This paper studies the possibilities of hiding data

within a JPEG file without making any changes to the image

content, and in a way that any JPEG decoder normally opens the

file. These possibilities are found by careful studying the JPEG

file format. A steganalysis system needs to check these simple

embedding techniques before complicated analyses of DCT

coefficients. We also present a number of system attacks on

JPEG files, which can lead to detection of hidden data. The

attacks are based on the fingerprints left in the stego file by

JPEG encoders, or the steganography algorithm itself.

Keywords—Steganography, steganalysis, data hiding, JPEG,

file format

I. INTRODUCTION

Steganography is concerned with embedding secret data
into an innocuous looking object such as digital image so that
no one suspects the existence of hidden data. On the contrary,
steganalysis aims at detecting the presence of hidden data [1].
JPEG is the most widely used image format that has attracted
increasing attention of researchers in the fields of
steganography and steganalysis [1-3]. Various steganographic
methods for JPEG images have been proposed. Most of the
methods embed secret data by manipulating the quantized
discrete cosine transform (DCT) coefficients [4, 5]. In
contrast, almost all JPEG steganalytic methods aim at detecting
abnormal statistical artifacts resulted from data hiding in DCT
coefficients. However, the stego data could be added directly to
the JPEG file stream without making any changes to DCT
coefficients and the content of the image. Therefore, this way,
the steganalytic methods will definitely fail to find out the
presence of the stego information.

Most of the JPEG steganographic methods change the least
significant bit (LSB) of DCT coefficients [6]. One of the
pioneer methods in JPEG data hiding is JSteg, in which the
message bits are successively replaced by the LSBs of
quantized DCT coefficients, skipping those coefficients with
the values 0 and 1. JSteg is highly detectable because of
disrupting the characteristic properties of the histogram of DCT
coefficients [1]. Therefore, a number of steganographic
methods such as OutGuess [7] were designed to preserve
statistical properties of the original image [1]. The idea is to
embed the message in part of the DCT coefficients and reserve
the remaining part for correcting selected statistical properties
such as the histogram of coefficients. Model-based

steganography is based on a similar idea, that preserves a
selected model of the DCT coefficients [8]. There are also
several heuristic steganographic methods. Among those, F5 is
the most popular, which decrements the absolute value of the
coefficients instead of replacing LSBs in order to maintain the
histogram of coefficients. It also employs matrix embedding
technique to minimize the number of changes required for
embedding a message [9]. Another group of steganographic
methods is designed in such a way that minimum distortion is
introduced to the image, which intuitively makes it harder for
an adversary to detect the hidden information. Perturbed
quantization method, as an example, attempts to minimize the
overall distortion by performing quantization and data
embedding at the same time, so that minimum quantization
error is produced [10].

Steganalytic methods can be divided into two main
categories: specific and universal. A specific or targeted
method constructs features for a known steganographic method
and therefore, may work well only for that specific method. A
universal or blind steganalytic method, in contrast, can detect
different types of embedding methods [4]. A large sets of
features are usually extracted, and a classifier is trained with
features to distinguish between clean cover and stego images
[11].

Chi-square attack is the most notable early targeted method
that can detect steganography if the message is embedded
sequentially. However, it was later generalized to randomly
distributed messages [12]. Numerous other methods have been
proposed afterwards [13-17]. Farid proposed one of the first
blind methods, in which 72 features are constructed from
statistics of the wavelet transform of the image [18]. Blind
steganalytic methods have the advantage of potential ability to
work for any steganographic method, however, they are less
accurate than targeted approaches, in general [12]. Pevny and
Fridrich [5] argue that extracting features directly from DCT
domain provides better results for a wide spectrum of JPEG
steganographic methods.

Modern steganalysis provides highly accurate results for
most current steganographic schemes [12, 19, 20]. Almost all
existing JPEG steganalytic methods work based on different
statistical properties between stego and cover images as a result
of embedding in the DCT domain. The statistical properties are
derived directly from DCT domain or other domains such as
wavelet and spatial. These steganalytic methods, however,

mailto:rezaei@salab.ir
mailto:salahshoor@salab.ir

simply fail if the stego data is added directly to the JPEG file
stream because no change is made to DCT coefficients and
image content. A few current steganographic programs offer
this data hiding option [21]. Although, it is a difficult problem
to hide messages in the JPEG stream in a secure manner [21],
but a steganalysis system should first examine the JPEG file
stream for detecting such kind of data embedding techniques.
To achieve this goal, an in-depth understanding of JPEG file
format is essential.

