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Abstract 
This paper proposes the use of latent topic modeling for 
spoken language recognition, where a topic is defined as a 
discrete distribution over phone n-grams. The latent topics are 
trained in an unsupervised manner using the latent Dirichlet 
allocation (LDA) technique. Language recognition is then 
performed in a low dimensional simplex defined by the latent 
topics. We apply the Bhattacharyya measure to compute the n-
gram similarity in the topic simplex. Our study shows that 
some of the latent topics are language specific while others 
exhibit multilingual characteristic. Experiment conducted on 
the NIST 2007 language detection task shows that language 
cues can be sufficiently preserved in the topic simplex.  
Index Terms: phonotactic, language recognition, latent 
Dirichlet allocation 

1. Introduction 
In a spoken language recognition task, given a short segment 
of speech, the goal is to recognize the language identity 
corresponds to the speech segment. Research in this area was 
traditionally motivated to provide automatic solution to route 
an incoming call to an operator in the call center who is fluent 
in the corresponding language [1]. Excessive delay may lead 
to devastating consequence in emergency situation. More 
recently, spoken language recognition is found useful in 
spoken document retrieval [2] to automatically label 
overwhelming amount of spoken documents in the Web.  

State-of-the-art spoken language recognition systems use 
either phonotactic or acoustic cues [3, 4, 5, 6]. In this regard, 
phone n-gram and shifted-delta-cepstral (SDC) are the most 
widely used. The central idea of using phonotactic cues is 
based on the assumption that each language possesses some 
unique phone patterns in terms of the order and frequency of 
occurrence of phones. These cues can be modeled using the 
so-called n-gram language model (LM) [3, 4, 5]. Another 
discriminative alternative is by presenting examples of phone 
n-gram probability to support vector machine (SVM) in which 
a hyperplane separating the target and non-target languages 
can be learned [6]. This paper is concerned with the use of 
phone n-gram probability with SVM for spoken language 
recognition.  

One subtle problem in using the n-gram probability is the 
high dimensionality involved. For example, a typical phone 
recognizer with 40 phonetic units will lead to (40)3 = 64,000 
unique trigrams. This results in a very sparse estimate of n-
gram probability with a lot of unseen n-grams, especially for 
the case of short segments. Reducing the number of unique n-
grams, so as to reduce the number of parameters to be 
estimated, does not usually help as this reduces the resolution 
of the n-gram distribution. This problem has been traditionally 
tackled with smoothing or discounting methods [7], for 
examples, add-one smoothing, Witten-Bell discounting or 
Bayesian smoothing with Dirichlet prior [8]. More recently, 
latent topic model [9, 10] which has its roots in information 

retrieval for modeling text documents, has shown to be a 
promising solution. The central idea of a topic model is to 
confine the variability to a low dimensionality, very similar to 
the subspace methods [11, 12] used in speech processing. 

This paper advocates the use of latent Dirichlet allocation 
(LDA) [10], the most widely used topic model, for modeling 
n-gram sequences. In this regard, we assume that the n-gram 
sequences are generated by a topic model characterized by a 
set of latent topics, each being a discrete distribution over the 
n-grams. Using this model, our aim in this paper is twofold. 
Firstly, by fitting the topic model onto a sufficiently large 
corpus, we aim to learn the hidden structure underlying the 
corpus, which corresponds to the hidden phonotactic 
constraints pertaining to individual languages and those 
common between languages. Secondly, we construct a low 
dimensional simplex using the latent topics, in which spoken 
language recognition can be done effective, if not better than 
in the original dimensionality. A simplex can be visualized as 
a lifted and bounded hyperplane. For language recognition to 
be done effectively in the simplex, we introduce an SVM 
kernel metric based on the Bhattacharyya measure. In the 
following sections, we demonstrate the LDA technique for 
modeling n-gram sequences in more detail in this first attempt 
of using topic model for language recognition. 

