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Abstract
Current language identification (LID) systems are based on an i-
vector classifier followed by a multi-class recognition back-end.
Identification accuracy degrades considerably when LID sys-
tems face open-set data. In this study, we propose an approach
to the problem of out of set (OOS) data detection in the context
of open-set language identification. In our approach, each unla-
beled i-vector in the development set is given a per-class outlier
score computed with the help of non-parametric Kolmogorov-
Smirnov (KS) test. Detected OOS data from unlabeled devel-
opment set is then used to train an additional model to repre-
sent OOS languages in the back-end. The proposed approach
achieves a relative decrease of 16% in equal error rate (EER)
over classical OOS detection methods, in discriminating in-set
and OOS languages. Using support vector machine (SVM) as
language back-end classifier, integrating the proposed method
to the LID back-end yields 15% relative decrease in identifica-
tion cost in comparison to using all the development set as OOS
candidates.

1. Introduction
Language identification (LID) is the task of automatically iden-
tifying whether a known target language is being spoken in a
given speech utterance [1]. Over the past years, several methods
have been developed to perform LID tasks, including phonotac-
tic [2] and acoustic ones [3]. The former uses phone recognizers
to tokenize speech utterances into discrete units followed by n-
gram statistics accumulation and language modeling back-end
[4, 1]. The latter uses spectral characteristics of languages in a
form of acoustic features such as shifted delta cepstral (SDC)
coefficients [5, 6]. Gaussian mixture models (GMMs) [7] and
support vector machines (SVMs) [8] are often used as classi-
fiers. Recently, i-vectors [9] based on bottleneck features [10]
have also been extensively explored.

State-of-the-art LID systems [11, 12, 10] achieve high iden-
tification accuracy in closed-set tasks, where the language of a
test segment corresponds to one of the known target (in-set) lan-
guages. But in open-set LID tasks, where the language of a test
segment might not be any of the in-set languages, accuracy of-
ten degrades considerably [13, 14]. In open-set LID, the objec-
tive is to classify a test segment into one of the pre-defined in-
set languages or a single out-of-set (OOS) language (or model).
Open-set LID is more applicable in real-life scenarios, where
speech may come from any language. For example, in multi-
lingual audio streaming and broadcasting, it is necessary to fil-
ter languages which do not belong to any of the modeled target
languages [15].

Different approaches have been explored for OOS model-
ing both in open-set speaker identification (SID) and LID sys-
tems. In the context of open-set SID, the objective is to decide

whether to accept or reject a speaker as being one of the en-
rolled speakers. The authors of [16, 17] used the knowledge
of universal background model (UBM) to represent the OOS
speakers. Each in-set speaker is modeled using Gaussian mix-
ture models (GMMs) with a UBM and maximum a posteriori
(MAP) speaker adaptation [18]. During classification, if any
of the in-set speakers is selected, the test speaker is labeled as
in-set; otherwise, the UBM has the highest score and the test
speaker is classified as OOS. Authors in [19] proposed a system
which first finds the best-matched model for a test speaker using
vector quantization (VQ) based recognition system [20]. Then,
a set-score is formed using support vector machine (SVM) clas-
sifier. Finally, a vector distance measurement for each enrolled
speaker is used to accept or reject the test speaker as in-set class.

A few prior studies have been carried out on open-set LID
tasks as well, as summarized in Table 1. To model OOS lan-
guages in open-set LID tasks, some approaches make use of
additional OOS speech data derived from languages different
from the target (in-set) languages [21, 22]. This additional OOS
data is then used for training an OOS model. Obtaining addi-
tional data is often done in a supervised or semi-supervised way,
which can be time consuming or leads to further sub-problems
such as representative data selection to model the OOS lan-
guages. The authors of [21] proposed a method for com-
pact OOS candidate language selection based on knowledge
of world-language distance. In specific, candidate OOS data
came from different language families having different prosody
characteristics from the target languages. This method achieved
8.4% relative improvement in classification performance over a
baseline system with a random selection of OOS candidates. In
[22], a target-independent (TI) Gaussian was trained using de-
velopment data of all target languages, to represent the OOS
languages. Further, adopting maximum mutual information
(MMI) [23] approach in [14] allows training an additional OOS
Gaussian model using only in-set data. The trained OOS model
improved the detection cost considerably, however, the impact
of training the OOS model using actual OOS data was not in-
vestigated.

