

UNIVERSITY OF JOENSUU

COMPUTER SCIENCE

DISSERTATIONS 2

MARTTI FORSELL

IMPLEMENTATION OF INSTRUCTION-LEVEL AND

THREAD-LEVEL PARALLELISM IN COMPUTERS

ACADEMIC DISSERTATION

To be presented, with the permission of the Faculty of
Science of the University of Joensuu, for public criticism
in Auditorium M1 of the University, Yliopistonkatu 7,
Joensuu, on October 10th, 1997, at 12 noon.

UNIVERSITY OF JOENSUU
1997

Julkaisija Joensuun Yliopisto
Publisher University of Joensuu

Toimittaja FT Martti PenttonenEditor Dr

Vaihto Joensuun yliopiston kirjasto, vaihdot
PL 107, 80101 Joensuu
Puh. 013-251 2672, fax 013-251 2691

Exchange Joensuu University Library, exchange
P.O. Box 107, FIN-80101 Joensuu, Finland
Fax + 358 13 251 2691

Myynti Joensuun yliopiston kirjasto, julkaisujen myynti
PL 107, 80101 Joensuu
puh. 013-251 2652, 251 2662, fax 013-251 2691
Email: lavikainen@joyl.joensuu.fi

Sale Joensuu University Library, sale of publications
P.O. Box 107, FIN-80101 Joensuu, Finland
fax + 358 13 251 2691
Email: lavikainen@joyl.joensuu.fi

ISSN 1238-6944
ISBN 951-708-557-5
UDK 681.3.02
Computing Reviews (1991) Classification: C.1.2
Yliopistopaino
Joensuu 1997

IMPLEMENTATION OF INSTRUCTION-LEVEL AND THREAD-LEVEL

PARALLELISM IN COMPUTERS

Martti Forsell

Department of Computer Science
University of Joensuu
P.O. Box 111, FIN-80101 Joensuu, Finland
Martti.Forsell@cs.joensuu.fi

University of Joensuu, Computer Science, Dissertations 2
Joensuu, October 1997, 121 pages
ISSN 1238-6944, ISBN 951-708-557-5

Keywords: computer architecture, pipelining, VLIW, parallelism, shared
memory, PRAM, multithreading, interconnection network

T here are many theoretical and practical problems that should be
solved before parallel computing can become the mainstream of
computing technology. Among them are problems caused by

architectures originally designed for sequential computing—the low
utilization of functional units due to the false dependencies between
instructions, inefficient message passing due to the send, receive and
thread switch overheads, undeterministic operation due to the dynamic
scheduling of instructions, and the long memory access delays due to the
high memory system latency. In this thesis we try to eliminate these
problems by designing new processor, communication and memory
system architectures with parallel computation in mind. As a result, we
outline a parallel computer architecture, which uses a theoretically
elegant shared memory programming model. The obvious VLSI
implementation of a large machine using such a shared memory is
shown impossible with current technology. There exists, however, an
indirect implementation—one can simulate a machine using a shared
memory by a machine using a physically distributed memory. Our
proposal for such an indirect implementation—Instruction-Level Parallel
Shared-Memory Architecture (IPSM)—combines elements from both
instruction-level parallelism and thread-level parallelism. IPSM features a
static VLIW-style scheduling of instructions and the absence of message
passing and thread switch overheads. In the execution of parallel
programs, IPSM exploits parallel slackness to hide the high memory
system latency, and interthread instruction-level parallelism to eliminate
delays caused by the dependencies between instructions belonging to a
single thread. In the execution of sequential programs, IPSM uses
minimal pipelining to minimize the delays caused by the dependencies
between instructions.

vImplementation of Instruction-Level and Thread-Level Parallelism

PREFACE

My interest in processor architectures began in the early 80’s. At those
days home computers were slow with memory hungry high-level
language interpreters. Assembly language programming seemed to give
almost endless speedup possibilities for simple game programs.

