
Pattern Recognition Letters 128 (2019) 551–558

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Fast and general density peaks clustering

✩

Sami Sieranoja

∗, Pasi Fränti

School of Computing, University of Eastern Finland, Box 111, Joensuu FIN-80101, Finland

a r t i c l e i n f o

Article history:

Received 16 November 2018

Revised 7 August 2019

Accepted 18 October 2019

Available online 19 October 2019

Keywords:

Data clustering

Density peaks

k-nearest neighbors (kNN)

Large-scale data

a b s t r a c t

Density peaks is a popular clustering algorithm, used for many different applications, especially for non-

spherical data. Although powerful, its use is limited by quadratic time complexity, which makes it slow

for large datasets. In this work, we propose a fast density peaks algorithm that solves the time complexity

problem. The proposed algorithm uses a fast and generic construction of approximate k-nearest neighbor

graph both for density and for delta calculation. This approach maintains the generality of density peaks,

which allows using it for all types of data, as long as a distance function is provided. For a dataset of

size 10 0,0 0 0, our approach achieves a 91:1 speedup factor. The algorithm scales up for datasets up to 1

million in size, which could not be solved by the original algorithm at all. With the proposed method,

time complexity is no longer a limiting factor of the density peaks clustering.

© 2019 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1

i

o

a

[

d

t

l

m

s

g

a

t

t

b

s

w

t

r

w

i

t

s

A

t

b

n

v

p

r

o

a

s

w

d

i

t

s

c

b

h

0

. Introduction

Clustering algorithms aim at grouping points so that the points

n the same group are more similar to each other than points in

ther groups. Clustering can serve as an efficient exploratory data

nalysis tool in the fields such as physics [1] and bioinformatics

2] , or as a preprocessing tool for other algorithms in e.g. road

etection [3] and motion segmentation [4] .

Traditional clustering methods like k-means are constrained

o cluster data with spherical clusters. Since the clusters in real

ife data are not always restricted to follow spherical shapes, new

ethods have been introduced to cluster data having arbitrary

hape clusters. These include density based clustering [2,5,6] ,

raph based methods [1,7,8] , exemplar based clustering [9–11] ,

nd support vector clustering [12,13] .

In this paper, we focus on the Density peaks (DensP) [6] clus-

ering algorithm, which detects clusters based on the observation

hat cluster centers are usually in dense areas and are surrounded

y points with lower density. The algorithm first calculates den-

ities of all points, and then the distances to their nearest point

ith higher density (delta). The cluster centers are selected so that

hey have a high value of both delta and density. After that, the

emaining points are allocated (joined) to the clusters by merging

ith the nearest higher density point.
✩ Handled by editor Andrea Torsello.
∗ Corresponding author.

E-mail address: samisi@cs.uef.fi (S. Sieranoja).

i

d

k

ttps://doi.org/10.1016/j.patrec.2019.10.019

167-8655/© 2019 The Authors. Published by Elsevier B.V. This is an open access article u
The algorithm has been widely used for many applications,

ncluding autonomous vehicle navigation [3] , moving object de-

ection [4] , electricity customer segmentation [14] , document

ummarization [15] and overlapping community detection [16] .

lthough being popular, its use has been limited by the O(N

2)

ime complexity. This slowness originates from two different

ottlenecks: the need to calculate density, and to find the nearest

eighbors with higher density. These make the algorithm slow for

ery large data sets.

Some attempts have been done to improve the speed of density

eaks. Wang et al. [14] use sampling with adaptive k-means to

educe the number of data points. Xu et al. [17] also limit the size

f data by using grid-based filtering to remove points in sparse

reas. They reported speed-up factors from 2:1 to 10:1 for data of

izes N = 50 0 0–10,0 0 0. However, both of these methods work only

ith numerical data, which reduces the generality of the original

ensity peaks algorithm.

In addition to speed-up, there have also been attempts to

mprove the quality of density peaks. This has two major direc-

ions: using different density function [18–21] , and using different

trategies to allocate the remaining points to the clusters [20–22] .

In the original density peaks algorithm, the densities are cal-

ulated by using a cut-off kernel , where neighborhood is defined

y a given cutoff distance (dc). This defines a dc -radius hyper ball

n the D -dimensional space. The algorithm then counts how many

ata points are within this ball.

Several authors have suggested alternatives to the cut-off

ernel. Mehmood et al. [18] use a kernel variant based on
nder the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.patrec.2019.10.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2019.10.019&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:samisi@cs.uef.fi
https://doi.org/10.1016/j.patrec.2019.10.019
http://creativecommons.org/licenses/by/4.0/

552 S. Sieranoja and P. Fränti / Pattern Recognition Letters 128 (2019) 551–558

r

i

o

t

v

2

i

a

l

t

w

W

b

h

h

h

m

h

p

s

T

g

o

t

t

l

d

(

u

2

i

m

c

e

T

w

d

a

d

l

w

f

s

T

f

s

d

e

k

o

a

r

heat-diffusion. Du [19] , Xie et al. [20] and Yaohui [21] all use a

combination of exponential kernel and k nearest neighbors.

Xu et al. [22] proposed a novel joining strategy based on

support vectors. Xie et al. [20] allocates the points using k nearest

neighbors. The points are processed by a breadth first search

starting from the cluster centers. Yaohui [21] proposed to join the

points to the clusters if they are density reachable .

Most of the proposed approaches apply only to numerical data,

which limits the usefulness of density peaks. However, the original

density peaks algorithm does not have such limitation. Instead,

it can operate with any given distance matrix regardless of the

type of data. The only requirement is that some kind of distance

function can be formulated. Du et al. [23] have used density peaks

for a mix of categorical and numerical data, by introducing a new

distance measure. Liu et al. [24] and Wang [15] use density peaks

for text data by vectorizing the input data.

In this work, we focus on solving the slowness problem of the

density peaks. We propose a new fast density peaks algorithm

called FastDP . It first creates a k-nearest neighbor (kNN) graph.

