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Abstract—Speech attributes, such as places and manners
of articulation are robust against cross-speaker variation and
environmental distortions. They have been used in various speech
processing applications such as spoken language identification,
speaker recognition and speech recognition. In this paper, we
propose a method to recognize speech attributes by using a
context-dependent modeling of the attributes, called bi-attributes.
Experimental results on the TIMIT database show that the
context-dependent modeling reduces frame classification error
by 13.2% and 16.1% relatively over the context-independent
modeling for manner and place classification, respectively. In
addition, when fused with phone posteriors to improve phone
recognition accuracy, the attribute context dependent modeling
gives a 9.9% relative phone error rate reduction over the attribute
context independent modeling.

I. INTRODUCTION

Speech attributes such as voicing, nasal, dental, describe
how speech is articulated. They are also called phonologi-
cal features, articulatory features, or linguistic features. It is
known that speech attributes are robust against inter-speaker
variation and not sensitive to environmental noise [1], [2]. In
addition, speech attributes have been shown to be comple-
mentary to traditional features such as MFCCs or PLPs in
automatic speech recognition [1], [2], [3].

Speech attributes have been used in various speech pro-
cessing applications. In [4], attributes were used for spoken
language identification. There, multiple parallel sequences of
attributes were scored with separate feature n-gram models.
In [5], attribute streams were used to construct conditional
pronunciation models for speaker recognition. In the automatic
speech attribute transcription system (ASAT) [6], a bank of
attribute detectors were used as the front-end module. In [3],
[7], manners and places of articulation were used as speech
attributes to improve the accuracy of the phone recognition
systems. In [8], posterior probabilities were estimated for 64
attributes and then used as the feature for an HMM/GMM
system. Speech attributes were also used to rescore the lattice
given by a large-vocabulary continuous speech recognition
(LVCSR) system [9]. In [2], speech attributes were used to
supplement HMMs of LVCSR tasks by combining the likeli-
hood probability at phone and state levels. A comprehensive
review of using speech attributes in speech recognition can be
found in [10].

Approaches to attribute detection can be divided into two
categories: frame based detection and segment based detection
[11]. Segment based detectors can be implemented by HMMs,
they are more reliable in spotting segments of speech. How-
ever, the detection curves are not synchronized in time [11].
In contrast to segment based detectors, frame based detectors
can be realized with artificial neural networks (ANNs) [1],
[3], [9], [12] or support vector machines (SVMs) [13]. The
advantage of the frame based approach is that the outputs
of the detector can approximate the speech attribute posterior
probabilities given the speech signal [11]. In this paper, we
examine frame based detectors implemented by ANNs as they
are both flexible and effective. Specifically, a group of multi-
layer perceptron neural networks (MLPs) is used to classify
the entire attribute subset.

In the reported attribute detectors [1], [3], [9], [12], [13],
speech attribute posteriors were computed without any context
information. The number of classes is the same as that of the
attributes, which is typically small. In this paper, we propose
detailed attribute classes by taking into account the context
information of attributes. Specifically, attributes are expanded
to bi-attributes by considering the left and the right context of
the attributes. The number of context-dependent bi-attributes
is therefore increased over that of context-independent mono-
attributes. With the increased number of classes, feature varia-
tion in each class will be reduced. A similar approach has been
used to model context-dependent phonemes (e.g., triphone)
and obtained significant improvements in speech recognition
[14].

The rest of this paper is organized as follows. Section II
describes how context dependence can be applied in attribute
recognition. The experimental results are reported in Section
III, and Section IV concludes the paper.

II. CONTEXT DEPENDENT ATTRIBUTE RECOGNITION

A. Definition of bi-attributes
In this paper, we focus on classifying manners and places

of articulation [3] which include:
• Manners: vowel, stop, fricative, approximant, nasal, si-

lence.
• Places: low, mid, high, dental, labial, coronal, retroflex,

velar, glottal, silence.
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Fig. 1. Assignment of bi-manner and bi-place labels to a sequence of speech
segments.

To train the attribute and bi-attribute detectors with MLPs,
each speech frame in the training data needs a label, i.e., the
ground truth of which manner and place classes the frame
belongs to. Figure 1 illustrates how attribute labels can be
created from phone labels. From phonetics, we know that each
phone is a combination of one manner and one place [1].
Hence manner and place attributes can be simply generated
from the phone label as shown in the figure. For example, the
manner and place of phone “hh” are “Fricative” and “Glottal”,
respectively.

The labels for bi-manners and bi-places are generated from
the labels of manners and places respectively by taking into
account the labels of neighboring attributes. We use two types
of bi-attributes, the left context bi-attributes and the right con-
text bi-attributes. The reason for doing so is that an attribute
is usually affected by its previous attribute and following
attribute. Ideally, we could use a tri-attribute label, similar to
what is done in triphone modeling in speech recognition [14].
However, the number of tri-attributes will be too big and the
computation requirement will be too heavy. Hence, we use
two types of bi-attributes to model the left context and the
right context with a modest increase of the total number of
bi-attribute classes.

