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Abstract

Expectation maximization (EM) algorithm is a popular way to estimate the param-

eters of Gaussian mixture models. Unfortunately, its performance highly depends

on the initialization. We propose a random swap EM for the initialization of EM.

Instead of starting from a completely new solution in each repeat as in repeated

EM, we make a random perturbation on the solution before continuing EM iter-

ations. The removal and addition in random swap are simpler and more natural

than split and merge or crossover and mutation operations. The most important

benefit of random swap is its simplicity and efficiency. RSEM needs only the

number of swaps as a parameter in contrast to complicated parameter-setting in

Genetic-based EM. We show by experiments that the proposed algorithm is 9%-

63% faster in computation time compared to the repeated EM, 20%-83% faster

than split and merge EM except in one case. RSEM is much faster but has lower

log-likelihood than GAEM for synthetic data with a certain parameter setting. The

proposed algorithm also reaches comparable result in terms of log-likelihood.
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1. Introduction1

Maximum likelihood (ML) estimation of theGaussian mixture models (GMMs),2

does not lead to a closed form solution. However, if the estimation problem is re-3

formulated in terms of so called latent or hidden variables, a numerical gradient4

ascent approach can be used. As the latent variables cannot be observed directly,5

expectation maximization (EM) [1, 2] algorithm iteratively refines the ML esti-6

mate by first calculating the expectation of the posterior of the latent variables,7

while keeping the parameters fixed. While keeping the posteriors fixed, the al-8

gorithm then computes the maximum of the parameters. This iterative process is9

guaranteed to converge.10

EM has two well known deficiencies. First, user needs to know in advance the11

number of Gaussian components. Second deficiency is that the quality depends12

on the initial parameters. A number of methods have been proposed to attack13

both problems simultaneously [3, 4]. However, such a solution needs to change14

the optimization cost. In general, we assume that the problem of the number of15

components can be solved by a validity index, and therefore, we do not consider16

the number of components as a parameter to be optimized.17

Initial parameters are needed for the first E-step. Unfortunately, not all initial18

parameters lead to the same unique solution when the algorithm converges [5]. Es-19

pecially for Gaussian mixture models, log-likelihood landscape is multimodal [6].20

A common way to address this problem is to run EM multiple times with differ-21

ent randomly chosen initial parameters [5] and pick the best solution as the re-22

sult. We call this variant repeated EM (REM). The strategy gives good stability23

with respect to the log-likelihood and reduces dependency on the initialization [7].24

However, the solution space is searched inefficiently in REM, because after each25
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restart it can take a long time to converge without any guarantee that it leads to26

an improved solution. Running time can be improved by computing in each itera-27

tion a bound on the locally optimal log-likelihood and stopping early if the bound28

shows no improvement [8].29

Assuming that a complete restart is not necessary, search strategy based on30

changing only a part of the converged model can be utilized. One such strategy31

is to split one component into two and merge two other components [4, 9, 10, 11,32

12]. A method utilizing this strategy is called split and merge EM (SMEM) [10],33

which searches systematically the best choice for the three components: one for34

split (O(MN) operation, N is the data size and M is the number of components)35

and two for merge (O(M2N) operation). The choice is based on how well compo-36

nents match the local density of the data. Algorithm will terminate when no split37

and merge candidate brings improvement. Systematic approach needs to consider38

O(M3) triplets in total. In practice, the number of candidates searched is set lower39

than the number of all possible triplets.40

Genetic-based EM (GAEM) [13] improves the repeated EM by considering a41

parallel set of solutions (populations) instead of sequential ones. Operations such42

as crossover, mutation and selection are applied to the population iteratively. A43

single-point crossover, which exchanges components between two populations is44

employed. Mutation selects the components with similar parameters and swaps45

them to random positions. A new generation of populations is finally obtained46

by a selection operation. There are five parameters involved in the algorithm. In47

general, GAEM can achieve a good result by a proper set of parameters.48

Some other algorithmic strategies employed to escape a local maximum are:49

competitive learning [4], incremental clustering implemented in greedy EM (GEM) [14],50
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stochastic variants such as stochastic EM (SEM) [15] andMonte Carlo EM (MCEM) [16].51

