Evaluation of image compression methods for aerial photos

Ville Hautamaki and Jussi Heino
villeh@cs. joensuu.fi, juheheQutu.fi

24.12.2000

University of Joensuu
Computer Science
Bachelor’s Thesis

TABLE OF CONTENTS

Table of Contents

1 Introduction

2 Compression methods

21 JPEG e
22 JPEG2000
23 FIASCO e
24 GIF . ..
25 PNG . . . e
26 JBIG. e
2.7 ECW . e

3 Test image set

4 Compression results
4.1 Lossless results for 8-bit images
4.2 Lossy results for 8-bit images
4.3 Comparison of lossy and lossless results
4.4 Results for 2-bit images oL oo

5 Conclusions

References

Appendices

Appendix A Original images

Appendix B 2-bit images

Appendix C Compressed images 8-bit images
Appendix D Compressed 2-bit dithered images

Appendix E Complete compression results

iii

NN NN W W N R

o 2]

10
10
10
14
14

17

18

20

20

22

26

34

38

1 INTRODUCTION 1

1 Introduction

Aerial images are photographs of terrain taken from air or, in the case of satellite
images, from satellite. Conventional maps can be represented in digital form as vector
graphics or as bi-level bitmap. Aerial photos, on the other hand, need more color
information.

Aerial images are very large in size, so what is also needed from compression codec is
some kind of support for random access. JPEG2000, for example, supports random
access property up to subband block level, these code-blocks can be decompressed
individually. Details in large aerial photos requires lot of space, our test images are
600 x 450 pixels sub-images. The uncompressed size of these detail images is 270
kB each. Normal GSM DATA link has the speed of 9600 bits/s. Thus, with normal
GSM phone it would take 3 minutes and 45 seconds to download a sub-image of that
size.

It can be easily seen, that some kind of compression is needed to effectively use
digitized aerial images in different application ranging mobile cartography to Internet
applications. Using lossy compression with ratio 8:1 we can compress an image to 33
kB. Lossless methods seldom achieve compression ratio of 2:1, corresponding to 135
kB.

In this report, we study different methods for reducing the amount of data required
by the images. The original images are 8 bpp gray-scale images, which give plenty
of choices for the compression methods. We consider the two well known lossless
graphics file formats GIF [4] and PNG [20], the current and the forth-coming com-
pression standards JPEG [21] and JPEG2000 [10], and a fractal compressor known
as FIASCO [19].

It is expected that the devices using the images will not support 8 bpp but much
fewer gray levels can be shown. It is therefore possible to get further reduction by
quantizing the images, for example, to 2 bits per pixel, corresponding to 4 colors.
Quantized images can be compressed more efficiently by lossless methods. Even
universal dictionary-based compression methods, such as LZ77 [12] or LZ78 [13] work
quite well for 2 bpp images.

The rest of the report is organized as follows. In Section 2, we briefly recall the
compression methods and give pointers where the sources can be found. In section
3, the test image set is shown. Compression results with 8 bpp and with 2 bpp are
summarized in Section 4. Conclusions are drawn in Section 5.

2 COMPRESSION METHODS 2

2 Compression methods

Image compression methods can generally be divided into two main categories, lossy
and lossless. Lossless compression means that after compression and decompression
the image in question will be identical. Lossy methods are not identical pixel-by-
pixel, but they try to achieve minimal degradation in the visual quality of the output
image. The difference between various compression methods is compared by the
compression ratio, i.e., how much we can compress the image.

In lossy methods, we compare compression rate (bitrate) to mean square error (MSE).
This measure is very simple as it is calculated as the sum of the squared pixel-by-
pixel differences. Resulting value is then divided by the total number of pixels in the
image. More formally:

1 g)
MSE = — > (Ai— By) (1)

=1

Where N is the total number of pixels in the image, A; is the value of the orig-
inal pixel and B; is value of the corresponding pixel. Thus, MSE approximates
the average difference between input and output images. MSE values were calcu-
lated using authors’ Linux MSE-software. Sources of this program can be found:
(http://cs.joensuu.fi/“villeh/papers.html)

Peak-to-peak signal to noise ratio (PSNR) is defined as:

PSNR=10x1 255° dB (2)
= 0g10 MSE

The only way to make meaningful comparisons between lossy and lossless methods
is to find a bitrate where the visual degradation is not visible to human eye. These
rates can then be compared.

Table 1: Summary comparison of methods.
Lossy Lossless Compression method

JPEG X DCT

JPEG2000 X X Wayvelet + EBCOT
FIASCO X Fractals

ECW X Wayvelet

GIF X LZ78

PNG X LzZ77

JBIG X JBIG

Compression methods used in the evaluation are: JPEG, JPEG2000, FIASCO, ECW,
PNG, GIF, TIFF and JBIG, see Table 1. JPEG2000 can be applied both in lossy
and lossless mode. This is because it has both modes. In this evaluation we use only
the lossy mode. Pointers to the sources are summarized in Table 2.

Many lossy encoders do not allow user to set the output bitrate before the compres-
sion. This makes it difficult to generate truly objective test results. In this evaluation,
JPEG and FTASCO represent methods, in which it is not possible to set exact bi-
trate. In JPEG2000 this is possible. With FIASCO it is impossible to generate much

2 COMPRESSION METHODS 3

higher bitrates than 0.6. ECW, on the other hand, cannot produce bitrates smaller
than 1.6.

Table 2: Software used in this evaluation.

Method Codec Reference Date

JPEG libjpegbb http://www.ijg.org 2000-08
JPEG2000 JJ2000 http://jpeg2000.epfl.ch 2000-07
JPEG2000 JasPer http://www.ece.ubc.ca/ "mdadams/jasper 2000-07
FIASCO FIASCO http://ulli.linuxave.net /fiasco 2000-07
ECW ECW http://www.ermapper.com 2000-07
GIF Image Alchemy 1.11 http://www.handmadesw.com 2000-07
PNG PaintShop Pro 6.02 http://www.jasc.com 2000-08
JBIG jbigkit 1.2 http://www.jbig.org 2000-08

2.1 JPEG

JPEG divides the image into 8x8 pixel blocks, which are compressed separately. The
blocks are first processed by discrete cosine transform, and the resulting coefficients
are then quantized. The quantized coefficients are coded using run-length modeling
and Huffman coding.

