IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 4, 2020, accepted April 23, 2020, date of publication May 8, 2020, date of current version May 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2993295

Can the Number of Clusters Be Determined by

External Indices?

MOHAMMAD REZAEI“' AND PASI FRANTI“'2, (Senior Member, IEEE)

1School of Computing, University of Eastern Finland, 80101 Joensuu, Finland
2School of Big Data and Internet, Shenzhen Technology University, Shenzhen 518055, China

Corresponding author: Pasi Frinti (franti @cs.uef.fi)

ABSTRACT External indices have been used in the literature for determining the number of clusters. The
idea is to measure the stability of clustering results using an external validity index when adding randomness
to the clustering process. The hypothesis is that the clustering results are more stable when the correct number
of clusters is used. The goal of this paper is to provide an answer to the research question stated in the paper
title. We conduct a systematic study of the main components of the stability-based approach. We will discuss
how to add randomness to the process, how to perform the cross-validation, and which external index to use.
We will show that the number of clusters can be reliably determined only when the type of clusters is known
and all the components of the approach are carefully chosen. Inferior algorithms like k-means, too high or
low subsampling rate, null reference for normalization, and ineffective validation indices can all cause the
stability-based approach to break. We recommend better design choices for all these components, which
leads to better results compared to existing stability-based methods. However, even with the best choices,
there are pathological cases where the stability-based method fails.

INDEX TERMS Clustering, cluster validation, stability, number of clusters, external index, resampling.

I. INTRODUCTION

Clustering has two separate sub-problems: determining the
number of clusters and finding the clusters. Algorithms like
k-means aim at solving the second sub-problem. The num-
ber of clusters must be given by the user as input. If the
number is unknown or needs a recommendation from user,
it must also be estimated. In this paper, we consider
centroid-based clustering, which minimizes the well-known
sum of squared error (SSE) criterion for a fixed number of
clusters K :
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In other words, for a given dataset with N objects (x;) in
D-dimensional space, the clustering aims at finding the set
of k centroids ¢; (of clusters Cj) that minimizes the sum of
squared distances from their assigned data objects. As an
example, the k-means algorithm aims at minimizing SSE.
In this paper, we do not question the suitability of SSE as
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an objective function, but study how well an algorithm like
k-means performs in this task. This approach is based on
the recommendation in [1] to clearly distinguish between
the clustering method (objective function) and the clustering
algorithm (how it is optimized). The above definition also
holds for datasets which contain Gaussian clusters as long as
the hyperspheres around the clusters are separable.

The number of clusters is usually estimated using infernal
validity indices by comparing the index values of different
numbers of clusters [2]. Internal indices are usually based
on two measures: compactness and separation. Compactness
measures how similar the objects are within the same cluster,
and separation measures how dissimilar the clusters are. Sev-
eral sum-of-squared error indices calculate the ratio of within
cluster and between cluster variances [3]. The main charac-
teristic of these indices is that they use no prior information of
the data. A number of indices have been compared in [4]-[7]
but none has reached a clear state-of-the-art status that would
work for a wide range of datasets.

External indices compare the clustering solution with the
ground truth data [6], [8]-[10]. They can be used to study the
performance of clustering methods with artificial data. Exter-
nal indices are also suitable for comparing two clustering
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solutions of the same dataset to evaluate the difference of the
algorithms [11], [12], and they are utilized in ensemble clus-
tering [12]-[14]. Some authors consider two types of indices:
a relative index for comparing two clustering solutions, and
an external index for comparing clustering solution with the
ground truth [10], [15]. Here we consider both as external
indices.

External indices have also been used for determining the
number of clusters [9], [11], [16]-[20]. The idea is to generate
randomness in the process by resampling the data, clustering
the subsamples with a varying number of clusters, and then
measuring the stability [18]. The stability is measured by
calculating the similarity of the clustered subsamples using
an external index. The hypothesis is that the clustering results
are more stable (higher similarity) when the correct number
of clusters are used.

The majority of the literature [9], [11], [17]-[22] describes
the stability-based approach as being good and reliable
for determining the number of clusters. However, most of
the available papers do not discuss the components of the
stability-based approach or its weaknesses. Experimental val-
idation in the papers is usually given only for a very few sim-
ple datasets. One paper on this topic by Ben-David et al. [23]
concluded that the stability-based approach is unsuitable for
this problem, and they offer two counter-examples and a
mathematical proof (see Section 2) as evidence. However, not
even a single experimental result was provided to support the
claims.

A wider viewpoint was taken in [24], where several design
alternatives of the approach were considered by discussing
what implications the theoretical results have in practice. The
overall conclusion was that the stability approach has the
potential to solve the problem, but it remains an open question
as to how the method should be implemented in practice.
Specifically, the role of the algorithm, the size of the subsets,
and the role of the normalization were all considered as
important parameters that should be compared and evaluated
in practice.

Despite some promising reports, including [9], [11],
[17]-[22], the stability-based approach has not been widely
accepted. In fact, recent clustering literature is seriously
lacking in related papers; we could find only one critical
report [23]. This is therefore an open question: does the
stability-based approach work? In this paper, we aim at
answering this question. We study all these issues experi-
mentally and by using selected examples. We follow the gen-
eral framework given in [24], and divide the stability-based
approach into the following sub-problems:

1. Adding randomness

2. Cross-validation strategy and normalization
3. Selection of the external index

4. Selection of the clustering algorithm

Randomness is usually added by subsampling. The size
and the number of subsamples are the parameters. They
are usually straightforward to set, except for when the size
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of the data is very small. Two alternative approaches are:
using a randomized algorithm such as k-means with random
initialization [24], and adding noise to the data [25], [26].
However, we will show that k-means itself is unstable and
is therefore not reliable for this purpose. Adding noise would
require additional noise parameters, which are not trivial to
set and which might create unexpected artifacts.

Most external indices are restricted to comparing partitions
of exactly the same data. A straightforward approach [18],
[20], [27] is to compare the clustering results of a subset to
that of the full set by restricting it only to the objects in the
subset. Another approach predicts the partition labels of the
rest of the objects by nearest neighbor mapping using cluster
centroids, or by applying a more complicated classifier pro-
cess [11], [21], [28], [29]. We will also consider comparing
the subsets directly by using centroid index [30], which does
not require the partition of the data.

The third sub-problem is selecting an external valid-
ity index. Adjusted Rand index [31], information theoretic
measures [32], [33], and selected set-matching meth-
ods [30], [34], [35] are all suitable for the task. We will show
through experiments that the exact choice of the measure is
less important than how it is applied, which matters much
more. All existing methods simply select the number of clus-
ters that provide maximum stability (global maximum), but
we will show using counter-examples and experiments that it
is better to choose the last local maximum.

The last sub-problem is the selection of a clustering algo-
rithm. K-means is commonly used but, as shown later through
our experiments, it is highly unstable and not suitable for this
task. Part of this originates from random initialization [1] and
part from its incapability to move centroids between well-
separated clusters [36]. These can be partially compensated
for by better initialization and repeats, but they cannot remove
the fundamental limitations of k-means [37]. A more sta-
ble algorithm such as Ward’s agglomerative clustering [38],
random swap [39], or genetic algorithm for clustering [40]
should therefore be chosen.

The objective function (cluster model) that the algorithm
should optimize is another question. If we apply the squared
error criterion, but the clusters in the data are not spherical,
we can get clustering results that do not fit the data. In prin-
ciple, we should still find the number of clusters that is best
for this model. However, the stability assumption does not
always hold in this mismatched case.