2. Phone n-gram statistics as language cues 
State-of-the-art phonotactic system comprises a phone 
recognition front-end and either a language model (LM) [3] or 
support vector machine (SVM) [6] back-end. The front-end 
uses a phone recognizer1 to convert speech waveform X  into 
phone sequence: 
 ( )argmax | ,

Y
P Y=Y X M  , (1) 

where ( )| ,P Y X M  denotes the posterior probability of 
generating the phone sequence Y  given the input X  and the 
parameters of the phone recognizer, M .  Using the best phone 
sequence output Y  from the recognizer, we then count the 
occurrences of n-grams: sub-sequences of n phone symbols. 
Take trigram (i.e., n = 3) for example, we count the number of 
times the symbol 2tw −  is followed by 1tw −  and tw , which 
gives ( )2 1, ,t t tC w w w− − . Here, tw  represent any phone in the 
phone set. Let ( )1 1, , ,t n t tC w w w− + −…  be the n-gram counts, the 
maximum likelihood (ML) estimate of the n-gram probability 
[7] is computed as 

 ( ) ( )1 1
1 1

, , ,, , , t n t t
t n t t

C w w wP w w w
N

− + −
− + − = …… , (2) 

where N  is the total number of n-grams observed in the 
phone sequence. Here, we treat individual n-gram as if it is a 
single event, which essentially means that the n-gram 
                                                                 
 
1 One can also use multiple phone recognizers in parallel 
(PPR), where the final decision is obtained by fusing the 
scores from parallel systems. 
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probability in (2) is a joint probability of n sub-events. This is 
slightly different from the LM approach, where the n-gram 
probability is modeled as the conditional probability, 

( )1 1| , ,t t n tP w w w− + −… , in which the probability is conditioned 
on the preceding ( )1n−  symbols ( )1 1, ,t n tw w− + −… . In this 
paper, the n-gram probabilities serve as inputs to SVM, for 
which earlier study [6] has shown that joint probability n-gram 
model is more suitable. 

The joint probability in (2) can be treated just like a 
unigram probability by letting ( )1 1, , ,t t n t tw w w w− + −=� … . The 
symbol w�  now represents any of the nV M=  possible unique 
n-grams, where M  is the number of unique phones. This is 
desirable as the latent Dirichlet allocation (LDA) originally 
proposed in [10] works on unigram probability over words 
from text documents. Though it is possible to use LDA on 
conditional probability [13], we devote the paper to the first 
option in this preliminary study. 

3. Latent topics for language recognition 
Latent Dirichlet allocation (LDA) was proposed in [10] 
originally for modeling the word occurrence frequency in text 
documents. Since text documents are essentially sequences of 
words, we use LDA to model n-gram sequences by treating the 
n-gram symbols as words in text documents. 

3.1. Latent topics and topic simplex 

We use similar notation w�  to indicate an n-gram symbol as in 
previous section, and there are V number of those unique 
symbols. LDA assumes that an n-gram sequence =W
( )1 2, , , , ,t Nw w w w� � � �… …  consisting of N observations is 
described by the following model: 

 ( ) ( ) ( )
1 1

| , Dir | |
N K

t k k
t k

P P w dθ θ
= =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∏ ∑∫α P θ α θ�W . (3) 

In the model, the distributions ( )| kP w θ� , for k = 1, 2, …, K, 
are V-dimensional discrete distributions over all the unique n-
grams. We refer to these distributions as the latent topics. The 
latent topics are linearly combined to give 

 ( ) ( )
1

| |
K

k k
k

P w P w θ θ
=

=∑θ� � , (4) 

from which the n-gram sequence W  was generated. The 
weights, { }1 , , Kθ θ=θ … , that determine the proportions of 
topics in the mixture are called the latent factors, and are 
assumed to follow a Dirichlet distribution: 

 ( ) ( ) 1

1

Dir | k

K

k
k

C αθ −

=

= ∏θ α α  . (5) 

Here, { }1, , Kα α=α …  are the set of positive parameters and 
( )C α  is the normalization factor to ensure that (5) is a 

legitimate density function. In the left hand side of (3), we use 
the V × K matrix P to represent the latent topics in a column-
wise manner, where the ( ),v k th element of the matrix is 
given by  
 ( ) ( ), |v kv k P w θ≡P � . (6) 

