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In recent years, researches on location predictions by mining trajectories of users have attracted a lot of 
attention. Existing studies on this topic mostly treat such predictions as just a type of location 
recommendation, i.e., they predict the next location of a user using location recommenders. However, an 
user usually visits somewhere for reasons other than interestingness. In this paper, we propose a novel 
mining-based location prediction approach called Geographic-Temporal-Semantic based Location 
Prediction (GTS-LP), which takes into account a user’s Geographic-triggered Intentions, Temporal-
triggered Intentions, and Semantic-triggered Intentions, to estimate the probability of the user in visiting 
a location. The core idea underlying our proposal is the discovery of trajectory patterns of users, namely 
GTS Patterns, to capture frequent movements triggered by the three kinds of intentions. To achieve this 
goal, we define a new trajectory pattern to capture the key properties of the behaviors that are motivated 
by the three kinds of intentions from trajectories of users. In our GTS-LP approach, we propose a series of 
novel matching strategies to calculate the similarity between current movement of a user and discovered 
GTS Patterns based on various moving intentions. On the basis of similitude, we make an online 
prediction as to the location the user intends to visit. To the best of our knowledge, this is the first work on 
location prediction based on trajectory pattern mining that explores the geographic, temporal, and 
semantic properties simultaneously. By means of a comprehensive evaluation using various real trajectory 
datasets, we show that our proposed GTS-LP approach delivers excellent performance and significantly 
outperforms existing state-of-the-art location prediction methods. 
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1. INTRODUCTION 

Many applications, such as navigational planning services, traffic management, and 
location-based advertisement, have been developed for the rapidly growing location-
based services market. Due to the various requirements of these applications, e.g., 
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system efficiency and marketing efficacy, accurately predicting the next location to 
which a mobile user may move is essential. Given a set of locations, which may be 
application-dependent and pre-determined, the location prediction technique 
identifies the next location a user is most likely to visit. Intuitively, the process of 
location prediction is very similar to location recommendation. Consequently, many 
existing works [Ge et al., 2010; Liu et al., 2010; Ge et al., 2011; Zhuang et al., 2011] 
directly adopt a location recommender as their location prediction model. However, 
these recommenders recommend locations using a non-real-time estimation process, 
i.e., current movements of users are NOT taken into consideration in making the 
recommendations. We argue that, apart from location recommendation, the problem 
of next location prediction focuses on inferring the next location that a user will visit. 
In fact, people do not solely visit locations because these locations are interesting to 
them. They also go to places because they have to do something, e.g., for work, 
transportation, etc. However, conventional location recommendation methods aim to 
suggest a new location (or more precisely a place) that a user may be interested in 
[Zheng et al., 2011]. In other words, the location recommendation method only cares 
about interests of users, while the next location prediction method cares about 
intentions of users. On the basis of our observations, we categorize users' intentions 
into three classes: 
 Geographic-triggered Intentions (GI), which refer to the specific geographical 

locations visited by users. These kinds of intentions reflect the reasons why a 
user travels from one location to another location. For example, as shown in Fig. 
1, given two consecutive metro stations X and Y, we can predict metro station Y 
as the next location for those users who are currently at metro station X (see 
Trajectory1).  

 Temporal-triggered Intentions (TI), which refer to the relationship between 
locations and temporal information. These kinds of intentions reflect the 
reasons why a user visits and leaves a location at a certain time. As shown in 
Fig. 1, the user tends to go back home in the evenings and leave home in the 
morning based on Temporal-triggered Intentions (see Trajectory3).  

 Semantic-triggered Intentions (SI), which refer to the “general” geographical 
consequence of locations visited by users. These kinds of intentions reflect the 
reasons why users travel from some locations to other locations. For example, if 
users always go for a meal after they leave their workplaces, we can predict 
locations that contain many restaurants as the next location for those users who 
are currently leaving school (see Trajectory2 in Fig. 1). 
 

 
Fig. 1. User movement scenario based on three kinds of intentions. 
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Corresponding to the three kinds of intentions, movements of users can be viewed 
as a contexture of the behaviors that are motivated by the aforementioned three 
kinds of intentions. In other words, the movement of people from one location to 
another one may be triggered by multiple intentions, inclusive of GI, TI, and SI. 
However, existing techniques for predicting the next location of a user primarily 
focus on analyzing Geographic-triggered Intentions only. To extract the significant 
movements motivated by Geographic-triggered Intentions, the existing methods 
usually mine the frequent sequences of locations (i.e., geographical points/regions) 
from user trajectories. Due to the geographical binding of exact locations, these 
prediction techniques are only applicable to movements that are motivated by 
Geographic-triggered Intentions.  For example, let us suppose that Trajectory1 and 
Trajectory2 in Fig. 2(a) are historical trajectories and Trajectory3 depicts the current 
movement of a mobile user. Assume that Trajectory3 is new with respect to the 
historical trajectory database. As there is no movement pattern similar to the current 
movement, the traditional prediction techniques will suffer from the low applicability 
problem (i.e., no pattern is applicable for predicting the current movement of the 
user). 

 

 

Fig. 2.  An example of trajectories and landmarks. 
 
Several works addressed the frequent movements motivated by Temporal-

triggered Intentions [Giannotti et al., 2006; Monereale et al., 2009]. Unfortunately, 
these works only roughly calculate the transition time while disregarding the “stay 
time” and the “arrival time”. Moreover, the frequent movements motivated by 
Semantic-triggered Intentions are still not taken into consideration in the 
representation of users behaviors. This leads to the problem of low precision (i.e., the 
making of inaccurate location predictions). In Fig. 2(b), it can be seen that both 
Trajectory1 and Trajectory2 consequently visit Location A and Location C. Suppose 
the transition time from A to C of the two trajectories are approximated, it is clear 
that the destinations of Trajectory1 and Trajectory2 are quite different. Trajectory3 
and Trajectory2 share the same semantic tags, i.e., from School to Bank. Thus, we 
observe that Trajectory2 and Trajectory3 can be denoted by the same sequence, i.e., 
SchoolBankHospital. As the semantic annotations of user behaviors exhibited in 
Trajectory2 and Trajectory3 are quite the same, it is therefore more reasonable to 
consult Trajectory3 in order to make predictions about Trajectory2.  

On the basis of the observations prompted by the above examples, we propose a 
novel approach called Geographic-Temporal-Semantic based Location Prediction 
(GTS-LP) that predicts next locations of users based on the three kinds of intentions. 
As shown in Equation (1), given a set of users U and a set of locations L, the problem 
of location prediction can be formulated as an estimation of the probability of a given 
user visiting a given location based on his/her current movement. 
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Hence, location prediction can be addressed as a historical movement matching 
problem. In addition, the question of how to extract significant movements to support 
the prediction based on heterogeneous moving intentions is also a critical and 
challenging issue. To support location prediction based on historical movements of 
users triggered by GI, TI, and SI, we design a novel frequent pattern, called GTS 
Pattern, to match current movements of users. In pattern mining, the fundamental 
issue is to identify and efficiently extract representative patterns from the 
heterogeneous trajectories of users. The extraction of representative patterns is 
important because those patterns have a direct impact on the efficacy of the 
prediction task. As mentioned earlier, considering only movement that is triggered by 
GI does not work well. However, there is no existing work on the mining of frequent 
patterns that deals with all behaviors triggered by GI, TI, and SI. Moreover, there is 
no location prediction model that makes predictions based on historical movements of 
users triggered by GI, TI, and SI.  

 

 

Fig. 3. Flow of data processing in GTS-LP. 
 

To address the above-mentioned problem, we explore movements of users 
triggered by GI, TI, and SI, and seek representative trajectory patterns from moving 
intentions of the users. In contrast to conventional location prediction techniques 
that are based solely on the trajectories motivated by Geographic-triggered 
Intentions, we also utilize trajectories motivated by Temporal-triggered Intentions 
and Semantic-triggered Intentions to predict the next location. Our GTS-LP 
approach follows the user-based collaborative filtering framework that comprises 1) 
an offline frequent pattern mining module (called GTS Pattern Mining), and 2) an 
online location prediction module (called GTS-based Location Prediction). Fig. 3 
shows the flow of processing in GTS-LP. To discover GTS Patterns for prediction of 
the next location, GTS Pattern Mining explores all the semantic, geographical, and 
temporal aspects of the mobile user activities being captured in the trajectories. The 
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GTS Pattern Mining Module includes two main steps: (i) GTS Pattern Discovery—
the extraction of individual frequent behaviors of users in the forms of GI, TI, and SI 
trajectories; and (ii) GTS Similarity Calculation—the calculation of similarity based 
on their individual GTS Patterns. Since the main idea underlying the user-based 
collaborative filtering framework is the prediction of behavior of a user in accordance 
with similar behaviors of users, user similarity plays a crucial role in the prediction 
model. As shown in Fig. 3, discovered GTS Patterns of each user are utilized in the 
construction of a pattern tree in order to support efficient GTS-based Location 
Prediction. In the online module, we propose a scoring function to evaluate the 
probability of a location that may be the next location. Again, we consider not only 
geographic property but also semantic and temporal properties for the scoring 
function. To make a prediction, the location with the highest score is predicted as the 
next location the user will visit. 

This research work makes a number of significant contributions, which are 
summarized as follows: 
 We propose a novel approach named GTS-LP for mining and prediction of 

mobile users’ movement behavior. The problems and ideas resolved and 
proposed, respectively, in GTS-LP have not been explored previously in the 
research community. 

 We define a new frequent pattern, called GTS Pattern, to represent mobile 
users’ frequent movements in terms of Geographic-triggered, Temporal-
triggered, and Semantic-triggered Intentions. 

 We develop a data mining algorithm, called GTSP-Miner, to discover GTS 
Patterns. It comprises two modules—a parameter-less hierarchical clustering 
algorithm for mining frequent semantic locations and a probabilistic model for 
discovering the temporal interval of a location.  

 We develop a new index structure based on prefix tree to represent GTS 
Patterns in a compact form in order to facilitate efficient prediction computation. 

 To sustain user-based collaborative filtering, we utilize the discovered 
individual GTS Patterns for each pair of users to obtain similitude of the users. 

 On the basis of the GTS Patterns, we propose a novel location prediction 
strategy that takes into account all Geographic-triggered, Temporal-triggered, 
and Semantic-triggered Intentions to predict next location of a user.  

 We use various real datasets to evaluate the performance of our proposal in a 
series of experiments. The results show that our proposed framework 
significantly outperforms other location prediction techniques in terms of 
precision and coverage. 

The remainder of this paper is organized as follows. We briefly review related 
work in Section 2 and describe our proposed GTS Pattern Mining and GTS Pattern 
Tree construction approach in Section 3. Next, our proposed GTS Similarity 
Calculation and GTS Score Calculation methods are detailed in Sections 4 and 5, 
respectively. The performance of our proposal in an empirical evaluation study is 
discussed in Section 6. Finally, conclusions and directions for future work are given 
in Section 7. 