The images were coded using the libjpeg6b library of the Independent JPEG Group
(IJG). Quantization tables are computed with IJG library a bit differently when
compared to the strategy, where each quality setting has it’s own quantization table.
1JG scheme works like this: quantization table is taken from JPEG specification
(section K.1.) and the coefficients in this table have been scaled for producing tables
for different quality factor. For example, quality factor 100 corresponds to scaling
with factor 0, and quality factor 0 to scaling with factor 100.

2.2 JPEG2000

Image is first processed by Daubechies 7/9 biorthogonal wavelet transform [16]. The
transform is recursively applied to the low-pass coefficients until desired decomposi-
tion level is reached. Resulting coefficients are then divided into code-blocks. These
code-blocks are quantized and coded using arithmetic coder. Binary code-blocks pro-
duced by arithmetic coder are then reordered into quality layers by fractional bitplane
coder. General view of the JPEG2000 architecture is illustrated in Figure 1.

Input Wavelet Coefficient Division to Arithmetic Fractional bitplane Compressed
transform[| Quantizer [~>| code-blocks [] coding || coding file

Figure 1: Genaral view of JPEG2000 encoding architecture.

Discrete Wavelet Transform (DWT)

Normal image has a high correlation between it’s pixel values. This means that neigh-
bouring pixels have usually similar pixel values. Edges in the image are an important
exception to this. Wavelet transform has two filtering operators or convolving func-
tions, low-pass and high-pass filters. Each filter is used in every other pixel one at a
time. This results two sub-sampled coeflicient bands, where low-pass band contains
smooth version of the image and high-pass band contains edges. First wavelet found

2 COMPRESSION METHODS 4

was the Haar wavelet [1], in which the result of low-pass filter is the average pf two
pixels and the result of high-pass filter their difference.

LL[LH
e
LH
HL | HH
HL HH

Figure 2: Subband decomposition structure in wavelet transform.

Figure 2 shows mallat ordering [17] of the transformed subbands, which is the most
common decomposition method. Other possible methods include the Spacl method,
which also can be used with JPEG2000. The HH subband includes diagonal high-
pass coeflicients, LH subband includes vertical high-pass coefficients, LH includes
horizontal high-pass coefficients, and LL subband includes low-pass coefficients.

Most of the information content in the transformed image is in the low-pass subband.
This results in that most of the total signal energy is contained in low-pass subband.
After each decomposition step, resulting low-pass and high-pass non-zero coefficients
magnitude increases compared to previous level. Actual increase depends on the
wavelet transform function used; a good approximation is that the magnitude doubles
after each decomposition step. Figure 3 shows that the non-zero coefficients are scarce
in high-pass bands. The magnitude of the low-pass coefficients has also increased.

Figure 3: Original camera man test image and the subbands decomposed up to one
level.

Wavelet image compression

Previous wavelet image coding algorithms suchs as Embedded zerotree wavelet (EZW) [11]
and Set Partitioning in hierarchical trees (SPTHT) [3] create SNR scalable bitstream.
SNR scalable feature in bitstream signifies that we can stop decoding the image at
any user definable bitrate. EZW and SPIHT algorithms try to minimize distortion

at every bitrate.

The Embedded block coding with optimized truncation (EBCOT) algorithm [6], which
is used in JPEG2000, is both resolution and SNR scalable. Resolution scalability

2 COMPRESSION METHODS 5

in EBCOT uses the feature in mallat ordering, where low-pass subband coefficients
actually represent image in some resolution. Next resolution level can be obtained
from inverse wavelet transform (IWT) of subbands LL, LH, HL and HH at the same
level. It has to be noted that resolution cannot be set to arbitrary size. User needs
to exploit some form of interpolation technique to obtain image at the arbitrary size.

In EZW and SPIHT, the SNR scalability is achieved by ordering coefficients by
magnitude and then coding them by bitplane. Thus output file size can be set in
the accuracy of one bit. In EBCOT, each subband is divided into code-blocks, and
these code-blocks are then coded individually, thus achieving resolution scalability.
EBCOT set’s finite number of truncation points in each code-block. Output bitstream
is then a collection of different truncated code-blocks. As these truncation points are
finite we cannot choose the exact bitrate as:

BPPoutput < BPPtm‘get- (3)

Where BP Pirget signifies user defined bitrate and BP Pyypys signifies real bitrate
generated by the coder.

Arithmetic coder in EBCOT

EBCOT algorithm contains two different coding engines, Tier 1 and Tier 2. Tier 1
engine operates transformed coefficients and places truncation points to code-blocks.
These code-blocks are transmitted to Tier 2 engine, which places fragments of these
code-blocks to different quality layers, which correspond to different bitrates. Tier 2
engine creates the actual compressed file. Figure 4 illustrates this process.

code-block
samples

v

Tier 1

Embedded block coding
operates on block samples

v

Tier 2

Coding of block contributions
to each quality layer
bperates on block summary infg

v

compressed image

Figure 4: Two-tiered coding system in EBCOT.

The code-blocks are processed by dividing them into bitplanes, which are further
divided into smaller sub-blocks. In each bitplane, we first evaluate each sub-block
whether it is significant in the current bitplane. If not it is by-passed. Symbols
are coded with four different coding primitives: Zero coding (ZC), Run-length coding
(RLC), Sign coding (SC) and Magnitude refinement (MR). Each primitive has it’s
own arithmetic coder contexts. Binary arithmetic coder is known as the MQ-Coder.

Traditional bitplane coders code each bitplane in one pass. EBCOT codes each
bitplane of the code-block in four passes. This creates passes P;...P; so that P;

2 COMPRESSION METHODS 6

contains the first samples and P, the last samples of the code-block on a given
bitplane. Thus, it creates four more truncation points inside one code-block. This
four pass coding is identified as the fractional bitplane coding [8]. Simplified version
of the relationship between fractional bitplane coding and the quality layers in the
final compressed file can be seen in Figure 5.

Code-block 1 Code-block 2

PL [P2 | P3| Pa | p1| P2 P3| Pa

\ AN / /

—

SRWALYARS:

ql

Compressed file divided by quality layers

Figure 5: Relationship between the different coding passes and the quality layers in
the compressed file.

Random access property in EBCOT is achieved up to the code-block level. EBCOT
can seek individual code-blocks to be decompressed individually. Because of bound-
ary conditions EBCOT has to retrieve larger area than just the requested number of

code-blocks.

General introduction to JPEG2000 standard can be found in [2]. Analytical study of
the JPEG2000 features compared to similar features in other still image compression
standards is available in [5].

