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ABSTRACT
This work tackles the problem of the domestic audio tag-
ging or environmental sound classification, where one audio
recording can contain one or more acoustic events and a rec-
ognizer should output all of those tags. A baseline model for
this task is a convolutional recurrent neural network (CRNN)
with sigmoid output nodes optimized using the binary cross-
entropy objective. Traditional error metrics, such as classi-
fication error, are not suitable for this type of task. In this
work, we show that the maximal figure-of-merit (MFoM)
framework helps to separate the multi-label classes in terms
of equal error rate (EER). We embed MFoM into the deep
learning objective function and gain more than 9% relative
improvement, compared to the baseline model with binary
cross-entropy.

Index Terms— Deep learning, audio tagging, multi-label
classification, equal error rate.

1. INTRODUCTION

In everyday life, we experience acoustic environment contain-
ing multiple overlapping sound events. Our hearing system is
mostly able to separate those events, such as sound generated
by a microwave oven or person speaking, and concentrate
only to a specific event of interest. The goal of the domestic
audio tagging is to label recordings with multiple tags related
to domestic environments: human speech, video game, per-
cussive sounds, broadband noise from house appliances and
others [1]. The result is the textual tags which describe the
presence of one or several audio events in a record without
giving the onset and offset time boundaries. Acoustic envi-
ronment detection has practical applications in many areas,
including context aware computing [2], noise mitigation [3],
health activity monitoring [4] and multimedia event detection
[5].

The conventional method for audio tagging is to build
one Gaussian mixture model (GMM) per class and to score
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Fig. 1. T-SNE visualization of the convolutional recur-
rent neural network (CRNN) output scores before and af-
ter MFoM transformation. MFoM transformation promotes
a better class separation.

each audio clip against all models [6]. This method was se-
lected as the baseline in the recent audio tagging challenge,
namely DCASE 2016 [7]. Another popular method is to clas-
sify acoustic events based on convolutional neural network
(CNN) [7], which is found to outperform the GMM baseline.
In [8], data augmentation with speed and pitch distortions
is applied, which further improve the performance. Combi-
nation of CNN with recurrent neural networks (CRNN) [9]
boosts the performance even more. In this case, CNN is used
as a raw feature transformation and RNN captures temporal
acoustic context.

In this paper, we treat the problem of audio tagging as a
multi-label classification task [10, 11], where multiple labels
(a.k.a. tags) can be assigned to every single audio record-
ing. The naive approach would build a single sound event
detector for each class separately and give a decision for each
tag separately. In multi-label classification, this approach is
known as the binary relation (BR) [12]. We see that previ-
ous approaches [6, 7] belong to the BR class, for example, in
GMM approach each class is separately modeled. The neu-
ral network approach, on the other hand, considers all acous-
tic events with a single DNN and is mutually trained on the
whole dataset. Each output neuron corresponds to a particu-
lar acoustic class (or tag) and emits a confidence scores inde-
pendently of the other output neurons. This network is then
optimized using the binary cross-entropy (log-loss) objective



function [13].
Typical loss functions, used in optimizing deep learning

models, are either mean squared error (MSE) for regression
tasks and cross-entropy (CE) for classification tasks [14]. The
useful property of these losses is that they are differentiable
and decomposable, i.e., loss can be decomposed up to indi-
vidual observation. However, this is not the case for more
complex losses such as equal error rate (EER). In [15], we
compute loss in either per batch or minibatch level, and apply
the Maximal Figure-of-Merit (MFoM) [16, 17] approach in
order to incorporate evaluation metric micro-F1 into the loss
function for deep neural networks. In this work, we explore
application of the MFoM. The MFoM transformation shows
beneficial class separation in the score space as in Fig. 1. This
property of MFoM is embedded into the binary cross-entropy
optimization.