A practical key question in representing the OOS data is
how to select the most representative OOS candidates to model
OOS languages from a large set of unlabeled data. While
random selection might be one option, in this study we at-
tempt to specifically identify ”higher quality” OOS utterances.
To achieve this, we present a simple approach to find such
OOS candidates in i-vector space [9], based on non-parametric
Kolmogorov-Smirnov (KS) test [25, 26]. It gives each i-vector
a per-class outlier score representing the confidence that an i-
vector corresponds to an OOS language. This approach is fast
and in contrast to [21, 22], requires no prior language labels of
the additional data which may not be available in the real-world
applications [27].



Table 1: Summary of the previous studies on open-set language identification task. Different approaches for selecting out-of-set (OOS)
data include using in-set data [14], using all development data [22], selecting labeled out-of-set data [21], pooling additional data
[13, 24] and finally selecting from unlabeled data (present study).

Study Data OOS selection OOS modeling
Zhang and Hansen [21] NIST LRE 2009 Supervised candidate selection General Gaussian back-end
BenZeghiba et al. [22] NIST LRE 2007 All development data as OOS General Gaussian back-end
McCree [14] NIST LRE 2011 No OOS detection Gaussian discriminative training using in-set data
Torres-Carrasquillo et al. [13] NIST LRE 2009 Additional OOS data Several spectral and token classifiers
Torres-Carrasquillo et al. [24] NIST LRE 2007 Additional OOS data Several spectral and token classifiers
Present study NIST i-vector challenge 2015 OOS selection from unlabeled data Gaussian, cosine and SVM classifiers

2. Open-set language identification
In closed-set LID, the objective is to classify a test segment
X into one of the pre-defined set of target (in-set) languages
{Lm|m = 1, ...,M}, where M is total number of target lan-
guages. To classify X , the decision of the most similar language
L̃ is chosen to maximize the a posteriori probability [28],

L̃ = argmax
1≤m≤M

p(Lm|X) = argmax
1≤m≤M

p(X|Lm)p(Lm), (1)

where the language likelihood p(X|Lm) and language a priori
probability p(Lm) are assumed known. In open-set LID, the
objective is to classify X into one of the M +1 languages, with
M in-set languages and a single additional OOS language (or
model).

Figure 1 shows a block diagram of a general open-set LID
system used in this paper. OOS data selection block performs
OOS detection on unlabeled development data to find best rep-
resentative OOS data for training an additional OOS model.

Fr
on

t-
en

d 
pr

oc
es

si
ng

 

i-v
ec

to
r e

xt
ra

ct
io

n 

i-v
ec

to
r p

os
t-

pr
oc

es
si

ng
 Target 

Models 

Out-of-set 
Model 

Cl
as

si
fic

at
io

n 

Decision 

Out-of-set data 
selection 

Unlabeled data 

Figure 1: Block diagram of open-set language identification.
The best-limited out-of-set (OOS) candidates are selected from
the unlabeled development data for OOS modeling. We propose
a simple method based on Kolmogorov-Smirnov test to find out-
of-set data in the i-vector space.

In this study, we use i-vectors to represent utterances and
consider the following three back-end language classifiers:
Gaussian [22, 29], cosine [30] and SVM scoring [8, 31], to
model both the target and the OOS languages. In the first case,
for a given test i-vector, wtest, the log-likelihood for a target
language m is computed as

llmwtest
= (Σ−1µm)Twtest −

1

2
µT

mΣ−1µm (2)

where µm is the sample mean vector of target language m, and
Σ is a shared covariance matrix common for all the languages.
Having access to the training i-vectors, we form the maximum
likelihood estimates of Σ and µm’s, and use Eq. (2) to compute
a language similarity score.