In this work, we use randomization instead of systematic search to select the52

component. Preliminary results of the proposed method were published in [17,53

18]. In the proposed algorithm, random swap EM (RSEM), replaces the split and54

merge -operations by more general addition and removal -operations. Proposed55

operations are simple and efficient. Removing a component, which is an O(1)56

time operation, is more straightforward than merging and only one component is57

involved. Creation of a new component is also simpler than splitting a component,58

where split is usually ill-posed (i.e., more variables than equations). GAEM has59

five parameters, all of which affect the running time and performance. Proposed60

method is thus simpler and easier to adapt to different datasets and applications.61

In RSEM, randomly selected component is swapped to a new location in the62

feature space and the weight and covariance matrices are updated. The time com-63

plexity is O(NM), which is the same as one EM iteration. Even though more64

iterations are needed by random swap approach due to its trial-and-error nature,65

the total number of candidates is significantly less than by systematic search such66

as SMEM or repeated EM. After the swap is performed, EM is iterated until con-67

vergence. New solution is accepted only if it improves the previous one. In prin-68

ciple, RSEM algorithm terminates when none of the possible NM swaps result69

in an improved solution [19]. However, a fixed number of swaps is sufficient in70

practice.71

2. EM algorithm and its Variants72

In this section, we first describe the existing methods that are compared to the73

proposed method, which is presented in Section 3.74
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2.1. EM algorithm75

EM algorithm can be used to estimate maximum likelihood (ML) parameters

of many different types of parametric densities. For GMMs, the goal is to maxi-

mize the following log-likelihood:

L(Θ) = log p(X|Θ) =
N

�

i=1

log
M

�

j=1

αjN (xi|Θj), (1)

where N (.|.) is Gaussian distribution, X = (x1, . . . ,xN) is the observed d-

dimensional data-set of N vectors, Θ is the GMM and Θj = (µj,Σj) are the

mean vector and covariance matrix of the jth Gaussian, respectively. Finally, αj

is the mixture weight of the jth component. The parameters αj must satisfy the

following constraints:
M

�

j=1

αj = 1, and, αj ≥ 0, j = 1, ...,M. (2)

Unfortunately, closed-form solution of the (1) is not possible [1], since it con-

tains the log of the sum. Maximization is then performed on the expectation of the

complete-data log-likelihood, given posterior density of the latent variables [1].

This function is usually called the Q-function, and can be written in a concrete

form for Gaussian mixtures as:

Q(Θ,Θt−1) =
N

�

i=1

M
�

j=1

τij {logαj + logN (xi|Θj)} . (3)

Θt−1 are parameters estimated in the previous iteration. Maximization of Eq. (3),

in terms of Θ can be performed easily, by keeping the posterior probabilities τij

fixed. Then, given estimated parameters, posterior probability of xi from compo-

nent j, τij can be calculated as follows:

τij =
N (xi|Θj)αj

�M

l=1
N (xi|Θl)αl

(4)

5



To find an initial set of parameters in EM algorithm, one possibility is to ran-76

domly select mean vectors and set equal weights and whole data covariance matrix77

for all components [20]. A more common practice is to first run k-means on the78

dataset to get hard partitioning. The initial mean vectors are directly the cluster79

centroids, partition covariance is the component covariance matrix and propor-80

tion of vectors in each partition is the component weight. Several short runs of81

k-means starting with random initial solutions each followed by a long run of EM82

is recommended in [7].83

EM suffers from the local maximum problem [6]. A standard solution for84

the initialization problem (REM) is to repeat random initializations with k-means85

followed by EM [7]. The best performing solution, in terms of log-likelihood,86

is retained. This introduces a new parameter, the number of repeats. From the87

linearity of expectation, it is expected that the number of EM iterations in REM88

is multiplied by the number of repetitions. It means that the model quality can89

be improved by increasing the number of repetitions, but at the cost of linearly90

increasing the processing time.91

2.2. Split-and-Merge EM92

One strategy to overcome the sensitivity to initialization of EM algorithm is93

to identify parts of the solution that do not fit well to the data, and revise the solu-94

tion by making local changes. When working in the component domain, we can95

change the solution by splitting a component into two and by merging two com-96

ponents into one. Split and merge EM (SMEM) [10] makes a systematic search97

through all possibilities for split and merge after which the algorithm selects the98

best candidates and performs the operations.99

SMEM algorithm searches among the candidates composed of combinations
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of all components i, j and k until the likelihood value improves. The candidates

are sorted by the merge and split criteria. Merge criterion is based on the correla-

tion of posterior probabilities of components i and j. The split criterion is based

on the Kullback-Leibler divergence between component k and the local data den-

sity.