Inspecting the JPEG file stream for hidden data is needed
even if the stego data is hidden in DCT coefficients, because
there might be indications of steganography in the file protocol.
For example, those steganographic methods that modify the
quantization table usually produce an unusual table which is an
indication of steganography. In this way, sometimes the
steganalysis system can detect the hidden data much easier
than complicated analyses of the image content. This study also
helps steganographers to design a secure system by noticing
the issues that can occur in JPEG file stream.

In this paper, we introduce several possible places in a
JPEG file to hide data so that image viewers or decoders
normally open the image. This study is important for
steganalysis systems to consider processing a JPEG file before
analyzing the content. We also introduce a few techniques,
based on investigating JPEG file properties, to attack
steganographic methods that leave traces behind in JPEG file.
These techniques are successful even if the stego data is hidden
in the content of the image, for example, in quantized DCT
coefficients.

II. JPEG FILE FORMAT

JPEG, which stands for "Joint Photographic Expert Group",
was created in 1992 as a standard for compressing images. The
JPEG standard is so extensive, but only a small part of it is
used in common [22]. We provide in this section an overview
of JPEG image compression method and JPEG file format. The
compression process, as shown in Fig. 1, can be summarized in
five main steps:

1. The input RGB color space is typically converted to a
luminance/chrominance space such as YCbCr. The
next steps are applied to each component Y, Cb, and
Cr, separately.

2. The image component is partitioned into 8×8 pixel
blocks. The chrominance components may be
subsampled before partitioning into blocks.

3. Each block is transformed to frequency domain using a
2-D DCT.

4. Each DCT coefficient in a block is quantized by
dividing it by the corresponding integer number taken
from an 8×8 quantization table, and the result is
rounded to an integer number.

5. The 64 coefficients of each block are reordered by
scanning the block in a zigzag manner. The Huffman
coding is then applied, and the resulting bitstream is
written to the file. The header information, that is

required for decoding the compressed image, and the
following bitstream construct the JPEG file.

Compressed

data

Header info

DCT

Quantization
Entropy

coding

YCbCrRGB
8×8 blockComponent

EOI

SOI

JPEG file

Huffman

tables

Quantization

tables

Fig. 1. Overview of JPEG encoding

A JPEG file is segmented by certain two-byte codes called
markers. The first byte of a marker has the value 0xFF, and the
second byte, that specifies the marker type, takes a value in the
range [0x01, 0xFE]. The JPEG file starts with Start of Image
(SOI) marker and ends with End of Image (EOI) marker. These
are the only markers that are stand-alone with no data
following. Other markers are followed by two bytes containing
the number of bytes in the data field plus two. A marker with
its associated data is called marker segment, see Fig. 2 [22].
The structure of the data in marker segment is specified based
on the marker type. For example, the data structure of Define
Quantization Table (DQT) marker contains one byte
representing the quantization table number and precision of its
elements followed by 64 values of the 8×8 table, see Fig. 3.
The image compressed data is usually started after last marker
segment of the file, and ended before EOI [22].

0xFF 0xXX

Marker segment

Marker Length Information

Fig. 2. Structure of marker segment

Precision
Number

Quantization table elementsLengthDQT

0xFF 0xDB

Fig. 3. DQT marker segment

III. CONTENT-INDEPENDENT STEGANOGRAPHY

In this section, we introduce four possible places to hide
data within a JPEG file stream.

A. Stego data at the end of the file

JPEG standard defines a data stream which starts and ends
with specific markers SOI and EOI, respectively [22]. If the
stego data is embedded before SOI, an error occurs according
to standard, and therefore, JPEG decoders fail to open the file
[23]. However, the standard does not specify any restrictions to
add extra data after EOI, and accordingly, the JPEG decoders
usually do not check the extra data, see Fig. 4. Several
steganography tools use this naïve data hiding approach such
as Camouflage, JpegX, and Data Stash. The stego data is lost
by any image editing operations, and it is simply detected by
expert steganalyzers if they check for extra data after EOI [24].
However, the steganalytic methods that only process the image
content are unable to detect this simple approach.