Cosine scoring is a dot product between test i-vector, wtest,
and language model mean, µm

scoremwtest
=

wT
test µm

||wtest|| ||µm||
. (3)

In addition, we used one-versus-all version of support vec-
tor machine (SVM) classifier with second order polynomial ker-
nel [31] after experimenting with different kernel types. In the
training phase, all samples of a target language and OOS lan-
guages are considered as positive instances with all the other
languages corresponding to negative instances. The number of
class separators equals the number of target languages plus one,
the last coming from the OOS model. During testing phase, the
highest score of a separator determines the class label of a test
segment.

A simple LID baseline system is to treat the problem as
a closed-set task without the OOS model. NIST has provided
such a system in the download package of the recent 2015 lan-
guage recognition i-vector challenge [32]. It is based on cosine
scoring in which development data is used to estimate global
mean and covariance to center and whiten the evaluation i-
vectors. We will refer to this closed-set LID system as the NIST
baseline in our results, in contrast to the open-set systems con-
taining an additional OOS model.

3. Out-of-set data selection for OOS
modeling

The objective in OOS detection is to assign each i-vector with
an outlier score, higher value indicating higher confidence that
the i-vector is an OOS observation (none of the known target
languages). Since the main aim of this study is to select most
representative OOS candidates to model OOS languages, we
investigate three commonly used OOS detection methods, in
general outlier detection context, as our baselines: (i) one-class
SVM, (ii) k-nearest neighbour (kNN) and (iii) distance to clus-
ter centroid. Each of these methods provides an outlier score for
each of the scored unlabeled utterances. Then, for the purpose
of OOS modeling (Figure 1), we apply 3-sigma-rule [33] for
OOS selection, provided that the distribution of outlier scores
for these three methods can be assumed normal.

3.1. One-class SVM

SVMs [34] are most commonly used as two-class classifiers.
An SVM projects the data into a high-dimensional space and
finds a linear separator between classes. In contrast, one-class
SVM was proposed for out-of-set detection in [35]. In the
training phase, the detector constructs a decision boundary to
achieve maximum separation between the training points and
the origin. A given unlabeled utterance is then projected into



the same high-dimensional space. The distance between the un-
labeled utterance and the linear separator is used as the outlier
score. We use LIBSVM1 (version 3.21) to train an individual
one-class SVM for each in-set class using the polynomial ker-
nel [34] and the default parameters of the software package.
The maximum score over in-set languages determines the out-
lier score for a given unlabeled utterance.

3.2. K-nearest neighbour (kNN)

In this technique, the outlier score for an observation is com-
puted by the sum of its distances from its k nearest neighbours
[36]. In this study, for each unlabeled utterance, the outlier
scores are computed using k = 3 within each in-set language
using Euclidean distance. Then, the maximum of outlier scores
over all the in-set languages is used as the outlier score for that
utterance.

3.3. Distance to class centroid

This is a simple classical approach to detect OOS data [37]. We
assume that OOS data are far away from the class centroids. For
instance, if the data follows a normal distribution, observations
beyond two or three standard deviations above and below the
class mean can be considered as OOS data [37]. This technique
consists of two steps. First, the centroid of each in-set language
is computed. Then, the distance between a data to the class cen-
troid is computed as the outlier score. The maximum distance
over all the in-set languages determines the outlier score for a
given unlabeled utterance. We consider the in-set languages as
different classes and the mean of each class as class centroids.
Euclidean distance is chosen to compute the distance between
each test data and the class means.

4. Proposed method
By now we have reviewed three commonly used OOS detection
methods. Here we propose a simple and effective technique
to find OOS data in the i-vector space. To this end, we adopt
the non-parametric Kolmogorov-Smirnov (KS) test [25, 26]. It
is used to decide whether a sample is drawn from a popula-
tion with a known distribution (one-sample KS test) or to com-
pare whether two samples have the same underlying distribution
(two-sample KS test).

For any i-vector, wi, the distances of wi to other i-vectors
in language m has an empirical cumulative distribution function
(ECDF) Fwi(x) evaluated at x. The KS statistic between i-
vector wi and any other i-vector wj in m can be computed by

KS(wi,wj) = max
x
|Fwi(x)− Fwj (x)| (4)

Given language m with the total number of instances N ,
the outlier score for i-vector wi is then defined as the average
of these KS test statistics:

KSE(wi) =
1

N − 1

N∑
j=1
j 6=i

KS(wi,wj) (5)

The average of KS statistics in Eq. (5), lies between 0 and
1; value close to 1 correspond to points with higher likelihood of
being an OOS. Algorithm 1 shows a pseudo-code for computing
the outlier score for a particular unlabeled i-vector.