In this paper, we perform a systematic study on the
stability-based methods for solving the number of clusters in
sum-of-square type of clustering methods. We first review the
stability-based approach. We then study the design choices
for every component of the method and show their limita-
tions. We study how the choice of the clustering algorithm
affects the result, and we compare the performance of sev-
eral external indices. We also compare the cross-validation
and classification-based approaches. We will show using
counter-examples that the maximum stability is not always
achieved using the correct number of clusters, and that a more
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FIGURE 1. Stability-based method for finding number of clusters; stable result is achieved with correct number
of clusters (left) and unstable result with incorrect number (right).
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FIGURE 2. (a) Stable result is incorrectly obtained when the number of clusters is too few (k = 2) because the
two closest clusters are always merged. (b) Stable result for k = 3 because of using wrong algorithm and
objective function (c) (d) Unstable result is correctly obtained with too many (k = 3) clusters. Even though the
biggest cluster is always split, the splitting happens in arbitrary direction.

robust criterion called last local maximum [41] should be used
instead.

To sum up, we will answer whether external stability is
applicable for determining the number of clusters, and if so,
how it should be done exactly. We limit the study to traditional
clustering that minimizes the SSE. Preliminary version of this
paper appears in the PhD thesis of Rezaei [2].

Il. STABILITY-BASED METHOD

The problem of finding the correct number of clusters is based
on the implicit but widely used assumption that we have
ground truth knowledge about the number of clusters that we
want to determine. If the data do not contain well-separated
clusters for a selected objective function, the method then
simply provides the number of clusters for which the model
best fits the data.

The stability-based approach is defined as follows: find
the number of clusters k for which the clustering is sta-
ble with respect to the randomization of the process. The
definition is the same as in [23], except that we do not
make any implicit assumptions about the clustering algorithm
employed, the subsampling strategy, or the external index for
calculating the distance between the clustering solutions.
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A clustering solution is defined as stable if it remains
the same when applied for several datasets generated
with the same process or from the same underlying
model [24]. The similarity between every two clustering solu-
tions is measured by an external validity index. It is expected
that the most stable result would be achieved when the correct
number of clusters is applied [21].

This idea is demonstrated in Fig. 1. Random swap, which
is a centroid-based clustering algorithm, is applied to the
dataset, which contains five clusters, and to its subset, which
has the parameters k = 5 and k& = 8. The clustering results
of the full set and the subset are similar when k = 5, whereas
there are disagreements when k = 8. In the full set, the top
leftmost cluster is split, whereas in the subset it remains as
one; and vice versa, the top rightmost cluster is divided in the
subset.

However, stability can also be achieved with a smaller
number of clusters when the positioning of clusters is not
symmetrical [23]. Fig. 2 (left) shows a dataset with three well-
separated clusters. Applying clustering with k = 2 gives a
stable result because the closest clusters are always merged.
Selecting the result with the maximum stability is therefore
not sufficient, and a better criterion is needed.
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In [23], it was further claimed that stability can also be
incorrectly obtained when k is too high because the largest
cluster will always be split, see Fig. 2. However, there are
two reasons for this to happen that invalidate this claim. First,
the split happens simply due to the use of a wrong objec-
tive function. The example has one large elliptical cluster,
whereas optimizing our objective function would split it into
two spherical clusters with a stable result. In other words,
it can be modeled by three spherical clusters as well.

Second, it is true that the largest clusters will always be
split, but the result depends not only on which cluster is
split but also how the split is done. Consider the other two
rightmost examples in Fig. 2 where one of the clusters is
bigger either by its size or density. The way the cluster is split
depends arbitrarily on the random subsampling. A proper
external index should react to this and provide an unstable
result. There is an exception in one-dimensional cases, where
density varies but there is no spatial freedom to split the
cluster differently [23]. However, it is unlikely that this kind
of special case would happen in higher dimensions because
there is significantly higher spatial freedom for splitting.

A. ADDING RANDOMNESS
Randomness can be created in one of the following ways:

1. Random subsampling [17], [18], [29]
2. Adding random noise [25], [26]
3. Randomizing the algorithm [24]

The most common approach is to create a number of sub-
sets through Monte Carlo subsampling [15], where the size
and the number of subsets are parameters. The size of sub-
sets should not be too high (close to 100%) in order to
create significant variation between the subsets. Otherwise,
the clustering algorithm may always produce the same result,
which always indicates stability [24]. Too low of a sampling
rate, on the other hand, can break the structure in the data,
as shown in Fig. 3. In the literature, choices between 20%
and 80% have been considered, but no systematic comparison
has been reported. At minimum, the following values have
been considered: 50% [28], 80% [17], 33.3% [21], 33%,
60% and 67%, depending on the dataset [18], 50% for 2-fold,
and 20% for 5-fold [9], [19].
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FIGURE 3. Dataset spirals and its subsets with 60% (middle) and 20%
(right) subsampling.

Bootstrapping was used in [42] and also mentioned in [24],
but has not been studied further. It is essentially the same
as random subsampling, but it allows the same object to be
chosen multiple times. However, it does not remove the prob-
lem of how to select the sampling rate, which is a trade-off
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between having no effect on the clustering results (too high)
and breaking the structure of the data (too low).

The second approach is to add noise to the data by perturb-
ing each individual data object [25], [26]. A noise vector with
random orientation is generated, but its magnitude depends
on the data and is not trivial to set. In [26], the magnitude
of noise is derived based on k-nearest neighbors. In [25],
a random Gaussian noise with zero mean and fixed standard
deviation 0.15 was added to the data. The standard deviation
was estimated according to the median standard deviation of
the log-ratios for single genes.

The third approach is to randomize the algorithm. Ran-
domness of k-means initialization was studied extensively
in [24]. It was observed that the clustering result tends to
be unstable when there are too many clusters, and stable
with high probability when the correct number of clusters
is applied. In the case of too few clusters, both stable and
unstable situations were reported, similarly to Fig. 2. How-
ever, these analyses were conducted using an algorithm called
idealized k-means, which uses a better initialization than the
standard random initialization of k-means. It was reasoned
that an inconsistent clustering algorithm is completely unre-
liable and should not be used. We fully agree with this and our
observations support it; k-means is not suitable for random-
ization and therefore another more stable algorithm should be
used.

B. CROSS-VALIDATION STRATEGY

Depending on the randomization strategy, there are several
alternatives for comparing the clustering results. If we use
noise addition or randomized algorithm approaches, we can
compare the full sets directly using any external index. If the
subsampling approach is selected, there are some limitations
on what to compare.

Subsampling produces subsets with different sets of
objects. Most external indices are based on object-level oper-
ations and cannot therefore be applied directly because they
require having exactly the same set of objects. It is possible
to limit the comparison to the objects that are in both of
the subsets. However, the danger is that too small a size of
intersection may not reflect the real similarity of the sub-
sets. With an 80% subsampling rate, we have, on average,
0.8 x 0.8 = 0.64 shared objects, but with a 20% rate, there
are only 0.04.