The introduction of powerful 32-bit CISC microprocessors, like
Motorola MC68020, indicated that the architecture of the 8-bit
processors used in home computers was far from perfect. At the same
time the discussion between RISC and CISC instruction-set strategies
revealed architectural weaknesses also in the CISC processors.

In the beginning of 90’s I became familiar with the theory of parallel
computation. It became evident, that parallel computers potentially
provide better performance than sequential ones in most computational
problems. Since then I have had a opportunity of applying my interest
in computer architectures also to parallel architectures.

This thesis is the result of the research I carried out in 1992-1996 at the
Department of Computer Science, University of Joensuu under the
supervision of Martti Penttonen and Jyrki Katajainen. It consists of
general introduction and four individual articles.

God bless you,

Martti Forsell

From the Finnish translation of the Bible

Kaiken tämän olen viisauden avulla
koetellut. Minä sanoin: “Tahdon tulla
viisaaksi.” Mutta viisaus pysytteli tavoit-
tamattomissa.

Kaukana on kaiken sisin olemus,
syvällä, syvällä—kuka voi sen löytää?

Minä ryhdyin itsekseni pohtimaan
ja etsimään viisautta ja kaiken lopputu-
losta ja ymmärsin, että jumalattomuus
johtuu järjettömyydestä ja tyhmyys mie-
len sokaistumisesta.

vi Implementation of Instruction-Level and Thread-Level Parallelism

ACKNOWLEDGEMENTS

I would like to thank Martti Penttonen, Ville Leppänen, Simo Juvaste
and Jyrki Katajainen for great many conversations and valuable co-
operation. I have had a good time as a member of the parallel
computation research group “rinnakkaisjengi” in University of Joensuu.

Professors Daniel Litaize and Iiro Hartimo kindly accepted the role of a
reviewer. I wish to thank for their time and efforts.

Then warm thanks to Coca-Cola Company and Apple Computer, Inc.
Without your products—namely Coke® and Macintosh™, this thesis
would never have been completed.

I also want to express my gratitude to my beloved wife Marjut for
sharing life with me. Marjut, I am happy with you after being so many
years alone.

This research was funded by the University of Joensuu and the Finnish
Academy.

viiImplementation of Instruction-Level and Thread-Level Parallelism

Table of Contents

Abstract iii
Preface v
Acknowledgements vi
Table of Contents vii
List of Abbreviations x
List of Original publications included in this thesis xi

1 Introduction 1
1.1 A short history of processor architectures 2

1.1.1 Instruction scheduling 3
1.1.2 The complexity of instructions 6

1.2 Models of parallel computation 6
1.3 Basic concepts 9
1.4 Example processors 10
1.5 Example topology 11
1.6 Benchmarks 12
1.7 Simulators 13
1.8 Approach taken 14
1.9 Why a scalar unit is needed? 16
1.10 Contents of the individual articles 17

1.10.1 Are multiport memories physically feasible? 17
1.10.2 Efficient two-level mesh based simulation of

PRAMs 17
1.10.3 Minimal pipeline architecture—an alternative

to superscalar architecture 18
1.10.4 MTAC—a multithreaded VLIW architecture for

PRAM simulation 18
1.11 Conclusions 19

2 Are multiport memories physically feasible? 25
2.1 Introduction 25
2.2 Parallel random access machine 26
2.3 Proposed implementations of shared memories 27

2.3.1 Ordinary memory 27
2.3.2 Memory interleaving 28
2.3.3 Simulation of a shared memory by a distributed

memory 29

viii Implementation of Instruction-Level and Thread-Level Parallelism

2.4 A natural solution for shared memories: multiport
semiconductor RAM 31

2.4.1 The structure of a multiport RAM 33
2.4.2 The cost-effectiveness of a multiport RAM 37
2.4.3 The performance of the multiport RAM system 38
2.4.4 An example of a multiport RAM system within

