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Abstract

Several features have been proposed for automatic
speaker recognition. Despite their noise sensitivity, low-
level spectral features are the most popular ones because
of their easy computation. Although in principle dif-
ferent spectral representations carry similar information
(spectral shape), in practice the different features differ
in their performance. For instance, LPC-cepstrum picks
more “details” of the short-term spectrum than the FFT-
cepstrum with the same number of coefficients. In this
work, we consider using multiple spectral presentations
simultaneously for improving the accuracy of speaker
recognition. We use the following feature sets: mel-
frequency cepstral coefficients (MFCC), LPC-cepstrum
(LPCC), arcus sine reflection coefficients (ARCSIN), for-
mant frequencies (FMT), and the corresponding delta-
parameters of all feature sets. We study the two ways
of combining the feature sets: feature-level fusion (fea-
ture vector concatenation), score-level fusion (soft com-
bination of classifier outputs), and decision-level fusion
(combination of classifier decision).

1 Introduction

Front-endor feature extractoris the first component in
an automatic speaker recognition system. Feature extrac-
tion transforms the raw speech signal into a compact but
effective representation that is more stable and discrimi-
native than the original signal.

Speaker differences in the acoustic signal are coded
in complex way in bothsegmental(phoneme) level,
prosodic(suprasegmental) level andlexical level. Mod-
eling of prosody and lexical features has shown great
promises in automatic speaker recognition systems lately
[19]. However, the segmental features are still the most
popular approach because of their easy extraction and
modeling.

In most automatic speaker and speech recognition sys-
tems, segmental features are computed over a short time
window (around 30 ms), which is shifted forward by a
constant amount (around 50-70 % of the window length).
Two most popular features aremel-frequency cepstral co-
efficients(MFCC) andlinear predictive cepstral coeffi-
cients(LPCC) [9]. These features are often augmented

with the correspondingdelta features. The delta features
give an estimate of the time derivative of each feature, and
therefore they are expected to carry information about vo-
cal tract dynamics. Sometimes, the delta parameters of
the delta parameters (double-deltas) are also used, as well
as thefundamental frequency(F0). For each time win-
dow, the different features are simply concatenated into a
one higher dimensional (aroundd = 40) feature vector.

Augmenting the static parameters with the correspond-
ing delta parameters can be seen as one way to per-
form information fusionby using different information
sources, in the hope that the recognition accuracy will be
better. The vector level feature augmentation is denoted
here asfeature-level fusion.

Although feature-level fusion may improve recogni-
tion accuracy, it has several shortcomings. First, fusion
becomes difficult if a feature is missing (e.g. F0 of un-
voiced sounds) or the frame rates of the features are dif-
ferent. Second, the number of training vectors needed
for robust density estimation increases exponentially with
the dimensionality. This phenomenon is known as the
curse of dimensionality[2].

An alternative to feature-level fusion is to model each
different feature set separately, design a specialized clas-
sifier for this feature set, and combine the classifier output
scores. Each of the different feature sets acts as an inde-
pendent “expert”, giving its opinion about the unknown
speaker’s identity. Thefusion rulethen combines the in-
dividual experts’ match scores. This approach is referred
here asscore-level fusion.

Score-level fusion strategy can also be abstracted by
hardening the decisions of the individual classifiers. In
other words, each of the experts produces a speaker label,
and the fusion rule combines the individual decisions e.g.
by majority voting. We call this fusion strategydecision-
level fusion.

In a previous work [11], we documented our imple-
mentation of an score-level fusion system that uses vec-
tor quantization (VQ) based classifiers. The system can
be used for combining an arbitrary number of diverse fea-
ture sets varying in scale, dimensionality and the number
of vectors. For each speaker and feature set, a codebook
is trained using a clustering algorithm. In the recogni-
tion phase, features extracted from the unknown speaker
are presented to the corresponding classifiers. Each vec-



tor quantizer computes average quantization distortion of
the unknown sequence. Within each quantizer, the dis-
tortions are scaled so that they sum up to unity over dif-
ferent speakers. The scaled distortions are then weighted
and summed to give the final combined match score. The
weights are feature set depended, but same for all speak-
ers.