The second solution is to apply a cluster-level index such
as centroid index [30], which is independent of the data
used to produce the clustering solution. It analyzes how
many centroids are differently located in the two solutions.
It produces a clear CI=0 value when the clustering structures
are identical. It is directly applicable with any model-based
clustering, and applies to all the randomization strategies
discussed. Other possible alternatives would be the density
profile approach [43] for density-based clustering, and the
spatially-aware method [44], which uses reproducing kernel
Hilbert Space (RKHS) to represent each cluster as a single
vector. We use the centroid index because of its simplicity.
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FIGURE 4. Cross-validation technique (CV); clustering solution of a full
dataset is compared with the clustering solution of its subset (above). The
process is repeated for a number of subsets (below).

The third solution is to predict the missing partition labels
in the full set by nearest neighbor mapping based on the
cluster centroids [19]. After that, the clustering solution of
any subset can be compared to any another. An even simpler
variant is to compare the clustering result of a subset to that of
the full set by limiting the comparison to the objects that are in
the subset [18], [20], [27]. This approach is the most popular
in the literature, and we use it as our baseline in the rest of
the paper. We refer to these approaches as cross-validation
strategy. The baseline variant using the subsampling strategy
is outlined in Fig. 4.

C. SELECTING THE NUMBER OF CLUSTERS

Most external indices return a similarity value in the range [0,
1]. We study next how we can conclude from these values that
two clustering solutions are the same, and that the clustering
solution for the given value k is therefore stable. In the
following, we consider three approaches (two global, one
local) how to select the best &:

1. Maximum stability

2. Normalized maximum stability

3. Last local maximum (proposed)

Almost all of the literature relies on the maximum stabil-
ity approach, as follows. The cross-validation approach is
repeated by applying clustering with all potential number
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of clusters k €[kmin, kmax]. We denote the mean value of
the validity index for k clusters as ;. The maximum stabil-
ity approach uses the mean values to select the number of
clusters:

k = arg max(l) @)
J

In principle, the goal is to compare the underlying statis-
tical distributions of the index values and to conclude which
value of k provides the strongest evidence of stability. Statis-
tical testing of the full distribution could be used instead of
only comparing the mean values.

Data set Null reference

Cross
validation

Cross
validation

Validity value
[0, 1]
FIGURE 5. Finding the strongest evidence against the null hypothesis by

evaluating the difference between the mean index values for a dataset
and its null reference.

The normalized maximum stability approach (see Fig. 5)
selects the number of clusters as the maximum difference in
the mean stability values of the data (/) and the corresponding
value (Ip) of the null reference, which is a random dataset
drawn from the original data (this is discussed in more detail
in section 2.4) [11, 20]:

k = argmax(l; — I})) 3)
J

This approach is referred to as normalization with regard
to the number of clusters [24]. The reason for this is that the
stability value depends on k, regardless of the underlying data
structure. For example, the stability of clustering results for a
random uniform dataset decreases as the number of clusters
increases. This bias should be removed, and then the same
equation (2) should be used. This approach is also used in the
gap statistics index [41].

We consider next a new alternative, which involves select-
ing the last local maximum of the index value. The only
existing method which uses this approach was proposed
in [22]. The idea arose from the examples in Fig. 2 and the
observation made in [24] that stability can also be observed
when there are too few clusters, but rarely when there are too
many clusters. Thus, instead of finding which value of k pro-
vides highest stability, the method now tries to determine the
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highest value of k that provides a stable clustering solution:

k = argmax(l; > Ijyand Iy < I; > Ij11) “4)
J

For this, a threshold (/;,) is needed to decide the point at
which an index value is considered stable. Using the centroid
index [30], we can interpret CI=0 as stable, and CI>0 as
unstable. For all other indices, we set the threshold value at
0.9 throughout this paper. All indices are normalized to [0, 1];
therefore, considering a constant threshold is reasonable. This
selection seems robust for the datasets used in this paper, but
the downside is that it adds a new control parameter to the
process.

D. NULL HYPOTHESIS

We study next the theoretical background of normalization
to better understand why it has been considered. Originally,
null hypothesis Hp assumes that the data is random and
there are no clusters: k = 1 [8], [11], [15]. Acceptance or
rejection of this hypothesis is based on statistical inference.
The alternative hypothesis A1 assumes a specific structure in
the dataset, for example, k = 3.

In the stability-based method, H; corresponds to X, and
Hy corresponds to a null reference Xy, which is a dataset
with the same parameters and dimension as X, but its points
are randomly sampled from a uniform or normal distribu-
tion [11]; see Fig. 6. The null reference based on uniform
distribution is generated by randomly sampling objects in the
range of the attributes of the original dataset. Sometimes, only
the relationships between the data objects are available by a
similarity matrix. In this case, the null reference is produced
by randomly generating the matrix with the values in the
range of minimum and maximum similarity values between
the objects in the original dataset [45].

FIGURE 6. Dataset S7 (left), and the corresponding null reference (right).

Cross-validation is separately performed for X and its null
reference X( using a large number of repeats. This results
in two probability density functions (PDF) of the index I,
corresponding to H; and Hp. These are considered to be
random variables; see Fig. 7 for a theoretical example. The
goal is to analyze whether there is statistically significant
evidence that the two distributions are different.

A practical example is shown in Fig. 8. We generated a
uniform null reference for the dataset in Fig. 1, and produced
100 subsets with the sampling rate of 20%. The histograms
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FIGURE 7. Hypothesis testing; PDF of H, corresponds to X, and PDF of
H, corresponds to X.
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FIGURE 8. Null hypothesis testing for the dataset in Fig. 1 for k = 5 and
k = 8. The PDF of the dataset differs significantly (with respect to ARI)
from the null hypothesis only with the correct k value (below).

are the cross-validation values I both for the data (black) and
its null reference (gray). In the case of k = 5 (left), there
is a clear distinction between the two histograms, whereas
with k = 8 there is no significant difference between the
histograms.

Statistical analysis can now be performed to figure out in
which k the PDF of H; provides the strongest significant
evidence against Hy [11]. The basic approach is to first select
a significance level (e.g. 5%), and then find values T} and 7>
so that 5% of the points in the distribution have values smaller
than T, and 5% are larger than 7>, respectively. The number
of datasets X for which I > T, are counted as p;, where the
total number of them is P. H| is accepted if p{/P is larger than
a threshold, for example 0.9.

E. CLASSIFICATION-BASED APPROACH

The ideas from supervised learning have also been used to
evaluate the stability of clustering results in terms of their
reproducibility [11]. The data, in P independent iterations,
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FIGURE 9. One iteration of the classification-based (CB) approach
(above). The process is repeated by randomly generating several training
and test sets (below).

is randomly divided into two disjoint sets, a training set X;"
and a test set X/¢, where i € [1, P]. Clustering is applied to
both X!" and X/ to produce partitions ¥;/" and Y/¢. Another
partition Yi/’e is then predicted for X/¢ using a classifier trained
on (X/", Y/") [11], [16]. The two partitions for the test set are
compared using an external index, see Fig. 9. The P index
values corresponding to P test sets are then averaged. The
process is repeated for the potential numbers of clusters in
the range k € [kmin, kmax]- The hypothesis is that the highest
stability (the average similarity between the two partitions of
the test set) is achieved for the correct number of clusters.

To derive the labels for the test dataset from the cluster-
ing solution of training dataset, a classifier, such as linear
discriminant analysis or k-nearest neighbor, is used for train-
ing [11], [19]. Selection of a good classifier is a challenging
problem. In theory, the classifier is never optimal. A classifier
can be derived based on the clustering process that has been
used, which leads to a smaller error than that of a general
classifier.