2. MULTI-LABEL ACOUSTIC EVENT DETECTION

In a multi-label acoustic classification (or tagging) task, we
are given audio recordings containing multiple overlapping
sound events. In the real environment, some sound events
are impulsive (e.g., cutlery sound), whereas the others could
last for relatively long period of time (e.g., sound of pass-
ing train). Thus, an automatic system should extract features
which benefit in both of these properties. To this end, it has
been shown beneficial to represent input audio signal in the
form of matrices comprising of consecutive frames (log-mel
filter banks) [9]. This feature matrix is denoted as X ∈ RD

of size D = [DFB × DT] consisting of DFB number of filter
banks by DT number of frames and illustrated in Fig. 2 for
the case D = [64 × 96]. Since the length T of audio files
is typically longer than DT frames, we treat every file as the
sequence of feature matrices.

The objective of a multi-label acoustic detector is to learn
a function H : X → Y, mapping an acoustic observation Xi

to the corresponding binary vector of labels yi. The binary
vector yi has several unit marks or several-hot labels, e.g.,
yi = (0, 1, . . . , 0, 1)>. It assigns a sample Xi to one or more
classes at the same time. We denote these M acoustic event
classes as C = {Ck|k = 1,M}. The cardinality of the set of
possible labels is |Y| = 2M . Therefore, the key challenge in
modeling multi-label classifier is that the number of config-
urations of yi is exponential in which there are 2M possible
labels. We show in Fig. 2 for the case of M = 7 as specified
in DCASE 2016 multi-label tagging task.

In this work, we use convolutional recurrent neural net-
work (CRNN) as the baseline architecture [9] for the acous-
tic event tagging. During the training phase, feature matrices
Xi are fitted as the inputs to the network. The training set
T =

{
(Xi,yi)| i = 1, N

}
consists of N pairs of feature ma-

trix Xi and binary vector of labels yi. The output dimension
is equal to the number of acoustic event classes. The binary
cross-entropy objective function is applied to optimize the pa-

rameter set W =
{
Wn|n = 0, L

}
of the network consisting

of L+ 1 layers, as follow

JBCE (W|T) =
1

N

N∑
i=1

{
−y>i log (gi)−

− (1− yi)
>

log (1− gi)
}
, (1)

where gi ∈ RM is the vector of output scores corresponding
to input Xi. The element k of the vector gi is given by the
k-th output of the network

gk (Xi;W) , k = 1,M, (2)

for the input Xi. We refer to this as the discriminant function
for class Ck [18].

3. MFOM EMBEDDING

The general idea of maximal figure-of-merit (MFoM) learning
[16] is to transform the output scores of a classifier to smooth
(or soft) error counts, and thereby allowing the decision rule
to be embedded into a continuous and differentiable objec-
tive function for optimization. The classifier could then be
trained to optimize the performance metric directly (i.e, fig-
ure of merit), despite the metric is defined in terms of discrete
error counts (e.g., equal error rate (EER)). In this paper, we
modify the MFoM formulation to cater for multi-label prob-
lem. We then show that the smooth error could be used to
derive soft labels and embed in the conventional binary cross-
entropy cost.

We describe below two key elements of MFoM frame-
work as required for soft label embedding:

a. Misclassification measure. In [15], we proposed the
“units-vs-zeros” misclassification measure for multi-
label task. The misclassification measure determines
the distance between a target class from the decision
surface, where for class Ck we have

ψk = −gk + ln

 1

|I|
∑
j∈I

egj

 (3)

{
if Ck is 1⇒ I = y{0},
if Ck is 0⇒ I = y{1},

(4)

where gk is the discriminant function, y{1} is the set
of unit indices, and y{0} is the set of zero indices in
the label vector y. For example, y{0} = {2, 3} and
y{1} = {1, 4} in Fig. 3. The first term on the right-side
of (3) is called the target model and the second term is
the Kolmogorov mean (generalised f -mean) [19] of the
competing (confusing) models. The misclassification
measure is the differences between the target class and
the average of the confusing classes.