1https://www.csie.ntu.edu.tw/˜cjlin/libsvm/

Algorithm 1 Outlier score computation for an unlabeled i-
vector using KSE.

Let L = {l1, l2, . . . , lM} be the set of M in-set languages
Let Wm = {wm1,wm2, . . . ,wmN} be the set of i-vectors
in in-set language lm
Input w as an unlabeled i-vector
for lm ∈ L do

temp← 0
for wmk ∈Wm do

KS ← compute KS value between w and wmk using
Eq. (4)
temp← temp+KS

end for
KSE[m]← divide temp by N − 1, Eq. (5)

end for
outlierscore ← Multiply KSE[m] by -1 and select the
maximum value

Figure 2 shows the distribution of per-language (in-set) and
OOS KSE values for Dari and French. For inset values, only i-
vectors of these languages were used to plot the distributions (in
other words, i-vectors i and j in Eqs. (4) and (5) are both from
the same languages). KSEs within each language have values
close to zero. For the OOS KSE values in Figure 2, a set of
i-vectors which do not belong to these languages were used to
plot the same distributions (in other words, i-vector i does not
belong to the language class of i-vector j, in Eqs. (4) and (5)).
These i-vectors are considered as OOS to these languages. As
expected, the KSE values tend to values close to 1.

(a) (b)

Figure 2: Distribution of in-set and OOS KSE values for two
different languages, a) Dari and b) French. KSEs within each
language have values close to zero. KSE values for OOS i-
vectors tend towards one.

The Table 2 further demonstrates how we label data to eval-
uate our OOS detectors. Let us consider five i-vectors and their
computed KSE values, given three in-set languages. The first
three rows correspond to in-set utterances and the last two rows
to OOS utterances. If the true language is one of the inset lan-
guages, label is set to 1 (e.g. the first row of Table 2), and to
0 otherwise (e.g. the last row of Table 2). The KSE values of
each unlabeled utterance is multiplied by -1 and the maximum
value is selected as the outlier score.

Following this method, we use box plot [33] to select OOS
i-vectors. Box plot uses the median and the lower and upper
quartiles defined as 25th and 75th percentiles. The lower quar-
tile, median and upper quartile are often denoted by Q1, Q2 and
Q3, respectively. In this study, unlabeled i-vectors with outlier
scores above a threshold set at, Q3+ 2.5× IQ, are selected for
OOS modeling. Interquartile range or IQ denotes the difference
(Q3−Q1).



Table 2: Example of test utterance labeling for the evaluation of
OOS data detection task given multiple inset languages. KSE
values for each data is computed according to Eq. (5). 

Data_Id True language 
KSE values 

Greek Dari  Urdu 
In-set/OOS 

1 Greek  0.29    0.82   0.84 Inset 

2 Dari  0.91    0.11   0.79 Inset 

3 Urdu  0.85    0.92   0.21 Inset 

4 Spanish  0.74    0.79   0.64 OOS 

5 Farsi  0.81    0.56   0.77 OOS 

5. Experimental set-up
5.1. Training, development and evaluation data

In this study, we used i-vectors provided by the National In-
stitute of Standards and Technology (NIST) in their 2015 lan-
guage i-vector machine learning challenge [32]. It is based on
the i-vector system developed by the Johns Hopkins Univer-
sity Human Language Technology Center of Excellence in con-
junction with MIT Lincoln Laboratory [6]. Table 3 shows the
distribution of development, training and test sets provided in
the challenge. The development set consists of 6500 unlabeled
i-vectors intended for general system tuning. The training set
consists of a set of 300 i-vectors for each of the 50 target lan-
guages, corresponding to 15000 training utterances in total. The
test segments include 6500 unlabeled i-vectors corresponding to
all of the target languages and an unspecified number of OOS
languages. The i-vectors are of dimensionality 400.