The density and delta values are estimated using this graph. The

standard joining strategy of density peaks is then applied to obtain

the final clustering. The proposed algorithm is significantly faster

than the original density peaks while keeping its generality

Contrary to the existing attempts to speed up density peaks

[14,22] , our approach is not limited to numerical data but it

applies, as such, to any type of data for which a distance function

can be formulated. To demonstrate the algorithm’s capabilities for

non-vectorial data, we apply it for clustering of strings.

Our main contributions are the following:

- We present RP-Div algorithm to create kNN graph fast.

- We utilize the graph to calculate the delta values fast.

- We show that the algorithm applies also to text data.

In terms of the other aspects of the algorithm, we use the

original point allocation (joining) strategy. For density estimation

we use the k-nearest neighbors as proposed in [19] .

2. Density peaks clustering

We first recall the original density peaks algorithm and its

main variations. We use the following definitions:

x Data point

N Number of data points

K Number of clusters

k Number of neighbors in kNN graph.

d (x,y) Distance between data points x and y

kNN (x) The k nearest neighbors of x

Dens (x) Density of the point x

BigBrother (x) Nearest point y to x for which Dens (y) > Dens (x)

Delta (x) Distance to BigBrother (x)

Gamma(x) = Delta(x) ·Dens(x)

Local peak Point x for which BigBrother (x) �∈ kNN(x)

Slope Point that is not a Local peak

2.1. Density

There are two widely used approaches to estimate density:

distance-based and kNN-based . Distance-based approach takes a

distance threshold as a parameter and counts how many points

there are within this distance. Original density peaks algorithm

uses this approach [6] .

The second approach finds the k -nearest neighbors (k -NN),

and then calculates the average distance to the neighbor points

[19] . According to our experiments, there are no significant dif-

ferences which of these approaches to use. They both require

O(N

2) calculations and provide virtually the same clustering
esult if correct parameter is used. However, good value for k

s easier to determine than to find a suitable distance thresh-

ld [25] . We therefore use the kNN based approach for both

he original variant of density peaks and the proposed fast

ariant.

.2. Density peaks

The density peaks clustering algorithm [6] is based on the

dea that cluster centers have usually a high density, and they

re surrounded by points with lower density. So they have a

arge distance to points with higher density. Density peaks uses

wo features to determine the clusters: the density ρ and delta δ,

hich is the distance to the nearest point having a higher density.

e denote this point as the big brother .

The original algorithm selects k points as the cluster centers

ased on ρ and δ. This is because cluster centers are expected to

ave a high value for both of them. However, it was not defined

ow exactly the selection should be made. Different strategies

ave therefore been considered by others. We denote the two

ost common as Delta strategy [26] , which selects the points with

ighest delta values, and Gamma strategy [26,27] , which uses the

roduct of the two features (γ = ρδ). Here we apply the gamma

trategy.

One also needs to decide how many points should be selected.

he original paper did not give any solution and left it as a user-

iven parameter. Wang et al. [27] proposed to detect a knee point

n the gamma values by finding the intersection of the two lines

o most closely fit the curve. In general, the problem is how to

hreshold the selected feature (either δ or γ). This is an open prob-

em both in centroids-based and density based clustering. Fig. 1

emonstrates the differences between the two selection strategies

delta and gamma). In this paper, we assume K is given by the

ser.

.3. General distance

Density peaks has been mostly applied for numerical data

n some vector space. However, it is possible to generalize the

ethod to other non-numeric distance functions as well. Here we

onsider text data as a case study.

Two studies exist where string data has also been used. Liu

t al. [24] and Wang [15] apply first string vectorization based on

F-IDF model. Term frequency (TF) counts how many times a given

ord appears in the dataset. It is normalized by counting inverse

ocument frequency (IDF). This approach converts the strings into

 vector space, and then uses cosine distance to measure the

istance between the two strings.

The TF-IDF approach can be highly useful when clustering

arge text documents. However, short text strings contain only few

ords, which would result in sparse vectors containing only very

ew non-zero elements. Our solution to this is to apply a string

imilarity (or distance) measure directly without vectorization.

his is possible because our method does not require the distance

unction being in metric space, nor does it rely on any other vector

pace properties.

The choice of the string similarity (or distance) measure

epends on the application. We consider here two choices: Lev-

nshtein and Dice. Levenshtein edit distance [28] is the most well

nown string distance measure, and we apply it in the context

f short text strings. For tweets, we use Dice coefficient [29] . For

 more comprehensive comparison of the available measures, we

efer to [30] .

S. Sieranoja and P. Fränti / Pattern Recognition Letters 128 (2019) 551–558 553

Fig. 1. Different cluster selection strategies based on the density-vs-delta plot for

the S4 dataset. Cluster centroids typically have both high density and high distance

to higher density point (delta). Therefore, thresholding based on combination of

delta and density (gamma) is expected to work better than using the delta values

alone.

3

A

o

t

a

w

b

u

b

t

s

f

Fig. 2. Illustration of the proposed Fast density peaks algorithm. (1) For a given data set

distance to the neighbors. (3) Nearest higher density point (big brother) is (in case of

performed. (4) Cluster centers are identified as the two points that have highest gamma

the same cluster as their big brother belongs to (For interpretation of the references to co
. Fast density peaks algorithm

The proposed Fast density peaks method is presented in

lgorithm 1 and demonstrated in Fig. 2 . Source code can be found

n web. 1 It consists of five steps:

1. Create the kNN graph (line 1).

2. Calculate the density values (lines 2–3).

3. Find big brothers (line 6).

4. Identify cluster centers (lines 9–10).

5. Join the remaining points (lines 12–13).

Algorithm 1 FastDensityPeaks (X, k, K).

1 kNNg = RPDiv(X,k,2 ∗k,1%);

2 FOR i = 1 TO Size(X) DO

3 density[i] = 1/meanDist(X[i],kNNg[i]);

4 part[i] = {i};

5

6 [bigBrother, gamma] = findBigBrothers(kNNg,X);

7 // Select K points with largest gamma

8 X = Sort(X,gamma);

9 FOR i = 1 TO K DO

10 centroid[i] = X[i];

11 // Join the remaining points to partitions

12 FOR i = K + 1 TO N DO

13 Merge part[i] and part[bigBrother[i]];

14 RETURN [centroid, part];

First, we calculate the k nearest neighbor graph. The graph is

hen used to calculate all the information needed by density peaks

lgorithm: (1) density values, (2) distance to the nearest point

ith higher density (delta), and, (3) pointer to this nearest neigh-

or (big brother). Product of density and delta values (gamma) is

sed to determine the first K cluster centers (density peaks). The

ig brother pointers are then used to join the remaining points to

he same cluster as their big brother.