Fig. 2. Convolutional recurrent neural network (CRNN) architecture. The input features are matrix of consecutive frames of
log-Mel filter banks (64 filter banks by 96 time frames). The convolutions and max-poling operations are sequentially applied
to extract beneficial features. Then these are fed into the gated recurrent unit (GRU) to capture the temporal information. The
network outputs are sigmoid scores, these indicate several active acoustic events in audio signal.

b. Smooth error function. This is a function that turns the
misclassification measures to error counts via smooth
step function [20]

lk =
1

1 + exp [−αkψk − β]
, (5)

where αk and β are non-negative parameters [16].

The sign of the misclassification measure shows the
classification correctness. A positive sign ψk > 0 in-
dicates a misclassification, and vice versa for negative
sign. These are converted to bounded values between
0 and 1 with the use of (5). For target observation a
smooth error count closer to 1 indicates incorrect de-
tection.

Fig. 3. MFoM score is embedded in the binary cross-entropy
loss function of the CRNN. During training we forward data
through the CRNN, calculate MFoM using output σ scores
and ground truth y. Binary cross-entropy measures the dif-
ference between the network output σ and the new soft-labels,
i.e., MFoM scores l̄, where l̄ = 1 − l. Highlighted σ scores,
in the example, correspond to the units and zero labels of the
ground truth y and explain (3).

In practice, we notice that MFoM transformation reorga-
nizes the scores of the model in such a way that the new scores

are well separated and improve the EER performance. In
Figure 1, the t-SNE visualization of the sigmoid and MFoM
scores are presented, MFoM scores are better separated. On
the other hand, we need to point out, that the ground truth la-
bels y are needed in (3) for calculation of MFoM scores in
(5).

In this paper, we propose to use the MFoM transformation
to embed the smooth error function into the objective func-
tion of the neural network. The idea is illustrated in Fig. 3. In
particular, we embed MFoM scores into the backpropagation
optimization process. In the training phase, the network out-
puts scores in (2) with the labels y are exploited to calculate
misclassification measure (3) and then MFoM scores l using
(5). The binary cross-entropy objective function is optimized
on the g and l̄ scores

JMFoM (W|T) =
1

N

N∑
i=1

{
−li
>

log (gi)−

−
(
1− l̄i

)>
log (1− gi)

}
, (6)

where l̄i = 1 − li for a training sample Xi. We recalculate
MFoM transformation on every iteration of backpropagation
during the learning process of the neural network, it helps to
correct the confidence in the more flexible way, it corrects the
confidences on every mini-batch. The MFoM scores plays
the role of the soft labels. The usual 0/1 ground truth y sim-
ply marks the sample as belonging to a particular class and
does not bring any information in training about confidence
or misclassification. In the opposite, the MFoM scores can be
treated as the informative scores.

4. EXPERIMENTS

We run experiments on the CHiME-HOME dataset (refined
part), which is used in audio tagging task in DCASE16 chal-
lenge. This dataset contains 1946 audio chunks for develop-
ment (5-folds cross validation) and 846 chunks for evalua-
tion. Every chunk has 4-second recording of home environ-
ment and annotated with one or multiple labels, without on-
set/offset time information. There are 7 sound classes in the



annotations: child speech, adult male speech, adult female
speech, video game / TV, percussive sounds, broadband noise
and other identifiable sounds.

In this work, the convolutional recurrent neural network
is explored, see Fig. 2 with exact settings. It takes the input
feature matrix, which is organized as 64-dimensional log-Mel
filter banks spanning from 0 to 16kHz, and context window
is size of 96 frames. We sequentially apply four convolu-
tion mappings and max-pooling along the frequency and time
axis. Then the result of the convolutions is fed to the gated re-
current unit (GRU) [21] with 24 time steps. The convolutions
extract relevant features and reduce the unstable audio dis-
tortions, whereas GRU is learning the temporal context vari-
ability. In all the hidden layers the exponential linear units
(ELUs) are used [22]. Output layer has sigmoid units and
produces sigmoid confidence scores for every acoustic event.
In order to reduce over-fitting, the dropout with rate 0.3 is ap-
plied after every max-pooling layer. We optimize the binary
cross-entropy objective function (JBCE from (1)) using Adam
optimization algorithm with the learning rate 10−3. Perfor-
mance of the CRNN trained with the binary cross-entropy
JBCE is presented in the Table 1. We treat this approach as
the baseline.