2. RELATED WORK 

The problem of predicting the next location to which a mobile user will move has 
received much research interest in recent years. Prediction techniques developed for 
this problem domain can be broken down into two steps: (i) user behavior mining and 
(ii) prediction model building. 
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2.1 User Behavior Mining 

In the user behavior mining step, there are two viewpoints for illustrating 
movements of users—namely, random walk and frequent pattern. Researchers who 
utilize random walk to model movements of users believe that most movements of 
users follow some random regulation. Jiang et al. [2008] studied the trajectories of 50 
taxicabs and found that the trajectories move according to the Lévy flight behavior. 
This finding can be used to model and predict the movement of taxicabs. However, it 
is obvious that the movement of taxicabs can reflect only a tiny part of human 
mobility. Accordingly, González et al. [2008] studied 100,000 trajectories provided by 
206 mobile users. They found that the Lévy flight behavior could not explain mobility 
of users well but the radius of gyration for each user could be considered for user 
mobility modeling. Song et al. [2010] discussed several random walk behaviors for 
modeling and classifying movements of users. They concluded that only 93% of short-
term mobility of users can be predicted. In other words, random walk-based 
predictors do NOT work well for long-term trajectory prediction. 

Conversely, several data mining researchers believe that human mobility is not 
always random. They believe that regular pathing can be used in the prediction of 
next movement of a user. To extract the regular part from movements of users, three 
kinds of frequent patterns can be utilized: (i) mobile sequential pattern [Yavas et al., 
2005; Morzy, 2006; Morzy, 2007; Jeung et al., 2008], (ii) spatial-temporal sequential 
pattern [Monereale et al., 2009; Li et al., 2011], and (iii) semantic-geographic pattern  
[Alvares et al., 2007; Eagle et al., 2007; Bogorny et al., 2009; Noulas et al., 2011]. The 
mobile sequential pattern considers a trajectory as a sequence of locations and thus 
uses the sequential frequent patterns mined from a historical set of trajectories. 
Jeung et al. [2008] proposed an innovative approach to forecast the future locations 
of a user that consists of combining predefined motion functions with the movement 
patterns of the user. The motion functions capture object movements as sophisticated 
mathematical formulas of linear or nonlinear models. To discover mobile sequential 
patterns, the movement patterns are extracted by means of a modified version of the 
Apriori algorithm. Yavas et al. [2005] and Morzy [2006] proposed several methods in 
which modified versions of the Apriori algorithm are used to generate association 
rules for an individual user. Such rules can reflect frequent co-occurrences of 
locations in the movement of an individual user, i.e., the places users always visit in 
one movement. In order to select the rule used for the prediction, they take into 
consideration the notions of support and confidence. The support of each candidate is 
computed by a distance based on the notion of string alignment. Morzy [2007] 
subsequently used a modified version of the PrefixSpan algorithm [Pei et al., 2001] to 
discover frequent movements of users. Such a pattern can not only reflect co-
occurrence of locations but also the consequence of location, i.e., the place users 
always visit after visiting somewhere else.  

To improve mobile sequential pattern, it is argued that the temporal information 
in the spatial-temporal sequential pattern reflects crucial human mobility and thus 
exploits the frequent temporal behavior of mobile users. Giannotti et al. [2006] 
proposed a kind of spatial-temporal sequential pattern, called T-pattern, which 
contains two kinds of moving intentions—Geographic-triggered Intentions and 
Temporal-triggered Intentions. A T-pattern is a sequential pattern extended with a 
temporal property (i.e., travel time). To discover the temporal patterns, Giannotti et 
al. [2006] proposed an effective strategy to map temporal information in the space Rn 
and to discover the dense hypercube from the Rn space. Li et al. [2011] proposed two 
kinds of trajectory patterns—a periodic behavior pattern and a swarm pattern—and 
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developed a reference location-based method for mining periodic behavior patterns. 
The reference location-based method detects the reference locations, discovers the 
periods in complex movements, and then finds periodic patterns using hierarchical 
clustering. They also developed an efficient method for mining swarm patterns in 
which flexible moving object clusters are uncovered by relaxing the popularly-
enforced collective movement constraints.  

As mentioned in the introduction, many behaviors of users are semantic-triggered. 
This means that the above user behavior mining methods can only partially reflect 
movements of users. With regards to the reflection of semantic-triggered movement, 
Alvares et al. [2007] and Bogorny et al. [2009] are some of the studies on semantic 
trajectory data mining that have appeared in the literature. Alvares et al. [2007] 
proposed to explore the geographic and semantic properties by mining semantic 
trajectory patterns from location histories of mobile users. First, they discover the 
stops of each trajectory and map these stops to semantic landmarks. They then apply 
a sequential pattern mining algorithm to this sequence dataset to obtain frequent 
patterns, namely, semantic trajectory patterns, to represent the frequent semantic 
behaviors of mobile users. Bogorny et al. [2009] take hierarchical geographic and 
semantic properties into consideration in order to discover patterns that are more 
interesting. However, because the notion of stops in these works only takes the 
aspect of “stay” into account rather than the positions of these stops in geographic 
space, many unknown stops are generated. For example, as shown in Fig. 4, stop1c, 
stop2c, and stop3b are not associated with any semantic landmark and are thus 
marked as Unknown. Hence, Trajectory1 is transformed to the sequence <School, 
Park, Unknown, Restaurant>. From the Fig. 4, it is clear that stop1c is near a 
Restaurant. Thus, by taking into account the geometric distribution of these stops, 
stop1c and stop1d are grouped together such that Trajectory1 is transformed to the 
sequence <School, Park, Restaurant>. 

 

 

Fig. 4. An example of semantic trajectory. 

2.2 Prediction Model Building 

Existing studies on user location prediction could be classified into three categories: 1) 
Those using only a user’s own data, 2) Those using the data generated by crowds and 
3) hybrid methods using both kinds of data.  In the first category of studies, they 
utilize only a user’s own data  to predict the next location and focus only on historical 
movements of users, such as some trajectory simulations [Jiang et al., 2008; González 
et al., 2008; Eagle et al., 2009; Song et al., 2010]. In [Eagle et al., 2009], the 
prediction model is based on an eigenvector space to model regular movement of 
users for predicting next location modeling. However, such a prediction model does 
not consider historical movements of users. It always leads to low coverage of 
prediction. For example, even though the user has visited many locations, there must 
be some places the user has never been to. As a result, the prediction model is not 
applicable for predicting the locations the user and his friends have never been to 
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before. Hence, the methods using only a user’s own data usually do not work well in 
dealing with the location prediction problem. 

The second category of studies consider only the datasets generated by crowds for 
next location prediction modeling, based on approaches such as some probability 
distribution models [Backstrom et al., 2010; Noulas et al., 2011] or location 
recommenders [Ge et al., 2010; Liu et al., 2010; Zhuang et al., 2011; Ge et al., 2011 ]. 
In [Backstrom et al., 2010], the prediction model is based on a social-spatial 
approximation which utilizes current GPS coordinates of user’s friends to estimate 
GPS coordinate of the user. In [Zhuang et al., 2011], the recommender leverages the 
rich context signals on the mobile device (i.e., user and sensory context, such as user 
click-through, geo-location, and time) to rank the location tailored to user’s 
preference. However, these kinds of recommenders do NOT consider current 
movement of users. It leads to low precision in prediction. For example, even though 
the user frequently visits a gym, the probability for him to visit the gym after visiting 
the swimming pool must be very low. However, if we use these recommenders for 
predicting next location of users, the gym  is usually predicted as next location of the 
users after he visits a swimming pool. As the result, those historical-oriented 
methods usually do NOT work well for dealing with location prediction problem.  

The third category of studies precisely predicts next location of users using hybrid 
approaches [Monereale et al., 2009; Ying et al., 2011; Wei et al., 2012; Xue et al., 
2013]. Monereale et al. [2009] have proposed a hybrid method which not only 
considers a user’s own data (his/her current movement) but also utilizes the data 
generated by crowds. The prediction extracts T-patterns [Giannotti et al., 2006] from 
trajectory of users to match current movement of a user.  As mentioned earlier, the 
T-patterns are mined for representing Geographic-triggered Intentions and 
Temporal-triggered Intentions.  In other words, the prediction can NOT deal with the 
next location motivated by Semantic-triggered Intentions. To address this issue, Ying 
et al. [2011] have proposed a novel prediction model by matching current movement 
of a user to discovered semantic trajectory patterns [Bogorny et al., 2009]. However, 
the prediction model focuses only on movements of users motivated by Semantic-
triggered Intentions and Geographic-triggered Intentions. Consequently, the 
prediction model can NOT deal with the problem of predicting the next location 
motivated by Temporal-triggered Intentions. 

3. GEOGRAPHIC-TEMPORAL-SEMANTIC PATTERNS MINING 

 

Fig. 5. The Geographic-Temporal-Semantic Patterns mining framework. 
 
In this section, we propose a new type of pattern, called GTS (Geographic-Temporal-
Semantic) Pattern, to represent users’ frequent movement behaviors by considering 
all the three kinds of user intentions mentioned previously, i.e., geographic-triggered, 
temporal-triggered and semantic-triggered intentions. In contrast to the conventional 
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frequent pattern, which can only represent one part of the three kinds of intentions, 
we take into account the semantic and temporal properties in trajectories to 
illustrate movements of users. As shown in Fig. 5, we first detect stay locations from 
trajectories of users; then, we transform each trajectory to a GTS Trajectory. We call 
this step GTS Coding. We also developed a data mining method, called GTSP-Miner, 
to discover GTS Patterns from transformed GTS Trajectories and, to make the 
prediction phase efficient, we adopted a prefix tree, called GTS Pattern Tree, to 
compactly represent a collection of GTS Patterns. 

3.1 Location Detection 

In this subsection, we explain how each trajectory is transformed to a GTS Trajectory. 
Unlike some traditional location prediction models that predict pre-determined 
locations, we prefer to predict application-dependent locations because pre-
determined locations are always independent from the distribution of the trajectories. 
In the illustration shown in Fig. 6, pre-determined locations cover only one trajectory. 
Consequently, no location prediction model can deal with such a situation. In 
addition, we argue that most of the activities carried out by a mobile user are usually 
performed when the user stops. For example, a user may stop at a café to have coffee. 
As mentioned earlier, the goal of this study is to support location-based services. 
Therefore, in this paper, we focus only on predicting where a user will go to and stay. 
Thus, to detect application-dependent locations, we first detect the stay points of 
individual users, after which we apply a clustering algorithm on stay points of all 
users and group them as locations. 

 

 
Fig. 6. An example of stay point detection. 