The algorithm has two computational bottlenecks:

• Constructing the kNN graph

• Finding the big brother points.

Both of these bottlenecks take O(N

2) time if straightforward

olution is used. We next study how to make these two steps

aster without sacrificing the quality of clustering.
1 https://github.com/uef- machine- learning/fastdp .

, the kNN graph is constructed. (2) Densities are calculated as inverse of the mean

black lines) found in the kNN graph; for others (red lines) slower full search is

 (delta ∗dens) to the big brother. (5) Clusters are formed by joining other points to

lour in this figure legend, the reader is referred to the web version of this article.)

https://github.com/uef-machine-learning/fastdp

554 S. Sieranoja and P. Fränti / Pattern Recognition Letters 128 (2019) 551–558

3.1. Creating kNN graph by RP-div algorithm

To make density peaks faster, we first generate an approximate

k-nearest neighbor (kNN) graph by using an iterative algorithm

called RP-Div (Algorithm 3). Its preliminary version has been pre-

sented in [31] . The algorithm contains two loops. In the first loop

(lines 1–4), we create a new candidate graph, which is used to

improve the graph obtained from the previous iterations. The new

graph is generated by an algorithm called Random Pair Division

(RP-div) (Algorithm 4).

The algorithm constructs the graph by applying hierarchical

subdivision (demonstrated in Figs. 3 and 4). The dividing works

by first selecting two random points: a and b (Algorithm 4 , lines

5-6). The dataset is then split into two subsets (A and B), so that

subset A contains all points that are closer to the point a , and

subset B all points that are closer to the point b. The dividing

continues recursively (lines 12–13) until the subset size reaches

a predefined threshold (W), e.g. W < 20. Subsets smaller than the

threshold are solved by the O(N

2) brute force algorithm (line 2),

which calculates distances between all possible pairs and updates

the list of k nearest points found (variable kNN).
Algorithm 2 findBigBrothers (kNNg, X, density).

1 FOR i = 1 TO Size(X) DO

2 bigBrotherFound = 0;

3 // See if big brother is found in graph

4 // Loop from nearest to farthest

5 FOR j = 1 TO numNeighbors DO

6 neighbor = kNNg[i][j];

7 IF density[i] < density[neighbor]

8 bigBrother[i] = neighbor;

9 bigBrotherFound = 1;

10 BREAK;

11 // For local peaks (not found in graph)

12 // Run O(N) full search

13 IF bigBrotherFound == 0

14 bigBrother[i] = fullSearch(i,density[i],X);

15 delta[i] = d(X[i],X[bigBrother[i]]);

16 gamma[i] = delta[i] ∗density[i];

17 RETURN [bigBrother, gamma];

Algorithm 3 RPDiv (X, k, W, stop).

1 REPEAT

2 RandomPairDivision(X,kNN,W);

3 diff = Changes(kNN);

4 UNTIL diff < 10%

5 REPEAT

6 RandomPairDivision(X,kNN,W);

7 NNDES(X,kNN);

8 diff = Changes(kNN);

9 UNTIL diff < stop;

10 RETURN kNN;

Algorithm 4 RandomPairDivision (X, kNN,

Size).

1 IF size(X) < Size THEN

2 BruteForce(X,kNN);

3 RETURN;

4 ELSE

5 a = X[random(1,N)];

6 b = X[random(1,N)];

7 FOR i = 1 TO N DO

8 IF d(x,a) < d(x,b) THEN

9 A = A ∪ x
10 ELSE

11 B = B ∪ x;

12 RandomPairDivision(A,kNN,Size);

13 RandomPairDivision(B,kNN,Size);

Fig. 3. The RP-div algorithm recursively subdivides the dataset of size N = 37 by

first choosing two random points (a,b). The dataset is split based on which of the

two points is nearer. After the first split, the size of the subset A is smaller than

threshold W = 20, and is solved by brute force. The subset B is further divided into

two more subsets, which both are smaller than W and now solved by brute force.

Fig. 4. After repeating the random pair division, a new solution is obtained. This is

solution is merged with the previous one to form a new improved kNN graph.

o

a

p

c

b

t

p

s

fi

e

N

q

c

r

w

o

l

(

3

t
One iteration of the algorithm produces a crude approximation

f the kNN graph. The graph is improved by repeating the hier-

rchical subdivision several times (Fig. 4) using different random

airs for splitting. As a result, several different kNN graphs are

reated. Every new graph is used to improve the previous solution

y adopting those k-nearest neighbor pointers that are shorter

han in the previous graph.

The first loop (line 1) in Algorithm 3 continues until the

roportion of changed edges drops below 10% (line 4). In the

econd loop (line 5), we apply the same iterative process as in the

rst loop, but at this time, we use the NNDES algorithm [32] to

xamine every point’s neighbors of neighbors as kNN candidates.

NDES works better when the graph already has a moderate

uality and is therefore used only at the later iterations. We

ontinue until the improvement drops below stop = 1% (line 9).

Time bottleneck of the algorithm is the brute force step which

equires O(W

2). Assuming all subsets are exactly of size W , there

ill be N/W subsets. The total time complexity of single iteration

f the algorithm is then O(N/W ·W

2) = O(NW). Using W = 2.5 ·k , this

eads to linear O(rkN) time algorithm where the number of repeats

 r) is a small constant.