For example, the nearest neighbor classifier is suitable
for single-link clustering, and the nearest centroid classifier
is suitable for centroid-based clustering algorithms such as
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k-means [19]. In the case of model-based clustering, the
labels can be directly determined from the model obtained
in the training process without any classifier [16].

The size of training and test sets should be selected care-
fully. In classification, a larger portion of data is usually
considered for training. However, in the current problem,
considering more data for training might be problematic. For
example, in density-based clustering, different sizes of test
and training sets result in different densities, which might lead
to different clustering solutions (This will be discussed more
in the next section). In this case, training and test sets should
have the same size [9].

1

0.8
% o6b
= LT
= Classification-based
s 04 T PV R .
& Cross Valldatl_on

. (Normalized)
0.2+ : TN

> C;'I'a”séifiéa'tiérilb'as’éd' |
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2]

P B S W |
6 7 8 9 10 11 12 13 14 15
Number of clusters

FIGURE 10. Example of the stability-based method for the dataset

in Fig. 1. The size of subsets in the cross-validation approach and test sets
in the classification-based approach is 20%. Random swap algorithm is
used for clustering [39] and adjusted Rand index (ARI) for validation [31].

The normalization based on null reference as in (3) can also
be used for the classification-based approach. Fig. 10 shows
the results of cross-validation and classification-based
approaches with and without normalization for the dataset
in Fig. 1. The number of subsets is 100, each 20% of the
size of the full dataset in the cross-validation approach. The
percentages for the training and test sets in the classification-
based approach are 80% and 20%, respectively. Random
swap clustering algorithm [39] and adjusted Rand index
(ARI) [31] are used. The highest stability is found withk =5,
the correct number of clusters.

Ill. CLUSTERING AND VALIDATION
A. CLUSTERING ALGORITHM
A clustering algorithm should have two basic requirements to
be suitable for the stability-based method. First, the algorithm
itself should be stable so that it provides the same result when
applied several times to the same data or to several datasets
drawn from the same source [19]. Otherwise, one cannot
conclude whether the instability is caused by the artifacts of
the clustering algorithm or by the structure of the data.
Second, the objective function that the algorithm uses
must be suitable for the dataset so that it is able to find a
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Subset

Data set

Subset

.,

FIGURE 11. Datasets without structure; unstable clustering solution for a
spherical 2-D dataset (above), and stable clustering solution for a skewed
dataset (below) for k = 5.

good solution for the correct number of clusters. Otherwise,
it may provide different clusters than what the data contain.
For example, Fig. 11 (right) has one Gaussian cluster, but
k-means would detect five spherical clusters instead.

Existing clustering methods can be mainly classified
into four categories: Centroid-based, Distribution-based,
Density-based, and Connectivity-based. Most stability-based
approaches use k-means, which is the most well-known
centroid-based algorithm aiming at minimizing total squared
error (TSE or SSE) [46]. The result of the k-means algorithm
strongly depends on the initial choice of the centroids, and
it often terminates into a local minimum [37]. K-means is
therefore unstable and not suitable for the problem.

The unsuitability of k-means was also recognized in [6],
[23], [24], but very little attention was paid to how to resolve
the issue. In [23], it is simply assumed that a perfect clustering
algorithm is used and that it is merely a question of available
computational power. In [24], two alternatives were studied:
ideal k-means and actual k-means. The ideal k-means is also
based on the same assumption, which is that we have a perfect
algorithm. The actual k-means is not the original k-means,
but rather an improved variant that uses a better initialization.
This modification makes the algorithm less dependent on the
initialization and more stable, but the algorithm is still not
perfect.

Random swap (RS) [39] is a more stable, centroid-based
algorithm that iteratively changes the centroid locations
through a trial-and-error manner. Due to its ease of imple-
mentation and stable performance, we use it as our base-
line throughout the rest of this paper. Another possible
algorithm for spherical clusters is agglomerative cluster-
ing (AC) with proper merging criterion, such as Ward [38].
Efficient implementation in [48] also minimizes TSE and
it usually finds the correct clustering structure, but with
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minor inaccuracies near the cluster borders. This would
provide another suitable compromise of simplicity and sta-
bility. The best reported results have been obtained using
genetic algorithm (GA). The variant in [40] uses agglom-
erative clustering as genetic operations and k-means for
fine-tuning the results. Existing stability-based methods for
spherical clusters have used partitioning around medoids
(PAM) [11], repeated k-means [5], [29], competitive learn-
ing [5], bisecting k-means [10], and average-link agglomera-
tive clustering [17].

Distribution-based clustering assumes that the objects in
each cluster belong to the same probability distribution.
The most popular algorithm is expectation maximization
(EM) [49], which is analogous to k-means. Clusters are mod-
eled by a fixed number of Gaussian mixture models. The
algorithm iteratively improves the solution through a two-step
process. It was used in the stability-based method in [28].
The problem with EM is that it also depends on the initial
configuration. Better algorithms include split and merge EM
(SMEM) [50], genetic algorithm EM [51], and random swap
EM (RSEM) [52], which all aim at overcoming the problem
of local optima of EM.

Density-based clustering considers the clusters as more
dense areas than the rest of the data. Sparse objects are
usually considered as noise. DBSCAN [53] is one of the
most popular density-based algorithms. Its basic idea is to
create clusters from points whose neighborhood within a
given radius (eps) contains a minimum number (minPf) of
other points. The algorithm grows clusters from these points
by joining neighboring points within the eps distance. The
algorithm is simple, but the result strongly depends on its
parameters. The number of clusters is automatically derived
based on these parameters, and the algorithm performs poorly
when there are clusters with different densities in the data.
OPTICS [54] generalizes DBSCAN so that the parameter eps
is derived automatically. There are two main problems with
these algorithms. First, they select the number of clusters &
indirectly via the input parameters. Second, resampling the
subsets will produce different densities than in the original
data, and therefore would need different parameters for eps
and minPt. These make it difficult to use the density-based
algorithms in the stability-based methods.

Connectivity-based clustering aims at forming a few
arbitrary-shaped clusters by connecting nearby objects based
on their distance. Agglomerative clustering with single-link
and complete-link are two examples of connectivity-based
clustering. Single-link would work only if the clusters were
well-separated, but gives poor results otherwise. Numerous
other algorithms appear in the literature, but it is unclear
which one of them would actually work in practice.

In clustering, the main problem is that we usually do
not know what kinds of clusters are expected. We can still
apply total squared error criterion even if the clusters are not
spherical, and find the clustering solution that best fits to the
assumed model. It is expected that we will find the number
of clusters that best fits the selected model for this data.
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Fig. 11 shows an example where applying incorrect cluster
models results in a stability with higher number of clusters
than what is intuitive. The spherical cluster (left) is stable only
if kK = 1 but becomes unstable if k = 2. However, the Gaus-
sian cluster (right) will be stable for k = 5, indicating that
this is the most natural number of spherical clusters in this
data. The same results are provided by most internal indices
in [3], according to our tests. In [23], the cause is said to be
asymmetric structure. We say the cause is that different cluster
models are used than what the data would require.

B. EXTERNAL VALIDITY INDEX

External indices are categorized into pair-counting, infor-
mation theoretic, and set-matching measures [35]. Normal-
ization and correction for chance are desirable properties.
Normalization keeps the range of the index either in [-1, 1]
or [0, 1], which makes the values comparable across different
datasets. Correction for chance adjusts the expected value to
zero under normal distribution when random partitioning is
applied to the dataset [35].