3.1.1 Stay Point Detection. Similar to the approach taken by Zheng et al. [2011], we 
consider a stay location to be a region where many users stay. Thus, before carrying 
out stay location detection, we first detect the regions, called stay points, where a 
user has stayed. In Zheng et al.’s approach, only velocity (i.e., time and distance) is 
considered as a factor of “stay”. However, we argue that direction change is also an 
important factor for detecting where the user stays. The extraction of a stay point is 
controlled by three parameters—a time threshold (τ), a distance threshold (ε), and a 
direction change threshold (δ). Formally, a single stay point s can be regarded as a 
virtual location characterized by a group of consecutive GPS points G = {pm, pm+1, …, 
pn} such that 

1) Distance(pm, pi) ≤ ε, 
2) Time Difference(pm, pn) ≥ τ, and 
3) Direction Difference(pi, pi+1) ≥ δ,  

where m < i ≤ n. A stay point s is conditioned by G, ε, τ, and δ, respectively 
representing the average latitude and longitude of the collection G, and the 
timestamp of pm and pn represents arrival and leaving times of a user on s. As 
illustrated in Fig. 6, p1→ p2 →…→ p10 forms a GPS trajectory and a stay point can 
be constructed by points {p4, p5, p6, p7}. Clearly, if we avoid the direction change 
factor, another stay point may be constructed by points {p1, p2, p3}. However, such 
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“stay” behavior would be obtained due to traffic events, such as a traffic jam or traffic 
signals. In other words, such a stay point is not a semantic-related region. Therefore, 
it is necessary to take into account direction change at the stay point. 

3.1.2 Grouping Stay Points. To discover the region where most people will stay, we 
make use of these stay points to form stay locations. We could perform a density-
based clustering algorithm on the stay points to detect the stay locations. However, 
the number of stay points may not reflect the popularity of a region where most 
people will stay as it will be affected by the duration of the trajectory log and the 
liveliness of the user. However, we expect that the location we find will be where 
many users have stayed. Thus, to deal with this problem, we use the P-DBSCAN 
algorithm [Joshi et al., 2009] with these stay points to form stay locations. Unlike 
traditional density-based algorithms, P-DBSCAN determines the density by the 
number of people instead of by the number of points. For example, in Fig. 7 (in which 
the different shapes represent different users), the traditional density-based 
algorithms would determine both the density of Fig. 7(a) and that of Fig. 7(b) to be 14; 
but P-DBSCAN determines the density of Fig. 7(a) to be three and that of Fig. 7(b) to 
be one. 

 

 

Fig. 7. An example of P-DBSCAN in action. 

3.2 Location Detection 

Intuitively, after stay points are detected from a trajectory, the trajectory can be 
transformed to a sequence of stay points. Thus, we transform each trajectory into a 
stay point sequence after stay point detection. The trajectory p1→ p2 →…→ p10, in 
Fig. 6, for example, is transformed to s1→ s2. To represent the moving behaviors—GI, 
TI, and SI—we perform GTS Coding on each stay point sequence to transform it into 
a GTS Trajectory. The GTS Coding comprises three parts: Location tagging, 
Semantic tagging, and Temporal Tagging. 
 

 
Fig. 8. An example of Temporal Semantic Coding 

3.2.1 Location Tagging. As mentioned in the Location Detection section, a stay 
location is determined by clustering stay points. This means that each stay point 
corresponds to exactly one stay location. Generally, the location represents the region 
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in which the stay point lies. Therefore, to represent the moving behaviors that are 
motivated by GI, we tag each stay point by its location ID. Thus, we transform each 
stay point sequence into a stay location sequence. For example, the stay point 
sequence s1→ s2 in Fig. 8, is transformed to location sequence location2→ location5. 

3.2.2 Semantic Tagging. We use a POI database and the activity label of the 
trajectory to calculate the probability of each semantic tag to each stay point. The 
POI database is a customized spatial database that stores the semantic category of 
landmarks collected from Google Maps (alternatively, a gazetteer can be used as a 
general-purpose POI database for this operation.) In our POI database, we store 
landmarks, their geographic scopes, and the associated semantic tag(s). In this paper, 
we use some general categories of the landmarks as their semantic tags. Since we 
need to precisely represent the possibility of each semantic tag for a user in the 
location, we still use the stay point of a trajectory to determine the semantic tags of 
the location that is passed by the trajectory. Thus, we construct a semantic vector for 
each stay point according to the landmarks falling in the stay point. As mentioned 
earlier, the semantic tag of a landmark for a user is always related to the activity (or 
purpose) of his/her trajectory. We utilize the co-occurrences of the activity label of the 
trajectory and the semantic tags of the landmarks to design the semantic vector for a 
stay point as follows: 

Definition 3.1 (Semantic vector).  Given a LBSN website and a trajectory with 
label tl, the probability of the semantic tag st in a stay point of the trajectory is 












otherwise  ,0

 as labeled ispoint stay  in thefallen  landmarks  thea  if,
Pr

st
T

TT

(st) tl

tlst 

(2)

where Ttl is the collection of trajectories with activity label tl, which are collected 
from the LBSN website, and Tst is the collection of trajectories, which are retrieved 
by the query term tl from the LBSN website. 

Example 3.2   In Fig. 8, the semantic tag of the landmark Bank is “Bank” and 
that of the landmark RestaurantA is “Restaurant”. Suppose that the activity label of 
the trajectory is “Shopping” and there are four unique landmark categories, 
“Restaurant”, “School”, “Park”, and “Bank”, in a POI database. This means that the 
semantic vector would be represented as <Pr(Restaurant), Pr(School), Pr(Park), 
Pr(Bank)>. Next, suppose that the number of query results is as shown in Table I, 
and the number of trajectories with the label “Shopping” is 12000. Since s1 overlaps 
the landmarks RestaurantA and Bank, the semantic vector of s1 is calculated as 
<3000/12000, 0, 0, 1000/12000>. 

 
Table I. Query results for trajectories with the label “Shopping”. 

Semantic tag Number of Trajectories 
Restaurant 3000
School 1 
Park 10
Bank 1000 

 

It is possible that a stay point overlaps none of the landmarks. For example, in 
Fig. 8, there is no landmark overlapping s2. In this case, we consider all possible 



zz:12                                                                                                                            J. J.-C. Ying et al. 
 

 
ACM Transactions on Intelligent Systems and Technology, Vol. xx, No. y, Article zz, Publication date: Month YYYY 

reasons why the user may stay. Thus, we assign the vector <3000/12000, 1/12000, 
10/12000, 1000/12000> to s2. After assigning semantic tags to the stay points, a stay 
point sequence can be transformed to a sequence of semantic-wise stay points. For 
example, the location sequence location2→ location5 is transformed to (location2, 
<3000/12000, 0, 0, 1000/12000>)→ (location5, <3000/12000, 1/12000, 10/12000, 
1000/12000>). 

3.2.3 Temporal Tagging. Finally, we use the stay location to which the stay point 
belongs to represent the geographic and semantic properties. In addition, the arrival 
and departure times on the stay point are used to represent the temporal information. 
This representation is called GTS Trajectory. In Fig. 8, for example, the sequence 
(location2, <3000/12000, 0, 0, 1000/12000>)→ (location5, <3000/12000, 1/12000, 
10/12000, 1000/12000>) can be transformed to (Location2, [p4.T p7.T], <3000/12000, 
0, 0, 1000/12000>)→ (Location5, [p8.T p10.T], <3000/12000, 1/12000, 10/12000, 
1000/12000>), where pi.T denotes  the timestamp of pi 1 ≤ i ≤ 10. Here, for the sake 
of readability, we represent each GTS Trajectory as (Location ID, [Stay time], 
<semantic vector>) [transition time] (Location ID, [Stay time], <semantic vector>)…. 
For example, the GTS Trajectory  (Location2, [p4.T p7.T], <3000/12000, 0, 0, 
1000/12000>)→ (Location5, [p8.T p10.T], <3000/12000, 1/12000, 10/12000, 
1000/12000>) can be represented as (Location2, [p7.T- p4.T], <3000/12000, 0, 0, 
1000/12000>) [p8.T- p7.T] (Location5, [p10.T- p8.T], <3000/12000, 1/12000, 10/12000, 
1000/12000>). 

3.3 Definition of GTS Pattern 

After GTS Coding, each trajectory is transformed to a GTS Trajectory, which 
contains geographic, temporal, and semantic properties. On the basis of these GTS 
Trajectories, the GTS Pattern is abstracted using aggregating support, as formally 
stated by the following definition: 

Definition 3.3 (s-containment (s)).  Given a GTS Trajectory T1 with length n, a 
GTS Trajectory T2 with length m (where n ≤ m), a semantic vector threshold θv, a 
stay time threshold θs, and transition time threshold θt, we say that T1 is s-contained 
in T2, denoted T1 s T2, if and only if there exists a sequence of integers 0 ≤ i0 < … < 
in ≤ m such that 

1) T1(k).Location ID = T2(ik). Location ID,  
2) Cosine(T1(k).Semantic Vector, T2(ik).Semantic Vector) ≥ θv 
3) | T1(k).Stay Time  T2(ik).Stay Time | ≤ θs, 
4) |(T1(k), T1(k+1)).Transition Time  (T2(ik), T2(ik+1)).Transition Time | ≤ θt, 

where 1 ≤  k ≤ n. 

Example 3.4   Given a GTS Trajectory T1 = (Loc1, [5], <0.1, 0.0, 0.9>) [15] (Loc9, 
[7], < 0.1, 0.5, 0.4>) and a GTS Trajectory T2 = (Loc1, [5], <0.0, 0.2, 0.8>) [6] (Loc7, [5], 
<0.1, 0.9, 0.0>) [10] (Loc9, [8], <0.1, 0.4, 0.5>), and semantic vector threshold θv set at 
0.5, stay time threshold θs set at one, and transition time threshold θt set at 10, we 
get 

1) T1(1).Location_ID = T2(1).Location_ID = Loc1 and T1(2).Location_ID  
= T2(3).Location_ID = Loc9 

2) Cosine(T1(1).Semantic Vector, T2(1).Semantic Vector)  
= Cosine(<0.1, 0.0, 0.9>, <0.0, 0.2, 0.8>) = 0.59 ≧ θv = 0.5  
and Cosine(T1(2).Semantic Vector, T2(3).Semantic Vector)  
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= Cosine(<0.1, 0.5, 0.4>, <0.1, 0.4, 0.5>) = 0.98 ≥ θv = 0.5 
3) |T1(1).Stay_Time  T2(1).Stay_Time| = |5  5| ≤ θs 

 = 1 and |T1(2).Stay_Time  T2(3).Stay_Time| = |7  8| ≤ θs = 1 
4) |(T1(1), T1(2)).Transition_Time  (T2(1), T2(3)).Transition_Time|  

= |15  (6+5+10)| ≤ θt=10 

Hence, T1 s T2 holds. 

Definition 3.5 (s-support, Frequent GTS Trajectory).  Given a GTS Trajectory set 
D, a stay time threshold θs, transition time threshold θt, and a minimum support θm, 
we define the s-support of a GTS Trajectory T as 

 
D

TTDT
T

s
** |

)(support-s


 (3)

and say that T is frequent in D if s-support(T) ≥ θm. 