.2. Solving the Big brother pointers

Once the kNN graph is constructed, it can be used to speed up

he bottlenecks of density peaks. The densities can be calculated

S. Sieranoja and P. Fränti / Pattern Recognition Letters 128 (2019) 551–558 555

Fig. 5. Distribution of slope points (gray) and local peaks (red) inside an exam-

ple cluster. One of the local peaks (blue) is the resulting cluster centroid (global

peak). The case of k = 30 (left) and k = 70 (right) are shown. When the number of

neighbors k in the kNN graph is increased, the number of local peaks decrease. (For

interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

t

p

n

t

F

w

p

w

k

t

s

f

w

t

t

t

i

p

k

b

n

p

p

t

k

i

c

l

a

4

a

r

E

r

Fig. 6. The Worms2 dataset contains 35 shapes which depict trails of random

movement in 2D space.

4

d

k

g

d

c

t

h

r

O

d

(

t

t

(

l

o

p

p

[

u

d

i

a

s

c

a

i

c
rivially (lines 2–4 in Algorithm 1), and the nearest higher density

oint (big brother) can be found fast (Algorithm 2).

Finding the big brother (Algorithm 2) is a special case of the

earest neighbor search. However, instead of considering only

he distance, we must also select a point with higher density.

ortunately, majority of points have their big brothers located

ithin their kNN neighborhood (line 8). We call them as slope

oints , and all others are denoted as local peaks . For slope points,

e can find big brothers fast in O(k) steps simply by analyzing the

NN graph (lines 5–10).

Local peaks, on the other hand, are local density maxima and

heir big brothers cannot be found in the kNN graph. There is no

hortcut to find their big brothers and O(N) full search must there-

ore be performed (lines 11–14). These are also the points among

hich the final centroids will be chosen. The time complexity of

his step depends on how many local peaks there are. Assuming

hat the proportion of the local peaks is p , the time complexity of

his step is pN

2 + (1 − p) kN = O(pN

2). The speed-up is therefore

nverse proportional to p .

Fig. 5 shows an example of the distribution of the local peak

oints with a sample dataset. In general, the higher the value of

 , the less there are peak points, and the faster the search for the

ig brothers.

The proportion of local peaks (p) is bound by the number of

eighbors k in the graph. A neighbor of a peak cannot be another

eak. If we have pN local peaks, there will be at least kpN slope

oints. Since all points are either local peaks or slopes, we have

he following inequality:

pN + pN < N

kp + p < 1

p < 1 / (k + 1)

p < 1 /k

Therefore, the time complexity of O(pN

2) can also be written

n terms of k as O(N

2 / k). When combining with the O(rkN) time

omplexity of the kNN graph construction (see Section 3.1), this

eads to a total time complexity of O(N

2 / k + rkN) for the whole

lgorithm.

. Experiments

We use parameters stop = 1% and k = 30 for kNN graph gener-

tion in FastDP algorithm, unless otherwise noted.

The experiments were run on Red Hat Enterprise Linux Server

elease 7.5 with 96 processing cores of Intel(R) Xeon(R) CPU

7-4860 v2 @ 3.20GHz and 1.0TB memory. Processing times are

eported as run on single thread.
.1. Datasets

We test the proposed algorithm with the following four

ifferent data types:

• Clustering basic benchmark
• High dimensional random clusters
• Artificial shapes
• Text datasets

We use datasets from the clustering benchmark [33] . So far we

now four algorithms that can cluster all these datasets correctly:

lobal k-means [34] , genetic algorithm [35] , random swap [36] and

ensity peaks [6] . We test whether our fast density peaks (FastDP)

an do the same. We report results for the S1–S4 sets [37] and for

he Birch and Birch2 datasets [38] .

To show the capabilities of the proposed method with large

igh-dimensional data, we generated three large High dimensional

andom clusters datasets, RC1M, RC100k-l and RC100k-l and RC1M.

ne hundred centroids were generated from uniform random

istribution, each attribute in range [10..11]. For each cluster, 10 0 0

RC100k) or 10,0 0 0 (RC1M) points were drawn from Gaussian dis-

ribution. To study the effect of the cluster variance, we generated

wo variants for the RC100k dataset: RC100k-h for high variance

 σ 2 = 0.50) and RC100k-l for low variance (σ 2 = 0.05). For the

arger RC1M dataset, the lower variance of 0.05 was used.

Artificial shapes are also used as algorithms minimizing sum-

f-squared errors cannot handle this type of datasets but density

eaks often can. We use three datasets that the original density

eaks is known to succeed: Flame [2] , Aggregation [39] , and Spiral

40] . Also the dataset DS6_8 provided by the authors of [8] was

sed.

Furthermore, we also generated two new artificial shape

atasets: Worms2 (2D) and Worms6 4 (6 4D). The former is shown

n see Fig. 6 . The data contains 25 individual shapes starting from

 random position and moving to a random direction. At each

tep, points are drawn from the Gaussian distribution to produce a

loud around the current position. The cloud has both a low vari-

nce (data) and high variance (noise) component. Their variance

ncreases gradually at each step. The direction of movement is

ontinually altered to an orthogonal direction. In case of the 64D

556 S. Sieranoja and P. Fränti / Pattern Recognition Letters 128 (2019) 551–558

Table 1

Datasets used in the experiments. In case of text data, average number

of characters is reported as dimensionality.

Dataset Type Size Clusters Dim.

S1 Spherical 5000 15 2

S2 Spherical 5000 15 2

S3 Spherical 5000 15 2

S4 Spherical 5000 15 2

Birch1 (B1) Spherical 100,000 100 2

Birch2 (B2) Spherical 100,000 100 2

RC100k-h (RCh) Spherical 100,000 100 128

RC100k-l (RCl) Spherical 100,000 100 128

RC1M (RCM) Spherical 1,000,000 100 128

Flame (Fla) Shape 240 2 2

Aggregation (Agr) Shape 788 7 2

Spiral (Spi) Shape 312 3 2

DS6_8 (DS6) Shape 2000 8 2

Worms2 (W2) Shape 105,600 35 2

Worms64 (W64) Shape 105,000 25 64

Countries (Cou) Text 6000 48 8.1 c

English words (Eng) Text 466,544 500 9.4 c

Tweets (Twe) Text 544,133 500 90 c

C

Fig. 7. Dependency of the proportion of local peaks on the number of clusters (K).

The corresponding Fast-DensP processing time depends linearly on the data size,

which is N = 10 0 0 ·K .