In the evaluation, we use two different encoders: JJ2000 and Jasper. The JJ2000
codec is written by The JPEG Organization, and The Jasper codec by Michael D.
Adams. We refer JJ2000 as J2K, and the Jasper codec as JP2. The compression
results between these two codecs were approximately equal, and therefore we report
only the results of JJ2000.

2.3 FIASCO

FIASCO (Fractal Image And Sequence COdec) codec is a fractal compressor based on
weighted finite automata (WFA) originally developed by K. Culik and J. Kari [14].
In WFA, the input image is first split into non-overlapping blocks. Each block is
then encoded using sub-images from domain pool. Blocks are represented as approx-
imations of weighted linear combination of selected images from the domain. This
splitting process is recursively applied until a decent approximation is found. The
weights are quantized to integer values and then coded using arithmetic coder. The
resulting approximation is then added to the domain pool.

With FIASCO codec, it is nearly impossible to generate high bitrates. For Turku?2
image, even the bitrate 0.5 was too high for FTASCO. This limitation is due to re-
peated split process, which results to larger and larger domain pool with the increased
accuracy. This results in an overwhelming increase in memory and cpu usage. Lower
bitrates generate similar blocking artifacts as the baseline JPEG with similar bitrates.
This is maybe acceptable for low-bitrate video coding but not for good quality still
image coding.

2 COMPRESSION METHODS 7

24 GIF

In GIF, color images are converted into 256 color palette images. As we use 8-bit
gray-scale images, GIF can be directly applied without any conversion The image is
then coded using a variant of the LZ78 algorithm [13], which is known as LZW [18].
This compression method is lossless. The images were compressed to GIF using
Image Alchemy version 1.11 with the -g option. The GIF method [4] was developed
by Compuserve and patented by Unisys until 2004.

2.5 PNG

PNG is similar method to GIF. Gray-scalemages are converted into 256 color palette
images. This indexed image is then coded using a variant of the LZ77 algorithm [12].
The PNG method is lossless. Images were compressed to PNG using Paint Shop Pro
version 6.02.

2.6 JBIG

JBIG, is a lossless bi-level (1-bit, black and white) image coding standard by the Joint
Bi-Level Image Ezperts Group (JBIG). JBIG format is formally defined in the ITU-
T Recommendation T.82, International Standard ISO/IEC11544. JBIG algorithm
uses pixel-by-pixel context-based statistical modeling and arithmetic coding using
the coder known as the QM- Coder.

Gray-scale images can be compressed with JBIG, by converting them first to eight
0/1-bit planes (in case of 8 bpp images), or two 0/1 bit planes (in case of 2-bit images).
Individual bit planes were compressed using pbmtojbg software from jbigkit package.

2.7 ECW

ER Mapper Compressed Wavelet (ECW) images in this test were created using free
command line compressor/decompressor (Copyright Earth Resource Mapping Pty
Ltd) from (http://www.ermapper.com) with -g -e best option using different tar-
get ratio values ranging from 10:1 to 400:1 and decompressed for PSNR-comparison
using PaintShop Pro ECW plug-in. ECW plug-ins are available for various image
and map processing software as well. With our test images, the ECW tool didn’t
always achieve the target ratio and produced images only at rate 1.6 ... 3.3 bpp
(5:1 ... 2:1). Larger bit rates were not interesting for this study, and therefore not
examined. Lower bit rates were not possible.

ECW format is a wavelet-based [16] lossy compressor, and has been developed for
storing large map images with georeference and locational information. ECW pictures
are 8-bit gray scale images or 24-bit color images with RGB-channels YUV-coded.
ECW is able to compress also 1- or 2-bit images but as wavelet-based it probably is
not at it’s best in it. The method does not suite well for small images (< 2 MB) but
it supports images larger than 2 GB and level-of-detail decompression [7].

3 TEST IMAGE SET 8

3 Test image set

Four images were downloaded from the web server of the city of Turku, Finland:
(http://www.turku.fi/mito/cgi-bin/kartta?x=1500&y=1125&z=0&i=1). The pic-
tures are 24-bit JPEG images. So those images were actually compressed already
once, which might have some effect on the compression results as the baseline JPEG
creates small artifacts into the image. These artifacts are small changes in pixel
values around the image, and thus they are difficult to observe visually.

Representing colors by computer is limited by storage space and display device. Typ-
ical desktop monitor has 24-bit (16 777 216) color space, which is considered enough
to show smooth transition of colors. For gray-scale images 8 bits (256 tones) is con-
sidered enough for image to be perfect for human eye. However, perfect result is not
needed for most applications and, e.g., hand-held devices might be able to display
only 4 color tones (2 bits per pixel).

Color reduction for gray-scale images from 256 colors to 4 colors reduces storage space
to 1/4 of the original image. Linear color reduction, without dithering, approximates
the 256-tone color space by 4 tones and makes the color mapping to each pixel
individually. Better visual quality can be obtained using dithering methods. The
tradeoff is that the dithering methods affect also the compression methods worsening
the compression performance. Moreover, most efficient compression by are lossy
(JPEG, JPEG2000), and they work efficiently only with images that have large color
space (at least 64 tones per color).

On the other hand, 2-bit images can be divided into two 1-bit images and apply also
lossless compression methods designed for 1-bit images (JBIG). It is likely that this
produces better compression result. Other methods, designed to work with all images
with 1-8 bit color space (GIF, PNG), should also considered for compressing the bit
planes.

The dithering method used in this test is the error diffusion, method known as the
Floyd-Steinberg dithering [15]. This approach is a serial process and the dithering of
a single pixel affects the neighbouring pixels to the right and below. The error, that
is the difference between the exact pixel value and the approximated value actually
displayed, is spread to the color values of the four pixels below and right to the pixel
in question.

Linux program The Gimp version 1.1.24 (http://www.gimp.org) was used to gen-
erate gray-scale images from the original color image. The 8 bpp — 2 bpp color
reduction, and dithering was generated using the option “Floyd-Steinberg” with “no-
bleed”. The bit planes of the 2-bit images were separated using Pasi Franti’s bitlevel
software (http://cs.joensuu.fi/franti/softat/bitlevel.exe).

Enlargements of the test images and their processed 2-bit versions are shown in
Figures 6, 8, 8 and 9. The full-scale images can be found in Appendix A (8-bit
images) and Appendix B (2-bit images and 2-bit images with dithering).