Pair-counting measures include Rand index, adjusted Rand
index, Jaccard coefficient, Fowlkes-Mallows index, and sev-
eral others [55], [56]. They count the pairs of objects in the
dataset on which two different partitions agree or disagree.
For instance, if two objects are located in the same cluster,
or in different clusters in the two clustering solutions, it
is an agreement. Rand index is defined as the number of
agreements divided by the total number of pairs of objects.
Adjusted Rand index is the corrected form of Rand index [57]
for chance [31]:

RI — E(RI)
ARl = ————— &)
1 —E(RI)
where E(RI) is the expected value of Rand index. Adjusted
Rand index is the most popular index in this group.

Information theoretic indices include entropy, mutual
information, and variation of information [32], [33], [56].
Mutual information (MI) measures the information that two
clustering solutions share by summing up the shared infor-
mation between every two clusters:

kK

MP(P;, G) =YY " p(P;, Gj)log

i=1 j=1

p(Pi, Gj)

6
p(P)p(G)) ©

where p(P;), p(G)), and p(P;, G;) are estimated as n;/N, n;/N,
and n;/N, respectively. N is the size of dataset, P and G
are two clustering solutions of the dataset, n; and n; are the
sizes of clusters P; and Gj, and n;; is the number of shared
objects between two clusters. Variation of information (VI)
represents the distance between two clustering solutions, and
it is the complement of mutual information. Since there is no
upper bound for mutual information and variation of infor-
mation, normalization is needed [13]. It is shown in [35] that
NMI is equal to the similarity variant of adjusted variation
of information (AVlIs), the similarity variant of normalized
variation of information (NMlIs), and also adjusted mutual
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information:
AVIg = NVI; = AMI = NMI 7

Set-matching indices are based on matching the clusters
in two clustering solutions, where the similarity between
every two clusters is calculated according to a given measure.
We classify set-matching indices into two types: point-level,
such as Van Dongen [34] and pair set index (PSI) [35],
and cluster-level, such as centroid index [30]. Cluster-level
indices use only cluster prototypes in contrast to point-level
indices, which employ the labels of all objects in the resulting
partitions. PSI is defined as follows:

S —E(S) S > E(S)
Pl — max(k, k') — E(S) max(k, k') > 1
0 S < E(S)
1 k=k =1
min(k,k”) "
S = S R— 8
; max(n;, ;) ®

where i, j are the indices of paired clusters, and E(S) is
the expected similarity value when random partitioning is
applied.

Centroid index finds for every centroid in clustering solu-
tion P its nearest neighbor in clustering solution G. It then
calculates the number of times each centroid in G was chosen
as nearest, and then sums up the number of centroids that were
not chosen at all (indegree=0). These are called orphans:

k/
ClLil(p —> G) = Zorphan(Gi)
i=1

ChL(P, G) = max {CI1(P, G), CI1 (G, P)} ©)

Since the mapping from P to G is not symmetric, CI; is
defined by calculating the CI; measure in both ways.

Existing stability-based methods either define their own
index or employ a well-known external index such as
Rand [42], Fowlkes and Mallows (FM) [11], [29], or ARI [20]
to measure the stability. However, the indices are all similar
to the existing external indices. For example, the indices
in [9] and [19] are set-matching-based indices, corrected
for chance. Optimal pairing for two partitions is derived
and then the number of misclassified objects is calculated.
In [24], minimal matching distance is used, which is a set-
matching-based measure that assumes optimal pairing. The
figure of merit [18] is a pair-counting external index, which
counts the number of pairs of objects located in the same
cluster in both clusterings. Prediction strength [22] is similar
to the figure of merit, but the stability is measured only
according to the cluster in the test set that has the minimum
proportion of the pairs of objects. In [23], a measure called
Hamming distance is used, which is also a variant of pair
counting distance.
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TABLE 1. Summary of the datasets from http://cs.uef.fi/sipu/datasets.

Dataset N k d
S1- 84 5000 15 2
Iris 150 3 4
Unbalance 6500 8 2
Bridge 4096 1 16
Birchl 100,000 100 2
Birch2 100,000 100 2
G2-32d 2048 2 32
Unbalance?2 6500 8 2
Overlap 1000 6 2
Asymmetric 1000 5 2
Skewed 1000 6 2

IV. EXPERIMENTS

We arrange a set of experiments to answer the following
questions:

1. Which external index should be used, and how should &
be selected?

What is the effect of the sampling rate?

Which cross-validation strategy is best?

Should null reference be used or not?

Which clustering algorithm is best?

Nk

For the experiments, we use mostly controlled artificial
datasets with known ground truth. In this way, we have no
ambiguity about the structure and number of clusters or which
clustering method would be suitable. The problem with real
datasets is that they usually lack a natural clustering structure
and therefore one cannot draw reliable conclusions about the
methods for determining the number of clusters.

The programs for generating the subsets and performing
the clustering were implemented by C programming, and the
external indexes and stability measurements by MATLAB.

A. EXPERIMENTAL SETUP

1) EXTERNAL INDICES

We consider representative indices from the three categories
(see Section III.B) of external indices: RI, ARI, NMI, CI,
CSI, NVD, and PSI. All the indices are traditional point-level
indices normalized in the range [0, 1], except for CI, which
is a cluster-level index in the range [0, k]. For visualization
purposes, we normalize CI and convert it to a similarity
measure in the range [0, 1] using CIx =1-Cl/k. NVD is
also a distance measure. We consider 1-NVD as a similarity
measure in all the experiments. We use PSI as default index
in the experiments.

2) CLUSTERING ALGORITHMS

By default, we use the random swap (RS) algorithm [39], [58]
unless otherwise noted. We set the number of its iterations
to 5000 to make sure that the best possible clustering solu-
tion is achieved. To evaluate the impact of the algorithm,
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FIGURE 12. Stability results of cross-validation approach using various
indices.

we also consider k-means (KM) because of its popularity
and genetic algorithm (GA) because of its high clustering
accuracy. In GA, we have a population size of 20, which is
initialized randomly. Other parameters include the number of
generations (10), the number of k-means iterations for fine-
tuning (2), no mutations, and using the crossover method
proposed in [40]. This setting provides near optimal solutions
for all the datasets in our experiments.

3) DATASETS

Table 1 summarizes the 14 datasets used in our tests [36].
They have varying cluster overlap, dimensionality, and struc-
ture. S1-S4 are 2-d datasets including spherical and Gaus-
sian clusters with varying overlap. The Overlap dataset,

VOLUME 8, 2020



M. Rezaei, P. Frénti: Can the Number of Clusters Be Determined by External Indices?

IEEE Access

TABLE 2. Comparison of external indices when considering the global maximum and the last local maximum. The numbers shown are the resulting
number of clusters (k). The emphasis (red color) shows when the index provides a wrong result.