Table 2

Proportion of local peaks p . When the num-

ber of neighbors k in the kNN graph is in-

creased, the proportion of the local peak points

decreases.

Local peaks (p)

Dataset k = 10 k = 30 k = 70

S1 2.7% 0.3% 0.3%

S2 3.0% 0.3% 0.3%

S3 3.4% 0.5% 0.3%

S4 3.7% 0.6% 0.3%

Birch1 4.8% 1.1% 0.3%

Birch2 4.3% 0.9% 0.2%

RC100k 0.5% 0.2% 0.1%

RC1M 0.2% 0.1% 0.0%

Flame 2.5% 0.8% 0.8%

Aggregation 4.4% 1.5% 0.6%

Spiral 1.3% 1.0% 0.3%

Countries 1.3% 0.7% 0.2%

English words 1.7% 0.2% 0.0%

Tweets 0.7% 0.1% 0.0%

t

a

t

d

t

t

4

t

f

b

n

t

o

s

c

o
version, the orthogonal direction is selected randomly at each step.

Collision is detected to prevent completely overlapping clusters.

Three text datasets are also used. Countries dataset has 48

clusters consisting of the names of all European countries. Each

cluster contains 50 variations of the country name generated by

adding random modifications to the names. English words dataset 2

contains 466,544 words of length varying from 1 to 45 characters

(9.4 chars on average). Twitter data consists of tweets collected

from Nordic Tweets channel [41] . For the Countries and words

datasets, we use edit distance. For the twitter data, we use Dice

coefficient of bigrams, which is faster than edit distance, especially

for long strings (Table 1).

4.2. Clustering quality

We use the Centroid Index (CI) to measure the success at clus-

ter level [42] , and Normalized Mutual Information (NMI) at point

level [43] . For the current state-of-the-art in measuring clustering

quality we refer to [44] .

Given a ground truth solution (G) and clustering solution (C),

centroid index counts how many real clusters are missing a center,

or alternatively, how many clusters have too many centers. The

CI-value is the higher of these two numbers [42] . Value CI = 0

means that the clustering is correct.

The calculation of CI is done by performing nearest neighbor

mapping between the clusters in C and G based on centroid dis-

tances [42] . After the mapping, we count how many clusters were

not mapped. These non-mapped clusters (orphans) are indicators of

missing clusters. The mapping is done into both directions (C → G

and G → C). The maximum number of orphans is the CI-value:

I(C, G) = max (Orphans (C → G) , Orphans (G → C)) (1)

In case of shape and text data, center is not a proper repre-

sentative of a cluster. We therefore find the most similar cluster

instead of the nearest centroid. For this, we use Jaccard coefficient,

which calculates how many common points the two clusters have

to the total number of unique points in the two clusters [45] :

S(a, b) =

| a ∩ b |
| b ∪ b | (2)

Normalized mutual information measures the information that

the clustering solution (C) shares with the ground truth (G). Since
2 https://github.com/dwyl/english-words .

a

h

a
here scale has no upper bound, the result is normalized by the

verage of the self-entropies of C and G. The better the clustering,

he closer the value of NMI is to 1. The exact scale varies across the

atasets and it lacks similar intuitive interpretation as the CI-value.

The English words and Twitter data do not have any ground

ruth, so for them we only provide qualitative samples to estimate

he clustering quality.

.3. Efficiency of the delta calculation

We test the efficiency of finding the big brothers by studying

he number of local peak points. We need to perform O(N) time

ull search only for the local peak points. For all other points, its

ig brother can be found faster in O(k) time simply by taking the

earest higher density point in its kNN neighborhood. Therefore,

he less local peak points, the faster the algorithm.

Fig. 7 shows the proportion of the local peaks for the subsets

f the Birch2 where one cluster was removed at a time to produce

ubsets with number of clusters varying from K = 1–100. The

orresponding data sizes varies from N = 10 0 0 to 10 0,0 0 0. We

bserve that the proportion of the peaks increases to about 0.9%

t K = 10 clusters. After that it remains almost constant no matter

ow many more clusters there are. The total processing times are

lso shown, and it has near-linear dependency on the size of data.

https://github.com/dwyl/english-words

S. Sieranoja and P. Fränti / Pattern Recognition Letters 128 (2019) 551–558 557

Table 3

Summary of the processing times and clustering quality. The quality of the kNN graph is varied by running the RP-Div algorithm for different number of iterations. Quality is

recorded as NMI. We highlight the first NMI value that is equal (within 0.01 NMI) to the results of OrigDP. The processing times and CI-values are reported for this iteration.

FastDP NMI

Iterations s1 s2 s3 s4 B1 B2 RCh RCl RCM Fla Agg Spi DS6 W2 W64 Cou Eng Twe

1 0.97 0.90 0.76 0.69 0.87 0.92 0.05 0.97 0.54 0.64 0.86 0.02 0.52 0.61 0.14 0.51 — —

2 0.99 0.94 0.79 0.72 0.95 1.00 0.16 1.00 0.57 0.91 0.96 0.25 0.59 0.63 0.43 0.70 — —

3 0.99 0.94 0.79 0.72 0.96 1.00 0.27 1.00 0.57 0.99 0.98 0.77 0.59 0.63 0.57 0.76 — —

4 0.99 0.94 0.79 0.72 0.96 1.00 0.37 1.00 0.57 1.00 1.00 1.00 0.60 0.62 0.62 0.78 — —

5 0.99 0.94 0.79 0.72 0.96 1.00 0.44 1.00 0.57 1.00 1.00 1.00 0.60 0.62 0.65 0.79 — —

10 0.99 0.94 0.79 0.72 0.96 1.00 0.65 1.00 0.57 1.00 1.00 1.00 0.60 0.62 0.71 0.79 — —

20 0.99 0.94 0.79 0.72 0.96 1.00 0.82 1.00 0.57 1.00 1.00 1.00 0.60 0.62 0.74 0.80 — —

30 0.99 0.94 0.79 0.72 0.96 1.00 0.82 1.00 0.57 1.00 1.00 1.00 0.60 0.62 0.73 0.80 — —