the limits of current technology 39
2.5 Summary 40

3 Efficient two-level mesh based simulation of PRAMs 45
3.1 Introduction 46

3.1.1 Previous results 46
3.1.2 Some critique 47
3.1.3 Contributions 48

3.2 Definitions 49
3.2.1 PRAM 49
3.2.2 Coated block mesh 49

3.2.2.1 Router block 50
3.2.2.2 Processor&memory block 51

3.3 Simulation of PRAM models 51
3.3.1 Simulation of EREW PRAM 52
3.3.2 Simulation of CRCW PRAMs 53

3.4 Improvements 53
3.5 Experimental results 54

3.5.1 Continuous EREW simulation 55
3.5.1.1 2-dimensional case 55
3.5.1.2 3-dimensional case 56

3.6 Conclusions 56
3.6.1 Topics for further research 58

4 Minimal pipeline architecture—an alternative to
superscalar architecture 61
4.1 Introduction 61
4.2 Dependencies and execution models 62

4.2.1 Non-pipelined execution 63
4.2.2 Pipelined execution 63
4.2.3 Superscalar execution 64

4.3 Implementation techniques 64
4.3.1 General forwarding 65
4.3.2 Simple instruction set 66
4.3.3 Uncoded instruction format 67
4.3.4 Fast branching 67

ixImplementation of Instruction-Level and Thread-Level Parallelism

4.4 Architecture 68
4.4.1 MPA pipeline 70
4.4.2 Multicycle operations and exceptions 71

4.5 Evaluation 72
4.5.1 Simulations 72
4.5.2 Complexity and clock cycle length 74

4.6 Conclusions 76

5 MTAC—a multithreaded VLIW architecture for
PRAM simulation 79
5.1 Introduction 79
5.2 The idea of simulation 81

5.2.1 Parallel random access machine 81
5.2.2 Distributed memory machine 82
5.2.3 Simulating SMM on DMM 82

5.3 Multithreading, distribution and chaining 83
5.3.1 Multithreading 83
5.3.2 Register file distribution 84
5.3.3 VLIW scheduling 84
5.3.4 Functional unit chaining 84
5.3.5 Efficient parallel multithreading with chaining 85

5.4 Multithreaded architecture with chaining 85
5.4.1 MTAC pipeline 87
5.4.2 Other aspects 88

5.5 Performance evaluation 89
5.5.1 Simulation methods 91
5.5.2 Results 93

5.6 Other projects and feasibility 95
5.7 Conclusions 97

Appendixes 103
A The DLX architecture 103
B The superDLX architecture 109
C The minimal pipeline architecture 111
D The multithreaded architecture with chaining 117

x Implementation of Instruction-Level and Thread-Level Parallelism

List of abbreviations:

ADR = Address Unit
ALU = Arithmetic and Logical Unit
CBM = Coated Block Mesh
CFPP = Counter Flow Pipeline Processor Architecture
CISC = Complex Instruction-Set Computer
CM = Coated Mesh
CMP = Compare Unit
CPU = Central Processing Unit
CRCW = Concurrent-Read Concurrent-Write
CREW = Concurrent-Read Exclusive-Write
DAG = Directed Acyclic Graph
DINC = Decoded Instruction Cache
DMM = Distributed Memory Machine
EREW = Exclusive-Read Exclusive-Write
FIFO = First-In First-Out
FU = Functional Unit
IPSM = Instruction-Level Parallel Shared-Memory Architecture
MPA = Minimal Pipeline Architecture
MTAC = Multithreaded Architecture with Chaining
MU = Memory Unit
PRAM = Parallel Random Access Machine
RAM = Random Access Machine
RAM = Random Access Memory
REG = Register Unit
RISC = Reduced Instruction-Set Computer
SEQ = Sequencer
SMM = Shared Memory Machine
SRAM = Static Random Access Memory
VLIW = Very Long Instruction Word
VLSI = Very Large Scale Integrated

xiImplementation of Instruction-Level and Thread-Level Parallelism

List of original publications included in this thesis:

M. Forsell, Are Multiport Memories Physically Feasible? Computer
Architecture News 22, 4 (1994), 47-54.

M. Forsell, V. Leppänen and M.Penttonen, Efficient Two-Level Mesh
based Simulation of PRAMs, Proceedings of the International
Symposium on Parallel Architectures, Algorithms, and Networks,
June 12-14, 1996, Beijing, China, 29-35.