By using the latent factor model as described above, our 
aim is to discover the hidden phonotactic strands or cues 
underlying a particular language, and between languages, in 
terms of latent topics. We could also represent an n-gram 
sequence as the linear combination of latent topics as in (4). 
Since the number of topics, K, is usually much smaller than 
the number of unique symbols, V, the latent factors θ  can be 
used as a low-dimensional representation to the V-dimensional 

distribution ( )|P w θ� . From a geometric perspective, the n-
gram sequence could now be represented as a point on the 
(K−1)-dimensional simplex, where the K vertices of the 
simplex are defined by the latent topics. Fig. 1 shows a 2-
dimensional simplex for K = 3 latent topics. 

3.2. Parameter estimation 

We summarize the expectation maximization (EM) algorithm 
for learning the latent topics and inferring the latent factors as 
follows. In the E-step we infer the posterior probabilities of the 
latent factors { }1 , , Kθ θ=θ …  for each of the n-gram 
sequences, ( )1 2, , , , ,t Nw w w w= � � � �… …W . Exact inference is 
intractable, in which case we need to turn to variational 
method [10]. Let  

 ( ) ( ) ( ) 1

1

| Dir | k

K

k
k

q C γθ −

=

= = ∏θ γ θ γ γ  (7)  

be the posterior probability of latent factors θ . The E-step 
consists of the following equations, where the parameters 

{ }1 2, , Kγ γ γ=γ …  are updated: 

 ( ) ( )
( )

1

,,
,K

k

v kv k
v k

′=

Φ =
′∑

B
B

, (8) 

 ( )
1

,
V

k k v
v

v kγ α η
=

= + ⋅Φ∑ , 1,2, ,k K= … . (9) 

In (8), the matrix  
 ( ) ( ) ( )[ ], , exp kv k v k γ= ⋅ ΨB P  (10) 

and Φ  are V × K matrices, and ( )Ψ ⋅  is the digamma 
function. Recall that P is the V × K matrix containing the latent 
topics in its columns. In (9), vη  is the number of counts the 
term vw�  being observed in the sequence. For terms not 
observed in the sequence, in which case 0vη = , the 
corresponding elements in the matrices Φ and B  will be null 
and do not need to be computed or stored. This feature can be 
exploited to reduce the computation and memory requirement 
in the implementation. The only complication left is the 
computation of the digamma function ( )Ψ ⋅  in (10), which 
can be resolved using standard statistical package. Notice that 
the denominator in (8) is just to ensure that Φ sum to one row 
wise. Equations (8) and (9) are iterated until convergence is 
met. 

Once the posterior inference was done for all n-gram 
sequences, the latent topics P  and the parameters α  of the 
Dirichlet prior are updated in the M-step as follows. Let D be 
the number of n-gram sequences available in the training data, 

 
Figure 1: A 2-dimensional simplex. At the vertices are the 
three latent topics. An n-gram sequence is represented as a 
point θ  on the simplex due to the constraints 0kθ ≥ and 

1
1K

kk
θ

=
=∑  placed on the latent factors. 

{ }1 2 3, ,θ θ θ=θ
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the new latent topics are computed by summing the Φ  
matrices over all sequences, as follows 

 ( ) ( ),
1

, ,
D

k v d d
d

v k v kλ η
=

= ⋅ ⋅Φ∑P . (11) 

The normalization factor kλ  ensures that ( )
1

, 1V

v
v k

=
=∑ P  for 

each latent topic. The parameters α  of the Dirichlet prior are 
re-estimated with Newton-Raphson method using γ  from the 
E-step as input. The E and M steps are repeated until 
convergence is met. Details of the Newton-Raphson method, 
convergence criterion and initialization of parameters can be 
found in [10]. 

3.3. Point estimates for latent factors 

Using the latent topics trained from a sufficiently large corpus, 
we could analyze the decomposition of an unseen n-gram 
sequence into topics by looking at the posterior distribution in 
(7). To infer ( )|q θ γ , we iterate between (8) and (9), where 
the parameters { }1 2, , Kγ γ γ=γ …  are updated until 
convergence. 