Example 3.6   Given a GTS Trajectory set D consisting of two GTS Trajectories, 
T1 = (Loc1, [5], <0.1, 0.0, 0.9>) [15] (Loc9, [7], < 0.1, 0.5, 0.4>)  
T2 = (Loc1, [5], <0.0, 0.2, 0.8>) [6] (Loc7, [5], <0.1, 0.9, 0.0>) [10] (Loc9, [8], <0.1, 0.4, 
0.5>), and semantic vector threshold θv set at 0.5, stay time threshold θs set at one, 
transition time threshold θt set at 10, and minimum support θm set at 0.3, with T = 
(Loc1, [5], <0.0, 0.2, 0.8>) [6] (Loc7, [5], <0.1, 0.9, 0.0>), we get  

1) T s T1 
2) T s T2 

Hence, the s-support(T) is 0.5 and T is frequent. 

However, the GTS Trajectory set can have highly dispersed temporal information 
and semantic vector values, resulting in all the frequent GTS Trajectory being highly 
redundant. For example, given the GTS Trajectory (Loc1, [5], <0.1, 0.0, 0.9>) [15] 
(Loc9, [7], <0.1, 0.5, 0.4>) and the GTS Trajectory (Loc1, [5], <0.0, 0.2, 0.8>) [16] 
(Loc9, [8] , <0.1, 0.4, 0.5>), it can be seen that the stay time of Loc1 in these two 
trajectories are both [5]. Similarly, the stay time of Loc9 in these two trajectories are 
very close. Thus, we can use an interval to aggregate and to represent the stay time 
and transition time. Moreover, the semantic vectors of Loc1 for the two trajectories 
are very similar and so are the semantic vectors of Loc9 for the two trajectories. Thus, 
we can use the mean of the semantic vectors to represent the semantic vectors. 
Accordingly, the two GTS Trajectories may be aggregated and represented as (Loc1, 
[5 5], <0.05, 0.1, 0.85>) [15 20] (Loc9, [7 8], <0.1, 0.45, 0.45>). 

Definition 3.7 (GTS Sequence, Semantic-Temporally Belong (ST)).  Given a GTS 
Trajectory T1 and a sequence T that uses the time interval instead of the temporal 
part of GTS Trajectory, we say that T1 semantic-temporally belongs to T, denoted T1 
ST T, if and only if  

1) T1(k).Location ID = T(k). Location ID 
2) Cosine(T1(k).Semantic Vector, T2(k).Semantic Vector) ≥ θv 
3) T1(k).Stay Time  T(k).Stay Time Interval 
4) (T1(k), T1(k+1)).Transition Time  (T2(k), T2(k+1)).Transition Time Interval, 

where 1 ≤  k ≤ n. 
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Example 3.8   Given a GTS Trajectory T1 = (Loc1, [5], <0.1, 0.0, 0.9>) [15] (Loc9, 
[7], <0.1, 0.5, 0.4>) and a GTS Sequence T = (Loc1, [5 5], <0.1, 0.0, 0.9>) [15 20] (Loc9, 
[6 8], <0.0, 0.55, 0.45>), we get 

1) T1(1).Location ID = T(1). Location ID = Loc1 and T1(2).Location ID  
= T(2). Location ID = Loc9 

2) Cosine(T1(1).Semantic Vector, T(1).Semantic Vector) 
 = Cosine(<0.1, 0.0, 0.9>, <0.1, 0.0, 0.9>) = 1.0 ≥ θv = 0.5  
and Cosine(T1(2).Semantic Vector, T(2).Semantic Vector)  
= Cosine(<0.1, 0.5, 0.4>, <0.0, 0.55, 0.45>) = 0.99 ≥ θv = 0.5 

3) T1(1).Stay Time = 5  T(1).Stay Time Interval = [5 5]  
and T1(2).Stay Time = 7  T(2).Stay Time Interval = [6 8] 

4) (T1(1), T1(2)).Transition Time = 15  (T(1), T(2)).Transition Time Interval  
= [15 20] 

Hence, T1 T T holds. 

Definition 3.9 (s-aggregating-support).  Given a GTS Trajectory set D, a stay 
time threshold θs, transition time threshold θt, and a minimum support θm, we define 
the s-aggregating-support of a GTS Sequence S as 

 
D

TTDT

S
ST

S

ST







*

** |

)(support-gaggregatin-s
(4)

and say that S is a frequent in D if s-aggregating-support(S) ≥ θm. 

Example 3.10   Given a GTS Trajectory set D consisting of two GTS Trajectories,  
T1 = (Loc1, [5], <0.1, 0.0, 0.9>) [15] (Loc9, [7], < 0.1, 0.5, 0.4>)  
T2 = (Loc1, [5], <0.0, 0.2, 0.8>) [6] (Loc7, [5], <0.1, 0.9, 0.0>) [10] (Loc9, [8], <0.1, 0.4, 
0.5>), and semantic vector threshold θv set at 0.5, stay time threshold θs set at one, 
transition time threshold θt set at 10, and minimum support θm set at 0.3, with S = 
(Loc1, [5 6], <0.0, 0.2, 0.8>) [14 22] (Loc9, [7 8], < 0.1, 0.5, 0.4>), we get  

1) S s T1 
2) S s T2 

Hence, the s-aggregating-support(S) is 1.0 and S is frequent. 

From the above definition, it is easy to see that the value of s-aggregating-support 
is proportional to the length of time interval in the discovered patterns. In particular, 
setting s-aggregating-support with a large value will result in a long and imprecise 
time interval for most discovered patterns. Thus, how to determine the time interval 
is an important issue in temporal pattern mining. Fortunately, additional 
information, such as semantic and geographic information, can be utilized for time 
interval detection. We argue that the stay time and the transition time are related to 
the semantic information of the locations because the semantic information can be 
used to ascertain the “purpose” of the stay or transit between the locations. Moreover, 
in Probability Theory, the exponential distribution [Papoulis et al., 2002; Ross, 2004] 
describes the time between events in a Poisson process, i.e., a process in which events 
occur continuously and independently at a constant average rate. Therefore, we can 
treat the “leave” and “arrive” events as Poisson processes, and the stay time and the 
transition time can be modeled by exponential distribution. In statistics, a confidence 
interval [Papoulis et al., 2002; Ross, 2004] is used to indicate the reliability of an 
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estimate, which is determined by the significance level [Papoulis et al., 2002; Ross, 
2004]. 

LEMMA 3.11.  If the assumption that the stay time and the transition time can be 
modeled by exponential distribution holds, we can use the confidence interval of the 
mean of the exponential distribution to represent the possible interval of stay time 
(or transition time). Given a significance level α and stay time (or transition time) X1, 
X2, …, Xn, which corresponds to a user staying in a location (or transiting between 
two locations), the stay time interval of the stay time corresponding to the user 
staying in the location (or transiting between the two locations) is given as 
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where χ2p,ν is the 100(1 – p) percentile of the chi-squared distribution with ν degrees 
of freedom. 

PROOF.  Since the “leave” and “arrive” events are Poisson processes, the stay 
time and the transition time can be modeled by exponential distribution. If X1, X2, …, 
Xn are independent exponential random variables, each having mean θ, then the 
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Hence, a 100(1-α) percent confidence interval for θ is 
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Thus, we can say that there is a 100(1-α) percent confidence to support the stay time 
corresponding to the user staying in the location (or transiting between the two 
locations) in the interval. The lemma thus holds.  

 
Table II. An example of a GTS Trajectory dataset 

GTS Trajectory
T1 (Loc1, [6], <0.0, 0.2, 0.8>) [9] (Loc7, [3], < 0.1, 0.9, 0.0>) [2] (Loc9, [8], < 0.1, 0.4, 0.5 >) 
T2 (Loc1, [9], <0.5, 0.0, 0.5>) [10] (Loc7, [1], < 0.4, 0.5, 0.1>) [1] (Loc5, [6], < 0.0, 0.9, 0.1>) 
T3 (Loc1, [6], <0.1, 0.2, 0.7>) [9] (Loc7, [3], < 0.1, 0.8, 0.1 >) [4] (Loc9, [7], < 0.1, 0.4, 0.5 >) 
T4 (Loc1, [10], <0.5, 0.2, 0.3>) [10] (Loc5, [8], < 0.1, 0.8, 0.1>) [2] (Loc7, [1], < 0.5, 0.5, 0.0>) 
T5 (Loc7, [3], < 0.1, 0.8, 0.1 >) [4] (Loc9, [7], < 0.1, 0.4, 0.5 >)
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We use Table II as an example dataset to explain how to calculate the confidence 
interval. There are five GTS Trajectories; let us calculate the stay time interval for 
Loc7. Two trajectories contain Loc7 (i.e., n = 5), and we suppose that their semantic 
vectors are similar. If we let the significance level be 10% (i.e., α = 0.1), then we have 
χ20.05,10 = 18.31 and χ20.95,10 = 3.94. Thus the interval is [2(3+1+3+1+3)/18.31, 
2(3+1+3+1+3)/3.94] = [1.20, 5.58]. 

Definition 3.12 (GTS Pattern).  Given a GTS Trajectory set D, we say that a GTS 
Sequence P is a GTS Pattern if and only if  

1) s-aggregating-support(P) ≥ θm 
2) P(k).Stay Time Interval is the confidence interval of the stay time of the 

locations that support P(k) 
3) (P(k), P(k+1)).Transition Time Interval is the confidence interval of the 

transition time of the two locations that respectively support P(k) and P(k+1) . 

where 1 ≤  k ≤ n. 

3.4 GTSP-Miner 

As shown in the above definitions, GTS Patterns must be mined from the GTS 
Trajectory set. To the best our knowledge, there is no existing pattern discovery 
algorithm that can be directly applied to the GTS Trajectory set to discover GTS 
Patterns. Therefore, we propose a novel algorithm called GTSP-Miner (Fig. 9) that 
discovers GTS Patterns from GTS Trajectory sets. The design of this algorithm 
follows the pattern growth strategy [Pei et al., 2001]. 
 