EOISOI Headers info Compressed data Stego data

Fig. 4. Hiding data after EOI

B. Stego data in the APP and COM marker segments

Stego data can be embedded in application marker
segments denoted by APPn, n=0, 1,…, 15, and comment
marker denoted by COM, see Fig. 5. These markers except
APP0 (JFIF) and APP1 (Exif), may locate anywhere within a
JPEG file stream, and are ignored by the photo editor/viewer
software [22]. They should be used in a way that no interfere
occurs with the decoding process [23]. JPEG standard allows
applications to use application marker segments
(0xFFE0~0xFFEF) for defining an application specific
meaning of the data. These markers are not necessary for
decoding JPEG file [25].The data held in the APPn markers,
and their format are application specific. Photo editor/viewer
applications use these markers for adding more information
than what the JPEG standard has specified. The marker data
can be skipped by using the length field of the marker [22].

Current files with JPG or JPEG extensions are always in
JPEG file interchange format (JFIF), which is introduced by
Eric Hamilton. JFIF uses the gaps in JPEG standard to create
simple JPEG encoded files that can be interchanged among
applications. "JFIF" and "JPEG file" have become synonymous
[22]. APP0 (0xFFE0) marker is used by JFIF immediately after
SOI for inserting additional information and thumbnail image.
The extended file information format (Exif) uses APP1
(0xFFE1) to prevent conflict with JFIF [25]. Exif stores the
information about digital camera, and is preferred image
format for cameras in ISO 12234-1 standard. The stego data
could be replaced with the information in APP0 and APP1
markers. Another possibility is to append the data at the end of
the segment, and update the length field. This way, hiding data
does not change previous information in the APP marker.

We propose two methods to detect the stego data in
JFIF/Exif APP markers. First, one can check for the fixed data
that is expected in parts of JFIF/Exif information. For example,
the following sequence should be found in a JFIF file: X'FF',

SOI, X'FF', APP0, <2 bytes to be skipped>, "JFIF", X'00' [26].
Second, inserting the stego data in place of the marker segment
or at the end of it can break the certain structure of the
JFIF/Exif marker segment. Therefore, the steganalyzer should
inspect the file to see if the structure is as expected or not. In
general, the steganalyzer should always carefully inspect the
APPn markers. The COM marker has an application specific
interpretation, and is used for storing a text comment such as
copyright information. A COM marker, unlike APPn markers,
is expected to contain only plain text data [22]. Therefore,
other types including encrypted data can be an indication of
hidden information.

0xFF 0xFE

COM Length Stego data

Fig. 5. Hiding data in COM marker segment

C. Stego data between two marker segments

According to JPEG standard, a marker should not
necessarily locate immediately after the previous marker
segment [22]. After the JPEG decoder completes reading a
marker and its data, it seeks to find the next marker, and
ignores the data in the middle. Therefore, the stego data could
be embedded between two marker segments, see Fig. 6.

Adding stego data before EOI marker is a specific case.
Although the standard clarifies that the EOI marker must
immediately appear after Huffman encoded data of the last
scan [22], many photo editor/viewer software do not consider
this rule. They normally open the image ignoring the extra
information between the last scan and EOI.

Gimp and Matlab JPEG Toolbox provide warnings for both
types of the above embedding techniques. They specify and
display the place where the extra data is added. However, they
properly decode the image to be used.

EOISOI Compressed dataHeader info + Stego data

Stego data

Marker segment Marker segment

Fig. 6. Hiding data between two marker segments

D. Stego data in quantization tables

Multiple quantization tables are allowed by the JPEG
standard to be defined, each identified by a DQT marker. A
JPEG file may normally include up to four DQT tables,
specified by the numbers 0 to 3. Each table is associated with a
component of a scan in the image by mentioning the number of
the table. The stego data can be embedded in the DQT tables
that are defined but never used for decoding the image, see Fig.
7. For example, all four tables could be defined, where only
one table is used for decoding and the others contain the
message information.