The generation of bi-attribute labels is also illustrated in
Figure 1. For example, to generate the left-bi-manner label of
phone “ah”, the manner label of its previous phone “hh” is also
used, which results in “F-V” representing “Fricative-Vowel”.
The label “F-V” is assigned to all the frames belong to phone
“ah” when we train the left-bi-manner detector. Similarly, the
right-bi-manner label of “ah” will be “V+A” which represents
“Vowel” followed by “Approximant”. The generation of the
left and the right bi-place labels is similar. Silence is kept as
an independent attribute without context.

Four detectors are used for bi-attribute modeling, they
are left-bi-manner, right-bi-manner, left-bi-place and right-bi-
place detectors. Given a speech feature vector, a detector
does not only give the single best class, but also posterior
probabilities of all classes.

B. Attribute recognition

We use manner and place detectors to produce the baseline
results for attribute recognition. In another way, attribute

posterior probabilities are estimated from bi-attribute detectors
by marginalizing all bi-attribute posterior probabilities which
correspond to the examining attribute. Equation (1) illustrates
how attribute posterior probabilities are computed from the
left-bi-attribute posterior probabilities. A summation is used
since bi-attributes are not overlapped classes.

P left([Ai]|o(t)) =
N left

i∑

j=1

P ([Aj −Ai]|o(t)). (1)

where: o(t) is the feature vector; [Ai] is the considered
attribute; [Aj−Ai] is the left-bi-attribute of the current attribute
[Ai] and the left context attribute [Aj ]; N left

i is the number of
the left-bi-attributes for [Ai].

Similarly, attribute posterior probabilities are also estimated
from the right-bi-attribute posterior probabilities as:

P right([Ai]|o(t)) =
Nright

i∑

j=1

P ([Ai + Aj ]|o(t)). (2)

We combine both contextual attribute posteriors by simply
taking the average value (unweighted sum rule [1]) as:

P ([Ai]|o(t)) =
P left([Ai]|o(t)) + P right([Ai]|o(t))

2
. (3)

III. EXPERIMENTS

A. Experimental setup

Database: The TIMIT database1 is used in our experiments.
The SA part of the TIMIT database is not used. The training
set consists of 3696 utterances from 462 speakers. A small
part extracted from the training set (50 speakers) is used as
the development set. The complete test data set contains 1344
utterances from 168 speakers.

Phone set and bi-attribute set: The original 64 phonetic
labels are mapped into the 45 phones as described in [15].
Phones “cl”, “vcl”, and “epi” are merged into the phone “sil”.
We use the mapping from 45 phones into 6 manners and 10
places [16]. There are 31 left-bi-manners, 31 right-bi-manners,
89 left-bi-places, and 89 right-bi-places. For phone recognition
results, after decoding, the phone accuracies are computed by
down mapping the recognition output from 45 phones to 39
phones [15].

Detector architecture: There are seven detectors used: two
detectors for attributes, four detectors for bi-attributes and one
detector for generating phone posteriors. In our experiments,
all detectors have the same structure which is built by three
MLPs with one hidden layer as shown in Figure 2 [7]. A
sliding window of 31 speech frames around the current frame
is used and divided into two equal parts, 16 frames in the
left side and 16 frames in the right side (the current frame
is overlapped). In each part, 15 critical bands are used and
each is represented by 11 DCT (Discrete Cosine Transform)
coefficients. Hence, there is a total of 15x11=165 inputs for
the left or right MLP.

1http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1
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Fig. 2. Block diagram of a detector, n is the number of classes, e.g., attributes,
bi-attributes, or phones, depending on the detector is an attribute or bi-
attribute or phone detector.

Software: The ICSI QuickNet software package2 is used to
employ MLPs with one hidden layer. The Viterbi algorithm
used to produce the recognized phone strings is implemented
by HVite, and HResults in the HTK speech toolkit3 is used to
evaluate the phone recognition results.

Parameter selection criteria: The training process of
MLPs is stopped to avoid over-fitting when the classification
error of the development set starts to increase. The number
of hidden unit in each MLP is examined in a range from 200
to 3000 and the MLP which produces the lowest error rate
on the development set is selected. In the decoding process,
the phone insertion penalty value is also tuned based on the
development set.

B. Attribute recognition

In this study, attribute recognition performance is measured
by frame error rate (FER) of classification. For each frame, the
attribute with the highest posterior probability is recognized as
the attribute for the frame. Table 1 shows FERs of attribute
recognition for manners and places. For comparison, we also
list the results reported in [3], [12]. Note that our baseline
system produces different results from [3], [12]. This may
be due to three reasons: 1) we use features of long temporal
contexts (310ms) instead of short time features (e.g., MFCCs),
2) the number of hidden units in each MLP is optimized in
our experiments, and 3) bi-gram feature models and durational
models used in [12] to improve recognition results are not used
in this paper.