Extensive experiments in [10] were carried out on two
corpora, a 100 speaker subset of the American English
TIMIT corpus [16] and a corpus of 110 native Finnish
speakers, documented in [6]. There were some differ-
ences between the two corpora and feature sets, but these
were relatively small; many of the feature sets reached
error rates close to zero. Therefore, it seemed unneces-
sarily to experiment with different fusion strategies with
these features since the individual features already per-
formed so well. The reason for this is that the both cor-
pora were recorded in unrealistic laboratory conditions.
We have found out that the performance decreases radi-
cally in real-world conditions.

In this study, we have selected the spectral parameters
that seem most promising in the light of the findings of
[10]. We study these on a more realistic corpus, a sub-
set of the 1999 Speaker Recognition Evaluation Corpus.
We aim at studying whether different spectral feature sets
can complement each other, and which one of the fusion
strategies (feature, score, and decision-level) is most ap-
propriate for VQ-based classification in practice.

2 Selected Spectral Features

2.1 Mel-Frequency Cepstral Coefficients

Mel-frequency cepstral coefficients(MFCC) are moti-
vated by studies of the human peripheral auditory system.
First, the pre-emphasized and windowed speech frame is
converted into spectral domain by the fast Fourier trans-
form (FFT). The magnitude spectrum is then smoothed
by a bank of triangular bandpass filters that emulate the
critical band processing of the human ear. Each of the
bandpass filters computes a weighted average of that sub-
band, which is then compressed by logarithm. The log-
compressed filter outputs are then decorrelated using the
discrete cosine transform (DCT). The zeroth cepstral co-
efficient is discarded since it depends on the intensity of
the frame.

There are several analytic formulae for the mel scale
used in the filterbank design. In this study, we use the
following mapping [7]:
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log10 2
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)
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having the inverse mapping

fHz(fmel) = 1000
(
1 + 10

log10 2
1000 fmel

)
. (2)

First, the number of filters (M ) is specified. Filter center
frequencies are then determined by dividing the mel axis

into M uniformly spaced frequencies and computing the
corresponding frequencies in the hertz scale with the in-
verse mapping. The filterbank itself is then designed so
that the center frequency of themth filter is the low cutoff
frequency of the(m+1)th filter. The low and high cutoff
frequencies of the first and last filters are set to zero and
Nyquist frequencies, respectively.

2.2 LPC-Derived Features

In addition to the MFCC coefficients, we consider the fol-
lowing representations that are computed via linear pre-
diction analysis:arcus sine reflection coefficients(ARC-
SIN), linear predictive cepstral coefficients(LPCC), and
formant frequencies (FMT).

The linear predictive model of speech production [17,
5] is given in the time domain:

s[n] ≈
p∑

k=1

a[k]s[n− k], (3)

wheres[n] denotes the speech signal samples,a[k] are the
predictor coefficientsandp is theorder of the predictor.
The total squared prediction error is:

E =
∑

n

(
s[n]−

p∑
k=1

a[k]s[n− k]
)2

. (4)

The objective of linear predictive analysis is to determine
the coefficientsa[k] for each speech frame so that (4) is
minimized. The problem can be solved by setting the
partial derivatives of (4) with respect toa[k] to zero. This
leads to so calledYule-Walker equationsthat can be effi-
ciently solved using so-calledLevinson-Durbin recursion
[8].

The Levinson-Durbin recursion generates as its side
product so-calledreflection coefficients, denoted here as
k[i], i = 1, . . . , p. The name comes from the multi-
tube model, each reflection coefficient characterizing the
transmission/reflection of the acoustic wave at each tube
junction. Instead of using the reflection coefficients, we
use instead the numerically more stablearcus sine reflec-
tion coefficients[3].

In the frequency domain, the linear predictive coeffi-
cients specify an IIR filter with the transfer function:

H(z) =
1

1−
∑p

k=1 a[k]z−k
. (5)

The polesof the filter (5) are the zeroes of the denomi-
nator. They are denoted here asz1, z2, . . . , zp, and they
can be found by numerical root-finding techniques. The
coefficientsa[k] are real, which restricts the poles to be
either real or occur in complex conjugate pairs.

If the poles are well separated in the complex plane,
they can be used for estimating the formant frequencies
[5]:

F̂i =
Fs

2π
tan−1

(
Im zi

Rezi

)
. (6)



Table 1: Summary of the NIST-1999 subset
Language English
Speakers 230
Speech type Conversational
Quality Telephone
Sampling rate 8.0 kHz
Quantization 8-bit µ-law
Training speech (avg.) 119.0 sec.
Evaluation speech (avg.) 30.4 sec.