An alternative technique is possible for hiding information
in DQT tables. JPEG standard allows to redefine a DQT table,
for example number 0. The new defined table is replaced with
the older one, and is used for decoding, afterwards [23]. We
can insert the stego data in a DQT table and immediately
redefine it.

The steganalyzer can detect the hidden data by checking
whether a DQT table is really referenced and used for
decoding.

Precision
Number

Stego dataLengthDQT

011130x00 0x430xFF 0xDB

Fig. 7. Hiding data in an unused quantization table

IV. CONTENT-INDEPENDENT STEGANALYSIS

Steganography software and tools use JPEG encoders to
hide data in the image content such as DCT coefficients.
Unintentional fingerprints left in stego files by the encoders can
be used to detect the hidden data. This kind of attack, which is
performed without analyzing the image content, is called
system attack [11]. The system attack is performed based on
protocol weaknesses in a steganography product. Inspecting
files for these weaknesses is very important because it can
simply lead to detecting the hidden data even if a modern
steganographic method with a low embedding rate is used. In
the following, we provide two examples.

A. Suspicious COM comment

Open source JPEG encoders available on the internet
usually add a specific comment to the JPEG file in the COM
marker segment. A number of images with the same comment
that are not from a common photo editor software, can be an
indication of steganography. For example, the JPEG encoder
used for implementing the well-known F5 steganography
algorithm, always adds the following comment: "JPEG
Encoder Copyright 1998, James R. Weeks and
BioElectroMech" [11].

B. Unusual quantization table

The values in the quantization tables in the DQT markers
are not specified by the JPEG standard. An application is free
to define its own tables. Fig. 8 shows two sample tables offered
by the standard, one for luminance and the other for
chrominance [22]. The tables may be scaled linearly by a
quality factor (e.g. an integer number from 1 to 100) to allow
the user to have a smaller file size at the cost of a lower image
quality. A few existing JPEG encoders use this simple scaling
with the two tables provided by the JPEG standard [27],
however, several photo editor software such as Adobe
Photoshop and Corel Paint Shop, and numerous digital
cameras define their own quantization tables. For example,
Photoshop uses 13 compression levels, which are associated
with different quantization tables. Analysis of the quantization
tables have been used for identifying the creator device or
software [28].

Several steganographic methods change the quantization
table in order to reduce the distortion caused by data
embedding [29-32]. However, this makes the quantization table
unusual, and the stego file becomes vulnerable to the system
attack. For example, the steganalyzer can compare the
quantization table with a database of quantization tables used in
common devices or software. The JPEG file is suspicious of
carrying hidden data if its quantization table is not equal to any
table in the database.

The steganographer might use a JPEG encoder to produce a
stego file, and then modify some of the parameters in the file
header to the parameters of a well-known photo editor software
such as Photoshop to deceive the steganalyzer. However,
inspecting all properties of the software might reveal the fact
that the file has not been really produced by that software. For
example, suppose that the steganographer has changed the
comment and APP markers information to that of Photoshop.
Checking the quantization table of the file can show that the
table does not belong to Photoshop, and therefore, the JPEG
file is a fake Photoshop file.

Luminance quantization table

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

Chrominance quantization table

17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 56 99 99 99 99 99

47 66 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

Fig. 8. Sample quantization tables for luminance and chrominance offered by

the JPEG standard.

V. EXPERIMENTS

We next examine five well-known photo editor/viewer
software applications to find out how they react to input JPEG
images containing hidden information embedded directly to the
file bitstream. The applications include Gimp, Photoshop,
Win10 Photos, Matlab JPEG toolbox, and Win10 Paint. The
stego data is embedded in seven different places in JPEG files
including:

 End of file after EOI marker

 Immediately before EOI marker

 In APP marker segment (0xFFE8)

 Before SOI marker

 JFIF/Exif marker segment

 Between two marker segments

 In DQT marker segments

The stego data contains 106 encrypted bytes, which is
embedded in each of the eight popular images shown in Fig. 9.
Considering seven places for hiding data and eight images, 56
stego images were produced. We used the software Hex Editor
(HxD) 1.7.7.0 to embed data in the JPEG files.