M. Forsell, Minimal Pipeline Architecture—an Alternative to Superscalar
Architecture, Microprocessors and Microsystems 20, 5 (1996), 277-
284.

M. Forsell, MTAC—A Multithreaded VLIW Architecture for PRAM
Simulation, to be published in Journal of Universal Computer Science
(http://cs.joensuu.fi:8080/jucs_root), 1997.

Reprinted with permission from the publishers.

Note: The chapters 2,3,4, and 5 of this thesis are directly based on
the four original articles. Only the lay-out, the referencing
convention, and the numbering of sections, figures, and tables
were unified during the inclusion of the articles for this thesis.

xii Implementation of Instruction-Level and Thread-Level Parallelism

11. Introduction

Chapter 1

Introduction

S ince computer was invented in the 40’s, computer programmers
and users have been requesting faster computers to solve larger
and more complex computational tasks. This need for more

computing power is going to be endless, because there will always be
problems that any computer cannot solve fast enough. Consider for
example the simulation of the whole universe from the big bang to a
moment when sun runs out of hydrogen with a computer by calculating
every move of every nucleon of the universe.

The request for more powerful computers has been, however, realized
amazingly well. The performance of computers has been doubled in
every second year during the last five decades. This has been the result
of faster and smaller components, better integration of circuitries and
better processor architectures.

The limits of the performance of sequential processors are soon to be
reached. We can see this simply by looking at four laws of physics and
computer science based on our current knowledge:

When Silicon Valley wants to look good, it measures itself
against Detroit. The comparison goes like this: If automotive
technology had kept pace with computer technology over the
past few decades, you would now be driving a V-32 instead of
a V-8, and it would have a top speed of 10,000 miles per
hour. Or you could have an economy car that weighs 30
pounds and gets a thousand miles to a gallon of gas. In either
case the sticker price of a new car would be less than $50.

In response to all this goading, Detroit grumbles: Yes, but
would you really want to drive a car that crashes twice a day?

—Brian Hayes, A Computer with Its Head Cut Off,
American Scientist, 03 (1995)

2 Implementation of Instruction-Level and Thread-Level Parallelism

• Signals cannot travel faster than light.
• Wires carrying signals cannot be narrower than atoms.
• Components cannot be smaller than atoms.
• The architecture of processors cannot continuously be improved.

Despite of these laws, there is still one way left to improve the
performance of computers: One can use multiple processors together to
solve large or time-consuming computational tasks. This, however,
introduces several new problems:

• How can we exploit several processors for solving a problem?
• How can the processors communicate with each others?
• How can the processors be synchronized?
• How can we program such machines?
• What kind of computer architecture is needed?

These problems should be solved before parallel computing can become
the mainstream of computing technology. In this thesis we try to find
solutions for the last problem. We outline a computer architecture in
which the communication system, memories and processors are
particularly designed for efficient parallel computation without
compromising the performance in sequential computation.

We will continue this chapter by taking a look at the history of processor
architectures and the models of parallel computation. In Sections 1.3 to
1.7 we describe basic concepts, example processors, example
topologies, benchmark programs, and simulators, which are used when
evaluating the goodness of the proposed architectures. In Section 1.8
we explain our approach to the main theme of this thesis—Instruction-
Level Parallel Shared-Memory Architecture (IPSM). Section 1.9 reveals
why a two-unit architecture is needed. Two final sections outline the
contributions and the conclusions of this thesis as well as introduce the
individual articles, which constitute the main body of this thesis.

1.1 A short history of processor architectures

A processor is a device which executes computing tasks according to
given instructions. Physically it consists of numerous interconnected
digital gates. These gates form logical entities that preserve data
(registers, latches, buffers), carry out the calculation (arithmetic and
logical unit, ALU), take care of the communication to and from
memory (memory unit, MU), or control the processor (sequencers,

31. Introduction

SEQ). ALU, MU, and SEQ are called processing elements or
functional units (FU), because they process the data provided by the
instructions.

