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Abstract— The changes made by steganography to an image 

can be considered as noise addition. A fundamental question is 

how well targeted steganalytic methods distinguish between the 

stego signal and naturally occurring noise in images. Moreover, 

several researchers have proposed steganographic methods that 

hide the message data in the complex regions of images. They 

argue that those regions are more secure for data hiding. 

However, no systematic experiments, to the best of our 

knowledge, have been presented to confirm the claims. This 

paper provides an experimental study to answer the questions 

about the impact of noise and complexity on the performance of 

targeted steganalytic methods. Three well-known targeted 

steganalytic methods are tested when spatial domain 

steganography is considered. Three types of noise at different 

levels are added to images, and two groups of complex and non-

complex images are considered. Our experiments show a 

significant decrease in the detection accuracy of all the selected 

steganalytic methods for complex images. The methods 

demonstrate different responses to different noise types. Their 

performance degrades the most by Gaussian, and the least by salt 

& pepper noise. 
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noise, complexity 

I. INTRODUCTION  

Least Significant Bit (LSB) is arguably the most widely 
used hiding technique, and the most notable method in the 
stego community. Accordingly, many targeted and universal 
steganalytic methods have been introduced to detect the LSB-
based methods [1]. Targeted or specific steganalytic methods, 
which construct features for a known steganographic method, 
provide more accurate results than universal or blind methods 
[2]. High accuracy of many targeted methods have been 
reported in research papers [3]. However, the effect of noise 
and complexity of cover images are not considered. In order to 
make steganalysis difficult, several steganographic methods 
have been designed to pretend the stego data as natural additive 
noise, and several others hide data in complex regions of the 
image. A question is how well a targeted method performs for 
given cover images which are naturally noisy or complex. 
More specifically, how increasing noise and complexity may 
affect the performance of a targeted steganalytic method. 

Data embedding, in several works such as LSB matching 
[4] and stochastic modulation steganography [5], is modeled as 

noise addition in order to simulate the stego data as a natural 
noise. The reason is that there are naturally several sources of 
noise in capturing and transmitting the image, such as 
quantization, sensor, and channel. Digital camera or scanner 
produce images with some degree of noise that is helpful for 
steganography, because the changes from embedding data are 
masked. However, modern steganalytic methods claim that 
they can distinguish between natural noisy and stego images. 
The main reason is that the natural noise is added before 
quantization of the signal in the A/D converter, and a number 
of processes such as demosaicking, color correction, and 
filtering are applied before the final image is acquired [6]. 
Nevertheless, there are studies that show the presence of noise 
affects the performance of the steganalytic methods [6, 7].  

Complexity of images is another important factor that 
affects the performance of steganalytic methods [7]. The main 
hypothesis is that complex images or complex regions in 
images are more secure for embedding data. One reason is that 
human visual system (HVS) is less sensitive to changes in 
complex regions with a lot of edges than smooth regions [7]. A 
good steganalysis system should distinguish cover and stego 
images with different complexities.  

In this paper, we conduct an experimental study on the 
effect of noise and complexity on the performance of selected 
well-known targeted steganalytic methods including 
regular/singular (RS), sample pair analysis (SPA), and Chi-
square attack. To explore the effect of noise, three common 
types of noise at 10 signal-to-noise (SNR) ratios are added to 
the images, and to study the effect of complexity, complex and 
non-complex images are selected from an image database 
based on two image complexity metrics. Our study shows that 
all types of noise degrade the performance of the steganalytic 
methods, however, Gaussian and speckle noises have a more 
severe impact. Furthermore, the steganalytic methods provide 
significantly less accurate results for complex images 
comparing with non-complex ones. 

II. METHODS  

A. Targeted Steganalysis Methods 

Targeted steganalytic methods construct features for a 
known steganographic method and therefore, may work well 
only for that method. We select three well-known methods to 
evaluate the impact of noise and complexity on their 
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performance: Chi-square, RS, and SPA. In the following, a 
short description of each method is presented. 

1) Chi-square Attack.  

Chi-square attack is the most notable early targeted method 

that can detect LSB-replacement steganography if the message 

is embedded sequentially. However, it was later generalized to 

detect randomly distributed messages [8]. This attack analyzes 

pairs of values, in the histogram, that are swapped during LSB 

replacement. Binary representations of a pair of values 2n and 

2n+1 differ only in the LSB. After LSB embedding, the 

occurrences of values 2n and 2n+1 denoted by O2n and O2n+1 

will be equal if the message bits are equally distributed. The 

sum O2n+O2n+1 will be the same before and after embedding, 

and therefore, the average of O2n and O2n+1 is the same for both 

the cover and stego images: 
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The expected value O2n
e can therefore be calculated from 

the stego image. Chi-square attack measures the statistical 
significance that the occurrences of two values in each pair is 
equal. It performs this by comparing the expected value O2n

e 
with O2n, which is calculated from the stego image [9]. The χ2 
statistic is given as: 
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with k-1 degrees of freedom, where k is the number of pairs 
of values. The probability of embedding is derived by 
integration of the density function as follows: 
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where Γ(.) is the Euler Gamma function. 