Input: A  GTS Trajectory set D, 
            a stay time significance level αs,  
            a transition time significance level αt, 
            a minimum support θm, 
            a  GTS Pattern P with length k 
Output: A GTS Pattern Set GTSP 
1: GTSP   
2: F1  Find Single Frequent Location (D, θm) 
3: foreach Location L  F1 do 
4: {(D*, SemanticVector)}  ProjBySemantic(L, D, θm) 
5: foreach (D*, SemanticVector)  {(D*, SemanticVector)} do 
6: {(D**, StayTimeInterval)}  ProjByStayTime(D*, θm, αs ) 
7: foreach (D**, StayTimeInterval)  {(D**, StayTimeInterval)} do 
8: if k=0 then 
9: P*(L[ StayTimeInterval]<SemanticVector>) 
10: GTSP GTSP∪{ P*} 
11: GTSP GTSP∪GTSP-Miner(D**, αs, αt, θm, P*) 
12: else 
13: {(D***, TransitionTimeInterval)}  ProjByTransitionTime(D*, θm, αt) 
14: foreach ( D***, TransitionTimeInterval )  {( D***, TransitionTimeInterval )} do 
15: P*P[TransitionTimeInterval](L[ StayTimeInterval]{Semantic}) 
16: GTSP GTSP∪{ P*} 
17: GTSP GTSP∪GTSP-Miner(D***, αs, αt, θm, P*) 
18: end 
19: end 
20: end 
21: end 
22: end 
23: return GTSP 

Fig. 9. The GTSP-Miner algorithm 

First, single locations are discovered (Fig. 9, Line 2). For each single location 
discovered, we use the semantic property to divide the input GTS Trajectory set into 
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several small GTS Trajectory sets, denoted D*, and each D* is given a representative 
semantic vector (Fig. 9, Lines 3 and 4). For each small GTS Trajectory set obtained 
by considering the semantic property, we use the stay time to divide it into several 
smaller GTS Trajectory sets, denoted D**, and each D** is given a representative 
stay time interval (Fig. 9, Lines 5 and 6). For each small GTS Trajectory set obtained 
by considering stay time information, there are two cases. One case is the initial case 
(k = 0),  for which we use the frequent single location, representative semantic vector, 
and representative stay time interval to obtain the GTS Pattern P* with length 1, 
and further consider P* and D** as inputs to the GTSP-Miner algorithm (Fig. 9, 
Lines 7–11). Another is the recursive case, for which we use the transition time to 
divide the GTS Trajectory set into several  smaller GTS Trajectory sets, denoted 
D***. Each D*** has a representative transition time interval (Fig. 9, Lines 12 and 
13). For each small GTS Trajectory set obtained by considering the stay time 
information, we use the input GTS Pattern P with length k, the frequent single 
location, the representative semantic vector, the representative stay time interval, 
and the representative transition time interval to obtain the GTS Pattern P* with 
length k+1, and further consider P* and D*** as inputs to the GTSP-Miner algorithm 
(Fig. 9, Lines 14–17). 

The three subroutines, ProjBySemantic, ProjByStayTime, and 
ProjByTransitionTime are the core of GTSP-Miner. Thus, we describe them in detail 
below: 

3.4.1 ProjBySemantic: This subroutine is used to discover the frequent semantic 
vectors of a single frequent location in a GTS Trajectory set and to divide that GTS 
Trajectory set using the frequent semantic vectors discovered. The problem can be 
viewed as a problem of clustering GTS Trajectories by frequent semantic vector 
clusters. Thus, we propose a new clustering algorithm to cluster GTS Trajectories 
using frequent semantic vector clusters. Using the dataset in TABLE II as an 
example, if we set minimum support θm as 0.4, we find that locations Loc1, Loc5, 
Loc7, and Loc9 are frequent. Then, we perform ProjBySemantic subroutine on D for 
location Loc1 to extract the semantic information as a vector set. Further, we 
consider the vector set as input and the cosine similarity as the similarity between 
two vectors to obtain the clusters by applying the hierarchical clustering. 

 

 
Fig. 10. Example of clustering by Frequent Itemsets 

 
The traditional hierarchical clustering algorithm needs a user specified threshold 

to split clusters. As shown in Fig. 10, if we use threshold one to obtain clusters, the 
resulting cluster will be {<0.0, 0.2, 0.8>, <0.1, 0.2, 0.7>}, {<0.5, 0.2, 0.3>} and {<0.5, 
0.0, 0.5>}. Since we set the minimum support θm as 0.4, we only consider clusters in 
which the number of vectors is greater than or equal to two. This means that only the 

<0.0, 0.2, 0.8> <0.5, 0.0, 0.5> <0.1, 0.2, 0.7> <0.5, 0.2, 0.3> 

Threshold 1

Threshold 2

<0.0, 0.2, 0.8> <0.5, 0.0, 0.5> <0.1, 0.2, 0.7> <0.5, 0.2, 0.3> 

Threshold 1

Threshold 2
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cluster {<0.0, 0.2, 0.8>, <0.1, 0.2, 0.7>} will be considered. However, if we use a 
threshold of two to obtain clusters, the cluster will be {<0.0, 0.2, 0.8>, <0.1, 0.2, 0.7>} 
and {<0.5, 0.2, 0.3>, <0.5, 0.0, 0.5>}. To preserve all possible frequent semantic 
meanings, our algorithm automatically determines the cluster threshold such that 
the number of frequent clusters is maximized.  

We use the top-down strategy (i.e., we initially treat all vectors as a cluster) to 
split a cluster into several smaller clusters by increasing the similarity threshold 
while simultaneously counting the number of vectors in each cluster. Thus, we also 
can determine the number of frequent clusters. Using linear search, we can easily 
determine the optimum threshold and frequent clusters. The central of a frequent 
cluster is called the reprehensive semantic vector. For each frequent cluster of 
location l with central v, we obtain the (l, v)-projected GTS Trajectory dataset. This 
dataset consists of three parts—Suffix GTS Trajectory, stay time sequence, and 
transition time sequence. For example, the dataset in Table II becomes the (Loc1, 
<0.05, 0.2, 0.75>)-projected GTS Trajectory dataset shown in Table III. 
 

Table III. (Loc1, <0.05, 0.2, 0.75>)-projected GTS Trajectory dataset 

 Suffix GTS Trajectory Stay time Transition time 
T1 (Loc7, [3], < 0.1, 0.9, 0.0>) [2] (Loc9, [8], < 0.1, 0.4, 0.5 >) [6] [9] 
T3 (Loc7, [3], < 0.1, 0.8, 0.1 >) [4] (Loc9, [7], < 0.1, 0.4, 0.5 >) [6] [9]

 

3.4.2 ProjByStayTime: This subroutine is used to obtain the frequent stay time 
interval of a single frequent semantic vector from the (l, v)-projected GTS Trajectory 
set and to divide the projected GTS Trajectory set by the stay time interval. In fact, 
both stay time and transition time are only parts of the temporal property. As 
mentioned earlier, an effective strategy is to use probabilistic exponential 
distribution to model it. On the basis of the probabilistic exponential distribution, we 
can easily extract the confidence interval of the stay time. If we use the data in Table 
III as an example and set the stay time significance level αs as 0.2, we get 
the 0.1 percentile χ20.1,4 = 1.064 and the (1-0.1) percentile χ20.9,4 = 7.779. The 
confidence interval is calculated as [2(6+6) / 7.779, 2(6+6) / 1.064] = [3.09, 22.56]. It 
can be seen that the interval contains two points, [6] and [6], and the minimum 
support θm is set at 0.4 (0.4 × 5 = 2). Hence, it is a frequent interval. Therefore, the 
pattern (Loc1, [3.09, 22.56], <0.05, 0.2, 0.75>) will be mined and the (l, s, v)-projected 
GTS Trajectory dataset obtained as shown in Table IV. Since the length of the 
pattern is one, there is no prefix pattern. The ProjByTransitionTime step will not be 
performed and further the (Loc1, [3.09, 22.56], <0.05, 0.2, 0.75>)-projected GTS 
Trajectory dataset is considered as input to the next iteration. Note that it is trivial 
to see that the interval size is inversely proportional to the significance level. To 
represent the stay time and transition time precisely, we may set the significance 
level a higher value. 

 
Table IV. (Loc1, [3.09, 22.56], <0.05, 0.2, 0.75>)-projected GTS Trajectory dataset 

 Suffix GTS Trajectory Transition time 
T1 (Loc7, [3], < 0.1, 0.9, 0.0>) [2] (Loc9, [8], < 0.1, 0.4, 0.5 >) [9] 
T3 (Loc7, [3], < 0.1, 0.8, 0.1 >) [4] (Loc9, [7], < 0.1, 0.4, 0.5 >) [9]

 

3.4.3 ProjByTransitionTime: This subroutine is used to obtain the frequent transition 
time interval between two frequent locations from the (l, s, v)-projected GTS 
Trajectory set and to divide the projected GTS Trajectory set by the stay time 
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interval. Similarly, suppose we execute the GTSP-Miner algorithm on the (Loc1, 
[3.09, 22.56], <0.05, 0.2, 0.75>)-projected GTS Trajectory dataset, as shown in Table 
IV. After the ProjBySemantic and ProjByStayTime step, the (Loc1, [3.09, 22.56], 
<0.05, 0.2, 0.75>) (Loc9, [3.86, 28.20], <0.1, 0.4, 0.5>)-projected GTS Trajectory 
dataset is obtained, as shown in Table V. To determine the frequent transition time 
interval from locations Loc1 to Loc9 in T1 and T3, we first aggregate all the 
transition times from locations Loc1 to Loc9 in T1 and T3, respectively. We then 
extract the confidence interval of the transition time. For example,. if we set the 
transition time significance level αt as 0.4 for Table V, we get the 0.2 percentile χ20.2,4 
= 1.65 and the (1-0.2) percentile χ20.8,4 = 5.99. The confidence interval is calculated as 
[2(11+13) / 5.99, 2(11+13) / 1.65] = [8.01, 29.09]. The interval contains two points, [11] 
and [13], and the minimum support θm is set at 0.4 (0.4 × 5 = 2). Hence, it is a 
frequent interval. Thus, the GTS Pattern (Loc1, [3.09, 22.56], <0.05, 0.2, 0.75>) [8.01, 
29.09] (Loc9, [3.86, 28.20], <0.1, 0.4, 0.5>) will be discovered. Note that here we 
consider the “transition” to be a different type of Poisson process from “stay”; 
therefore, we give another significance level for the transition time interval. It can be 
seen that there is no suffix GTS Trajectory in the projected GTS Trajectory dataset. 
Thus, the recursion will stop in this iteration. 
 

Table V. An example of the (l, s, v)-projected GTS Trajectory dataset 

 Suffix GTS Trajectory Transition time 
T1 null [9] + [2] = [11] 
T3 null [9] + [4] = [13] 

3.5 Construction of GTS Pattern Tree 

After discovering all of the GTS Patterns, to make the prediction phase efficient, we 
adopted a prefix tree, called the GTS Pattern Tree, to compactly represent a 
collection of GTS Patterns. (Hereafter the path of a GTS Pattern Tree indicates a 
decision rule.) The GTS-Tree is a kind of decision tree in which each node v consists 
of six elements—location, stay time interval, transition time interval, semantic vector, 
support, and child links. Moreover, as mentioned earlier, the matching strategy in 
our prediction model is the most recent location matching strategy. Thus, we build 
the tree by reversing the order of the patterns and inserting the reversed patterns 
into the tree as a path. To simplify the structure of the tree, we merge redundant 
paths. The patterns mined for the dataset in TABLE II are displayed in TABLE VI. 
There are four redundant paths: (root)--(Loc9, [4.14, 20.00], <0.1, 0.4, 0.5>), (root)--
(Loc9, [3.86, 28.20], <0.1, 0.4, 0.5>), (root)--(Loc7, [1.54, 11.28], <0.1, 0.85, 0.05>), and 
(root)--(Loc7, [1.69, 8.18], <0.1, 0.83, 0.07>). Since [4.14, 20.00]  [3.86, 28.20] and 
Cosine(<0.1, 0.4, 0.5>, <0.1, 0.4, 0.5>) ≥ θv, they will be merged as (root)--(Loc9, [3.86, 
28.20], <0.1, 0.4, 0.5>). Similarly, the paths (root)--(Loc7, [1.54, 11.28], <0.1, 0.85, 
0.05>), and (root)--(Loc7, [1.69, 8.18], <0.1, 0.83, 0.07>) can be merged as (root)--(Loc7, 
[1.54, 11.28], <0.1, 0.85, 0.05>). Formally, two nodes in the tree can be merged as a 
single node if and only if 

1) they have a common prefix, 
2) their locations are the same, 
3) their semantic vectors are similar (≥θv), 
4) their temporal intervals (both stay time interval and transition time interval) 

match each other. 
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Since the tree is used in location prediction, a path with a single element is 
meaningless. Therefore, we remove all paths that have a single element. The GTS-
Tree is constructed as illustrated in Fig. 11. 