OrigDP 0.99 0.94 0.79 0.72 0.96 1.00 0.80 1.00 — 1.00 1.00 1.00 0.60 0.62 0.72 0.78 — —

Processing Time (seconds)

s1 s2 s3 s4 B1 B2 RCh RCl RCM Fla Agg Spi DS6 W2 W64 Cou Eng Twe

FastDP 0.04 0.04 0.04 0.04 2.25 1.96 82.97 15.68 713 0.01 0.04 0.01 0.02 3.19 26.47 0.30 2091 1765

OrigDP 0.56 0.57 0.55 0.56 197 282 2656 2658 0.00 0.02 0.00 0.09 210 1310 6.67 — —

Speedup factor 14:1 15:1 14:1 14:1 87:1 144:1 32:1 170:1 — 0:1 1:1 0:1 6:1 66:1 49:1 22:1 — —

CI

s1 s2 s3 s4 B1 B2 RCh RCl RCM Fla Agg Spi DS6 W2 W64 Cou Eng Twe

FastDP 0.0 0.0 0.0 0.0 0.0 0.0 18.3 0.0 0.0 0.0 0.0 0.0 3.1 7.5 0.0 10.8 — —

OrigDP 0.0 0.0 0.0 0.0 0.0 0.0 18.0 0.0 — 0.0 0.0 0.0 3.0 7.0 0.0 14.0 — —

Table 4

Example clusters. Some of the 500 clusters for the 466,544 words data.

Twenty samples from each cluster.

Cluster 41 Cluster 43 Cluster 247 Cluster 292

soft-bil Livingstone Slommacky Kurtz

lsoot-grime herringbone crummock Dinarchy

dsweet-toothe Burlingham bummack myriarchy

dsplit-tongue Neowashingtonia mimmock freshly

dblack-visage Upington slammock triarcuated

dsoft-winge Hillingdon bummalos matriarch

dshort-witte Lovington mimmocky mandriarch

dshort-terme Arlington malmock dyarchic

dstout-arme Lexington hommocks myriarch

dstill-fishin Herington earthgrubber BSLArch

gstiff-limbe Stringtown crumhorn Taxiarch

dswift-stealin Arrington malbrouck Bush

gshort-leave milliangstrom krumhorn Ruthi

dsnotty-nose Accrington shammocky Knuth

divory-bille Northington Babcock fleshy

dhot-mettle Farlington plumrock gush

dsoft-goin Ellington fleadock Thushi

gsnowy-winge Hartington cummock Furth

dsharp-tastin Belington Commack flesh-fly

gstove-warmed Conyngham archworker Bosch

W

k

4

s

F

e

i

k

D

a

a

s

Table 5

Two example clusters from twitter data. Four samples from each cluster. Detected

clusters had typically low variation and were mostly produced by bots.

Jobs cluster Weather cluster

We’re #hiring! Click to apply:

Technical Specialist -

https://t.co/SP1NMxyDhp

#Engineering Västra Götaland

County #Job #Jobs

shower rain → light shower snow

temperature down 3 °C → 2 °C
humidity down 64% → 60% wind

9 kmh → 12 kmh

See our latest #kirkkonummi #job

and click to apply: SW

Developer Intern, IoT Device and

Data Management -…

https://t.co/5GEkyiMUlh

overcast clouds → light rain

temperature down 6 °C → 5 °C
humidity up 75% → 93%

If you’re looking for work in

#Sandarne, Gavleborg County,

check out this #job:

https://t.co/KwMj7Mp6rn

#Netherlands #Labor #Hiring

broken clouds → clear sky

temperature up 10 °C → 13 °C
humidity down 66% → 54%

Interested in a #job in #HKI,

Uusimaa? This could be a great

fit: https://t.co/DMYvpOl54i #IT

#Hiring #CareerArc

light intensity drizzle

rain → scattered clouds

temperature up 9 °C → 12 °C
humidity down 100% → 66%

wind 6 kmh → 11 kmh

w

t

s

h

d

v

c

r

o

s

p

d

p

w

c

b
The effect of the parameter k in kNN is shown in Table 2 .

ith all datasets, the number of local peaks is small already with

 = 10, and reduces to about 0.26% if it is increased to k = 70.

.4. Results (Speed v. quality)

We implemented two versions of DensP in C: the original ver-

ion [6] denoted as OrigDP , and the proposed method denoted as

astDP . Both variants use the same kNN-based method for density

stimation. In terms of clustering quality, the only difference orig-

nates from the quality of the kNN graph. In the OrigDP, an exact

NN is used while FastDP uses approximated version from [31] .

In the experiments, we vary the number of iterations in RP-

IV (1…30) to obtain different clustering quality. Quality of the

pproximated kNN graph increases with the number of iterations,

nd the same is expected to happen for the clustering quality.

From the results in Table 3 , we can see that FastDP achieves

imilar quality as OrigDP but much faster. This is especially true
ith large datasets (B1, B2, RCh, RCl, W2, W64) where the O(N

2)

ime complexity of OrigDP results in high speedup factors. With

imilar size datasets, dimensionality and variance (cluster overlap)

as large effect on the results. In case of W2 and W64, the high

imensional version requires much more iterations. In case of RCl

s. RCh, the high variance version requires more iteration.

Overall, the proposed method is much faster than OrigDP. In

ase of the birch2 dataset (N = 10 0,0 0 0), the processing time is

educed from 282 s to 1.96 s with no reduction on quality. In case

f smaller datasets, there is 14:1 improvement in case of S-sets of

ize 50 0 0, and no improvement in case of smaller datasets (< 10 0 0

oints).

The proposed algorithm was also successful with the largest

atasets (RC1M, English words, Tweets) which the original density

eaks algorithm could not process. The 466,544 strings of the

ords dataset were clustered using Levenshtein distance to 500

lusters in 2091 s. Constructing the kNN-graph was the main

ottleneck with 1779 s. This data set does not have a ground truth

https://t.co/SP1NMxyDhp
https://t.co/5GEkyiMUlh
https://t.co/KwMj7Mp6rn
https://t.co/DMYvpOl54i

558 S. Sieranoja and P. Fränti / Pattern Recognition Letters 128 (2019) 551–558

[

clustering, but one can verify by seeing Table 4 that the results

contain meaningful clusters.