Table 3: Distribution of training, development and test sets from
the NIST 2015 language i-vector machine learning challenge.
The i-vectors are derived from conversational telephone and
narrowband broadcast speech data.

Dataset #i-vectors #languages label
Training set 15000 50 labeled

Development set 6500 n/a unlabeled
Test set 6500 50+OOS labeled

To evaluate the OOS detection methods, we need both in-
set and OOS data. Since only the training set has labels, we
further split it into three portions of non-overlapped utterances.
We name them a development, training and test portion to make
a distinction between them and the original training, develop-
ment and test sets provided by NIST. Table 4 shows the distri-
bution of these portions in our study. Training and development
portions include non-overlapped utterances of same languages.
These languages are called in-set languages and correspond to
30 different languages. Test portion consists of utterances corre-
sponding to all of those 30 in-set languages plus utterances from
20 additional languages. We call these 20 languages as OOS
languages and their corresponding utterances as OOS data.

Figure 3 further shows the Venn diagram illustrating the
data overlap, i.e. individual utterances and languages, between
training, development and test portions. The development por-
tion is used for general OOS data detection tuning, such as pa-
rameter setting for one-class SVM and threshold setting to iden-
tify OOS data in the LID task. Training and test portions are

Table 4: Distribution of development, training and test portions
for the out-of-set (OOS) data detection task. All portions are
subsets of the original NIST 2015 LRE i-vector challenge train-
ing set.

In-set Out-of-set
Total number of languages 30 20
Count of dev. portion files 1500 —

Count of training portion files 6000 —
Count of test portion files 1500 6000

used for building and evaluating OOS data detectors, respec-
tively.

Training 
portion

Dev. 
portion

Test 
portion

Utterance overlap

(a)

Test portion

Training  and 
Dev. portions

Language overlap

(b)

Figure 3: Venn diagram illustrating the data overlap between
training, development and test portions, all being subsets of the
original NIST 2015 LRE i-vector challenge training set. a) Ut-
terance overlap. b) Language overlap.

5.2. i-Vector post-processing

The sample mean and the sample covariance of the unlabeled
development set are computed to center and whiten all the i-
vectors [38]. Then, length-normalization [38] is applied to
project all the i-vectors onto a unit ball. These i-vectors are then
further transformed using principal component analysis (PCA)
[39], keeping the 99% of the cumulative variance. The resulting
i-vector dimensionality is 391, just slightly smaller than origi-
nal 400. Then, linear discriminant analysis (LDA) [6] is applied
to reduce the dimensionality of i-vectors to the maximum num-
ber of classes minus one, in our case 49 dimensions. Following
PCA and LDA, within-class covariance normalization (WCCN)
[40] is used as a supervised transformation technique to fur-
ther suppress unwanted within-language variation. For open-
set LID, the projection matrices of PCA, LDA and WCCN are
computed using the training set. The order of post-processing
techniques follows the same order as [6].

5.3. Tasks and performance measure

We use detection error tradeoff (DET) curve [41] to evaluate the
OOS data detection performance. It plots the false acceptance
rate (FAR) versus false rejection rate (FRR), using a normal
deviate scale. Here the task is to identify those test portion data
which do not conform to any of the training portion classes.

The performance measure of open-set LID task as defined
in the NIST 2015 language recognition i-vector challenge task
is defined as follows [32]:



Cost =
(1− Poos)

N

N∑
k=1

Perror(k) + Poos × Perror(oos) (6)

where Perror(k) = (#errors class k
#trials class k

), N = 50, and Poos =
0.23.

Open-set LID is performed using the training and test sets
(not portions) for model training and evaluation, respectively.
Detected OOS data from the development set is then used for
OOS modeling.

6. Results
In order to evaluate our proposed OOS selection method, we
separate the experiments into two parts. First, we evaluate the
performance of the proposed and the baseline OOS detectors.
Then, we assess the open-set language identification task with
the OOS model trained by the additional data selected by our
proposed OOS detector.