Datasets
Birchl Birch2 Unbalance?2 Overlap Asymmetric Skewed G2-32d
100 100 8 6 5 6 2
Global maximum
RI 99..105 100 8 5 2 2 2
ARI 100 100 8 5 2 2 2
NMI 100 100 8 5 2 2 2
PSI 100 100 3 5 2 2 2
NVD 100 100 8 2 2 2 2
CSI 100 100 8 2 2 2 2
Cl 100 92, 100 2 2 2 2 2
Last local maximum
RI 100 100 19 5 18 15 2
ARI 100 100 8 5 7 5 2
NMI 100 100 8 5 5 4 2
PSI 100 100 8 5 5 5 2
NVD 100 100 8 5 5 6 2
CSI 100 100 8 5 5 6 2
Cl 100 100 11 6 13 15 2
Datasets
S1 S2 S3 S4 Iris Unbalance Bridge
15 15 15 15 2 8 2
Global maximum

RI 15 2,15 15 15 2 2,8 2
ARI 15 2 4 2 2 2,8 2
NMI 15 2 15 15 2 2,8 2
PSI 15 2 4 2 2 2,8 2
NVD 15 2 3,4 2 2 2,8 2
CSI 15 2 3,4 2 2 2,8 2

CI 2.9,14,15 2.15 2..10, 14,15 1221?5 2,34 2,3,4,5,7,8 2.6

Last local maximum

RI 15 15 23 19 2 17 27
ARI 15 15 15 15 2 8 2
NMI 15 15 15 15 2 8 2
PSI 15 15 15 15 2 8 2
NVD 15 15 15 15 2 8 5
CSI 15 15 15 15 2 8 5
CI 15 15 15 15 4 8 6

however, contains more overlapping clusters, and it is more
challenging. The Unbalance dataset has three big clusters,
each with a size of 1000 and five small clusters, each with
a size of 100. Unbalance?2 is similar to Unbalance, but is
more challenging, where the five small clusters are close to
the big clusters. Iris is a small dataset with three clusters.
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Although Iris consists of three classes, the data is distributed
so that two spherical clusters would be detected. Thus, k = 2
is considered as the correct result. The Bridge dataset has
4 x 4 non-overlapping vectors taken from a 256 x 256
gray-scale image without visible clusters. Since the selected
stability-based methods are used to find k >=2 clusters,
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TABLE 3. Comparison of two cross-validation strategies vs. classification-based approach vs. randomized algorithm (R.A.) with different number of

iterations
Datasets
Birchl Birch2 Unbalance2 | Overlap |Asymmetric| Skewed G2-32d
100 100 8 6 5 6 2
Cross-valid. (FULL) 100 100 8 5 5 5 2
Cross-valid. (SUB) 100 100 8 5 5 3 2
Classification-based 100 100 8 5 5 5 2
RA. (1) 1 1 10 18 19 19 2
R.A. (10) 1 1 3 17 19 17 2
R.A. (100) 98 1 8 15 17 18 2
R.A. (1000) 100 100 14 16 19 19 2
R.A. (5000) 100 109 19 17 17 19 2
Datasets
S1 S2 S3 S4 Iris Unbalance Bridge
15 15 15 15 2 8 2
Cross-valid. (FULL) 15 15 15 15 2 8 2
Cross-valid. (SUB) 15 15 15 15 2 8 2
Classification-based 15 15 15 15 2 8 2
RA. (1) 1 4 4 2 3 2 5
R.A. (10) 5 16 10 2 3 4 10
R.A. (100) 16 16 15 19 5 17 9
R.A. (1000) 19 16 22 22 6 17 10
R.A. (5000) 19 16 24 24 6 17 8
the smallest possible result, k = 2, is considered as the correct S1
result for the Bridge dataset. Birchl and Birch2 include 100 1
well-separated spherical clusters. The G2-32d dataset has the : Randomized
dimensionality 32, and contains two clusters (1024 points 0.9 . Algorithm |
each). Asymmetric includes five clusters, where two groups = =
of two clusters and three clusters provide an asymmetric o 08f
structure, which can be challenging for the stability-based E .
approach. Dataset Skewed has six oblong clusters. ;‘a 0.7} Cross validation
h
4) SUBSAMPLING [0 )] S ..Classification-based
We generate 100 subsets from each dataset by random inde-
pendent subsampling. The same subsets are used both in 05 5 10 15 20 25
the cross-validation and as test sets in the classification- Number of clusters
based approach in all experiments. The rest of the data U
.. nhbalance
(the complement of each subset) are used as a training set 1 .
in the classification-based approach. We similarly gener- Randomized
ate 100 subsets as the uniform null references of datasets. 09 AIgO|tm ]
We consider the sampling rates 5%, 10%, 20%, 40%, —_ . %
and 80%. By default, we use 20%. Do :
£ _
B. COMPARISON OF EXTERNAL INDICES % 0.7 Ny
We compare the performance of external indices using the &
subsampling-based cross-validation approach. We consider 06
both the global maximum and the last local maximum Classification
. hased
approaches (with threshold 0.90). 05 : . 15 0

Fig. 12 shows the average index values for selected
datasets, and Table 2 records the number of clusters detected.
The first observation is that the choice of index for the last
local maximum approach is not very important. Almost all
the indices manage to find the correct result for most datasets.
The only exception is RI, which fails in 57% of cases.
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FIGURE 13. Comparison of three approaches: cross-validation,
classification-based, and randomized algorithm.

The scale of CI is much rougher than the other indices.
It always finds maximum stability for the correct number
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TABLE 4. Cross-validation approach without and with null reference: Global = global maximum, Local = last local maximum.

Datasets
Birchl Birch2 Unbalance2 Overlap Asymmetric Skewed G2-32d
100 100 8 6 5 6 2
Without 100 100 8 5 5 5 2
Local 100 108 16 1 5 5 2
Global 100 100 2 3 5 3 2
Datasets
S1 S2 S3 S4 Iris Unbalance Bridge
15 15 15 15 2 8 2
Without 15 15 15 15 2 8 2
Local 14 14 7 14 3 8 28
Global 6 7 3 14 3 8 3

o
w

o
)]

Stability (PSI)

Difference

10 15
Number of clusters

20 25

FIGURE 14. Comparing cross-validation approach without and with
normalization using null reference.

of clusters, but also several others when there are too few
clusters.

The second observation is that the global maximum cri-
terion fails in many cases. It either detects multiple global
maxima (especially with CI), or detects a solution with too
few clusters. The last local maximum criterion works better in
this sense. Most of the indices fail to find the correct number
of clusters for the Overlap and Skewed datasets. The prob-
lem is that the employed clustering method cannot find the
clusters correctly both for original datasets and their subsets.
The reason is that there is too much overlap between clusters
for the Overlap dataset, and the wrong clustering method is
employed for the Skewed dataset. The problem with asym-
metric datasets (Asymmetric and Unbalance), as discussed
in Section 2, has been solved by employing the last local
maximum criteria.

C. CROSS-VALIDATION STRATEGY
We next compare two cross-validation strategies with the
classification-based approach. The results for two selected
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datasets are plotted in Fig. 13. They show the same trend for
both cross-validation (subset-fullset) and classification-based
approaches with only slight differences.

To compare the clustering results of two subsets, we predict
the labels of their full dataset using nearest centroid mapping.
We then compare the resulting clustering solutions of the
full dataset. Table 3 shows that there is no difference in
the performance of the two cross-validation strategies and
the classification-based approach when using the last local
maximum criterion. The global maximum criterion results in
the same errors as in the previous experiment.

We also tested randomization of the algorithm. Instead
of k-means, we use random swap, which is a more robust
algorithm. We study the level of randomness by setting 1,
10, 100, 1000, and 5000 iterations. The correct clustering
solution is found for a few datasets, but with a different
number of iterations: 10 (G2-32d), 100 (S3), or 1000 (Birchl
and Birch2). Fewer iterations would cause more random-
ness, which potentially allows for detection of the number
of clusters via stability. The results for the datasets S/ and
Unbalance (100 iterations) in Fig. 13 show the low per-
formance of this approach. Both the global maximum and
the last local maximum result in an incorrect number of
clusters.