2) Regular/Singular (RS) Attack. 
There is a natural correlation between the neighboring 

pixels in a cover image. LSB embedding disturbs this 
correlation.  

The idea of RS attack [10] is to intentionally modify the 
LSBs of a given image, and inspect if the correlation increases 
or decreases. The hypothesis is that the correlation decreases 
for the stego and increases for the cover image. The correlation 
between a group of adjacent pixels is evaluated by a 
discrimination function f, which calculates the sum of absolute 
differences. Modifying the LSBs of the group is performed by 
a flipping permutation operation F. Suppose a group G of 4 
neighboring pixels. It will belong to one of the three categories: 

 

 Regular groups:  ( ) ( )G R f F G f G     

 Singular groups:  ( ) ( )G S f F G f G    

 Unusable groups:  ( ) ( )G U f F G f G    

Flipping operation somehow simulates the LSB embedding 
process, and therefore, it is like the embedding is performed 
twice for a stego image. This can restore the original intensities 
of the pixels and increase the correlations. Thus, the expected 
number of S groups for the stego image is smaller comparing to 
the cover image. 

Different flipping can be applied to different pixels. This is 
performed using a mask M, for example [1 0 0 1] for a group of 
4 pixels. We denote the number of groups R and S for mask M 
by RM and SM, and that for mask –M by R-M and S-M. 
Fridrich observed that RM≈R-M and SM≈S-M for a cover 
image however, this balance is disturbed by LSB embedding to 
some degree proportional to length of the stego data [10]. 

3) Sample Pair Analysis (SPA) 
This technique uses the statistical properties of neighboring 

pixels, which are very sensitive to LSB embedding. 
Considering two adjacent pixels called sample pair, higher 
order statistics such as local correlation is utilized.  

All the sample pairs are grouped in several multisets. 
Consider an 8-bit grayscale image. The multiset Dn, 0≤n≤255 
include the sample pairs for which the difference between two 
values in the pair is n. Cm, 0≤m≤127 denotes the multiset that 
include the sample pairs whose 7 first bits differ by m. Cm 
remains unchanged under LSB embedding. It can be simply 
shown that D2m⊂ Cm but D2m+1 is shared between Cm and Cm+1. 
The pairs in D2m+1 with larger even value construct the multiset 
X2m+1, and the pairs with larger odd value construct the multiset 
Y2m+1. For a natural image, we have [3]: 

    2 1 2 1 m mY X   

LSB embedding disturbs this equality. The multiset Cm 
which is closed under LSB embedding can be partitioned into 
X2m-1, D2m, and Y2m+1. Two more multisets are defined by 
partitioning D2m: X2m includes the pairs of the form (2k-2m, 2k) 
and (2k+1, 2k-2m+1) and Y2m consists of the pairs of the form 
(2k-2m+1, 2k+1) and (2k, 2k-2m). The reason for these 

 
Fig. 1. Finite state machine that describes the transitions between 

multisets. 



 

definitions is that the multisets X2m-1, X2m, Y2m, and Y2m+1 are 
converted to each other under LSB embedding, and the 
changes can be modeled by a finite state machine as shown in 
Fig. 1. The value 01 in the figure indicates that the LSB of first 
value in the sample pair remains unchanged and the LSB of the 
second value is reversed. 

The probabilities of transitions between the multisets are 
known. Accordingly, the size of each multiset can be estimated 
before and after embedding. A set of quadratic equations for 
different m are finally derived by which the embedding rate β 
can be approximated: 
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The smallest root of (5) is considered. 

B. Noise  

Image noise, which is undesirable random changes in the 
values of pixels, is produced during image acquisition, 
transmission, etc. [11]. Acquisition noise is mainly produced in 
the sensor of the imaging device. The sensor noise is usually 
categorized into three categories: fixed pattern noise, banding 
noise, and random noise [12, 13]. 

Fixed pattern noise is originated from unevenness of 
sensors during manufacturing. It usually happens during longer 
exposure shots, when some pixels are more sensitive to light. 
Banding noise is generated when reading the data from the 
digital sensor using A/D convertors. This type of noise is more 
noticeable at high speed, and in shadows, or in excessive light. 
Fixed pattern and banding noise are highly deterministic and 
predictable, and can be reduced by advanced manufacturing 
and signal processing techniques. The third category is random 
noise, which is mainly caused by photon emission, 
photoelectric effects, dark current, and thermal noise. Dark 
current and thermal noise have been significantly reduced by 
hardware improvements, but photon emission and photoelectric 
effects cannot be removed [12]. In our experimental study, we 
select two common noise types including Gaussian and salt & 
pepper, which are additive noise and produced during image 
acquisition by digital cameras. We also consider speckle noise, 
which is a multiplicative noise [14, 15].  