Some functional units may be assigned to special uses like address units
(ADR) and compare units (CMP), which are actually ALUs dedicated to
address calculations and comparing operands. A register unit (REG) is
not considered as a functional unit in this thesis, because registers do
not alter data, they only temporarily preserve it.

1.1.1 Instruction scheduling

Different trends in scheduling the execution of instructions in a proces-
sor reflect distinctively the development of processor architectures:

The first processors were designed so that they executed instructions
strictly sequentially [Hennessy90] (see Figure 1.1). These processors are
called non-pipelined processors or scalar processors.

In the 50’s pipelined execution or pipelining was invented to speed up
the execution of instructions [Bloch59, Bucholz62, Kogge81, Flynn95]:
The execution of instructions is divided into several parts called pipeline
stages. The stages are connected to the next to form a pipe. Several
instructions can be overlapped in a pipeline by executing different stages
of consecutive instructions simultaneously (see Figure 1.1). We call
processors that execute instructions in this manner pipelined
processors. A pipelined processor is called superpipelined if the actual
execution part of an instruction is divided into multiple parts, so that the
actual execution is no longer sequential (see Figure 1.1). In the early
70’s vector processors were invented. They use superpipelining and
multi-element vector registers to achieve high performance in certain
scientific applications [Hintz72, Watson72, Russell78].

Theoretically a pipelined processor is up to the number of pipeline
stages times faster than a non-pipelined processor with the same
number of functional units. The speedup comes from the parallel
execution of multiple instructions in the pipeline of the processor. In
practice balancing the length of stages, latches between stages, and
dependencies between instructions decrease the performance of a
pipelined processor remarkably from the theoretical maximum
[Hennessy90, Forsell94c].

4 Implementation of Instruction-Level and Thread-Level Parallelism

Figure 1.1 Non-pipelined, pipelined and superpipelined execution. Grey
rastering is used to emphasize the actual execution part of an
instruction.

In the mid 60’s another way of exploiting parallelism on the instruction-
level called superscalar execution [Thornton64, Anderson67,
Tomasulo67] was invented: Multiple instructions are executed in
multiple functional units simultaneously. It is left for a programmer to
write programs that make a sensible use of the functional units.

There are two kinds of processors using superscalar execution—
superscalar processors invented in the 60’s and VLIW processors
invented in the 80’s.

An instruction of a non-pipelined processor. An instruction of a pipelined machine:
The execution of an instruction is divided
into several parts called pipeline stages.

Execution time Execution time

Fetch Decode Execute Memory Write back

Execution of instructions in a non-pipelined machine.

Execution of instructions in a pipelined machine.

Instructions
Instructions

Instructions

Execution of instructions in a superpipelined machine.

An instruction of a superpipelined machine:
The actual execution part of an instruction
is divided into several parts.

51. Introduction

A superscalar processor is a processor in which superscalar execution
is dynamic. The processor decides which instructions are executed in
paral lel during the execution of a program (see Figure 1.2)
[Thornton64, Anderson67, Johnson89, Hennessy90]. Usually the
execution hardware and functional units are also pipelined.

Figure 1.2 Execution in a superscalar processor with three functional units,
which are pipelined like in Figure 1.1.

Due to dynamic scheduling of instructions in superscalar processors
instructions may not be executed in the original order determined by the
program. This is called out of order execution [Johnson89].

A very long instruction word (VLIW) processor is a processor which
executes single instructions consisting of the fixed number of smaller
subinstructions [Fisher83, Nicolau84] (see Figure 1.3). Subinstructions
are executed in multiple functional units. Subinstructions filling actual
instructions are determined under compile time.

Figure 1.3 Execution in a VLIW processor with three functional units.

In order to achieve high speedups, the programs for VLIW processors
must be compiled using advanced compilation techniques breaking the
basic block structure of the program [Fisher81, Chang91].