JMerge(i, j) =
τi(Θ)T τj(Θ)

||τi(Θ)||||τj(Θ)||

JSplit(k) =

�

fk(X, θk) log
fk(X, θk)

pk(X, θk)
dx

(5)

where, τi(Θ) = (τ1i(Θ), ..., τNi(Θ)) is an N-dimensional vector consisting of the100

posterior probabilities for the ith component. T denotes the transpose operation101

and 1 < k �= i �= j < M . The fk(X, θk) is the local data density around the102

component k and the pk(X, θk) is the empirical distribution. The merged com-103

ponents are combined linearly and the split component is split by adding constant104

movements on the original parameters. Then a partial EM step is performed on105

the merge and split candidate.106

The original acceptance rule, line 7 in Algorithm 1, used the Q-function, in-107

stead of L(Θ) [10]. However, it was found in [21] that by doing so the global108

maximum might be accidentally rejected. In our experiments, we therefore use109

improvement of the log-likelihood as the acceptance rule.110

A practical problem of split and merge approach is that the split and merge111

operations are not straightforward to design. The assumption behind split-and-112

merge approach is that only the components of the triplet (i, j, k) are affected and113

the rest of the model is unchanged. Merge operation has a closed-form solution114

when we assume that the distributions are Gaussian. However, it is not possible115

to find a unique solution to the problem of splitting one component into two.116
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One alternative was proposed in [12], where one randomly selected singular value117

decomposition basis vector of the covariance matrix is used to compute two new118

covariance matrices. It is also used in combination with the original mean vector119

to generate two new mean vectors.120

Input: Data Set X = {x1,x2, . . . ,xN}

Output: Parameters Θ = {α,µ,Σ} and log-likelihood L(Θ)

[Θ0, L(Θ0)]← EM(X);1

while candidates left to process do2

Sort candidates (i, j, k)Cmax
by JMerge and JSplit (equation 5);3

for c = 1 to Cmax do4

[Θ� , L(Θ
�

)]← partialEM((i, j, k)c);5

[Θ∗, L(Θ∗)]← EM(X , Θ�);6

if (L(Θ∗) > L(Θ)) then7

Θ = Θ∗; L(Θ) = L(Θ∗);8

end9

end10

end11

return Θ, L(Θ)12

Algorithm 1: SMEM algorithm

Furthermore, due to the split and merge operations, Cmax = M(M − 1)(M −121

2)/2 candidate triplets are generated. A systematic search through all possible122

triplets leads to O(M4NIEM) time complexity, where IEM is the number of EM123

iterations needed to reach convergence after perturbation. Final processing time124

can be reduced by considering only top Cmax candidates. In [10], Cmax was set to125
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five. We first experimentally find suitable Cmax before comparing SMEM to other126

methods.127

Input: Data Set X = {x1,x2, . . . ,xN}, IEM , Ig, Ip, pc, tcorr

Output: Parameters Θ = {α,µ,Σ} and log-likelihood L(Θ)

[Θp[Ip], L[Ip]]← Initialization(X);1

for GAEM-iteration=1 to Ig do2

[Θp[Ip], L1[Ip]]← EM(Θp[Ip], IEM );3

Θc[H] ← crossover(Θp[Ip], pc); H = Ip ∗ pc;4

[Θc[H], L2[H]]← EM(Θc[H], IEM );5

[Θs[Ip], L1(Θs[Ip])]← Select (Θp[Ip], Θc[H], L1[Ip], L2[H]);6

Θs[Ip] ← mutation(Θs[Ip], tcorr);7

Θp[Ip] ← Θs[Ip];8

end9

execute lines 3 to 6 once;10

[Θ, L]← EM(Θs[best], IEM );11

return Θ, L12

Algorithm 2: GAEM algorithm

2.3. Genetic-based EM128

Genetic-based EM (GAEM) for learning Gaussian mixture models is proposed129

in [13]. Original design of GAEM includes the model selection. However, num-130

ber of components M is left as a user defined parameter in our task definition.131