3 TEST IMAGE SET 9

Figure 7: Turku2 zoomed from original, 2 bpp and 2bpp-dithered.

Figure 9: Turku4 zoomed from original, 2 bpp and 2bpp-dithered.

4 COMPRESSION RESULTS 10
4 Compression results

4.1 Lossless results for 8-bit images

Table 3: Results of lossless compression of
8-bit images.

Method Image BPP
JBIG by bitplane Turkul 6.8 B CIBIG
PNG Turkul 5.895 EPNG
GIF Turkul 8.685
JBIG by bitplane Turku2 4.3
PNG Turku2 3.706
GIF Turku2 5.457
JBIG by bitplane Turku3 7.6
PNG Turku3d 6.903
GIF Turku3 9.997
JBIG by bitplane Turkud4 7.2
PNG Turku4 6.465 Turkut Turku2 ~ Turkud Turkud Average
GIF Turkud 9.411

Figure 10: Results of lossless compression
methods for 8-bit test images Turkul..4

Lossless results are summarized in Table 3. We can see that the dictionary-based
lossless methods (GIF, TIFF) work quite poorly for 8-bit images. In most cases
(Turkul, Turku3 and Turku4) these methods generated files larger than the original
uncompressed file. The image Turku2 contains large areas of uniform color, which
leads to good compression ratio. For example, PNG achieves 2:1 compression ratio.
PNG outperforms the other methods and it achieves 2:1 compression ratio at best.
It can be concluded that the compression performance depends a lot on the type of
the image. At best lossless methods achieve 4 bpp (2:1 compression ratio). And with
hardest images, which depicted center of the city, compression rate even with the
best method (PNG) was 6 bpp.

4.2 Lossy results for 8-bit images

Lossy results are given in Table 4, and visually illustrated in Figure 15, which de-
scribes average PSNR-BPP ratio. Individual results for each picture can be seen in
Figure 16. When comparing low quality scale, we find that, in some cases for same
quality JPEG2000 method results in bitrate of half the size than that of JPEG. For
example, image Turkul compressed to quality 25dB in PSNR scale yields 0.25 bpp
rate with JPEG2000 and 0.5 rate with JPEG. Having the same PSNR value does not
mean, that pictures are identical, it only means, that the pixel-wise difference when
compared to original picture is the same.

4 COMPRESSION RESULTS 11

Figure 12: Turku2 compressed with JPEG, JPEG2000, and FTASCO at 0.5 bpp.

Figure 13: Turku3 compressed with JPEG, JPEG2000, and FTASCO at 0.5 bpp.

Figure 14: Turku4 compressed with JPEG, JPEG2000, and FTASCO at 0.5 bpp.

4 COMPRESSION RESULTS 12

JPEG and JPEG2000 generate different visual artifacts when used in low bitrates.
JPEG has well known blocking artifacts, which are due to fact, that JPEG method
divides the image to 8x8 pixel blocks, which compressed independently from each
other. The block boundaries become visible when compressing in low bitrates. A
typical JPEG2000-artifact is ringing around the edges. The image is often blurred,
too.

The rate-distortion curve of JPEG2000 is very linear for all images.

In very low bitrates FTIASCO has better quality than JPEG, but FIASCO cannot
achieve bitrates higher than 0.5 bitrate. ECW, on the other hand, cannot achieve bit
rates lower than 2 bpp.

Interesting result is, that JPEG is better than JPEG2000 for bitrates higher than 2
bpp. Moreover, the pictures Turkul, Turku2 and Turku4 have strange peak around
1.5-2.0 bpp. This might be due to the fact that the pictures were originally com-
pressed with JPEG before using in this test, probably using bitrates corresponding
to the peaks. In this, JPEG quantization step has removed the same transform co-
efficients that frequencies being removed in the previous compression step. And we
tried to quantize values, that were already quantized, resulting no new distortion in
the image.

Table 4: Average PSNR-results of lossy compression methods.

Target BPP | JPEG JPEG2000 FIASCO ECW
0.125 X 21.28 X X
0.250 21.23 23.07 21.77 X
0.375 22.29 24.17 22.39 X
0.500 23.39 25.15 22.71 X
0.625 24.06 25.99 22.83 X
1.000 27.12 28.86 X X
2.000 37.93 36.14 X 25.89

4 COMPRESSION RESULTS

PSNR

)
BPP

1,5

—JPEG ——J2K

WFA*

Figure 15: Results are average values for the test images Turkul..4.

Turku1

50

—JPEG ——J2K

WFA

45

Turku3

40

35

30

25

20

15

‘ — JPEG —— J2K

WFA ‘

PSNR

Turku2

N,

\/

|
|

50 1

45

0,5 1 1,5

BPP

—JPEG ——J2K

WFA

Turku4

40

35

30

25

20

05 1 1,5
BPP

‘ — JPEG —— J2K

WFA

Figure 16: PSNR-BPP graph for Turkul..Turku4.

13

4 COMPRESSION RESULTS 14

4.3 Comparison of lossy and lossless results

we make tentative comparison of the lossy and lossless methods by taking the lowest
possible quality where no visual difference was seen. These results are summarized
in Table 5. From these results, we conclude that the lossy methods are significantly
more efficient for 8-bit images and are therefore better choice.

Table 5: Lossy and lossless methods. Values in parenthesis are PSNR values, rest are
bpp values.

JPEG JPEG2000 GIF PNG JBIG

Turkul 1.5 (347) 1(29.7) 87 59 68
Turku2 0.9 (27.5) 0.4 (27.5) 55 3.7 43
Turku3 1.2 (22.8) 1(243) 10 69 7.6
Turkud 15 (25.0) 1(26.9) 94 65 7.2
Average 1.3 (27.5) 0.8 (27.1) 84 5.8 6.5

4.4 Results for 2-bit images

Lossless compression methods used for the 2 bpp images test are GIF, PNG and
JBIG. The GIF and PNG methods are applied to the images as such, whereas the
JBIG is applied for the two bit planes separately. The results are summarized in
Table 6 both for the non-dithered and the dithered images.

Table 6: Summary of lossless compression methods for 2 bpp and 2 bpp dithered
images.