Gaussian noise, caused by thermal noise, is independent at 
each pixel, and independent of the signal intensity. Its 
probability density function is same as the normal distribution 
[14, 16]. The mathematical model can be written as [14]: 

      , , ,g i j f i j n i j   

where 1≤i≤H and 1≤j≤W, and H and W represent the size of 
the image. 

 

An image with salt & pepper (also called impulsive, or 
spike) noise has bright pixels in darker regions and dark pixels 
in brighter regions [17]. This noise is produced by several 
sources such as errors in A/D convertor and errors transmission 
[18]. The mathematical model can be written as [14]: 
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where fj is the pixel value of the image f at location (i, j), hj 
is random number, and h is the noise ratio. 

Speckle noise is a granular pattern, which is inherent 
property of medical ultrasound, optical coherent tomography, 
active radar, and synthetic aperture radar (SAR) images. Its 
mathematical model is as follows [14]: 

      , , * ,g i j f i j n i j  

C. Complexity 

There is no standard definition for image complexity. A 
rough definition might be as background uniformity and 
foreground clutter. Several measures have been proposed in 
different fields to assess image complexity [19-22]. Two 
common measures include the shape parameter of the 
generalized Gaussian distribution (GGD) [23], and bit-plane 
based complexity [24]. 

1) The Shape Parameter of GGD 
 Liu [23] uses a complexity measure that is a PDF 

approximation of the marginal density of coefficients at high-
pass sub-bands in wavelet domain. A good approximation is 
obtained if the parameters of GGD are adaptively being varied. 
The PDF is defined as: 

  
 

 /
; ,

2 1/

x
p x e




 
 





 

 
Fig. 2.  Image complexity measures: the shape parameter of GGD and 

bit-plane based complexity. 

 



 

where Γ(.), α and β are Gamma function, scale parameter, 
and shape parameter, respectively. 

The shape parameter β can be considered as a measure of 
complexity, where a larger β indicates higher complexity. Fig. 
2 shows two grayscale images whose complexities are well 
represented by β value. 

2) Bit-Plane Based Complexity 

This measure of complexity is used in bit-plane complexity 

segmentation (BPCS) steganography [24]. An 8-bit grayscale 

image is divided into 8 binary images called bit-planes, and 

the complexity is derived for each binary image. For a single 

bit-plane of the size H×W, the number of changes in adjacent 

pixels from zero to one, and vice versa is calculated as n. The 

resulting value is then normalized by the maximum possible 

number of changes, which is equal to (H-1)×(W-1) as follows: 
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We estimate the overall complexity of the grayscale image 
by averaging the complexity values of the bit-planes. Fig. 2 
shows the complexity value for two images with different 
complexity levels. 

III. EXPERIMENTS  

We evaluate the performance of three targeted steganalytic 
methods including Chi-square, RS, and SPA in presence of 
noise and complex images. Chi-square is a targeted attack for 
detecting sequentially embedded message, and in our 
experiments we tested this method only for sequential stego 
images, while both RS and SPA are used for detecting 
randomly scattered message in the images. 

Gaussian, salt & pepper, and speckle noise are added to 
images, and two sets of complex and non-complex images are 
considered, which are chosen according to two complexity 
measures: the shape parameter of GGD and bit-plane based 
complexity. 

A. Dataset  

We used our GSC1_BMP_Gray dataset which consists of 
2000 cover images. The original images of this dataset were 
selected from Greenspun website1. However, they needed a 
few processes such as cropping the black border around 
images. Fig. 3 shows the procedure to select 100 complex and 
100 non-complex images from the dataset, and produce noisy 
and stego versions. To select complex and non-complex 
images, we calculated the two complexity measures for all the 
images in the dataset. Top 100 complex images were selected 
according to the agreement of both measures, and 100 non-
complex images were chosen in the same way.  

Three types of noise, each with 10 SNR levels, were added 
to the 100 non-complex images, resulting in 3000 noisy 
images. The amount of image noise is doubled in each 
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subsequent level. Two LSB embedding methods including 
sequential and random LSB replacement (SLSBR and RLSBR) 
were then applied to generate stego images with four 
embedding rates (0.05, 0.1, 0.2, and 0.5) for complex and non-
complex, and one embedding rate (0.05) for noisy images. In 
total, 3200 cover and 7600 stego images are available for the 
experiments. The SLSBR method is used for evaluating Chi-
square attack, and RLSBR for SPA and RS attacks. 