6.1. Stand-alone out-of-set data selection

Figure 4 shows the impact of parameter k on kNN-based OOS
detection task, in terms of EER. As shown, no considerable
change is observed by changing the value of k. For the remain-
ing experiments, we arbitrarily fix k = 3.
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Impact of  k on kNN-based OOS detection

Figure 4: Impact of k value on kNN-based OOS detection
method in terms of EER (%). No improvement is observed by
increasing k.

Next, as KSE is based on the distribution of distances be-
tween points, here we study the impact of different distance
metrics [42] on our proposed OOS detector. To this end, we
vary the distance metric used in computing ECDFs in Eq. (4).
Figure 5 shows the results. Euclidean and city-block distances
achieve the highest performance with EERs of 28.80% and
28.46%, respectively. For the cosine distance with EER of
32.27% and Pearson correlation distance with EER of 32.35%,
the performance degradation is more pronounced. For the re-
maining experiments, we fix the Euclidean distance metric.

Figure 6 shows the DET curve comparison between the pro-
posed KSE and the three baseline methods on the test portion
data. The results indicate that the proposed KSE method out-
performs the baselines in terms of EER. KSE outperforms kNN
and one-class SVM by 14% and 16% relative EER reductions,
respectively. From the baselines, the distance to class mean
method obtains the lowest performance with EER of 36.34%.

  2     5     10    20    40  

  5   

  10  

  20  

  40  

False Acceptance Rate (in %)

F
a

ls
e

 R
e

je
ct

 R
a

te
 (

in
 %

)

 

 

Euclidean (EER: 28.80%)

City-block (EER: 28.46%)

Chebychev (EER: 29.85%) 

Cosine  (EER: 32.27%)

Pearson correlation (EER: 32.35%)

Figure 5: Performance of proposed OOS detection method un-
der different distance metrics. Euclidean and city-block dis-
tances achieve the highest performance.
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Figure 6: Comparison between the performance of the pro-
posed OOS detection and three different baseline methods. KSE
method shows the best performance compared to baseline meth-
ods.

Now we turn our attention to the effects of system fusion on
the OOS detection performance at the score level. To this end,
we adopt linear score fusion function optimized with the cross-
entropy objective [43] using the BOSARIS Toolkit [44]. We
use our development portion to find optimal classifier weights.
Figure 7 shows the results of fusion of KSE to baseline OOS
detection methods (2-way score fusion) on the test portion data.
Interestingly, fusion of KSE to baseline systems improves the
accuracy substantially. A relative decrease of 27% over KSE is
achieved by fusing KSE and one-class SVM, yielding EER of
20.93%. EER of 28.25% is obtained by fusing KSE and kNN,
yielding relative decrease of 2% and 16% over KSE and kNN,
respectively. Fusion of all four methods (4-way score fusion)
achieves EER of 22.09%, i.e. relative decrease of 23% and 27%
over KSE and fusion of all baseline OOS detection methods (3-
way score fusion), respectively.

6.2. Language identification

Up to this point, we have discussed OOS data detection accu-
racy. Now we turn our attention to the full language identifica-
tion system in Figure 1 with the OOS model being trained by the
additional data selected using one of the OOS detection meth-
ods. Table 5 shows the identification results for both closed-set
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Figure 7: Fusion of KSE to baseline OOS detection methods.
Fusion of KSE to one-class SVM yields the best performance.
“All methods without KSE” refers to the score fusion of one-
class SVM, kNN, and distance to class mean methods (3-way
score fusion). “All four methods” indicates fusion of all four
methods including KSE (4-way score fusion).

and open-set LID systems for different classifiers. The rows of
Table 5 differ based on the data selected for target-independent
OOS modeling. Rows 2 and 3 correspond to systems in which
the data of all the training and development sets are used for
OOS modeling, respectively, inspired by the work described in
[22]. Row 4 corresponds to pooling the data in both develop-
ment and training sets. The proposed selection method refers to
OOS data selection using KSE. Finally, for reference purposes,
the last row shows the closed-set results, where the language of
a test segment can be only one of the target languages (no OOS
modeling is performed).