 
Fig. 11. Example of a GTS Pattern Tree 

 
Table VI. Example of a GTS Pattern 

GTS Pattern Support 
(Loc1, [3.09, 22.56], <0.05, 0.2, 0.75>) 0.4 
(Loc1, [4.89, 35.72], <0.5, 0.1, 0.4>) 0.4 
(Loc5, [3.61, 26.32], <0.05, 0.85, 0.1>) 0.4 
(Loc7, [1.69, 8.18], <0.1, 0.83, 0.07>) 0.6 
(Loc7, [0.51, 3.76], <0.45, 0.5, 0.05>) 0.4 
(Loc9, [4.14, 20.00], <0.1, 0.4, 0.5>) 0.6 
(Loc1, [3.09, 22.56], <0.05, 0.2, 0.75>) [8.01, 29.09] (Loc9, [3.86, 28.20], <0.1, 0.4, 0.5>) 0.4 
(Loc1, [3.09, 22.56], <0.05, 0.2, 0.75>) [6.01, 21.82] (Loc7, [1.54, 11.28], <0.1, 0.85, 0.05>) 0.4 
(Loc7, [1.69, 8.18], <0.1, 0.83, 0.07>)[2.34, 6.51] (Loc9, [4.14, 20.00], <0.1, 0.4, 0.5>) 0.4 
(Loc1, [4.89, 35.72], <0.5, 0.1, 0.4>) [7.01, 25.45] (Loc5, [3.61, 26.32], <0.0.5, 0.85, 0.1>) 0.4 
(Loc1, [4.89, 35.72], <0.5, 0.1, 0.4>) [7.34, 26.67] (Loc7, [0.51, 3.76], <0.45, 0.5, 0.05>) 0.4 

4. GTS SIMILARITY 

As mentioned earlier, the main idea underlying a user-based collaborative filtering 
framework is the prediction of behavior of a user from similar behaviors of users. 
Therefore, similarity plays a crucial role in the prediction model. We argue that each 
user’s pattern tree represents his/her behavior, which is his/her frequent activity. 
Intuitively, the next location of a mobile user can be predicted not only from his/her 
own past movement behavior but also from that of other mobile users that exhibit 
similar semantic behaviors. In this section, we describe the similarity between two 
mobile users based on their GTS Pattern Trees. We first propose GTS Similarity to 
measure the similarity between two paths of two different GTS Pattern Trees. We 
then extend the GTS Similarity to measure the similarity between two users. 

Given two paths for two different GTS Pattern Trees, we argue that they are more 
similar when they have more common parts. Thus, we first detect the longest 
common location path to represent the geographical common part. (For example, in 
Fig. 12, the longest common location path is (Loc1)--(Loc9).) We then calculate the 
semantic similarity between two paths corresponding to the longest common location 
path. Next, we define the semantic similarity of two nodes according to the cosine 
similarity of their semantic vectors. For example, the semantic similarity in Fig. 12 is 
given by Cosine(<0.05, 0.2, 0.75>, <0.05, 0.2, 0.75>) + Cosine(<0.0, 0.5, 0.5>, <1.0, 0.0, 
0.0>). Thus, the semantic similarity is 1.0 + 0.0 = 1.0. Finally, we calculate the 
temporal similarity between two paths corresponding to the longest common location 
path. We then define the semantic similarity of two nodes according to the proportion 
of the intersection of their stay time intervals to the union of their stay time intervals. 
In Fig. 12, the temporal similarity is ([3.09, 22.56]∩[3.09, 22.56])/([3.09, 22.56]∪[3.09, 
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22.56]) + ([3.86, 28.20]∩[4.14, 20.00])/([3.86, 28.20] ∪ [4.14, 20.00]). Thus, the 
semantic similarity is 1.0 + 0.65 = 1.65. Accordingly, the similarity of the two paths is 
1.0 + 1.65 = 2.65. 

 

 
Fig. 12. An example of GTS Similarity 

 
Since a path in the GTS Pattern Tree represents one of real-world moving 

behaviors of a user, we consider the similarity between two users in terms of the 
similarity of paths in their GTS Pattern Trees. When there is a strong similarity 
between the paths in the GTS Pattern Trees of two users, the location prediction 
model predicts their next locations as the same location. Since a GTS Pattern Tree 
may possibly possess several paths, we extend GTS Similarity to measure two GTS 
Pattern Trees. Let SU = {M1, M2, ..., Mm} and SV = {M′1, M′2, ..., M′n} be the sets of 
paths in the GTS Pattern Trees corresponding to users U and V, respectively. The 
user similarity between U and V is defined by Equation (6):  
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5. GTS-BASED LOCATION PREDICTION 

In this section, we explain how to predict next stay location of a mobile user based on 
his/her current movement and his/her and similar GTS Pattern Trees of users. We 
argue that a GTS Pattern Tree provides the geographic, semantic, and temporal 
properties of most mobile users. Thus, for a given trajectory, we compute the best 
matching score of all the admissible paths in the pattern tree. For a mobile user who 
follows a trajectory T, we can detect all of the stay points and try to match them to a 
path in the pattern tree. Moreover, since our matching strategy is the most recent 
location matching strategy and the tree is constructed in a reverse pattern, we match 
the older stay point to the deeper node.  

As shown in Fig. 13, for a mobile user who follows a trajectory T, his/her most 
recent stay point s2 has already reached node (Loc7, [1.69, 8.18], <0.1, 0.83, 0.07>), 
i.e., the GPS coordinate stay point is close to stay location Loc1. Since the transition 
time interval between node (Loc7, [1.69, 8.18], <0.1, 0.83, 0.07>) and node (Loc1, 
[4.89, 35.72], <0.5, 0.1, 0.4>) is [7.34, 26.67], we seek the previous stay point from the 
7.34 to the 26.67 time unit before GPS log. Based on a part of the log, we seek the 
stay point and match the stay point to child node (Loc7, [1.69, 8.18], <0.1, 0.83, 0.07>). 
In this way, we can match most of the recent stay points of trajectory T to a path in 
the tree. We can then compute the matching score between these stay points and the 
path by summing all of the local scores in the path. For example, in Fig. 13, the 
matching score between trajectory T and the leftmost path in the GTS Pattern Tree 
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is the summation of the local scores of node (Loc7, [1.69, 8.18], <0.1, 0.83, 0.07>) and 
node (Loc1, [4.89, 35.72], <0.5, 0.1, 0.4>). This local score is called nodeScore, and it 
indicates the goodness of a node w.r.t. a stay point. It measures the level of 
possibility of a node containing the stay point in a trajectory. We define the 
nodeScore to compute the average score of geographic behavior, semantic behavior, 
and temporal behavior as follows:  

),,(),(),(),( 321 snoreTemporalScsnoreSemanticScsnScoreGeographicsnnodeScore    (7)

where n is the node of the path in the GTS Pattern Tree, s is the stay point of current 
movement of the user, and ω1 + ω2 + ω3 = 1 

 
Fig. 13. Example of Path Matching 

5.1 GeographicScore 

We define the GeographicScore of a node according to the spatial distance between 
the stay point and the spatial region of the location of the node specified by the 
following three different possible cases: 

 The stay point is located in the region: In this, the optimal case, the 
GeographicScore is equal to the support value of the node. 

 The stay point is near to the region: In this case, we define the distance δ 
between the stay point and the region to be smaller than the radius r of the 
region. The GeographicScore is defined as follows: 



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r
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
1support (8)

 The stay point is far away from the region: In this case, we define the distance 
between the stay point and the region to be greater than the radius of the region. 
The GeographicScore is thus equal to 0. 

5.2 SemanticScore 

We define the SemanticScore of a node according to the cosine similarity between the 
semantic vector V1 of the stay point and the semantic vector V2 of the node as follows: 

T
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),(support 21 VVCosoreSemanticSc  (9)

Here, the value of each dimension of the semantic vector of the stay point is 
considered to be the proportion of the representing POI category, and the similarity 
between the semantic vector of the stay point and the semantic vector of the node is 
considered to be the cosine similarity of two semantic vectors. For example, in Fig. 14, 
there are four POIs with the semantic B and C, respectively, and they are close to the 
stay point. The semantic vector of the stay point can be assigned as <0/4, 3/4, 1/4>. 
The similarity is Cosine(<0/4, 3/4, 1/4>, <0.1, 0.83, 0.07>) = 0.96. Thus, the 
SemanticScore is  0.4 × 0.96 = 0.384. 

 

 
Fig. 14. Example of SemanticScore 

5.3 SemanticScore 

We define the TemporalScore of a node according to the temporal distance between 
the stay point and the node specified by the following three different possible cases: 

 The stay time of the stay point belongs to the same stay time interval as the 
node: In this case, the TemporalScore is equal to the support value of the node. 

 The stay time of the stay point is approximated to the stay time interval of the 
node: In this case, we define the difference Δ between the stay time of the stay 
point and the stay time interval of the node to be smaller than the range of the 
stay time interval σ of the region. The TemporalScore is defined as follows: 







 
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

1supportoreTemporalSc (10)

 The stay time of the stay point is NOT approximated to the stay time interval of 
the node: In this case, we define the difference Δ between the stay time of the 
stay point and the stay time interval of the node to be greater than the range of 
the stay time interval σ of the region. The TemporalScore is thus equal to zero. 

 

 
Fig. 15. Example of TemporalScore 
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(Loc7, [1.69, 8.18], <0.1, 0.83, 0.07>):0.4

Stay time = 1.1

Stay point



zz:24                                                                                                                            J. J.-C. Ying et al. 
 