So, we have modified the algorithm by keeping M fixed and removing the part132

where decision regarding M is made. Also, instead of MDL criterion we use133

log-likelihood during the selection in Algorithm 2.134
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In GAEM, the single point crossover operator selects a component index. First135

child gets components before the index from first parent and from the index on-136

wards from the second parent, and vice versa for the second child. Mutation op-137

erator selects components that model the data points similarly by using posterior138

probabilities (i.e., JMerge(i, j)). If there is a correlation above a given parameter139

limit, the components are moved to random positions. New generation is selected140

from parent and child populations.141

There are two deficiencies in GAEM. One is that the algorithm involves mul-142

tiple solutions (population). When the population size (Ip) is large enough, a good143

result is achieved but it increases the running time linearly. The other one is the144

parameters. For crossover, mutation and selection steps, parameters are involved.145

In crossover, a probability pc determines the number of offsprings after crossover.146

A threshold for correlation coefficient tcorr between components is set for muta-147

tion. There are also parameters for GAEM iterations Ig and EM iterations IEM .148

3. Random Swap EM149

The idea of the random swap EM (RSEM) algorithm is to alternate between150

simple perturbation to the solution by random swap and convergence towards151

nearest optimum by the EM algorithm. A random swap consists of removal and152

addition operations.153

RSEM is presented in Algorithm 3. The initialization is performed as in the154

EM algorithm, described in Section 2.1. After the solution has been initialized, we155

perform t random swap iterations (called RS-iterations). During each iteration, a156

component is removed, a new one is added and the resulting solution is converged157

towards nearest optimum using EM algorithm. The best solution, in terms of log-158
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likelihood, is maintained as the starting point for the subsequent RS-iteration.159

Input: Data Set X = {x1,x2, . . . ,xN}

Output: Parameters Θ = {α,µ,Σ} and log-likelihood L(Θ)

[Θ0, L(Θ0)]← Initialization(X);1

for RS-iteration=1 to t do2

r = U(1,M), remove rth component;3

p = U(1, N), add at pth position (see equation 7);4

normalize weights α to sum to 1;5

new parameters Θs = {αs,µs,Σs};6

[Θst, L(Θst)]← EM(X,Θs);7

if L(Θst) > L(Θ) then8

Θ = Θst;9

L(Θ) = L(Θst);10

end11

end12

return Θ, L(Θ)13

Algorithm 3: RSEM algorithm

The removal operation is done by selecting a component r randomly among160

M components from uniform distribution, r = U(1,M). This is a constant-time161

operation.162

The location of the new component is decided by selecting one data point,163

xp, p = U(1, N) and setting it as the mean vector of the new component. The164

new component is therefore more likely to be placed in areas of high point density,165

such as cluster centers, than areas of low point density.166
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(a) Initial solution by k-means (b) Remove a component

Add

(c) Add a component

Remove

(d) Convergence by EM (e) Remove a component

Add

(f) Add a component

(g) Convergence by EM (h) After 10 iterations of RSEM (i) Ground truth Gaussians

Figure 1: Result by RSEM for a two-dimensional Gaussian mixture density estimation problem.

(a) An initial solution by 10 runs of k-means, (b)-(c) Removal and addition operation for the 1
st

iteration , (d) Convergence by EM, (e)-(g) The procedures on the 3
rd iteration, (h) The final result

by RSEM with 10 iterations, (i) Ground-truth Gaussians.

The best solution found so far, in terms of log-likelihood, is always used as167

the starting point for the next iteration. If a swap and EM iterations fail to produce168

a better solution than the starting point, the new solution is discarded. Swap will169

decrease the log-likelihood of the solution but it can also change the solution so170

12



that iterating EM will move it towards different optimum.171

The technique has been successfully applied to clustering with centroid model [22,172

23, 24]. We observed that the effect of a bad initialization is diminished when ran-173

dom swap is used. We therefore expect random swap to yield good results with174

Gaussian mixture models, too.175

The solution is fine-tuned with EM algorithm, so reasonable values for the

weight and covariance matrix are sufficient. Suppose the current likelihood func-

tion L(Θt) at RS-iteration t is obtained by EM. Let r be the component selected

for removal, and keep the rest of the components unchanged. The posterior prob-

ability is updated as follows:

τ s

ij =
αt

jN (xi|Θ
t
j)

�M

l=1,l �=r α
t
lN (xi|Θt

l)
(6)

The equations for the new parameters of the rth component are:

µs

r = xp

αs

r = αt

r or αs

r =
M

�

l=1,l �=r

�

N
�

i=1

τ s

il

�

αt

l

Σ
s

r = Σ
t

r or Σ
s

r =
M

�

k=1,k �=r

�

N
�

i=1

τ s

ik

�

Σk

(7)

In order to retain a valid Gaussian mixture model after the swap operation, weights176

αi, 1 ≤ i ≤ M are normalized so that they sum up to 1. The time complexity of177

the addition operation is linear with respect to the model sizeM . After each swap,178

the new parametersΘs are set as initial solutions for EM. After EM has converged,179

we get a new likelihood value L(Θst) and we compute ΔL = L(Θst)− L(Θt), If180

the difference is positive, the new parameter estimate replaces the previous best181

solution. Otherwise the new parameter estimate is discarded. This process is182
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repeated until all possible swap pairs are tried out and none is left to improve the183

solution. However, as a practical matter we restrict the total number of swaps184

to a user selectable number of RS iterations t. An example of RSEM algorithm185

operating on data is illustrated in Fig. 1.186

To ensure a good solution, the number of iterations t for random swap should187

be set large enough so that there are enough successful swaps. Given the number188

of components M , the probability of selecting a component to be removed is189

1/M . The probability of selecting a point to be added is also 1/M . Only if190

the point is inside one cluster, it will be a successful addition because EM can191

fine-tune the location even after then. Therefore it is not necessary to find near-192

optimal location during creation of a component. For a good swap to occur, a193

badly-placed component must be chosen and a location from the area where the194

component needs to move must also be chosen. Hence the probability of a single195

good swap is at least 1/M2, and t > M2.196

4. Summary of Iterative Methods197

4.1. Comparing REM and RSEM198

RSEM is faster than REM if it converges with fewer iterations after a swap.199

We prove in [18] that the increment of Q-function value by randomly swapping a200

component in RSEM is greater than that by a random restart on all components in201

REM, which leads to the fact that processing time of RSEM is less than REM for202

reaching the optimal result. We will approximate log-likelihood by the Q-function203

as in [8].204

Theorem 4.1. A random swap limits Q(Θs,Θt−1) − Q(Θt,Θt−1) into the lower205
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and upper bounds of [−Nαt

r

2
d, Nαt

r

2
d], where d is the Mahalanobis distance be-206

tween the swapped centroids µt
r and µs

r.207

Theorem 4.2. For REM and RSEM, if d < 1

3
, the probability of Q(Θs,Θt−1) −208

Q(Θt,Θt−1) > Q(Θ,Θt−1)−Q(Θt,Θt−1) is 1. If d ≥ 1

3
, the probability is 1

2
+ 1

6d
.209

We see that the farther the new component is from the original, the closer to210

P = 1/2 we approach. However, REM will not have a higher probability than211

RSEM to reach a high Q-function value.212

4.2. Comparison of time complexities213

The time complexities of the algorithms are shown in Table. 1. M and N are214

the number of clusters and data vectors, respectively. S represents the number215

of REM repetitions, the number of RSEM swaps and the number of SMEM it-216

erations with improvement. Parameters I1, I2 and I3 are the iteration counts of217

EM convergence in the algorithms and C in SMEM indicates the number of can-218

didates, which is set C = 20 in our experiments. Parameter Ig is the number219

of generations, IEM is the number of EM iteration used in GAEM and Ip is the220

population size.221

REM and RSEM have similar strategies. The difference is in the number of222

EM iterations to converge in both methods. Since not every run of EM contributes223

to the final result in REM, the proposed RSEM algorithm, which changes only a224

part of the solution, achieves better or same result faster than REM. This is shown225

theoretically in [18] and experimentally in Section 5. For SMEM, the number of226