The results of decoding the stego images by the software
applications are shown in Table 1. Three cases may happen
when decoding:

 Normally decode the file (OK)

 Decode the file but with warning, which indicates extra
data (Warning)

 Cannot decode (Error)

All the applications normally open the images that have
embed data in four places including end of file, APP marker
segment, JFIF/Exif segment, and DQT marker segment. Gimp
and Matlab JPEG toolbox give warning and specify the
position and length of the stego data, while other software
applications normally decode the images. Stego data before the
SOI marker is the only case in which all the software
applications fail to decode the images and give error.

VI. CONCLUSIONS

Inspecting JPEG file bitstream is important both for
steganography and steganalysis. Before analyzing the image
content, the steganalyzer should consider the possibility that
the stego data is embedded within the file stream. On the other

Gold hill Lena Boat F16

Mandrill Peppers Barbara Cameraman

Fig. 9. JPEG image database

TABLE I. REACTION OF SELECTED SOFTWARE TO CONTENT INDEPENDENT STEGANOGRAPHY

Hiding method

software

Gimp Photoshop
Win10

Photos

Matlab JPEG

Toolbox
Win10 Paint

End of file OK OK OK OK OK

Before EOI marker Warning OK OK Warning OK

APP marker segment OK OK OK OK OK

Beginning of file Error Error Error Error Error

JFIF/Exif segment OK OK OK OK OK

Between marker

segments
Warning OK OK Warning OK

DQT marker segment OK OK OK OK OK

hand, the steganographer should be careful that the embedding
process and creating JPEG file do not leave traces in the JPEG
file, which can be indications of steganography. This paper
presents four data hiding methods that embed the data within
the file bitstream. Furthermore, two content-independent
steganalysis techniques are proposed by inspecting the file
properties: Unusual comments left by JPEG encoders and
unusual quantization tables created by some steganography
algorithms.

REFERENCES

[1] J. Fridrich, T. Pevný, and J. Kodovský, "Statistically undetectable

jpeg steganography: dead ends challenges, and opportunities," in
Proceedings of the 9th workshop on Multimedia & security, 2007,

pp. 3-14: ACM.

[2] V. Holub and J. Fridrich, "Low-complexity features for JPEG
steganalysis using undecimated DCT," IEEE Transactions on

Information Forensics and Security, vol. 10, no. 2, pp. 219-228,

2015.
[3] T. Pevný and J. Fridrich, "Towards multi-class blind steganalyzer

for JPEG images," in International Workshop on Digital

Watermarking, 2005, pp. 39-53: Springer.
[4] B. Li, J. He, J. Huang, and Y. Q. Shi, "A survey on image

steganography and steganalysis," Journal of Information Hiding

and Multimedia Signal Processing, vol. 2, no. 2, pp. 142-172,
2011.

[5] T. Pevny and J. Fridrich, "Merging Markov and DCT features for

multi-class JPEG steganalysis," in Electronic Imaging 2007, 2007,
pp. 650503-650503-13: International Society for Optics and

Photonics.

[6] Y. Q. Shi, C. Chen, and W. Chen, "A Markov process based
approach to effective attacking JPEG steganography," in

International Workshop on Information Hiding, 2006, pp. 249-264:

Springer.
[7] N. Provos, "Defending Against Statistical Steganalysis," in Usenix

security symposium, 2001, vol. 10, pp. 323-336.

[8] P. Sallee, "Model-based steganography," in International
Workshop on Digital Watermarking, 2003, pp. 154-167: Springer.

[9] A. Westfeld, "F5—A Steganographic Algorithm," in Information

Hiding: 4th International Workshop, IH 2001, Pittsburgh, PA,
USA, April 25-27, 2001. Proceedings, 2001, vol. 2137, p. 289:

Springer Science & Business Media.

[10] J. Fridrich, M. Goljan, and D. Soukal, "Perturbed quantization
steganography," Multimedia Systems, vol. 11, no. 2, pp. 98-107,

2005.

[11] J. Fridrich, Steganography in digital media: principles, algorithms,
and applications. Cambridge University Press, 2009.