Method Image BPP BPP (dithered) Average
GIF by bitplane Turkul 1.36 1.71 1.54
JBIG by bitplane Turkul 1.00 1.34 1.17
PNG Turkul 1.16 1.41 1.29
GIF Turkul 1.10 1.38 1.24
GIF by bitplane Turku2 1.21 1.54 1.38
JBIG by bitplane Turku2 0.91 1.22 1.07
PNG Turku2 0.86 1.24 1.05
GIF Turku2 0.87 1.20 1.04
GIF by bitplane Turku3 1.92 2.05 1.99
JBIG by bitplane Turku3 1.43 1.58 1.51
PNG Turku3 1.72 1.81 1.77
GIF Turku3 1.67 1.79 1.73
GIF by bitplane Turku4 1.70 1.96 1.83
JBIG by bitplane Turku4 1.21 1.51 1.36
PNG Turku4 1.42 1.62 1.52
GIF Turku4 1.36 1.58 1.47
Average:

GIF by bitplane = Turku[l...4] 1.55 1.82 1.69
JBIG by bitplane Turku[l...4] 1.14 1.42 1.28
PNG Turku[l...4] 1.29 1.52 1.41
GIF Turku[l...4] 1.25 1.49 1.37

When we compare the non-dithered results in Table 6 to the dithered results, we
can see that the non-dithered images have always smaller size. On the other hand,

4 COMPRESSION RESULTS 15

when we compare the visual quality between the dithered and non-dithered images,
we can see that dithering achieves better quality. The use of dithering is therefore
compromize between the quality and file size.

In the compression, JBIG gives the best results both in the case of non-dithered and
dithered images. In the experiments, we also applied GIF to the bit planes but as we
can see from the results, GIF gives better results when applied to the original 2 bpp
images as such.

The results also show that the lossless compression of 2 bpp images are not any more
efficient that the lossy methods for 8 bpp image. This indicates that lossy methods
could be used. Unfortunately the lossy methods such as JPEG and JPEG2000 are
not well applicable to images with reduced number of colors. JPEG, for example,
performs poorly because of the cosine transform. Also, the existing JPEG2000 codecs
did not support 2 compression of arbitrary color depths.

Because of the reasons explained above, it makes sense to study the following ap-
proach: we store the images as 8 bpp images and apply lossy compression. The
images are quantized and dithered to 2 bpp only after the decompression at the mo-
ment when output on the display. These post- processing steps are not computational
expensive in comparison to the decompression. Therefore, this approach would be
realistic in practice if it turns out to provide better results both in file size and in
quality.

Table 7: Summary of compression results for 2 bpp dithered images.
Image 2-bit dithered JBIG JPEG2000 JPEG2000

Turkul 1.34 bpp 1 bpp 0.25 bpp
Turku?2 1.22 bpp 1 bpp 0.25 bpp
Turku3 1.58 bpp 1 bpp 0.25 bpp
Turku4 1.51 bpp 1 bpp 0.25 bpp

We compare the lossless 2 bpp results with lossy 8 bpp results with bit rates 1.00 and
0.25 bpp. The first one is slightly lower than the lossless results on average, whereas
the second one is clearly superior. The compression results are compared in Tables
5, 6 and 7. We can see, that the images with 0.25 bpp are lower quality than the
compressed 2 bpp images (with dithering) whereas the file size is less than 25% that
of the JBIG compressed files. The 1.00 bpp results, on the other hand, have both
good quality and slightly better bit rate. The complete set of the lossy compressed
and quantized images are in Appendix D.

4 COMPRESSION RESULTS 16

Figure 18: Turku?2 lossless 2-bit dithered, JPEG2000 at 1 bpp and 0.25 bpp

Figure 19: Turku3 lossless 2-bit dithered, JPEG2000 at 1 bpp and 0.25 bpp

Figure 20: Turku4 lossless 2-bit dithered, JPEG2000 at 1 bpp and 0.25 bpp

5 CONCLUSIONS 17

5 Conclusions

Impact of source data suitability for different compression methods can be seen es-
pecially from poor performance of lossless GIF. PNG is supposed to achieve always
slightly better results than popular GIF. In this case, GIF produced unacceptable
larger-than-original compression ratio, while PNG files were about 2/3 of the size of
GIF and TIFF.

In lossy category wavelet-based JPEG2000 clearly outperformed JPEG and FIASCO
by a wide margin of MSE-quality and consistent bitrate scalability. Apparenty ECW
is optimized only for much larger images than our test images, or there is inefficiency
in input file filter. Otherwise, the poor quality - file size ratio is a disappointment.
Lossy methods with good visual quality produce file sizes less than half of the file
sizes created with lossless methods.

Image size (and quality) can also be reduced by reducing the number or colors in the
image. Traditional approach to compress an image that has been color quantized is
to use lossless methods. These methods are the obvious choice for compressing 2-bit
(4 color) images, as the lossy methods in this evaluation produce best 8-bit results.
PNG outperformed GIF and TIFF.

For four color mobile displays error diffusion dithered images approximate original
8-bit color images quite well. Trade-off in dithering is that lossless compression ratio
decreases. Solution to this might be to store the images as compressed 8-bit images
using a decent lossy compressor such as JPEG2000. Quantization to 2-bits and
dithering should happen only at the moment when the image is displayed.

Choosing best compression method always heavily depends of the details of source
data, as is also seen in this case. If the source data would have been pre-compressed
with different method, or not compressed at all, or if it had different noise factors
than the present artifacts from JPEG method, compression results might be slightly
different. Nevertheless, the JPEG2000 was still the best method for 8-bit images and
possibly also for 2-bit images.

REFERENCES 18

References

[1] A. Haar, “Zur Theorie der Orthogonalen Funktionensysteme”, Math. Annal.,
no. 69, pp. 331-371, 1910.

[2] A. N. Skodras, C. A. Christopoulos and T. Ebrahimi, “JPEG2000: The up-
coming still image compression standard”, Proc. 11th Portugese Conference on
Pattern Recognition , Porto, Portugal, pp. 359-366, May 2000

[3] A. Said and W. A. Pearlman, “A New and Efficient Image Codec Based on Set
Partitioning in Hierarchical Trees”, IEEFE Transactions on Circuits and Systems
for Video Technology, Vol. 6, June 1996.

[4] Compuserve Incorporated, Graphics Interchange Format (version 89a), Colum-
bus, Ohio, 1989, (http://www.w3.org/Graphics/GIF /spec-gif89a.txt).

[6] D. Santa-Cruz and T. Ebrahimi, “An Analytical Study of JPEG2000 Func-
tionalities,” Proc. of the International Conference on Image Processing (ICIP),
Vancouver, Canada, September 10-13, 2000.