Under ideal conditions a processor using superscalar execution and
containing f functional units is f times faster than a non-pipelined
processor containing single functional unit. The theoretical speedup is,

Successive
instructions

Successive
instructions

6 Implementation of Instruction-Level and Thread-Level Parallelism

however, difficult to achieve, because dependencies between the
instructions decrease the performance of processors[Hennessy90,
Forsell94c].

In the 80’s yet another instruction scheduling technique called
multithreading [Kowalik85, Moore96] was invented: a processor
designed so that it is able to execute multiple processes (threads) of a
single program in overlapped manner.

The advantages of multithreading include more flexible multitasking,
better toleration for memory latencies, and better possibilities for
extensive superpipelining. Processors using multithreading are called
multithreaded processors.

1.1.2 The complexity of instructions

Another historical taxonomy of processor architectures used in this
thesis is the classification according to the complexity of instructions.

In the 60’s complex machine language instructions were invented to
save silicon area and to make programming easier [Wilkes53,
Tucker67, Hennessy90]. Complex instructions were implemented by a
short programs that were stored in a microcode memory inside the
processor. Processors using such complex instructions are called
complex instruction-set computer (CISC) processors.

In the late 70’s processors using a smaller number of simpler machine-
language instructions were reinvented, because CISC processors were
shown inefficient [Hennessy90]. The optimization of programs was left
to the job of a compiler. Processors using a smaller number of simpler
instructions are called reduced instruction-set computer (RISC)
processors.

1.2 Models of parallel computation

In this section we describe a taxonomy of parallel computation, which is
based on division into three categories—chip-level parallelism, machine-
level parallelism, and network-level parallelism (see Table 1.1).

71. Introduction

Table 1.1 The models of parallel computation with example machines.

Consider a program consisting of an ordered set of partial ly
independent instructions solving a computational problem. A scalar
processor executes the program by executing instructions one by one in
sequential order determined by the program.

A chip-level parallel or instruction-level parallel processor containing
two or more functional units executes the same program so that two or
more independent instructions are executed simultaneously in at least
one place of the program. (There are certain machines, that cannot be

Chip-level parallelism (instruction-level parallelism)
Pipelined execution

Commercial microprocessors
• R3000 http://www.sgi.com
• first SPARCs http://www.sun.com

Vector processors
• T90 http://www.cray.com
• VPP700 http://www.fujitsu.com
• SX-4 http://www.nec.com

Superscalar execution
Superscalar processors

• PowerPC http://www.ibm.com
• Pentium Pro http://www.intel.com

VLIW processors
• Multiflow TRACE [Almasi94]

Machine-level parallelism (thread-level parallelism)
Distributed memory machine

Networks of processors
• CM-5 [Almasi94]
• SP2 http://www.ibm.com
• T3E http://www.cray.com

Shared memory machine
PRAM model

• TERA http://www.tera.com
• SB-PRAM http://www-wjp.cs.uni-

sb.de/sbpram
Network-level parallelism

Networks of computers
• Local area networks of computers
• Internet

8 Implementation of Instruction-Level and Thread-Level Parallelism

classified by this taxonomy like Illiac IV [Barnes68] and CM-2 [Hillis85].
They use the superscalar execution model, although they are not chip-
level designs. We call them machine-level superscalar computers.)

Consider a program consisting of a number of subprograms (threads)
designed to be executed simultaneously and designed to communicate
with each others to solve a common computational task. A machine
level parallel or thread-level parallel computer containing a number of
interconnected processors can execute such a program so that
subprograms are executed in parallel by the different processors of the
computer.

Physically distributed memory machine (DMM) is a model of most
current machine level parallel computers like CM-5 [Almasi94], SP2 (see
http://www.ibm.com) and T3E (see http://www.cray.com). In a
distributed memory machine a set of processor-memory pairs is
connected to each others by a network. Communication happens
through messages that are sent to other processors using the network.

Another submodel of machine level parallelism is the ideal shared
memory machine (SMM) [Fortune78, Leighton91, McColl92], in which
multiple processors connected to a shared memory (or multiport
memory) execute a common program synchronously. Communication
and synchronization happens through the shared memory. The parallel
random access machine (PRAM) model [Fortune78] is a popular shared
memory machine model in the literature of parallel algorithms.
Unfortunately no remarkable machines using ideal shared memory are
currently available [Forsell94a].