Given the LPC coefficientsa[k], k = 1, . . . , p, the LPCC
coefficients are computed using the recursion [1]:

c[n] =


a[n] +

∑n−1
k=1

k
nc[k]a[n− k], 1 ≤ n ≤ p∑n−1

k=n−p
k
nc[k]a[n− k], n > p.

(7)

2.3 Delta Features

There are two different ways for computing the delta fea-
tures: (1) differentiating, and (2) fitting a polynomial ex-
pansion. We have found out that the differentiator method
works systematically better than the first order polyno-
mial, i.e. the linear regression method [10]. Letfk[i]
denote theith feature in thekth time frame. The differen-
tiator method estimates the time derivative of the feature
as follows [5]:

∆fk[i] = fk+M [i]− fk−M [i], (8)

whereM is typically 1-3 frames.

3 Experiments

3.1 Speech Material and Parameter Setup

For the experiments, we used a subset of theNIST 1999
speaker recognition evaluation corpus[18] (see Table
1). We decided to use the data from the male speakers
only. For training, we used both the “a” and “b” ses-
sions. For identification, we used the one speaker test
segments from the same telephone line. In general it can
be assumed that if two calls are from different lines, the
handsets are different, and if they are from the same line,
the handsets are the same [18]. In other words, the train-
ing and matching conditions have very likely the same
handset type (electret/carbon button) for each speaker,
but different speakers can have different handsets. The
total number of test segments for this condition is 692.

The parameters for different feature sets and training
algorithm were based on our previous experiments with
the NIST corpus [12]. The frame length and shift were set
to 30 ms and 20 ms, respectively, and the window func-
tion was Hamming. For MFCC computation, the number
of filters was set to 27, and the number of coefficients was
12. For LPCC, ARCSIN and FMT, we used LPC predic-
tor of orderp = 20. We selected 12 LPCC and ARC-
SIN coefficients, and 8 formant frequencies. The delta

features were computed using the differentiator method
with M = 1. Throughout the experiments, codebook size
was fixed to 64, and the codebooks were trained using the
Linde-Buzo-Gray (LBG) clustering algorithm [15].

3.2 Individual Feature Sets

The identification error rates of the individual feature
sets are reported in Table 2. The static features (MFCC,
LPCC, ARCSIN, FMT) all give good results. The delta
features, on the other hand, are worse than the static fea-
tures. The error rate of delta formants is very high.

Table 2: Accuracies of the individual feature sets
Static features Dynamic features

Feature set Error rate (%) Feature set Error rate (%)
MFCC 16.8 ∆MFCC 21.2
LPCC 16.0 ∆LPCC 25.1
ARCSIN 17.1 ∆ARCSIN 28.6
FMT 19.4 ∆FMT 70.5

3.3 Fusion Results

Next, we experimented by fusing the static parameters
and their corresponding delta features using all the three
strategies. We also combined all the 8 feature sets. For
the feature-level fusion, each feature vector was normal-
ized by its norm, and the normalized vectors were then
concatenated. For the score-level fusion, we used the nor-
malized VQ distortions giving unity weights to all feature
sets [11]. For the decision-level fusion, we use majority
voting, by selecting speaker label that is voted most by all
classifiers. If no speaker received majority, then speaker
label is selected randomly from the highest number of
votes.

The fusion results are shown in Table 3, along with the
best individual performance from the pool. The score-
level fusion gives the best result in all cases fusing fea-
ture with it’s delta parameters, except with the formant
data for which fusion is not succesfull. The reason for
poor performance in this case is the poor performance
of delta formants. Situation could be alleviated by de-
emphasizing the delta formants.

It can be seen that the feature-level fusion improves the
performance over the individual classifier in the case of
MFCC and its delta features. However, in all other cases
it degrades the performance. The decisionl-level fusion
is the best fusion strategy, when all feature sets are used.
Majority voting is not applicable for only two classifier
system as seen for all other cases, where performance is
degraded.