[6] D. Taubman, “High Performance Scalable Image Compression with EBCOT”,
IEEFE Transactions on Image Processing, vol. 9, no. 7, July 2000.

[7] Earth Resource Mapping Pty Ltd, Compression White Paper Version 2.0, June
2000,
(http://www.ermapper.com/product /ermapper6 /new/compression_white_paperl.pdf).

[8] E. Ordentlich, M. Weinberger and G. Seroussi, “A Low-Complexity Modeling
Approach for Embedded Coding of Wavelet Coefficients”, Proc. IEEE Data
Compression Conference, Snowbird, UT, pp. 408-417, March 1998.

[9] ISO/IEC, ISO/IEC 11544:1993 Information Technology — Coded Representation
of Picture and Audio Information — Progressive Bi-level Image Compression,
March 1993.

[10] ISO/IEC JTC 1/SC 29/WG 1, ISO/IEC FCD 15444-1: Information Technology
- JPEG2000 Image Coding System: Core Coding System [WG 1 N 1646/, March
2000, (http://www.jpeg.org/FCD15444-1.htm).

[11] J. M. Shapiro, “Embedded Image Coding Using Zerotrees of Wavelets Coeffi-
cients,” IEEE Transactions on Signal Processing, vol. 41, pp. 3445-3462, De-
cember 1993.

[12] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data Compres-
sion,” IEEE Transactions on Information Theory, vol. I'T-23, no. 3, pp. 337-343,
1978

[13] J. Ziv and A. Lempel, “Compression of Individual Sequences Via Variable-Rate
Coding,” IEEE Transactions on Information Theory, vol. IT-24, no. 5, pp. 530-
536, 1978

[14] K. Culic and J. Kari, “Image Compression Using Weighted Finite Automata”,
Computers and Graphics, Vol. 17, no. 3, pp. 305-313, 1993.

[15] R. W. Floyd and L. Steinberg “An Adaptive Algorithm for Spatial Gray Scale,”
SID International Symposium Digest of Technical Papers, pp- 36-37, 1975.

REFERENCES 19

[16] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 1999.

[17] S. Mallat, “An Efficient Image Representation for Multiscale Analysis,” Proc. of
Machine Vision Conference, Lake Taho, February 1987.

[18] T.A. Welch, “A Technique for High-Performance Data Compression”, IEEE
Computer, pp. 8-19, June 1984.

[19] U. Hafner, J. Albert, S. Frank and M. Unger, “Weighted Finite Automata for
Video Compression”, IEEE Journal on Selected Areas in Communications , Vol.
16, no. 1 , pp. 108-191, January 1998

[20] W3C, PNG (Portable Network Graphics) Specification, October 1996,
(http://www.w3.org/TR/REC-png).

[21] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compression
Standard, Van Nostrand Reinhold, 1993.

Appendices

Appendix A Original images

Figure 22: Turku2 (600x450 pixels, 8-bit).

20

APPENDIX A ORIGINAL IMAGES

e T Y
@ Turun kaupungin rnittaus - ja anttios asks
‘dri-ilmakuvat FM-kartta, T il

Figure 23: Turku3 (600x450 pixels, 8-bit).

e 2l E i
@ Turun kaupungin mittaus - ja_tonttics asks
Siriilmakuwat FH-kartta, mu T i

Figure 24: Turku4 (600x450 pixels, 8-bit).

21

APPENDIX B 2-BIT IMAGES

Appendix B 2-bit images

=

ol o,

Figure 25: Turkul (600x450 pixels, 2-bit).

Figure 26: Turkul (600x450 pixels, 2-bit) Floyd-Steinberg dithering.

22

APPENDIX B 2-BIT IMAGES

Pt 200w Empix
@ Turun kaupunin rnittaus - ja benttiss asks
‘dri-ilmakuvat FM-kartta mo T il

Figure 27: Turku2 (600x450 pixels, 2-bit).

D0 2. pix

Pt 20l
@ Turun kaupungin mitkaus - ja_tonttics asks
Siriilmakuwat FH-kartta, mo T i

Figure 28: Turku2 (600x450 pixels, 2-bit) Floyd-Steinberg dithering.

23

APPENDIX B 2-BIT IMAGES

raitbaus - ja ke
uuak -kartta, mu T

e £01
@ Turun kaupungin mitkaus - ja tonktics asks
diriilmakuwat FH-kartta, mu T i

Figure 30: Turku3 (600x450 pixels, 2-bit) Floyd-Steinberg dithering.

24

APPENDIX B 2-BIT IMAGES

[e T
@ Turun kaupungin rittaus - ja banttiss asks
‘dri-ilmakuvat FM-kartta mo T il

w2
kaupungin mitkaus - ja_tenttios aske
kuuat FH-kartta, mu T i

Figure 32: Turku4 (600x450 pixels, 2-bit) Floyd-Steinberg dithering.

25

APPENDIX C COMPRESSED IMAGES 8-BIT IMAGES

Appendix C Compressed images 8-bit images
Turkul

A L
b ."R\ N‘\\l\:!\:':\\‘. b X '-.. !

- P
0 o

s

e U o R

(oo SES
- ;A

Figure 34: JPEG2000 at 0.5 bpp, MSE: 142.

26

APPENDIX C COMPRESSED IMAGES 8-BIT IMAGES

Figure 35: FIASCO at 0.5 bpp, MSE: 254.

27

APPENDIX C COMPRESSED IMAGES 8-BIT IMAGES

Turku2

O € pix

P 20l m
@ Turun kaupungin mittaus - ja_tonttics asks
Sriilmakuwat FH-kartta, mu T i

Figure 37: JPEG2000 at 0.375 bpp, MSE: 122.

28

APPENDIX C COMPRESSED IMAGES 8-BIT IMAGES

Figure 38: FIASCO at 0.375 bpp, MSE: 239.

29

APPENDIX C COMPRESSED IMAGES 8-BIT IMAGES

Turku3

Figure 40: JPEG2000 at 0.5 bpp, MSE: 466.

30

APPENDIX C COMPRESSED IMAGES 8-BIT IMAGES

Figure 41: FIASCO at 0.5 bpp, MSE: 579.

31

APPENDIX C COMPRESSED IMAGES 8-BIT IMAGES

Turku4

0 Em, i

P
@ Turun kaupungin mittaus - ja tenttiosasts (5
Hriilmakuvat FH-kartta, mu T i i

Figure 43: JPEG2000 at 0.5 bpp, MSE: 281.