In network-level parallelism or distributed processing the execution of
a computational task is divided to computers connected with a network.
Due to relatively high latencies of networks, programs for network-level
parallel execution should not be communication intensive, if a modest
speedup is to be achieved.

Roughly saying, chip-level parallelism deals with things that can be done
in the chip-level, whereas machine-level parallelism deals with things
that can be done in the computer-level and network-level parallelism
deals with things that can be done in the computer-network level.

91. Introduction

1.3 Basic concepts

In this section we present some basic concepts that are used in the next
four chapters.

Let A be a processor and P a program. The execution time t(A,P) of P
on A is the product of the number of clock cycles n(A,P) needed by P
on A and the clock cycle time c(A) of A. That is

t(A,P) = n(A,P)*c(A).

Assuming that for two processors A and B, t(A,P)<t(B,P) holds, we say
that the speedup s(A,B,P) is t(B,P)/t(A,P), if P is executed in processor
A instead of in processor B.

Let f(A) be the number of functional units in A and let o(A,P) be the
number of useful functional operations needed by P on A. The
utilization of functional units u(A,P) of P on A is

.
Let P1,P2,...,Pb be b programs and let s(A,B,P1),s(A,B,P2),...,s(A,B,Pb)
the speedups of the programs achieved when switching from B to A.
The average speedup a(A;B;P1,P2,...,Pb) of programs P1,P2,...,Pb is a
geometric mean of speedups for a single program:

Let O1,O2,...,On be n operations, e.g., memory read instructions
sending messages in a network and waiting for the answers before
continuing. If operations are initiated at time I1,I2,...,In and completed at
time C1,C2,...,Cn, assuming Ii+1<Ci for all 1≤i≤n-1, we say that the
latency l(Oi) of operation Oi is Ci-Ii for all 1≤i≤n.

Let U1,U2,...,Uu be u processors each simulating the execution of v
virtual processors so that the execution of the program of a simulated
virtual processor is switched to the execution of the program of another
virtual processor at every clock cycle. Let the clock cycle for
U1,U2,...,Uu be c(U), and let the latency of a memory reference for
U1,U2,...,Uu be l(U). Assuming c(U)<<l(U)<c(U)*v holds, the latency of
memory references can be hided, if the program be parallelized for u*v
processors. We call this parallel slackness technique or processor

u(A,P) = o(A,P)
f(A)*t(A,P)

a (A;B;P1,P2,...,Pb)= s (A,B,Pi)∏
i=1

bb

10 Implementation of Instruction-Level and Thread-Level Parallelism

overloading, and say that in this case the program has sufficient
amount of parallel slackness to hide the latency of memory references.

1.4 Example processors

We will investigate eight example processors to figure out possible
speedups of the proposed architectural solutions. The processors are
DLX, superDLX, M5, M11, T5, T7, T11, and T19 (see Table 1.2).

Table 1.2 Eight example processors referred in this thesis. (pl=pipelined,
ss=superscalar, mt=multithreaded, n=number of stages, which is
memory system dependent, presumably 64≤n≤512.)

DLX [Hennessy90] is an experimental load/store RISC architecture
closely resembling MIPS 3000 architecture (see http://www.sgi.com).
DLX will be used as an example of the pipelined execution model. A
short description of DLX processor can be found in Appendix A.

SuperDLX [Moura93] is an experimental superscalar processor derived
from DLX architecture. It will be used to illustrate the function of
superscalar execution model.

SuperDLX is described in Appendix B. For comparison purposes we did
not evaluate the original superDLX, but a variation that does not have
separate address units. Address calculation of this variation is assumed
to be carried out in ALUs like in M5 and M11. We assumed also that
this variation is able to detect and eliminate empty operations.
Otherwise the performance of superDLX would be significantly lower
than that showed in Chapter 4.