SMEM iterations with improvement S takes a major role in the time complexity227

of SMEM. It highly depends on the size of search space caused by the the number228

of candidates C. RSEM is faster than SMEM when I2 ≤ M + CI3. The merge229
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Table 1: Time complexity analysis on the methods.

total

REM EM O(I1MN) O(SI1MN)

SMEM

merge O(MN + M2N)

O(S(M2N + CI3MN))split O(MN + N logN)

EM O(3N)

GAEM

mutation O(M2)

O(IgI
2

pIEMMN)crossover O(IpM)

EM O(I2

pMNIEM)

RSEM

removal O(1)

O(SI2MN)addition O(MN)

EM O(I2MN)

operation in SMEM takes much more time than removal in RSEM. Thus, RSEM230

is faster than SMEM in most cases. In GAEM, number of generation Ig plays a231

similar role as S, then RSEM is faster than GAEM if an average EM iterations are232

less than I2

pIEM . On the other hand, we can also restrict EM iterations in RSEM233

to IEM , then extra computations caused by GAEM is quadratic to population size.234

5. Experimental Results235

We tested the algorithms1 using both synthetic and real data sets from various236

sources summarized in Table 2. We divide the sets into two categories. The first237

category is synthetic data sets. These are fairly small and contain a known number238

of clusters. In the tests, we match the number of components with the number239

1http://cs.joensuu.fi/sipu/soft/
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of clusters whenever the number of clusters is known. The second category is240

large data sets obtained from UCI Machine Learning Repository [25]. We set the241

number of components to 15 for CM and 20 for CT.

Table 2: Attributes of the data sets used in our experiments.

Data sets Name Dimension Data Size No. of Clusters

Synthetic
S1-S4 [26] 2 5000 15

R15 [27] 2 600 15

Real
CM [28] 9 68040 15

CT [28] 16 68040 20

242

In all experiments Gaussian mixture models are restricted to diagonal covari-243

ance matrices. The baseline algorithm is the REM algorithm. Initialization of the244

GMM for each repetition is described in Section 2.1. RSEM is given one random245

initial solution and the same number of RS-iterations is performed as the number246

of random solutions given to REM. The EM algorithm or partial EM algorithm is247

allowed to iterate until convergence (threshold = 1.53e − 05), except in GAEM,248

IEM = 3.249

The number of candidates Cmax considered in each SMEM round is fixed to250

20 as it seems to provide the best accuracy and processing time trade-off (see251

supplementary2). Increasing the number of candidates closer to maximumO(M3)252

does not improve the accuracy at all. SMEM algorithm immediately accepts a253

candidate that results in a better solution. When none of the Cmax candidates254

result in improvement, the algorithm stops.255

2http://cs.joensuu.fi/˜zhao/Software/supplementary1.pdf
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For GAEM, both Ip and Ig affect the running time. However, the result in256

terms of log-likelihood depends more on Ip. An experiment on different combi-257

nations of Ip and Ig on data S2 is conducted (see the supplementary file). The258

number of generations helps little to improve the log-likelihood, which however259

brings high running time. Thus, we select Ig = 10. The population size Ip affects260

the result clearly. It seems the log-likelihood is stable when Ip > 20 for S2. How-261

ever, since the running time of GAEM (proportional to I2

p ) depends highly on Ip,262

we choose Ip = 15 to reduce the running time. The crossover probability pc = 0.8263

and tcorr = 0.95 following the setting in [13].264

REM:−26.52 SMEM:−26.54 GAEM:−26.43 RSEM:−26.43
two 

components

Figure 2: Gaussian models on data S2 estimated from EM variants.

We demonstrate the Gaussian models estimated from REM, SMEM, GAEM265

and RSEM on data set S2 in Fig. 2. The experiment is conducted by 20 repetitions.266

The average among them in terms of log-likelihood is shown. The models are267

displayed as ellipses. REM and SMEM are clearly worse in parameter estimation268

than GAEM and RSEM.269

For S1 to S4, ground-truth distributions are available. For comparing the270

GMMs obtained from different EM variants, we calculate the squared Euclidean271

distance between estimated and ground-truth GMMs using the closed-form solu-272
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tion in [29]. The distance values are the average of 50 results. There are two out273

of four cases that RSEM is closer to ground-truth than competing methods even274

though log-likelihood is the best in all cases. It implies that in terms of parameter275

estimation by likelihood is not always a good proxy. The goal metric, however in276

the present work is log-likelihood.277
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Figure 3: Squared Euclidean distance between ground-truth GMM and estimated solutions vs.

log-likelihood values.