32

APPENDIX C COMPRESSED IMAGES 8-BIT IMAGES

Figure 44: FIASCO at 0.5 bpp, MSE: 420.

33

APPENDIX D COMPRESSED 2-BIT DITHERED IMAGES 34

Appendix D Compressed 2-bit dithered images

Turkul

raitkaus - ja_kantioz azks
kartta mu T il

Figure 45: Compressed JPEG2000 at 1 bpp decompressed and Floyd-Steinberg error
diffusion dithered to 2-bit image.

P
@ Turun kaupungin mitkaus - ja tonktics asks
Siriilmakuwat FH-kartta, mo T i

Figure 46: Compressed JPEG2000 at 0.25 bpp decompressed and Floyd-Steinberg
error diffusion dithered to 2-bit image.

APPENDIX D COMPRESSED 2-BIT DITHERED IMAGES 35

Turku2

[Tt 200 ™ Empix
2 Turun kaupungin rnittaus - ja benttiss asks
‘dri-ilmakuvat FM-karkta mo T il

Figure 47: Compressed JPEG2000 at 1 bpp decompressed and Floyd-Steinberg error
diffusion dithered to 2-bit image.

& Turun kaupunain raitt
Siriilmakuwat FH-kart

Figure 48: Compressed JPEG2000 at 0.25 bpp decompressed and Floyd-Steinberg
error diffusion dithered to 2-bit image.

APPENDIX D COMPRESSED 2-BIT DITHERED IMAGES 36

Turku3

i
2 Turun kaupundin roittaus
dri-ilmakuvat FM-kartta

Figure 49: Compressed JPEG2000 at 1 bpp decompressed and Floyd-Steinberg error
diffusion dithered to 2-bit image.

@ Turun kaupungin mittaus - ja
Hiriilmakuwat FH-kartta, mu T

Figure 50: Compressed JPEG2000 at 0.25 bpp decompressed and Floyd-Steinberg
error diffusion dithered to 2-bit image.

APPENDIX D COMPRESSED 2-BIT DITHERED IMAGES 37

Turku4

tmmmm mmmmm i]
@ Turun kaupungin rittaus - ja tanttiss 2
‘dri-ilmakuvat FM-karkta mo T il

Figure 51: Compressed JPEG2000 at 1 bpp decompressed and Floyd-Steinberg error
diffusion dithered to 2-bit image.

£
[Tutun kaupunain mittaus - fa tonttissasts
ri-il Fhi-tartta, rmu T: i

Figure 52: Compressed JPEG2000 at 0.25 bpp decompressed and Floyd-Steinberg
error diffusion dithered to 2-bit image.

APPENDIX E COMPLETE COMPRESSION RESULTS

Appendix E Complete compression results

Table 8: Lossy compression results for image Turkul.

Target bpp Method Filesize Actual bpp MSE PSNR
0.125 J2K 4182 0.123 278.49 23.68
0.125 JP2 4323 0.128 276.84 23.71
0.25 J2K 8419 0.249 216.32 24.78
0.25 JP2 8546 0.253 216.47 24.78
0.25 JPEG 8161 0.241 306.50 23.27
0.25 WFA 7776 0.230 303.53 23.31
0.375 J2K 12589 0.373 173.62 25.73
0.375 JP2 12922 0.382 172.36 25.77
0.375 JPEG 11153 0.330 250.55 24.14
0.375 WFA 12503 0.370 269.60 23.82
0.5 J2K 16875 0.500 141.37 26.63
0.5 JP2 16885 0.500 143.04 26.58
0.5 JPEG 15099 0.447 212.13 24.86
0.5 WFA 15713 0.466 254.66 24.07
0.625 J2K 21090 0.624 120.35 27.33
0.625 JP2 20765 0.615 123.45 27.22
0.625 JPEG 20331 0.602 194.36 25.24
0.625 WFA 20806 0.616 242.96 24.28
1 J2K 33696 0.998 69.82 29.69
1 JP2 33840 1.002 70.89 29.63
1 JPEG 25644 0.759 138.94 26.70
2 J2K 67471 1.999 15.29 36.29
2 JP2 67561 2.001 16.52 35.95
2 JPEG 66772 1.978 10.08 38.10
2 ECW 68522 2.03 114.402 27.55

38

APPENDIX E COMPLETE COMPRESSION RESULTS

Table 9: Lossy compression results for image Turku2.

Target bpp Method Filesize Actual bpp MSE PSNR
0.125 J2K 4168 0.123 228.87 24.53
0.125 JP2 4322 0.128 227.54 24.56
0.25 J2K 8430 0.249 162.48 26.02
0.25 JP2 8509 0.252 163.30 26.00
0.25 JPEG 7559 0.223 259.82 23.98
0.25 WFA 7212 0.214 260.56 23.97
0.375 J2K 12652 0.374 115.61 27.50
0.375 JP2 12748 0.377 116.47 27.47
0.375 JPEG 12305 0.364 180.88 25.56
0.375 WFA 12106 0.359 236.79 24.39
0.5 J2K 16803 0.497 85.41 28.82
0.5 JP2 16924 0.501 86.28 28.77
0.5 JPEG 16895 0.500 140.08 26.67
0.5 WFA 12100 0.359 236.74 24.39
0.625 J2K 20885 0.618 66.26 29.92
0.625 JP2 20777 0.615 68.22 29.79
0.625 JPEG 18755 0.555 119.62 27.35
0.625 WFA 11995 0.355 239.35 24.34
1 J2K 33705 0.998 23.40 34.44
1 JP2 33836 1.002 23.99 34.33
1 JPEG 33275 0.985 18.75 35.40
2 J2K 67470 1.999 1.98 45.16
2 JP2 67430 1.997 2.50 44.16
2 JPEG 66195 1.961 0.80 49.10
2 ECW 64992 1.925 38.677 32.26

39

APPENDIX E COMPLETE COMPRESSION RESULTS

Table 10: Lossy compression results for image Turku3.