We observe, firstly, that integrating the proposed selection
method to open-set LID system with an SVM language classi-
fier outperforms the other systems. The lowest identification
cost achieved, 26.61, outperforms the NIST baseline system
by 33% relative improvement. Using all the training or de-
velopment data for OOS modeling does not necessarily lead
to considerable improvement over closed-set results. For ex-
ample, taking Gaussian scoring and training data (second row),
identification cost decreases from 37.07 in closed-set to 34.15
in open-set, yielding a relative improvement of 8%. Further-
more, assuming an open-set LID system based on random OOS
data selection (first row), the proposed method achieves a rel-
ative improvement of 17% using SVM language classifier2. It
is worth mentioning that since test set contains a considerable
amount of OOS utterances, the closed-set LID system incor-
rectly classifies them as one of the target languages. This ex-
plains why the closed-set LID system generally underperforms
the open-set one.

Now, we treat the open-set LID as a binary classification
task, discriminating in-set and OOS test data. In-set test data
refers to those test files having the same language labels as one
of the target languages. Table 6 shows the confusion matrix
of in-set/OOS classification using KSE and three different lan-
guage classifiers. Results correspond to the fifth row of Table
5. The results indicate that from 1500 OOS test data, 1012
are classified correctly as OOS using KSE with SVM language

2Training the OOS model with known identities of OOS languages
was not possible since NIST had not provided the class labels of the
development set utterances.

Table 5: Language identification results for both open-set and
closed-set set-ups. Rows differ based on the data used for OOS
modeling. Results are reported based on identification cost,
lower cost indicating higher performance. Numbers in paren-
theses indicate amounts of selected data for OOS modeling. The
results are reported from the evaluation online system provided
by the NIST in the i-vector challenge.

Data selected for OOS modeling (#) Cosine Gaussian SVM
Random (1067) 36.25 34.20 32.11

Training (15000) 36.35 34.15 32.61
Development [22] (6431) 36.10 32.87 31.23
Training+Dev. (21431) 36.46 33.38 31.74

proposed selection method (1067) 34.28 32.23 26.61
Closed-set (no OOS model) 39.59* 37.07 37.23

*From the NIST baseline result

Table 6: Confusion tables for in-set and OOS classification us-
ing KSE with three different language classifiers corresponding
to the fifth row of Table 5. In total, test set corresponds to 5000
and 1500 in-set and OOS data, respectively.
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classifier. This number is 317 and 49 for Gaussian and cosine
scoring, respectively.

Fixing SVM as the best language classifier, Table 7 com-
pares the results of using different OOS detectors for OOS mod-
eling in our open-set LID task. For comparison, we also include
the closed-set LID results based on SVM in the last row of Ta-
ble 7. The open-set LID system based on KSE outperforms the
other methods, in terms of identification cost. Using KSE as
an OOS detector brings relative improvements of 9% and 13%
over kNN and one-class SVM, respectively.

Table 7: Open-set language identification results for different
OOS data selection methods using SVM language classifier.
Results are reported based on identification cost, lower cost in-
dicating higher performance. The results are reported from the
evaluation online system provided by the NIST in the i-vector
challenge.

Method used for OOS modeling Cost
KSE 26.61
kNN 29.33

One-class SVM 30.66
Distance to class mean 31.48

Closed-set 37.23



7. Conclusion
We focused on the problem of OOS data selection in the i-vector
space in the context of open-set LID problem. We proposed an
approach based on non-parametric Kolmogorov-Smirnov test to
effectively select OOS candidates from an unlabeled develop-
ment set. Our proposed OOS detection method outperforms the
one-class SVM baseline by 16% relative improvement, in terms
of EER. We then used OOS candidates to train an additional
model to represent the OOS languages in the open-set LID task.
The baseline system was realized by using all the development
and/or training data as OOS candidates. Using SVM as lan-
guage classifier, with the proposed OOS data selection method,
identification cost was relatively decreased by 15% over using
all the development set as OOS candidates in the open-set LID
task.

In our future work, we plan to explore possible ex-
tensions of the Kolmogorov-Smirnov test, such as weighted
Kolmogorov-Smirnov test, to improve OOS detection accuracy.
In addition, we will investigate clustering and modeling of KSE
scores.
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