The results of the randomized algorithm in Table 3 show
that it rarely works. Correct results are found only for G2-32d,
Birchl, and Birch2, but only if the number of iterations is set
properly as being slightly less than what would be required
to find the optimum solution. Too few iterations cause too
much randomness, and stability will not be achieved even
with the correct number of clusters. Too many iterations,
on the other hand, allow the algorithm to find the same
well-optimized clustering solution regardless of the initializa-
tion. Even with too many clusters, there is usually a unique
global minimum that the algorithm finds. The fundamental
problem with this approach is that the randomization caused
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TABLE 5. Comparison of clustering algorithms by using PSI

Datasets
Clustering Birchl Birch2 Unbalance2 Overlap Asymmetric Skewed G2-32d
algorithm
100 100 8 6 5 6 2
RS 100 100 8 5 5 5 2
GA 100 100 8 5 5 5 2
KM 109 1 9 5 2 3 2
Datasets
Clustering S1 S2 S3 S4 Iris Unbalance Bridge
algorithm
15 15 15 15 2 8 2
RS 15 15 15 15 2 8 2
GA 15 15 15 15 2 8 2
KM 16 18 15 16 2 4 2
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FIGURE 15. Comparison of k-means with two good algorithms: random
swap and genetic algorithm.

by an algorithm creates less predictable artifacts than the
subsampling approach.

D. NULL REFERENCE

We next test the normalization based on the null refer-
ence as used in (3). We report the results both using the
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last local maximum and the global maximum criteria with
the threshold 0.2. The results in Fig. 14 reveal that the
stability value, when using the null reference, does not
monotonically decrease as expected, but it fluctuates; only
the magnitude of the fluctuation decreases with the number
of clusters. The overall results (the difference) are negatively
affected by the fluctuation and lead to more confusion about
the optimal number of clusters for 10 datasets, as shown
in Table 4.

E. CLUSTERING ALGORITHM

In this experiment, we compare the performance of three
clustering algorithms:

1. Random swap (RS)

2. Genetic algorithm (GA)

3. K-means (KM).

K-means [59] is by far the most popular algorithm used in
the literature, and is basically the only one previously consid-
ered for the stability-based approach in literature. In addition,
we select two algorithms that are proven to be excellent
in minimizing SSE. Genetic algorithm [40] has consistently
outperformed other algorithms [30] and serves as the state-
of-the-art. Random swap serves as a compromise between
quality and simplicity: it is almost as easy to implement as
k-means, but it provides virtually the same clustering result
as GA if iterated long enough.

The results for the datasets S1 and Unbalance in Fig. 15
show that k-means results in lower stability values, which
originates from the instability of the algorithm. This shows
that the problem of evaluating the stability related to the
structure of the data is mixed with the instability of the
clustering algorithm. Therefore, wrong conclusions may be
derived due to the choice of a bad algorithm.

To determine the number of clusters, we use the last local
maximum criterion with the threshold 0.9. The difference
between RS and GA (see Fig. 15) is so small that we expect
some other good algorithm, like agglomerative, to be suitable
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TABLE 6. Impact of sampling rate on the cross-validation approach. The sampling rate starts from 5%, and is then doubled until it reaches 80%.

Datasets
Sampling Birchl Birch2 Unbalance?2 Overlap Asymmetric Skewed G2-32d
e 100 100 8 6 5 6 2
5% 100 100 8 1 5 2 2
10% 100 100 8 5 5 3 2
20% 100 100 8 5 5 5 2
40% 100 100 10 5 5 6 2
80% 100 100 13 5 9 15 2
Datasets
Sampling S1 S2 S3 S4 Iris Unbalance Bridge
rate 15 15 15 15 2 8 2
5% 15 15 1 1 1 8 2
10% 15 15 15 15 2 8 2
20% 15 15 15 15 2 8 2
40% 15 15 15 15 2 8 5
80% 15 13 15 17 2 8 8

as well. However, k-means is much more problematic. First,
it hardly works at all with the same 0.9 threshold. Second,
even after tuning the threshold to have more suitable value
(0.7), it still fails with 10 datasets out of 14 (see Table 5 ).

We conclude that the choice of the algorithm is not critical
as long as a good algorithm (RS or GA) is chosen. K -means,
however, is inferior and should not be used.

F. IMPACT OF SAMPLING RATE

We test the impact of sampling rate on the performance
of the cross-validation approach by generating subsets with
several sampling rates including 5%, 10%, 20%, 40%, and
80%. A low sampling rate may cause too many changes in
the structure of the data, whereas a high sampling rate may
result in too few changes. The results in Table 6 show that
the subsampling rates 10%, 20%, and 40% provide similarly
good results. The low subsampling rate 5% causes an error
for S3, S4, and Iris, and the high sampling rate 80% causes
an error for the S2, §4, Unbalance?2, and Asymmetric datasets.
We recommend a subsample size of 20% merely because it is
the safest choice.

G. SUMMARY OF THE RESULTS
Based on the best components found in the previous experi-
ments, we construct the following combination:

« Random swap algorithm

Cross-validation with 10 subsamples of size 20%
Adjusted Rand Index (ARI) for cluster validation
No normalization

Last local maximum
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StabilityApproach(X, kmax) = k

best « 1

m «~ 10
S « 0.20
t «~ 0.90

FORi=1TOm
XSJi] « RandomSubsample(X, s)
FOR k =2 TO kmax

P < RandomSwap(X;, k)
FORi=1TOm

Q <« RandomSwap(XSJi], k)
arifi] <« AdjustedRand(P, Q)

ARI « SUM(ari[i]) / m
IF ARI >t THEN best « k

RETURN best

RandomSwap(X, k) —> C, P

T « 5000

C « Select random centroids(X, k)

P « Optimal partition(X, C)

FORi=1TOT
(C"™j) < Swap(X, C)
P «— Local repartition(X, C"", P, j, k)
Cnew Pne¥ « k-means(X, C™V, PV, k)
IF MSE(C"¥, P"") < MSE(C, P) THEN

(C, P) <« Cnew, Pnew
RETURN C, P

FIGURE 16. Pseudo code of the recommended combination.
The pseudo code of the recommended method is shown

in Fig. 16. We compare its performance against selected
existing stability-based approaches and few internal indices.
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TABLE 7. Selected stability-based methods for the comparison.