[12] J. Fridrich, "Feature-based steganalysis for JPEG images and its

implications for future design of steganographic schemes," in
International Workshop on Information Hiding, 2004, pp. 67-81:

Springer.

[13] J. Fridrich, M. Goljan, and D. Hogea, "Steganalysis of JPEG
images: Breaking the F5 algorithm," in International Workshop on

Information Hiding, 2002, pp. 310-323: Springer.

[14] J. Fridrich, M. Goljan, and D. Hogea, "Attacking the outguess," in
Proceedings of the ACM Workshop on Multimedia and Security,

2002, vol. 2002: Juan-les-Pins, France.

[15] B. Li, J. Huang, and Y. Q. Shi, "Steganalysis of YASS," IEEE

Transactions on Information Forensics and Security, vol. 4, no. 3,

pp. 369-382, 2009.

[16] K. Lee, A. Westfeld, and S. Lee, "Category attack for LSB

steganalysis of JPEG images," in IWDW, 2006, pp. 35-48:
Springer.

[17] K. Lee, A. Westfeld, and S. Lee, "Generalised category attack—

improving histogram-based attack on JPEG LSB embedding," in
International Workshop on Information Hiding, 2007, pp. 378-391:

Springer.

[18] S. Lyu and H. Farid, "Detecting hidden messages using higher-
order statistics and support vector machines," in International

Workshop on Information Hiding, 2002, pp. 340-354: Springer.

[19] M. Goljan and J. Fridrich, "CFA-aware features for steganalysis of
color images," in SPIE/IS&T Electronic Imaging, 2015, pp.

94090V-94090V-13: International Society for Optics and

Photonics.
[20] M. B. Desai and S. Patel, "Survey on Universal Image

Steganalysis," International Journal of Computer Science and

Information Technologies, vol. 5, no. 3, pp. 4752-4759, 2014.

[21] J. Fridrich, M. Goljan, and R. Du, "Steganalysis based on JPEG

compatibility," in ITCom 2001: International Symposium on the

Convergence of IT and Communications, 2001, pp. 275-280:
International Society for Optics and Photonics.

[22] J. Miano, Compressed image file formats: Jpeg, png, gif, xbm,

bmp. Addison-Wesley Professional, 1999.
[23] T. Recommendation, "CCITT T. 81," 1993.

[24] A. Cheddad, J. Condell, K. Curran, and P. Mc Kevitt, "Digital
image steganography: Survey and analysis of current methods,"

Signal processing, vol. 90, no. 3, pp. 727-752, 2010.

[25] T. Tachibanaya, "Description of Exif file format," URL
http://park2. wakwak. com/tsuruzoh/Computer/Digicams/exif-e.

html, 2001.

[26] E. Hamilton, "JPEG File Interchange Format Version 1.02," 1992.
[27] R. Neelamani, R. De Queiroz, Z. Fan, S. Dash, and R. G.

Baraniuk, "JPEG compression history estimation for color

images," IEEE Transactions on Image Processing, vol. 15, no. 6,
pp. 1365-1378, 2006.

[28] H. Farid, "Digital image ballistics from JPEG quantization: A

followup study," Department of Computer Science, Dartmouth
College, Tech. Rep. TR2008-638, vol. 7, pp. 1-28, 2008.

[29] H. W. Tseng and C. C. Chang, "High Capacity Data Hiding in

JPEG‐Compressed Images," Informatica, vol. 15, no. 1, pp. 127-
142, 2004.

[30] H.-W. Tseng and C.-C. Chang, "Steganography using JPEG-
compressed images," in Computer and Information Technology,

2004. CIT'04. The Fourth International Conference on, 2004, pp.

12-17: IEEE.
[31] H. Kobayashi, Y. Noguchi, and H. Kiya, "A method of embedding

binary data into JPEG bitstreams," Systems and Computers in

Japan, vol. 33, no. 1, pp. 18-26, 2002.
[32] A. Almohammad, R. M. Hierons, and G. Ghinea, "High capacity

steganographic method based upon JPEG," in Availability,
Reliability and Security, 2008. ARES 08. Third International

Conference on, 2008, pp. 544-549: IEEE.

http://park2/