B. Impact of Complexity 

The results of three targeted steganalytic methods on complex 
and non-complex images are reported in Tables I and II. The 
false positive (FP) rate of all methods is more than 0.5 for 
complex images, while it is almost zero for non-complex ones. 
These results demonstrate the unreliability of the selected 
targeted methods when analyzing complex cover images. In 
general, accuracy and precision improve by increasing the 
embedding rate, however, they are significantly larger for non-
complex images. Fig. 4 better illustrates the comparison of the 
detection accuracy for complex and non-complex images as the 
embedding rate increases. It can also be seen that RS performs 
slightly better than SPA for complex, while SPA provides a 
better detection accuracy for non-complex stego images. We 
have tuned the threshold of Chi-square attack equal to 0.03 to 
have low FP and high true positive (TP) rates for non-complex 
images. This results in very high FP rate for complex images, 
see Table II. Increasing the threshold can improve the results 
for complex images but it degrades the good results for non-
complex images. 

C. Impact of Noise 

In this experiment, we consider stego images with the 
embedding rate 0.05, and set the thresholds for SPA, Chi-
square, and RS to 0.045, 0.03, and 0.04, respectively. Figs 5, 6, 
and 7 show the FP, TP, and accuracy rates of the steganalytic 
methods for different noise levels from 0 to 10.  The noise level 
0 is associated with the original noise-free images.  The results 
suggest the following conclusions:  
 

Cover images(3200)

Stego images (7600)

RLSBR (ER=0.05, 0.1, 0.2, 0.5)

SLSBR (ER=0.05, 0.1, 0.2, 0.5)

Complex and non-

complex

(1600)
Noisy

(3000)

RLSBR (ER=0.05) SLSBR (ER=0.05)
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Gaussian, salt&pepper, speckle 
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(100)

 
Fig. 3. The dataset containing complex, non-complex, and noisy cover 

images, and their stego versions. ER: Embedding Rate. 

 



 

 For SPA, the FP rate increases with the noise level for 
all noise types. However, SPA is affected by salt & 
pepper noise much less than Gaussian and Speckle 
noise. The TP rate also increases with the noise level for 
Gaussian and speckle noise, but it is not affected by the 
salt & pepper noise. Besides, the accuracy of SPA 
decreases as the noise level increases, however, the 
decrease is much more significant for Gaussian and 
speckle than salt & pepper.  

 Chi-square and RS attacks show a different behavior 
than SPA in terms of FP rate. Surprisingly, the FP rate 
decreases after a certain noise level for Gaussian and 
speckle noise.  

 Chi-square is not affected by salt & pepper noise in 
both terms of FP and TP rates. There can be seen even a 
decrease in the FP rate and an increase in the TP rate, 
resulting a better accuracy. After the noise level 3, the 
FP rate starts to decrease, and consequently, the 
accuracy starts to increase until the noise level 9. The 
results at the noise level 10 seem unusual. The reason 
might be that the image is too noisy that no local 
correlations exist anymore. The speckle noise shows a 
different impact than Gaussian, where the FP rate is 
always (up to the noise level 9) increasing, and the 
accuracy decreasing. 

 The impact of salt & pepper noise on the RS attack is 

different from SPA and Chi-square. Up to the noise 
level 5, the FP rate and the accuracy are quite good, but 
a rapid decline occurs in the performance of RS, 
afterwards. The sudden decrease from the noise level 9 
to 10 is quite unexpected that might be because of 
emergence of unusual RS curves in the noise level 10 
when the image is noise like. The FP rate starts 
decreasing after the noise level 6 both for Gaussian and 
speckle noise. The accuracy value 0.5 at the noise levels 
larger than 5 indicates that the RS method does not 
work better than a random classifier. 

IV. CONCLUSIONS  

We have conducted an experimental study on the impact of 
image noise and complexity on selected targeted steganalytic 
methods. The main goal of this work is to investigate how 
much the noisy or complex images without any hidden data are 
mistaken with stego images by the steganalytic methods. 
Overall, our experiments show that the performance of SPA, 
Chi-square, and RS steganalytic methods degrades by Gaussian 
and speckle noise. Chi-square, interestingly, is not affected by 
salt & pepper noise, while the performance of the two other 
methods is degraded. In the future, we plan to extend this study 
to other targeted and universal steganalytic methods. 
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Fig. 5. FP rate for different attacks with increasing the noise level. The embedding rate for the stego images is 0.05. 

   

Fig. 6. TP rate for different attacks with increasing noise level. The embedding rate for the stego images is 0.05. 

   

Fig. 7. Detection accuracy for different attacks with increasing noise level. The embedding rate for the stego images is 0.05. 