The Dirichlet is a density function over the (K−1)-
dimensional simplex. To better interpret the latent factors, one 
could use the point estimate: 

 { }
1

ˆ | k
k q k K

kk

E γθ θ
γ ′′=

= =
∑

γ    , 1,2, ,k K= … , (12) 

which gives the mean of the posterior distribution. This is 
different from the maximum a posteriori (MAP) criterion 
where the mode (i.e., the maximum) is used as the point 
estimate. The reason is that the mode may not exist when the 
latent factors become sparse in which only a few topics are 
responsible for generating the sequence. For the mode to exist 
we need 1,k kγ > ∀ . Notice also, if we let 0kα =  in (9), then 
(12) reduces to the ML estimate.   

4. Language recognition in the topic 
simplex 

The point estimate represents an n-gram sequence as a K-
dimensional vector, which provides a more compact 
representation compared to the V-dimensional distribution 
over n-grams in (2). Using either form of compact or raw 
representations, the n-gram sequence is essentially mapped on 
to a simplex. To use these as inputs to SVM, we introduce two 
kernel metrics based on the Bhattacharyya measure which has 
shown to work well on the simplex [14]. Let aW  and bW  be 
two n-gram sequences, we could measure their similarity in 
the V-dimensional simplex as 

 ( ) ( ) ( )
1

,
V

V a b a v b v
v

P w P wκ
=

= ⋅∑ � �W W . (13) 

For the K-dimensional topic simplex proposed in this paper, 
we use the following kernel metric: 

 ( ) , ,
1

ˆ ˆ,
K

a b k a k b
k

θκ θ θ
=

= ⋅∑W W . (14) 

Let κ  denotes any of the kernel metric in (13) or (14), given 
W  as input, the discriminant function of an SVM can be 
expressed as 

 ( ) ( )
1

,
L

l l l
l

f y bπ κ
=

= +∑W W W , (15) 

where L  is the number of support vectors, lπ  are the weights 
assigned to the lth support vector with its label given by 

{ 1, 1}ly ∈ − +  and b  is the basis parameter.  

For ease of implementation using standard SVM packages 
(e.g., libSVM or SVMTorch), the square-root operator is first 
applied element-wise on the inputs. SVM training can then be 
implemented using standard SVM packages with a linear 
kernel. In particular, we train one SVM for each language 
using the one-versus-all strategy [6]. 

5. Experiments 
Experiments were carried out based on the NIST LRE07 
closed-set language detection protocol [15]. There are fourteen 
target languages, which includes Arabic, Bengali, Chinese 
(comprised of Mandarin and three dialects), English, Farsi, 
German, Hindustani (comprised of Hindi and Urdu), Japanese, 
Korean, Russian, Spanish, Tamil, Thai and Vietnamese. We 
used CallFriend, OHSU, and some additional training data 
supplied by NIST/LDC to cover all target languages. For the 
phone recognizer, we used the Hungarian recognizer 
developed by Brno University of Technology [5]. The phone 
recognizer had been trained on the SpeechDat-East database to 
give 59 phones (and 3 non-phonetic units). Trigram counts 
were generated from the phone lattice [4]. Trigram with very 
low inverse document frequency (IDF) [16] were discarded, 
which leads to the final V = 134,819. 

5.1. Latent topics 

Unlike text documents, whereby latent topics can be literally 
understood [10], the latent topics derived from n-gram 
sequences are much obscured from intuitive interpretation. For 
text documents, there could have latent topics with specific 
themes referring to Arts or Budget with words including {film, 
show, music, actress,…} and {million, tax, money, 
program,…}, respectively. Fig. 2 shows a plot of latent topic 
arbitrarily selected from a set of K = 50. Indicated in the figure 
are trigrams with high probabilities in the topic. Though the 
latent topic could not be interpreted literally, we could still see 
that the four trigrams indicated in the figure exhibit similar 
pattern in which they all start with the same label b:.   