 
ACM Transactions on Intelligent Systems and Technology, Vol. xx, No. y, Article zz, Publication date: Month YYYY 

For example, in Fig. 15, the user stays around the stay point for 1.1 time units. 
The range of the stay time interval σ of the region is 8.18 - 1.69 = 6.49 and the 
difference between the stay time of the stay point and the stay time interval of the 
node is |1.1 - 1.69| = 0.59 ≤ 6.49; hence, the TemporalScore is calculated using 
Equation (10). The TemporalScore is 0.4 × (1 – 0.59/6.49) = 0.364. 

By traversing all paths in the GTS Pattern Tree of all users, the score of each path 
can be obtained as the summation of all nodeScores in the path. Each path obtained  
represents the most likely route of the user according to his/her own GTS Pattern 
Tree. Since a GTS Pattern Tree is built by reversing the order of patterns and 
inserting the reversed patterns into the tree as a path, the first node (i.e., the stump 
node of the tree) in each path can be used in the making of a prediction. Accordingly, 
we can use the average user similarity to evaluate the possibility score that a 
particular location will be the location that the user will move to. Given a user u and 
a location l, we define the possibility score of l as follows:  

)(

),(

),(yPossibilit )(

lU

vusimilarity

lu lUv

 (11)

where U(l) is the set of users for which the first node in the path with the highest 
score is l. Accordingly, given a user-location pair, we can compute the possibility 
score of a location that the user will move to. Thus, we can make a next location 
prediction for current movement of a user by predicting the location as the one with 
the highest score. 

6. RESULTS OF EXPERIMENTAL EVALUATION 

In this section, we report on the results of a series of experiments conducted to 
evaluate the performance of our proposed next location prediction system using two 
real trajectory datasets crawled from two well-known trip-sharing websites—
EveryTrail and Bikely. All the experiments were conducted using Java JDK 1.6 on 
an Intel Quad Core CPU Q6600 2.40 GHz computer with 1 GB of memory running 
Microsoft Windows XP. We first present the data preparation for the two crawled 
real datasets and then introduce the evaluation methodology. Finally, we present our 
results, followed by discussions. 

6.1 Real Dataset 

In this subsection, we detail the two real datasets used for examining our proposed 
method. Although there exist some widely-used trajectory datasets such as GeoLife 
Trajectory Dataset (http://research.microsoft.com/en-us/downloads/b16d359d-d164-
469e-9fd4-daa38f2b2e13/default.aspx) or T-Drive Taxi Trajectroies 
(http://research.microsoft.com/apps/pubs/?id=152883), these datasets lack of 
semantic-related information. Consequently, these trajectory datasets do not fit for 
our experimental evaluation. Fortunately, some GPS sharing websites, like 
EveryTrail (http://www.everytrail.com/) and Bikely (http://www.bikely.com/), not only 
provide GPS sharing service for users but also allow users to tag some semantic 
terms on their uploaded trajectory. Accordingly, we crawled form EveryTrail and 
Bikely to make up two real datasets for our experimental evaluation. 

6.1.1 EveryTrail Dataset. EveryTrail (http://www.everytrail.com/) is a trip-sharing 
and social networking website on which users can upload, share, and find trips. 
EveryTrail allows users to upload GPS logs and photos within a trip. Users can also 
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label an activity on a trip. While EveryTrail provides a public API that enables other 
applications to integrate with its service, some functionalities in the API are broken. 
For this reason, we used the API to support web page crawling in order to get all the 
data we needed. We consider the “stay” to be an important fact in location prediction. 
However, there are many trips on EveryTrail, such as biking, flying, and hiking, in 
which the activities involve no stay. The users that follow such trips do not “stay” 
anywhere. Therefore, we only selected trips comprising the kinds of activities from 
which we could obtain stay points. Using this rationale, we obtained 116,179 trips 
from 11 selected activities—specifically, Backpacking, Driving, Geocaching, Ice 
skating, Motorcycling, Relaxation, Romantic Getaway, Sightseeing, Snowshoeing, 
Walking, and Other. These trips were provided by 35,153 mobile users. For each 
mobile user, we randomly selected 70% of the trips from his/her trips dataset as our 
training dataset, and used the remaining trips to form our testing dataset. 

6.1.2 Bikely Dataset. Bikely (http://www.bikely.com/) is also a trip-sharing website on 
which users can upload and share trip information. Bikely allows users to upload 
GPS logs within a trip and tag a trip using semantic terms. Bikely does not provide a 
public API for other applications to integrate with its service. For this reason, we had 
to crawl the sites web pages to get all the data we needed. As with EveryTrail, there 
are many trips on Bikely, such as training and offroad, in which no stay is involved. 
The users that follow such trips do not “stay” anywhere that has semantic meaning. 
Therefore, we selected only those trips with several kinds of tags for which we could 
obtain stay points. Using this rationale, we obtained 89,578 trips for 10 selected 
tags—specifically, Commute, Recreational, Onroad, Smooth, Not Bike, Low traffic, 
Urban, Rural, Scenic, and Touring. These trips were provided by 4,196 mobile users. 
For each mobile user, we randomly selected 70% of the trips from his/her trips 
dataset as our training dataset, and used the remaining trips to form our testing 
dataset. 

6.2 Evaluation Methodology 

The following are the main measurements used in our experimental evaluation. The 
Precision, Coverage, and F-measure are defined, respectively, by Equations (12), (13), 
and (14), where p+ and p- indicate the number of correct predictions and incorrect 
predictions, respectively, and |R| indicates the total number of trajectories. In 
addition, we used the average improvement rate to measure the percentage by which 
our proposed method outperforms other methods. The average improvement rate is 
defined by Equation (15), in which mours and mbaseline are the measured results of our 
proposed method and that of the compared baseline method, respectively. 








pp

p
Precision (12)

R

pp  
Coverage (13)

CoveragePrecision

CoveragePrecision2
measure-F




 (14)
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m

mm 
ratet improvemen Average (15)

The experiments were divided into two groups: i) internal evaluation; and ii) 
external comparison. The internal evaluation group focused on evaluation of various 
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parameter settings for our GTS-LP framework. Table VII summarizes the major 
parameters in our prediction model and their default values. We first evaluated the 
precision of our proposed GTS-based Location Prediction under various settings for 
parameters related to GTSP-Miner (i.e., αs, αt, and θm). We then compared the 
proposed nodeScore with various parameter settings (i.e., ω1, ω2, and ω3) in terms of 
precision. For external comparison, we evaluated our proposed GTS-LP against the 
collaborative location recommendations model [Zheng et al., 2010], spatial-social 
approximation [Backstrom et al., 2010], and WhereNext [Monereale et al., 2009] in 
terms of precision, coverage, and F-measure by varying parameters such as 
minimum support threshold and the training data proportion. 
 

Table VII. Major parameters of GTS-based Location Prediction 

Parameters Description Default value 

θv 
Semantic similarity threshold for GTS Pattern Tree 
construction 

0.5 

αs Significance level of the stay time interval 0.2 
αt Significance level of the transition time interval 0.4
ω1 Weight of GeographicScore in nodeScore 0.5 
ω2 Weight of SemanticScore in nodeScore 0.3
ω3 Weight of TemporalScore in nodeScore 0.2
θm Minimum support 0.005 

6.3 Efficiency Evaluation of GTS-LP 

 
Fig. 16. Efficiency Evaluation of GTS-LP 

 
In this experiment, we evaluated the efficiency of GTSP-Miner for various dataset 
sizes. We used a semi-simulation strategy to generate bigger datasets. First, we 
generated a synthetic user and randomly selected between two and 20 trips of real 
users as the synthetic user’s trips. Fig. 16(a) shows the resulting dataset simulated 
from the EveryTrail dataset. As can be seen in Fig. 16(a), the training time increased 
exponentially as the size of the dataset increased. This is reasonable for training high 
quality models to make precise predictions. Fig. 16(a) shows that, unlike the training 
time, the testing time, i.e., the time for online prediction, linearly increased as the 
size of the dataset increased. This is also reasonable as more requests cost more in 
terms of time. In fact, in the real application, this step was panelized and sped up to 
constant time. Fig. 16 shows that the resulting dataset simulated from the Bikely 
dataset was similar to that simulated from the EveryTrail dataset. Since the Bikely 
dataset was smaller than the EveryTrail dataset, the dataset simulated from the 
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Bikely dataset was also small, as shown in Fig. 16(b). It can also be seen that the 
training time increased exponentially as the size of the dataset increased, while the 
testing time increased linearly as the size of the dataset increased.  

6.4 Comparison of Various Parameters in GTSP-Miner 

6.4.1 EveryTrail Dataset. In this experiment, we evaluated the precision of our 
approach under various parameter settings for GTSP-Miner based on the EveryTrail 
dataset. In the experiment, the default values of weights for nodeScore (ω1, ω2, and ω3) 
were set at 0.5, 0.3, and 0.2, respectively. In Fig. 17(a), the highest precision occurs 
for parameter settings θv,= 0.5 and αs = 0.3. However, we also observed that the 
resulting precision for parameter settings θv,= 0.5 and αs = 0.3 were very close to the 
highest precision achieved. In Fig. 17(b), the highest precision occurs for parameter 
settings θv = 0.5 and αt = 0.4. Both Fig. 17(a) and Fig. 17(b) show that the highest 
precision occurred when the semantic similarity threshold was set at 0.5. The 
optimal setting for the significance level of the stay time interval was smaller than 
that of the transition time interval. This signifies that the stay time interval should 
be more centralized than the transition time interval and also that they are always 
determined by different probabilistic distributions. This result strongly proves that 
movements of users are partially motivated by Geographic-triggered, Temporal-
triggered, and Semantic-triggered Intentions. 
 

 
Fig. 17. Comparison of various parameter settings for GTSP-Miner based on the EveryTrail dataset 

 

6.4.2 Bikely Dataset. In this experiment, we evaluated the precision of our approach 
under various parameter settings for GTSP-Miner based on the Bikely dataset. The 
default values for the weights of nodeScore (ω1, ω2, and ω3) were set at 0.5, 0.3, and 
0.2, respectively. In Fig. 18(a), the highest precision occurs for parameter settings 
θv,= 0.5 and αs = 0.2.  On the basis of this observation and the result shown in Fig. 
17(a), the default values for θv and αs were set at 0.5 and 0.2, respectively. In Fig. 
18(b), the highest precision occurs for parameter settings θv = 0.5 and αt = 0.4. Both 
Fig. 18(a) and Fig. 18(b) show that the highest precision occurred when the semantic 
similarity threshold was set at 0.5. This observation along with the result shown in 
Fig. 17(b) strongly supports our default settings. Similarly, as also shown by Fig. 17, 
the optimal significance level of the stay time interval was smaller than that of the 
transition time interval. This result strongly proves that it is necessary to consider 
the temporal property as the transition time and the stay time, respectively. 
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Fig. 18. Comparison of various parameter settings for GTSP-Miner based on the Bikely dataset 

6.5 Comparison of Various Path Matching Scores 

6.5.1 EveryTrail Dataset. In this experiment, we evaluated our approach under 
various parameter settings in terms of Precision based on the EveryTrail dataset. As 
can be seen in Fig. 19(a), the Precision of our method improved when ω1 was 
increased, i.e., higher precision was achieved when we gave more weight to 
geographic behaviors, with the highest precision occurring for parameter settings ω1 
= 0.5 and ω2 = 0.3 (i.e., ω3 = 0.2). Even though it appears that the Geographic-
triggered behaviors are the most essential property, the semantic- and temporal-
triggered behaviors still potentially have an effect on predicting the next movement. 
We also observed that the Precision does not increase monotonically as ω2 increases, 
i.e., as more weight is assigned to SemanticScore, the precision does not necessarily 
increase. This contradicts our assumption that considering semantic-triggered 
behaviors will improve the precision of prediction. We believe that this is because the 
temporal-triggered behaviors still potentially have an effect on predicting the next 
movement. On the basis of this observation, we set the default values for ω1, ω2, and 
ω3 at 0.5, 0.3, and 0.2, respectively. As shown in Fig. 19(b), the Precision of our 
method improved when the minimum support increased, i.e., higher precision was 
achieved when we focused on more frequent behaviors, and the highest precision 
occurred for the following parameter settings: minimum support = 3%, ω1, = 0.5, ω2 = 
0.3, and ω3 = 0.2 (i.e., when all the Geographic-triggered, temporal-triggered, and 
semantic-triggered behaviors were taken into consideration). We also observed that 
the Precision was worst, on average, when we set ω1 = 1 (i.e., when only the 
geographic property was taken into consideration).  