To obtain robust estimates of average log-likelihood and CPU time values,278

each algorithm is repeated 50 times. A summary on the mean log-likelihood val-279

ues is presented in Table 3 and processing time in Table 4. Statistical tests run280

on the distributions of log-likelihood values and processing times showed that the281

processing time follows Gaussian distribution while log-likelihoods do not. Fur-282

thermore, the shapes of the log-likelihood distributions differ from each other.283
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Hence statistical significance tests such as t-test or normal rank-sum test can not284

be used for log-likelihoods. Thus, we performed t-test only on the processing time285

of RSEM and other three methods (REM, SMEM and GAEM) respectively to em-286

phasize that RSEM is significantly faster than the EM variants with comparable287

or better log-likelihood. We use an asterisk (*,p < 0.05) to indicate the significant288

difference between RSEM and other EM variants.289

Table 3: Summary of the mean log-likelihood values.

S1 S2 S3 S4 R15 CM15 CT20

REM -26.20 -26.51 -26.63 -26.37 -6.48 -10.34 -3.64

SMEM -26.25 -26.53 -26.61 -26.38 -6.57 -10.35 -3.65

GAEM -26.11 -26. 43 -26.59 -26.34 -6.35 -10.35 -3.65

RSEM -26.15 -26.45 -26.60 -26.34 -6.43 -10.33 -3.63

Table 4: Summary of the mean processing times (seconds).

S1 S2 S3 S4 R15 CM15 CT20

REM 3.18* 3.94* 4.59* 4.07* 0.32* 794* 2551*

SMEM 2.29* 2.80* 3.34* 4.38* 0.29* 2267* 961

GAEM 7.09* 6.82* 6.45* 6.59* 1.13* 157 315

RSEM 1.27 1.66 1.71 1.70 0.21 355 1568

In processing time SMEM can vary greatly. The variance mainly comes from290

the Cmax candidates. The algorithm stops if there is no improvement among the291

candidates, which decreases the running time in some cases. This is also reflected292

in log-likelihoods for CT data set. SMEM is capable of improving the initial293

solutions according to log-likelihood, but the effort needed varies greatly, resulting294
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in large variation in running times. The other algorithms are not affected much295

by the data set. Difference in running time between REM and RSEM is explained296

by the need to improve the entire model in REM versus the smaller changes in297

RSEM.298

GAEM has good performance in terms of log-likelihood, however, it is much299

slower than RSEM for synthetic data. For real data, the running time is faster than300

RSEM, however the log-likelihood is worse. This is a major difficulty in using301

GAEM in practical applications. How to set parameters for a new dataset in such302

way that quality of the solution is maintained while processing time is kept in303

control. In contrast, RSEM offers simplicity to users. If processing time is not an304

issue, RSEM can be run until convergence, and then no parameter is required.305

6. Conclusions306

We proposed a random swap EM algorithm in order to get rid of the tendency307

of the standard EM algorithm to get stuck in a local maximum. The proposed308

RSEM indicates that it is not necessary to start from the beginning in each restart309

as it does in the repeated EM. The RSEM is also shown to be simpler and more ef-310

ficient than other EM variants. The removal and addition operations in RSEM are311

more general and simpler than split and merge operations in SMEM. They use less312

parameters than crossover and mutation in GAEM, where crossover involves two313

populations at a time and a criterion is needed in mutation. Comparing the pro-314

posed algorithm to the REM, we found that RSEM reached higher or comparable315

level of log-likelihood 9%-63% faster, which was proved by a bound derived from316

formulas. RSEM is also easier to implement and more efficient than the split-and-317

merge EM (20%-83% faster). Genetic EM has good performance, however, the318
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complicated parameter setting makes it less useful in practice.319

The number of swaps is a key parameter in the proposed method, which de-320

cides the performance of RSEM. As a future work, we plan to investigate ways321

to automatically select the number of swaps, as well as theoretical support for322

random swap strategy in Gaussian mixture models.323
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