Target bpp Method Filesize Actual bpp MSE PSNR
0.125 J2K 4196 0.124 898.29 18.60
0.125 JP2 4327 0.128 892.94 18.62
0.25 J2K 8225 0.243 684.53 19.78
0.25 JP2 8523 0.252 676.93 19.83
0.25 JPEG 8714 0.258 979.88 18.22
0.25 WFA 6620 0.196 833.95 18.92
0.375 J2K 12561 0.372 550.24 20.73
0.375 JP2 12903 0.382 545.97 20.76
0.375 JPEG 8714 0.258 979.88 18.22
0.375 WFA 11974 0.355 659.94 19.94
0.5 J2K 16867 0.499 462.42 21.48
0.5 JP2 16976 0.502 464.98 21.46
0.5 JPEG 15308 0.453 680.18 19.80
0.5 WFA 17150 0.508 580.44 20.49
0.625 J2K 20910 0.619 395.88 22.16
0.625 JP2 20499 0.607 407.08 22.03
0.625 JPEG 19845 0.588 557.86 20.67
0.625 WFA 21085 0.625 553.79 20.70
1 J2K 33745 0.999 240.68 24.32
1 JP2 33767 1.000 243.88 24.26
1 JPEG 31481 0.932 448.85 21.61
2 J2K 67449 1.998 65.54 29.97
2 JP2 67521 2.000 67.71 29.82
2 JPEG 67362 1.995 102.52 28.02
2 ECW 66977 1.984 423.109 21.87

40

APPENDIX E COMPLETE COMPRESSION RESULTS

Table 11: Lossy compression results for image Turku4.

Target bpp Method Filesize Actual bpp MSE PSNR
0.125 J2K 4199 0.124 612.92 20.26
0.125 JP2 4254 0.126 612.85 20.26
0.25 J2K 8338 0.247 438.78 21.71
0.25 JP2 8433 0.249 438.88 21.71
0.25 JPEG 7201 0.213 741.46 19.43
0.25 WFA 8590 0.255 529.35 20.89
0.375 J2K 12470 0.369 349.39 22.70
0.375 JP2 12901 0.382 345.14 22.75
0.375 JPEG 12806 0.379 491.21 21.22
0.375 WFA 11717 0.347 469.51 21.41
0.5 J2K 16866 0.499 279.74 23.66
0.5 JP2 16927 0.501 281.69 23.63
0.5 JPEG 16615 0.492 389.23 22.23
0.5 WFA 16706 0.495 421.98 21.88
0.625 J2K 21010 0.622 227.58 24.56
0.625 JP2 20864 0.618 232.09 24.47
0.625 JPEG 21250 0.629 327.75 2298
0.625 WFA 20866 0.618 412.11 21.98
1 J2K 33604 0.995 130.18 26.99
1 JP2 33814 1.001 131.26 26.95
1 JPEG 33227 0.984 216.92 24.77
2 J2K 67389 1.996 31.59 33.14
2 JP2 67584 2.002 32.67 32.99
2 JPEG 67094 1.987 14.44 36.53
2 ECW 66977 1.984 423.109 21.87

41

APPENDIX E COMPLETE COMPRESSION RESULTS 42
Table 12: Lossless compression results by bitplanes for 2bit images.

Format 1Image Layer 1 bpp Layer 2 bpp Layers total total bpp Image type
GIF Turkul 36.315 1.08 21.318 0.63 57.633 1.71 2b dither
JBIG Turkul 29.837 0.88 15.439 0.46 45.276 1.34 2b dither
TIFF Turkul 56.112 1.66 30.814 0.91 86.926 2.58 2b dither
GIF Turku2 32.831 0.97 19.051 0.56 51.882 1.54 2b dither
JBIG Turku2 26.096 0.77 15.091 0.45 41.187 1.22 2b dither
TIFF Turku2 90.402 2.68 27.556 0.82 117.958 3.50 2b dither
GIF Turku3 39.483 1.17 29.861 0.88 69.344 2.05 2b dither
JBIG Turku3 33.456 0.99 19.878 0.59 53.334 1.58 2b dither
TIFF Turku3 63.426 1.88 37.480 1.11 100.906 2.99 2b dither
GIF Turkud 37.715 1.12 28.383 0.84 66.098 1.96 2b dither
JBIG Turku4 30.936 0.92 20.003 0.59 50.939 1.51 2b dither
TIFF Turku4 55.370 1.64 37.930 1.12 93.300 2.76 2b dither
GIF Turkul 29.992 0.89 15.848 0.47 45.840 1.36 2b nodither
JBIG Turkul 23.017 0.68 10.610 0.31 33.627 1.00 2b nodither
TIFF Turkul 34.176 1.01 18.776 0.56 52.952 1.57 2b nodither
GIF Turku2 23.792 0.70 16.909 0.50 40.701 1.21 2b nodither
JBIG Turku2 17.549 0.52 13.080 0.39 30.629 0.91 2b nodither
TIFF Turku2 28.548 0.85 20.516 0.61 49.064 1.45 2b nodither
GIF Turku3 37.745 1.12 26.983 0.80 64.728 1.92 2b nodither
JBIG Turku3d 30.803 091 17.343 0.51 48.146 1.43 2b nodither
TIFF Turku3 50.984 1.51 29.668 0.88 80.652 2.39 2b nodither
GIF Turku4 33.366 0.99 23.935 0.71 57.301 1.70 2b nodither
JBIG Turku4 25.468 0.75 15.343 0.45 40.811 1.21 2b nodither
TIFF Turku4 40.246 1.19 27.412 0.81 67.658 2.00 2b nodither

APPENDIX E COMPLETE COMPRESSION RESULTS

Table 13: Results of lossless 2bit compression.

Format Image Compressed Size bpp Image type
PNG Turkul 47635 1.411 2bit dither
PNG Turku2 41826 1.239 2bit dither
PNG Turku3 61238 1.814 2bit dither
PNG Turku4 54606 1.617 2bit dither
PNG Turkul 39016 1.156 2bit
PNG Turku2 28933 0.857 2bit
PNG Turku3 57894 1.715 2bit
PNG Turku4 47773 1.415 2bit
GIF Turkul 46443 1.376 2bit dither
GIF Turku?2 40643 1.204 2bit dither
GIF Turku3 60578 1.794 2bit dither
GIF Turku4 53208 1.576 2bit dither
GIF Turkul 37222 1.102 2bit
GIF Turku?2 29465 0.873 2bit
GIF Turku3 56499 1.674 2bit
GIF Turku4 46021 1.363 2bit
TIFF Turkul 49306 1.460 2bit dither
TIFF Turku2 43476 1.288 2bit dither
TIFF Turku3 65604 1.943 2bit dither
TIFF Turku4 57310 1.698 2bit dither
TIFF Turkul 39962 1.184 2bit
TIFF Turku2 32182 0.953 2bit
TIFF Turku3 61282 1.815 2bit
TIFF Turku4 49692 1.472 2bit

43