From the table, it is observed that the context-dependent
modeling (the last 3 rows) outperforms the context-
independent modeling (“Attribute baseline”) significantly for
both manner and place recognition. In addition, the fusion
of the left and the right context manner and place posteriors
improve the performance further, which shows that the left
context and the right context provide complementary infor-
mation. The combined systems (Equation 3) in the last row
reduces the FERs by 13.2% and 16.1% over the context-
independent baseline for manner and place recognition, re-
spectively. Further improvement can be obtained if more
complicated combination schemes are used (e.g., weighted
sum, nonlinear combinations).

2ICSI QuickNet package, http://www.icsi.berkeley.edu/Speech/qn.html
3HTK speech toolkit, http://htk.eng.cam.ac.uk

TABLE I
FRAME ERROR RATES (FERS) OF ATTRIBUTE RECOGNITION. THE

NUMBERS AFTER “/” IN THE LAST 3 ROWS ARE THE RELATIVE FER
REDUCTION ACHIEVED OVER THE “ATTRIBUTE BASELINE”.

Method Manner (in %) Place (in %)
Context-independent Modeling

Results from [3] 17.90 26.80
Results from [12] 13.50 27.00
Attribute baseline 14.05 22.74

Context-dependent Modeling
Left-bi-attribute 12.65/10.0 20.16/11.4
Right-bi-attribute 12.95/7.8 20.33/10.6
Left+Right bi-attribute 12.19/13.2 19.07/16.1

(a) Manner recognition.

(b) Place recognition.
Fig. 3. Comparison of attribute recognition performance using the attribute
detectors and the bi-attribute detectors.

FERs for each attribute are plotted in Figure 3. From the
figure, it is observed that FERs of the left-bi-attribute detectors
and the right-bi-attribute detectors are lower than FERs of the
attribute detectors in all cases except “dental” and “silence”.
The results also show that the combination of the left and
the right bi-attribute posteriors produces consistently better
performance (except “nasal”, “approximant” and “velar”).

Figure 4 gives an example of manner posteriors estimated
by manner and bi-manner detectors. The top panel shows the
ground truth, the middle panel shows the posteriors generated
by the context-independent manner detector, and the bottom
panel shows the posteriors obtained by the fusion of the left
and the right bi-manner detectors. We can observe from the
figure that the posteriors generated by the bi-manner detectors



are clearly closer to the ground truth than the manner detector.

Fig. 4. Comparison of manner posteriors estimated by the manner detector
and the (left+right) bi-manner detectors.

C. Phone recognition

In this section, we carry out simple experiments to demon-
strate the usefulness of attributes and bi-attributes in phone
recognition. Five experiments have been conducted as shown
in Figure 5 and the experimental results are listed in Table 2.
Note that all systems use the same original feature.

After phone posterior probabilities are computed, they are
converted into scaled likelihoods by using the Bayes formula
and we assume that the prior probabilities of all phones
are equal. We then use HVite to decode them into phone
sequences. The phone insertion penalty is used to control the
decoding process. This approach has been applied successfully
in the hybrid HMM/ANN systems [17].

TABLE II
PHONE ERROR RATES (PERS) FOR PHONE RECOGNITION (NO LANGUAGE

MODEL, 1-STATE-MONOPHONE MODELS).

Experiment Method PER (in %)
(1) Phones 30.29
(2) Phones + attributes (baseline) 29.83
(3) Phones + left-bi-attributes 27.99
(4) Phones + right-bi-attributes 28.15
(5) Phones + (left+right) bi-attributes 26.89

In experiment (1), phone posteriors are estimated directly
from the phone detector (which has the same architecture as
attribute and bi-attribute detectors). In experiment (2), initial
phone posteriors from experiment (1) are concatenated with
manner and place posteriors given by the context-independent
manner and place detectors and mapped to phone posteriors
by an MLP. The result of this experiment shows that manners
and places of articulation can be used to improve speech
recognition performance. It is also consistent with previous
research in [1], [2], [3], [7], [9], [10], [16]. Experiment (3)
and (4) are the cases where initial phone posteriors are fused
with the left and the right bi-attribute posteriors, respectively.

Fig. 5. Block diagram of different phone recognition systems.

Significant improvements are achieved in (3) and (4) over (2).
Furthermore, in experiment (5) where initial phone posteriors
are fused with both left and right bi-attribute posteriors, further
improvement is observed over (3) and (4). The best result in (5)
represents a 9.9% relative PER reduction over the baseline in
(2). These results show that bi-attributes provide significantly
more complementary information than mono-attributes for
phone recognition task.

Also note that none of our phone recognition results ap-
proaches the best result on TIMIT, 20.96% PER [7]. Our
experiments are built to illustrate the difference between
attributes and bi-attributes in improving phone recognition. In
addition, in our experiments, no language model is used and
all phones are modeled as single-state-monophones.

IV. CONCLUSION

In this paper, we proposed a context-dependent modeling
for better speech attribute recognition. Results on the TIMIT
database confirmed that context information is helpful for
improving attribute recognition. In addition, we also show that
using context information in bi-attribute modeling produces
significantly more complementary information than without
using context information for phone recognition task.

We believe that the better attribute recognition will also
benefit other speech processing applications. For the future
work, we will examine ways to increase the context size by
considering both the left and the right context of attributes
jointly as well as to apply our method for different knowledge
sources.
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