In the case, when user has only feature set and its delta
parameters, results show that the score-level fusion seems
to be the method to be preferred in the case of reliable ex-
perts. However, if some of the “experts” produces a lot
of classification errors (∆FMT), the weight for the unre-
liable features or feature sets should be set small. In this
study, we did not attempt to weight individual features or



Table 3: Accuracies of the fused systems.
Combination Best individual Feature-level Score-level Decision-level Oracle

MFCC +∆MFCC 16.8 15.8 14.6 19.0 12.3
LPCC +∆LPCC 16.0 19.8 14.7 20.5 12.6
ARCSIN +∆ARCSIN 17.1 18.2 16.8 22.8 15.0
FMT + ∆FMT 19.4 29.9 52.0 44.9 18.5
All feature sets 16.0 21.2 15.2 12.6 7.8

Table 4:Q statistic between all classifier pairs.
MFCC ∆MFCC LPCC ∆LPCC ARCSIN ∆ARCSIN FMT ∆FMT

MFCC 0.916 0.976 0.861 0.953 0.875 0.925 0.594
∆MFCC 0.909 0.934 0.869 0.847 0.838 0.527
LPCC 0.907 0.984 0.929 0.952 0.637
∆LPCC 0.866 0.898 0.854 0.517
ARCSIN 0.948 0.956 0.753
∆ARCSIN 0.921 0.505
FMT 0.842

feature sets. In the case of feature-level fusion, it is not
obvious how the individual features should be weighted.

3.4 Feature Set Diversity

Although the fusion improves performance in most cases,
the gain is rather low. Intuitively, if the different classi-
fiers misclassify the same speech segments, we do not ex-
pect as much improvement as in the case where they com-
plement each other. There are several indices to assess
the interrelationships between the classifiers in a classi-
fier ensemble [4].

Given classifiersi and j, we compute theQ statistic
[4]:

Qi,j =
N11N00 −N01N10

N11N00 + N01N10
, (9)

whereN00 is the number of test segments misclassified
by bothi andj; N11 is the number of segments correctly
classified by both;N10 andN01 are the numbers of seg-
ments misclassified by one and correctly classified by the
other. It can be easily verified that−1 ≤ Qi,j ≤ 1. The
Q value can be considered as a correlation measure be-
tween the classifier decisions.

TheQ statistics between all feature set pairs are shown
in Table 4. It can be seen that all values are positive
and relatively high, which indicates that the classifiers
function essentially the same way. In other words, the
classifiers arecompetitiveinstead ofcomplementary[13].
This partially explains why the performance is not greatly
improved by fusion. Interestingly, although the perfor-
mance of delta formants is very poor, it has lowestQ
values on average. This means that delta formants make
different decisions compared to other feature sets.

Table 5: Distribution of the number of correct votes.
8 7 6 5 4 3 2 1 0

155 269 72 39 43 23 22 15 54
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Figure 1: Performance of the “Oracle” classifier.

We can also analyze the difficulty of the test segments.
Table 5 shows how many classifiers voted correctly on
the same test segments out of 692. Interestingly, most
test segments are voted correctly by 6,7 or 8 classifiers
(72 %), which means that most of the test segments are
relatively “easy”. However, in the other end, there were
54 test segments (8 %) that no classifier voted correctly.
This shows that some speakers are more difficult to rec-
ognize.

3.5 “Oracle” Classifier

We can estimate the lower limit of the identification er-
ror rate using an abstract machine calledOracle classi-
fier [14]. The Oracle assigns correct class label to the test
segment if at least one feature set classifies it correctly.
Figure 1 shows the performance of this abstract classifier
as a function of the classifier pool size. New classifiers
are added to the pool in a greedy manner, starting from
the best individual feature set (LPCC) and adding the fea-



ture set that decreses the error rate most. The lowest error
rate (7.8 %) is reached by using six feature sets. The
test segments classified correctly by the ARCSIN and
∆ARCSIN feature sets are already classified correctly by
some of the other feature sets. It must be emphasized that
this is only a theoretical classifier, giving an idea of the
lowest possible error rate if the diversity of the feature
sets was taken fully into account.

4 Conclusions

We have compared and analyzed different ways of us-
ing several spectral feature sets for speaker identification.
From the individual feature sets considered, linear pre-
dictive cepstral coefficients performed the best giving an
error rate of 16.0 %. The best fusion result reduced this to
12.6 %, and it was obtained by decision-level fusion with
all feature sets. If many different feature sets are availe-
ble we recommend to use majority voting, otherwise in
more traditional setting score-level fusion is the best.

Although fusion improves performance, the difference
is not big. The analysis of the classifier diversities
showed that the different feature sets classify speakers
essentially in the same way. It is possible to reduce the
error rate further by setting feature set depended weights
reflecting the relative importances of the feature set. In
future, we plan to use speaker-dependent weights and re-
cent advances in information fusion, e.g.decision tem-
platesandconsensus classification[13].
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