 

 
Fig. 19. Comparison of various parameter settings based on the EveryTrail dataset 
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6.5.2 Bikely Dataset. In this experiment, we evaluated our approach under various 
parameter settings in terms of Precision based on the Bikely dataset. Fig. 20(a) 
shows that a similar result to that of Fig. 19(a) was obtained—the Precision of our 
method improved when ω1 was increased, i.e., higher precision was achieved when 
more weight was given to geographic behaviors, with the highest precision occurring 
for parameter settings ω1 = 0.5 and ω2 = 0.3 (i.e., ω3 = 0.2). This result strongly 
supports the default value of ω1, ω2, and ω3 being set at 0.5, 0.3, and 0.2, respectively. 
However, from Fig. 20(b), it can be seen that the Precision of our method decreased 
when the minimum support increased, i.e., higher precision was achieved when we 
mined more patterns, and the highest precision occurred for the following parameter 
settings: minimum support = 0.5%, ω1, = 0.5, ω2 = 0.3, and ω3 = 0.2 (i.e., when all the 
Geographic-triggered, temporal-triggered, and semantic-triggered behaviors were 
taken into consideration). This is because the average number of trips per user in the 
Bikely dataset is larger than that of the EveryTrail dataset. When minimum support 
is decreased, many significant patterns can still be mined from the Bikely dataset. 
We also observed that the Precision was worst, on average, for ω1 = 1 (i.e., when only 
the geographic property was taken into consideration).  

 

 
Fig. 20. Comparison of various parameter settings based on the Bikely dataset 

6.6 Impact of the Minimum Support Threshold 

6.6.1 EveryTrail Dataset. In this experiment, we analyzed the precision, coverage, and 
F-measure of the prediction techniques—specifically, the collaborative location 
recommendations model [Zheng et al., 2010], spatial-social approximation 
[Backstrom et al., 2010], WhereNext [Monereale et al., 2009], and our GTS-LP 
approach—for various minimum support thresholds. Since collaborative location 
recommendation and spatial-social approximation are not pattern based prediction 
models, they do not need the minimum support parameter to mine frequent behavior 
of users. Therefore, the two models give a constant result under various minimum 
support settings. Fig. 21 shows that GTS-LP performed marginally better than 
collaborative location recommendation in terms of precision, coverage, and F-
measure, but significantly outperformed WhereNext and spatial-social 
approximation for those measures. This is because GTS-LP and collaborative location 
recommendation both utilize a user-based collaborative filtering framework for their 
prediction model. The user-based collaborative filtering framework makes the 
prediction more precise and be able to deal with trajectories that cannot be predicted. 
The difference between our method and collaborative location recommendation is 
that our method considers all the Geographic-triggered, Temporal-triggered, and 
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Semantic-triggered behaviors. Therefore, our method is more precise. For these two 
reasons, the precision, coverage, and F-measure improved. The average improvement 
rates of GTS-LP over WhereNext were 63.17% for precision, 555.03% for coverage, 
and 383.62% for F-measure.  The average improvement rates of GTS-LP over 
collaborative location recommendation were 29.40% for precision, 0% for coverage, 
and 7% for F-measure. The average improvement rates of GTS-LP over spatial-social 
approximation were 3% for precision, 366.88% for coverage, and 198.68% for F-
measure. 

 

 
Fig. 21. Impact of the Minimum Support Threshold based on the EveryTrail dataset 

 

6.6.2 Bikely Dataset. In this experiment, we analyzed the precision, coverage, and F-
measure of the prediction techniques examined—specifically, the collaborative 
location recommendations model [Zheng et al., 2010], WhereNext [Monereale et al., 
2009], and our GTS-LP approach—for various minimum support thresholds. Since 
Bikely (http://www.bikely.com/) does not provide a social networking service, spatial-
social approximation cannot work on its dataset. In addition, because collaborative 
location recommendation is not a pattern based prediction model, it does not need the 
minimum support parameter to mine frequent behaviors of users. Therefore, 
collaborative location recommendation gives a constant result under various 
minimum support settings. Fig. 22 shows that GTS-LP was marginally better than 
collaborative location recommendation in terms of precision, coverage, and F-
measure, but significantly outperformed WhereNext for those measures.  

 

 
Fig. 22. Impact of the Minimum Support Threshold based on the Bikely dataset 

 
As in the previous experiment, this occurred because GTS-LP and collaborative 

location recommendation both utilize a user-based collaborative filtering framework 
in their prediction model. The user-based collaborative filtering framework makes 
the prediction more precise and able to deal with trajectories that cannot be 
predicted. The difference between our method and collaborative location 
recommendation is that our method takes into consideration all the Geographic-
triggered, temporal-triggered, and semantic-triggered behaviors in the prediction of 
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next location of a user. This results in our method being able to comprehensively deal 
with all types of movement of a user. Thus, the precision, coverage, and F-measure 
are improved. The average improvement rates of GTS-LP over WhereNext were 
41.48% for precision, 788.90% for coverage, and 415.19% for F-measure.  The average 
improvement rates of GTS-LP over collaborative location recommendation were 3.3% 
for precision, 23.58% for coverage, and 13.44% for F-measure.  

6.7 Impact of the Training Dataset Size 

6.7.1 EveryTrail Dataset. In this experiment, we analyzed the precision, coverage, and 
F-measure of the prediction techniques examined—that is, the collaborative location 
recommendations model [Zheng et al., 2010], spatial-social approximation 
[Backstrom et al., 2010], WhereNext [Monereale et al., 2009], and our GTS-LP 
approach for various training data proportions. The training data proportion refers to 
the proportion of the dataset we used to train the prediction model. For example, 
when we set the training proportion at 70%, 70% of the trajectories were treated as 
training data, and the remaining 30% were treated as testing data. Fig. 23 shows 
that the precision of GTS-LP was sensitive to training proportion. This is because 
GTS-LP takes into consideration all the Geographic-triggered, temporal-triggered, 
and semantic-triggered behaviors in its computation of nodeScore. When the training 
data is deficient, it not only damages the geographic property, but also lacks 
semantic and temporal properties. We also observed that GTS-LP marginally 
outperformed collaborative location recommendation and spatial-social 
approximation in terms of coverage and F-measure, but significantly outperformed 
WhereNext for those measures. On average, the improvement rate was still 
reasonable. The average improvement rates for GTS-LP over WhereNext were 
60.17% for precision, 19.78% for coverage, and 40.78% for F-measure. The average 
improvement rates for GTS-LP over collaborative location recommendation were 
12.67% for precision, 4.97% for coverage, and 8.9% for F-measure. The average 
improvement rates for GTS-LP over spatial-social approximation were 47.34% for 
precision, 544.22% for coverage, and 284.24% for F-measure. 

 

 
Fig. 23. Impact of size of Training Dataset based on the EveryTrail dataset 

 

6.7.2 Bikely Dataset. In this experiment, we analyzed the precision, coverage, and F-
measure of the prediction techniques examined—that is, the collaborative location 
recommendations model [Zheng et al., 2010], WhereNext [Monereale et al., 2009], 
and our GTS-LP approach—for various training data proportions. Since Bikely 
(http://www.bikely.com/) does not provide a social networking service, spatial-social 
approximation could work on its dataset. Fig. 24 shows that the precision of GTS-LP 
was not sensitive to training proportion. This result contradicts the observation made 
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in the case of the EveryTrail dataset. This is because the average number of trips per 
user in the Bikely dataset is greater than that of the EveryTrail dataset. When the 
size of the training dataset decreases, there are still many significant patterns to be 
mined from the Bikely dataset. It can also be seen that GTS-LP marginally 
outperformed collaborative location recommendation and WhereNext in terms of 
precision, coverage, and F-measure. On average, the improvement rate was quite 
reasonable. The average improvement rates for GTS-LP over WhereNext were 
53.58% for precision, 26.46% for coverage, and 39.31% for F-measure. The average 
improvement rates for GTS-LP over collaborative location recommendation were 
24.5% for precision, 82.65% for coverage, and 48.4% for F-measure.  
 

 
Fig. 24. Impact of size of Training Dataset based on the Bikely dataset 

7. CONCLUSIONS 

In this paper, we defined a new kind of frequent pattern, namely GTS Pattern, which 
takes into account moving behaviors of users motivated by Geographic-triggered, 
Temporal-triggered, and Semantic-triggered Intentions. On the basis of GTS Pattern, 
we proposed a novel user-based collaborative filtering framework called GTS-LP to 
predict the next location of a mobile user for applications such as location-based 
services. The core of our prediction module is a novel prediction strategy that 
evaluates the score of the next stay location for a given mobile user by mining the 
moving behaviors of users in terms of the geographic, temporal, and semantic 
properties. To the best of our knowledge, this is the first work that focuses on next 
location prediction by mining trajectory data that takes into consideration all the 
geographic, temporal, and semantic moving behaviors of users. Through a series of 
experiments, we validated our proposal and showed that our approach gives excellent 
performance under various conditions and also outperforms state-of-the-art 
approaches such as collaborative location recommendation [Zheng et al., 2010], 
spatial-social approximation [Backstrom et al., 2010], and WhereNext [Monereale et 
al., 2009] in terms of precision, coverage, and F-measure. For future work, we will 
explore to design more advanced methods to further enhance the quality of location 
prediction systems for various location-based service applications. Besides, since our 
prediction model considers all of the geographic, temporal and semantic properties of 
users' moving behaviors, a number of parameters corresponding to these properties 
are used in the model. As the next step, we will also try to simplify the parameters to 
reduce the complexity of the model. 
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