The Nordic tweets dataset of size 544,133 was also success-

fully clustered with parameters k = 100, stop = 5%, and NNDES

disabled. Two sample clusters are shown in Table 5 , which both

are meaningful for a human observer. In specific, the two par-

ticular clusters were observed to have lower variance, which can

be partly explained by the fact that they were produced by bots

rather than humans. The weather cluster is produced by one single

bot, whereas the jobs cluster contains also human written tweets.

5. Conclusions

Fast density peaks (FastDP) algorithm was proposed. Its main

advantage is that it removes the quadratic time complexity limita-

tion of density peaks and allows clustering of very large datasets.

The speed-up is achieved without any visible effect on the cluster-

ing quality. Experiments showed an average speed-up of 91:1 on

datasets of size ≥ 100k. Clustering a high dimensional numerical

dataset of size 1M took only 12 min. The algorithm works for

all types of data as long as a distance function is provided. We

managed to cluster a Nordic Tweet dataset of size 500k in 31 min.

Declaration of Competing Interest

Authors declare that they have no conflict of interest.

References

[1] S. Fortunato , Community detection in graphs, Phys. Rep. 486 (3–5) (2010)

75–174 .
[2] L. Fu , E. Medico , FLAME, a novel fuzzy clustering method for the analysis of

DNA microarray data, BMC Bioinformatics 8 (1) (2007) 3 .
[3] K. Lu , S. Xia , C. Xia , Clustering based road detection method, in: 34th Chinese

Control Conference (CCC), 2015, IEEE, 2015, pp. 3874–3879 .
[4] Y. Zhang , G. Li , X. Xie , Z. Wang , A new algorithm for fast and accurate mov-

ing object detection based on motion segmentation by clustering, in: IAPR Int.

Conf. on Machine Vision Applications (MVA), 2017, pp. 4 4 4–4 47 .
[5] M. Ester , H.-.P. Kriegel , J. Sander , X. Xu , et al. , A density-based algorithm

for discovering clusters in large spatial databases with noise, Kdd 96 (1996)
226–231 .

[6] A . Rodriguez , A . Laio , Clustering by fast search and find of density peaks, Sci-
ence 344 (6191) (2014) 14 92–14 96 .

[7] C.-D. Wang , J.-H. Lai , J.-Y. Zhu , Graph-based multiprototype competitive learn-
ing and its applications, IEEE Trans. Syst., Man, Cybernet., Part C (6) (2011)

934–946 .

[8] Y. Qin , Z.L. Yu , C.-D. Wang , Z. Gu , Y. Li , A novel clustering method based on
hybrid k-nearest-neighbor graph, Pattern Recognit. 74 (2018) 1–14 .

[9] B.J. Frey , D. Dueck , Clustering by passing messages between data points, Sci-
ence 315 (5814) (2007) 972–976 .

[10] C.-D. Wang , J.-H. Lai , C.Y. Suen , J.-Y. Zhu , Multi-exemplar affinity propagation,
IEEE Trans. Pattern Anal. Mach. Intell. (9) (2013) 2223–2237 .

[11] I.A. Maraziotis , S. Perantonis , A. Dragomir , D. Thanos , K-Nets: clustering

through nearest neighbors networks, Pattern Recognit. 88 (2019) 470–481 .
[12] A. Ben-Hur , D. Horn , H.T. Siegelmann , V. Vapnik , Support vector clustering, J.

Mach. Learn. Res. 2 (Dec) (2001) 125–137 .
[13] C.-D. Wang , J. Lai , Position regularized support vector domain description, Pat-

tern Recognit. (3) (2013) 875–884 .
[14] Y. Wang , Q. Chen , C. Kang , Q. Xia , Clustering of electricity consumption behav-

ior dynamics toward big data applications, IEEE Trans. Smart Grid 7 (5) (2016)

2437–2447 .
[15] B. Wang , J. Zhang , Y. Liu , Y. Zou , Density peaks clustering based integrate

framework for multi-document summarization, CAAI Trans. Intell. Technol. 2
(1) (2017) 26–30 .

[16] X. Bai , P. Yang , X. Shi , An overlapping community detection algorithm based
on density peaks, Neurocomputing 226 (2017) 7–15 .
[17] X. Xu , S. Ding , T. Sun , A fast density peaks clustering algorithm based on
pre-screening, in: Big Data and Smart Computing (BigComp), 2018 IEEE Inter-

national Conference on, IEEE, 2018, pp. 513–516 .
[18] R. Mehmood , G. Zhang , R. Bie , H. Dawood , H. Ahmad , Clustering by fast search

and find of density peaks via heat diffusion, Neurocomputing 208 (October
2016) 210–217 .

[19] M. Du , S. Ding , H. Jia , Study on density peaks clustering based on k-near-
est neighbors and principal component analysis, Knowl. Based Syst. 99 (2016)

135–145 .

[20] J. Xie , H. Gao , W. Xie , X. Liu , P.W. Grant , Robust clustering by detecting density
peaks and assigning points based on fuzzy weighted K -nearest neighbors, Inf.

Sci. 354 (2016) 19–40 .
[21] L. Yaohui , M. Zhengming , Y. Fang , Adaptive density peak clustering based on

K nearest neighbors with aggregating strategy, Knowl. Based Syst. 133 (2017)
208–220 .

[22] X. Xu , S. Ding , T. Sun , A fast density peaks clustering algorithm based on

pre-screening, in: Big Data and Smart Computing (BigComp), 2018 IEEE Inter-
national Conference on, IEEE, 2018, pp. 513–516 .

[23] M. Du , S. Ding , Y. Xue , A novel density peaks clustering algorithm for mixed
data, Pattern Recognit. Lett. 97 (2017) 46–53 .

[24] H. Liu , H. Guan , J. Jian , X. Liu , Y. Pei , Clustering based on words distances,
Cluster Comput. (2017) 1–9 .

[25] P. Fränti , S. Sieranoja , Dimensionally distributed density estimation, in: Int.

Conf. Artificial Intelligence and Soft Computing (ICAISC), Zakopane , Poland,
June 2018, pp. 343–353 .