Method
Parameter
Clest [11] Prediction Strength [22] | Stability method [19] Figure of Merit [18]
Randomness Subsampling Subsampling Subsampling Subsampling
Cross-validation Classification-based Classification-based Classification-based Cross validation
strategy (subset-fullset)
Normalization Based on ) Based on random )
Null reference labeling
External index Fowlkes and own index own index own index
Mallows
Clustering algorithm PAM k-means k-means Free depending on dataset
Selection Global Last maximum Global Observation
TABLE 8. Results of the stability-based methods.
Datasets
Birchl Birch2 Unbalance2 Overlap Asymmetric Skewed G2-32d
100 100 8 6 5 6 2
Clest N/A N/A 3 5 2,5 3 2
Pred. Strength 1 1 2 3 2 2 2
Stab. Method 105 107 4 15 2 3 2
Figure of Merit 100 100 13 16 17 20 2
Recommended 100 100 8 5 5 5 2
Datasets
S1 S2 S3 S4 Iris Unbalance Bridge
15 15 15 15 2 8 2
Clest 15 15 15 15 5 9 4
Pred. Strength 1 4 4 2 2 2 2
Stab. Method 17 2 2 17 2 2 2
Figure of Merit 15 16 15 20 2 18 4
Recommended 15 15 15 15 2 8 2

The chosen stability-based methods and their components
are summarized in Table 7. We use their original components
with two exceptions. For consistency, we use nearest centroid
classifier for all classification-based methods. In [18], dif-
ferent clustering algorithms were assumed to be used based
on their suitability for the given dataset. We use random
swap [39], as it is the recommended choice for centroid-based
clustering.

The results are summarized in Tables VIII and IX. The
recommended method provides the correct result in 12 out
of 14 data sets. The corresponding numbers for Clest [11],
Pred.Strength [22], Stab.Method [19], and figure of merit [18]
are 7, 3, 3, 6, respectively. Clest works well for G2-32d, and
S1-S4, but fails with other datasets. It uses the PAM algo-
rithm, which is very slow and cannot therefore be applied to
the large datasets (Birchl and Birch2). The three other meth-
ods [18], [19], [22] perform poorly. Even if we changed all
other parameters (randomness, algorithm, selection) to what
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we recommend, they would still fail. These work as well as
the recommended method after changing their indices to PSI,
which shows that the external indices used in these methods
are not suitable for the task.

To compare the stability approach with the method based
on internal indices for determining the number of clusters,
we apply three well-known internal indices: WB index [3],
Silhouette coefficient (SC) [60], and Calinski-Harabasz
(CH) [61]. Although CH provides the correct results in more
cases, they all perform reasonably well in general. These
methods seem to be better choices because they are relatively
simple to implement and do not have any tuning parameters
whatsoever. The stability-based methods are also more time
consuming, as the clustering needs to be repeated; we have
applied 100 repeats.

A few examples of failed cases are collected in Fig. 17.
In some cases (Clest, Prediction Strength), the problem
is the methods find most stable clustering with too few
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TABLE 9. Results of the internal indices: CH [61], SC [60], WB [3].

Datasets
Birchl Birch2 Unbalance2 Overlap Asymmetric Skewed G2-32d
100 100 8 6 5 6 2
CH 100 100 8 6 5 20 2
SC 100 100 8 5 2 2 2
WB 100 100 8 6 5 20 2
Datasets
S1 S2 S3 S4 Iris Unbalance Bridge
15 15 15 15 2 8 2
CH 15 15 15 15 3 8
SC 15 15 15 15 2 2 2
WB 15 15 15 15 6 8 3
Clest on Asymmetric Pred. Strength on Unbalance2 Stab. Method on S1

Figure of Merit on Skewed

Recommended on Overlap

k=20 k=5

FIGURE 17. Examples of cases when the stability-based methods fail to identify the correct number of clusters. The internal indices WB

and CH can find the correct k=6 for Overlap dataset.

clusters (k = 2). In these cases, the last local maximum strat-
egy works better. In the case of the stability method, the prob-
lem is k-means. It happens to be slightly more stable with
k=17.

The other two cases are even more challenging. First,
the skewed dataset follows a different model than what SSE
tries to capture. Figure of merit finds the most stable result
with k = 20; the same as what is obtained by the best internal
indexes (CH, WB). All other methods also fail with this data.
Overlap is another dataset for which all the methods fail. The
recommended method and Clest detects k=35, as they only
miss the slightly denser cluster, which is hardly visible in the
middle left. Among the internal indexes, CH and WB manage
to correctly find k = 6.

VOLUME 8, 2020

V. CONCLUSIONS
We have performed a systematic study to find out whether
the stability-based approach can be used for determining the
number of clusters. The simple answer is that, yes, it is pos-
sible. We found no fundamental obstacle to using it in cases
of spherical clusters, assuming that we know the type of data
beforehand and fix the cluster model accordingly. However,
even then, we get good results only when using the correct
components with proper parameters. By applying an inferior
algorithm (k-means), bad sampling rate (5%), normalization
(null reference), or ineffective validation index (Rand index),
the stability-based approach would not work.

For the individual components, we discuss the choice of
the components below in more detail:
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1) The exact choice of the cross-validation strategy is not
critical. Most indices cannot compare the subsets directly, but
comparing a subset to the full set works just fine. Random
subsampling is suitable and there is no need to consider
other approaches. Our results show that the size of the subset
from 10% to 40% is fine. Among the other cross-validation
strategies, the classification-based approach adds an extra
design question, which is predicting the labels for the missing
points. Randomizing the algorithm is not recommended since
it gives poor results, even when using a stable algorithm.

2) To select the number of clusters, maximum stability
criterion has been mostly used in the literature. However,
we have shown that it is not reliable. Instead, we recommend
using the last local maximum criterion.

Normalization based on the null reference works worse
in most cases. It does not bring enough extra insight into
the process, but adds more randomness, which is actually
harmful.

3) The choice of external index is not critical. Our results
show that any good external index (PSI, ARI, NMI, NVD,
CSI) works and that there is no significant difference between
them. Only a simple index like Rand index had a negative
impact on the result, and should therefore not be used.

4) The choice of the clustering algorithm has a significant
effect on the result. We confirm the concern made in [6], [23]
that stability-based methods fail when using an unstable algo-
rithm like k-means because it is not stable even with the
correct number of clusters. We tested random swap (RS) and
genetic algorithm (GA), which both work well. A perfect
algorithm as assumed in [23] is not necessary, but some-
thing better than the modified k-means variant as in [24]
is necessary. We expect that other good algorithms, such as
agglomerative clustering (AC), might also work well enough.
We leave it for future research to study the stability of the
algorithms more extensively.

Using the above guidelines, the stability-based approach
can work with reasonable efforts. Despite the positive results,
we encountered several challenges that might cause problems
when applying the method in different contexts than what we
studied here. We briefly discuss them next.

The method has two parameters to set: the sampling rate
(20%) and the threshold of the last local maximum crite-
rion (0.90). Too low (5%) or too high (80%) of a sampling
rate makes the method fail for some datasets. The suitable
range and recommended value of 20% seem a safe choice,
but they are still parameters, and it remains an open question
as to how well they generalize to other types of data.

Another difficulty is that the clustering result does not
depend only on the algorithm, but also on the objective func-
tion that it uses. If we know that the clusters are spherical,
then using SSE as an objective function works just fine. If we
have Gaussian clusters, then we should optimize the Gaussian
mixture model. Random swap variant of EM [52] has worked
well in our tests in [62]. For more complex data types like
clusters with varying densities, arbitrary shapes, or nested
clusters, we do not even know which objective function would
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work well enough. According to the results presented in the
literature, algorithms like DBSCAN and single-link work
poorly [63]-[65].

A much bigger problem is that clustering is a type of
exploratory data analyses and we do not usually know
whether the clusters are spherical, Gaussian, arbitrary shaped,
or mixed type. We have shown that the stability-based
approach works if all its components, including the clus-
ter model for the data, are selected correctly. Slight devi-
ation from the recommendation can make the system fail.
It is therefore not expected that the stability-based approach
would generalize to unknown data where expected variations
in the data are much higher.
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