The weights of the CRNN trained with JBCE are used
as the starting point for the proposed method. We propose
the embedded MFoM transformation approach to improve
the equal error rate performance. We initialize the CRNN
network with the pre-trained weights, after JBCE optimiza-
tion. We continue fine-tuning with the MFoM approach
and stochastic gradient descent (SGD) optimization with the
smaller learning rate 10−4. The fine-tunning is performed
with embedded MFoM into objective function, see Fig. 3.
The CHiME-HOME training dataset is forwarded through
the network and produced the output sigmoid scores. These
scores are turned into MFoM scores with “units-vs-zeros”
misclassification measure (3) and the smooth error function
(5). Then the binary cross-entropy JMFoM from (6) is opti-
mized between the sigmoid and MFoM scores. The MFoM
scores play the role of soft labels. The results of the MFoM
embedding JMFoM and the other approaches are presented in
the Table 1.

5. RESULTS

From the Table 2, we notice, that the performance of the
CRNN pre-trained with the binary cross-entropy JBCE is im-
proved by JMFoM. The fine-tunning, using the embedded max-
imal figure-of-merit (MFoM) transformation into the binary
cross-entropy objective function, mostly improves the EER
across the all five folds and all acoustic classes. The embed-
ded MFoM JMFoM optimization significantly improves detec-
tion of broadband noise and other sounds classes. Also, most
of the improvements are done across all five folds except forth
fold. In average, EER is reduced from 13.6% to 12.4%, i.e.

around 9% relative improvements.

Table 1. The performance (per folds) results of the GMM,
CNN, CRNN, CRNN trained with the binary cross-entropy
JBCE from (1) as the baseline and with embed MFoM JMFoM
from (6). Metric is the averaged EER, %.

Fold # GMM [6] CNN [23] CRNN [9] JBCE JMFoM

1 24.2 . . 16.0 15.3
2 17.1 . . 11.4 10.7
3 17.7 . . 9.3 7.9
4 20.2 . . 13.9 13.8
5 25.3 . . 18.0 14.4

Avg. 20.9 16.6 13.0 13.6 12.4

Table 2. The performance per acoustic classes and folds. Re-
sults of the same CRNN as in Table 1, trained with JBCE and
embedded MFoM, JMFoM. Metric is the averaged EER, %.

6. CONCLUSIONS

In this work we focused on exploring the application of the
MFoM mathematical framework to equal error rate (EER)
metric for multi-label acoustic events classification. We
have proposed the MFoM transformation embed into DNN
objective function. We utilize the training set multi-label
information about the joint acoustic classes. This is done
with the MFoM transformation embedding into the binary
cross-entropy objective. Instead of using hard (0/1) ground
truth labels, we build in soft MFoM labels. This approach
improves the multi-label acoustic event detectors for domes-
tic audio tagging problem. In particular, we have designed
the CRNN network with the sigmoid outputs and the bi-
nary cross-entropy objective function as the baseline method.
Experimental results have demonstrated that the MFoM,
embedded into binary cross-entropy objective function, im-
proves the performance of the baseline from 13.6% to 12.4%.
We intend to expand further this line of research by inves-
tigating other advantages of MFoM for objective function
optimization of neural networks.

7. REFERENCES

[1] A. Mesaros, T. Heittola, and T. Virtanen, “Metrics for
polyphonic sound event detection,” Applied Sciences,



vol. 6, no. 6, p. 162, may 2016.

[2] S. Chu, S. Narayanan, and C.-C. J. Kuo, “Environmental
sound recognition with time-frequency audio features,”
ASPL, vol. 17, no. 6, pp. 1142–1158, Aug. 2009.

[3] C. Mydlarz, J. Salamon, and J. P. Bello, “The
implementation of low-cost urban acoustic monitoring
devices,” CoRR, vol. abs/1605.08450, 2016.
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