[26] J. Hou , M. Pelillo , A new density kernel in density peak based clustering, in:
Pattern Recognition (ICPR), 2016 23rd International Conference on, IEEE, 2016,

pp. 468–473 .
[27] J. Wang , Y. Zhang , X. Lan , Automatic cluster number selection by finding den-

sity peaks, in: Computer and Communications (ICCC), 2016 2nd IEEE Interna-

tional Conference on, IEEE, 2016, pp. 13–18 .
[28] V.I. Levenshtein , Binary codes capable of correcting deletions, insertions, and

reversals, Soviet Phys. Doklady 10 (8) (1966) 707–710 .
[29] C. Brew , D. McKelvie , Word-pair extraction for lexicography, in: Proceedings

of the 2nd International Conference on New Methods in Language Processing,
2017, pp. 45–55 .

[30] N. Gali , R. Mariescu-Istodor , D. Hostettler , P. Fränti , Framework for syntactic

string similarity measures, Expert Syst. Appl. 129 (2019) 169–185 .
[31] S. Sieranoja , P. Fränti , Fast random pair divisive construction of kNN graph us-

ing generic distance measures, Int. Conf. on Big Data and Computing (ICBDC),
April 2018 .

[32] W. Dong , C. Moses , K. Li , Efficient k-nearest neighbor graph construction for
generic similarity measures, in: Proceedings of the 20th international confer-

ence on World wide web, ACM, 2011, pp. 577–586 .

[33] P. Fränti , S. Sieranoja , K-means properties on six clustering benchmark
datasets, Appl. Intell. 48 (12) (2018) 4743–4759 .

[34] A. Likas , N. Vlassis , J.J. Verbeek , The global k-means clustering algorithm, Pat-
tern Recognit. 36 (2003) 451–461 .

[35] P. Fränti , Genetic algorithm with deterministic crossover for vector quantiza-
tion, Pattern Recognit. Lett. 21 (1) (20 0 0) 61–68 .

[36] P. Fränti , Efficiency of random swap clustering, J Big Data 5 (13) (2018) 1–29 .
[37] P. Fränti , O. Virmajoki , Iterative shrinking method for clustering problems, Pat-

tern Recognit. 39 (5) (May 2006) 761–765 .

[38] T. Zhang , R. Ramakrishan , M. Livny , BIRCH: a new data clustering algorithm
and its applications, Data Min. Knowl. Discov. 1 (2) (1997) 141–182 .

[39] A. Gionis , H. Mannila , P. Tsaparas , Clustering aggregation, ACM Trans. Knowl.
Discov. Data (TKDD) 1 (1) (2007) 1–30 .

[40] H. Chang , D.Y. Yeung , Robust path-based spectral clustering, Pattern Recognit.
41 (1) (2008) 191–203 .

[41] M. Laitinen , J. Lundberg , M. Leving , A. Lakaw , Utilizing multilingual language

data in (nearly) real time: the case of the Nordic tweet stream, J. Univ. Comput.
Sci. 23 (2017) 1038–1056 .

[42] P. Fränti , M. Rezaei , Q. Zhao , Centroid index: cluster level similarity measure,
Pattern Recognit. 47 (2014) 3034–3045 .

[43] T.O. Kvalseth , Entropy and correlation: some comments, IEEE Trans. Syst., Man
Cybernet. 17 (1987) 517–519 .

44] M. Rezaei , P. Fränti , Set matching measures for external cluster validity, IEEE

Trans. Knowl. Data Eng. 28 (2016) 2173–2186 .
[45] P. Fränti , M. Rezaei , Generalized centroid index to different clustering mod-

els, in: Joint Int. Workshop on Structural, Syntactic, and Statistical Pattern
Recognition (S + SSPR 2016), Merida, Mexico, LNCS 10029, November 2016,

pp. 285–296 .

http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0001
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0001
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0002
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0002
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0002
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0003
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0003
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0003
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0003
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0004
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0004
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0004
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0004
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0004
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0005
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0005
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0005
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0005
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0005
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0005
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0006
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0006
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0006
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0007
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0007
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0007
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0007
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0008
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0008
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0008
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0008
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0008
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0008
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0009
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0009
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0009
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0010
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0010
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0010
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0010
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0010
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0011
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0011
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0011
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0011
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0011
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0012
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0012
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0012
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0012
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0012
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0013
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0013
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0013
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0014
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0014
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0014
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0014
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0014
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0016
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0016
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0016
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0016
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0017
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0017
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0017
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0017
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0018
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0018
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0018
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0018
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0018
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0018
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0019
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0019
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0019
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0019
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0020
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0020
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0020
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0020
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0020
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0020
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0021
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0021
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0021
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0021
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0022
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0022
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0022
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0022
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0023
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0023
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0023
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0023
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0024
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0024
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0024
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0024
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0024
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0024
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0025
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0025
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0025
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0026
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0026
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0026
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0027
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0027
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0027
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0027
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0028
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0028
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0029
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0029
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0029
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0030
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0030
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0030
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0030
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0030
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0031
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0031
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0031
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0032
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0032
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0032
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0032
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0033
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0033
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0033
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0034
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0034
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0034
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0034
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0035
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0035
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0036
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0036
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0037
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0037
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0037
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0038
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0038
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0038
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0038
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0039
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0039
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0039
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0039
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0040
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0040
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0040
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0041
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0041
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0041
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0041
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0041
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0042
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0042
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0042
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0042
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0043
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0043
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0044
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0044
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0044
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0045
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0045
http://refhub.elsevier.com/S0167-8655(19)30300-9/sbref0045

	Fast and general density peaks clustering
	1 Introduction
	2 Density peaks clustering
	2.1 Density
	2.2 Density peaks
	2.3 General distance

	3 Fast density peaks algorithm
	3.1 Creating kNN graph by RP-div algorithm
	3.2 Solving the Big brother pointers

	4 Experiments
	4.1 Datasets
	4.2 Clustering quality
	4.3 Efficiency of the delta calculation
	4.4 Results (Speed v. quality)

	5 Conclusions
	Declaration of Competing Interest
	References