Instead of looking at the interpretation of individual topics, 
the question that relates more to language recognition is how 
these topics represent individual languages.  Fig. 3 shows two 
languages (i.e., English and Chinese) represented in terms of 
the distribution over the latent topics. The latent topics were 
trained using the development data as detailed in previous 
section. We then infer the topic proportions (i.e., the 
distribution over the latent topics) for individual language by 
iterating between (8) and (9) until convergence, and 
computing the topic proportion using (12). In this regard, a 
non-overlapping subset was selected from the training data 
before it was used for training the latent topics. 

We deliberately arrange the topic indices so that three 
distinct groups can be seen in Fig. 3.  (We make sure that the 
same set of indices is used when plotting the two 
distributions). Clearly, the topics on the right and left sides of 
the figure correspond more to English and Chinese 

Figure 2: A latent topic is a discrete distribution over n-grams. 
Indicated in the figure are four trigrams with high 
probabilities. 

8200 8400 8600 8800 9000 9200 9400
0

2

4

6
x 10-4

Trigram index

{b:,k:,l}
{b:,r,:2}

{b:,l,t:}

{b:,S,d_}

2935



respectively, while those at the middle are topics common to 
both. The remaining topics that fall within these groups are 
less significant in characterizing both languages. We observed 
almost the same pattern for different language pairs. This 
shows that language cues are preserved (each language has its 
own dedicated topics with some overlap between languages) 
by just using K = 50 topics, which is less than 0.05% of the 
original dimensionality of V = 134,819. 

5.2. Language recognition 

We evaluate the performance in terms of the average equal-
error-rate (EER) computed from the pooled set of scores. 
Score normalization is performed using a simple back-end: 

( )( )log 1 1 js
i i j i

s s T e
≠

′ = − − ∑ , where 1 2, , , Ts s s…  are the 
scores from the T target languages for a given test segment. 

We used the PR-SVM with the kernel metric in (13) as the 
baseline system, while the kernel metric in (14) is used for the 
latent factors. Fig. 4 shows the EER evaluated at different 
values of K with a maximum at 600, which is less than 0.5% 
of the original dimensionality of V = 134,819. The EER 
decreases with an increasing number of latent topics K; 
however, the performance improvement levels off at K = 150, 
and get higher gradually at larger K. This probably due to the 
fact that we have only 2625 speech samples available for 
training the latent topics. The latent topics were not properly 
trained due to lack of data thereby introduce unnecessary 
ambiguity to the topic simplex. 

Despite their low dimensionality, language recognition in 
the topic simplex shows competitive performance. At K = 150, 
we used only 0.11% of the dimensionality of the baseline 
system to obtain an EER of 4.93%. This gives an 11.97% 
difference compared to the baseline EER of 4.34%. Though 
this result does not match our expectation to surpass the 
performance of the baseline system, it does indicate that the 
latent factors preserve much of the language cues with a very 
small number of parameters. Furthermore, the low 
dimensionality allows additional processing (e.g., channel 
compensation) which we anticipate could further improve the 
performance.  

6. Conclusions and future work  
This paper has introduced and evaluated the use of latent topic 
modeling for spoken language recognition. The central idea is 
to constrain the variability of n-gram distribution within a low 
dimensional simplex of latent topics. To this end, we treat 
each n-gram as a discrete event, and represent an n-gram 
sequence on the topic simplex using the point estimate of the 
Dirichlet posterior. Language recognition using K = 150 latent 
factors (being only 0.11% of the original dimensionality of V = 
134,819) results in an EER very close to that of the baseline. 
This result shows that the topic simplex could sufficiently 
capture the phonotactic cues pertaining to individual languages 
using a very low dimensionality. Future work will exploit the 

low dimensional benefit of the topic simplex to further 
improve the performance. In particular, we could use a full 
covariance for more effective channel compensation, which is 
difficult in the original space given the high dimensionality. 
We hope that this first attempt in using topic modeling would 
path the way to a framework similar to the joint factor analysis 
(JFA) [11] but for discrete count-based features. 
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Figure 4: EER at different number of latent topics K. 
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