DLX sDLX M5 M11 T5 T7 T11 T19

Execution model pl ss ss ss ss+pl ss+pl ss+pl ss+pl
Instr scheduling pl ss VLIW VLIW mt mt mt mt
Pipeline stages 5 5 2 2 n n n n
Functional units 4 10 4 10 4 6 10 18
ALU 1 4 1 4 1 3 6 12
AIC 1 1 1 1 1 1 1 1
MU 1 4 1 4 1 1 2 4
SEQ 1 1 1 1 1 1 1 1

Register unit 1 1 1 1 1 1 1 1

111. Introduction

M5 and M11 are instances of our own abstract VLIW architecture
(Minimal Pipeline Architecture, MPA) to be outlined in Chapter 4 (see
also Appendix C). They are used to evaluate the scalar unit performance
of IPSM.

T5, T7, T11 and T19 are instances of our abstract multithreaded
architecture (Multithreaded Architecture with Chaining, MTAC) to be
outlined in Chapter 5 (see also Appendix D). They are used to evaluate
the parallel unit performance of IPSM.

The example processors are chosen in such a way that DLX, M5 and
T5 have approximately the same amount of processing resources, i.e.,
functional units. Similarly, superDLX and M11 have the same amount
of processing resources. In addition, T11 has twice the processing
resources of T7 and T19 has twice the processing resources of T11.

Unless otherwise stated, we only consider the performance of
processors in clock cycles, although with current technology the clock
frequency of MTAC can be made much higher (perhaps 600 MHz or
more) than the clock frequency of DLX, superDLX and MPA (perhaps
300 MHz). This is because MTAC supports higher degree of pipelining
and does not need forwarding paths. The MHz numbers are derived
from current PowerPC (see http://www.ibm.com), Alpha (see
http://www.dec.com) and Exponential (see http://www.exp.com)
processors.

1.5 Example topology

We evaluated a novel communication topology (CBM), which is specially
designed for efficient simulation of a shared memory machine.

The Coated Mesh (CM) is a topology in which a mesh of routers is
coated with processor-memory modules [Leppänen95]. This raises the
communication capacity and volume of the network to a level where
parallel slackness can be used to hide the latency of the network.

The Coated Block Mesh (CBM) is a variation of the coated mesh, in
which routers are grouped and replaced with router blocks and
processors are grouped with small multiport memories to balance costs
of processing and communication hardware. CBM is defined in detail in
Chapter 3.

12 Implementation of Instruction-Level and Thread-Level Parallelism

1.6 Benchmarks

We used three benchmark sets to evaluate the performance and some
other properties of CBM, MPA and MTAC.

Random communication pattern generation was used to evaluate the
communication capacity of CBM: In every clock cycle every processor
sent a message to a randomly selected target approximating the effect
of randomized hashing of memory locations over the modules. This part
of the article [Forsell96a] was created by Ville Leppänen.

The evaluation of MPA was made by simulating the execution of five
hand compiled toy benchmarks (see Table 1.3). We measured the
execution time, program code size and utilization of functional units in
MPA.

Table 1.3 The benchmarks programs for MPA (upper five) and MTAC
(lower seven).

Program Notes

block A program that moves a block of words to another

location in the memory
fib A program that calculates the fibonacci value
sieve A program that calculates prime numbers using the

sieve of Eratosthenes
sort A program that sorts an array of words using the

recursive quicksort algorithm
trans A program that returns the transpose of a matrix of

words

add A program that calculates the sum of two matrices
block A program that moves a block of words to another

location in the memory
fib A non-recursive program that calculates the fibonacci

value
max A program that finds the maximum value of matrix

of words
pre A program that calculates all prefix sums of a matrix

of words
sort A program that sorts an array of words using

recursive mergesort algorithm
trans A program that returns the transpose of a matrix of

words

131. Introduction

The evaluation of MTAC was made by simulating the execution of seven
hand compiled toy benchmarks (see Table 1.3). These benchmarks
represent much used primitives of parallel programs. Toy benchmark
programs were chosen for simplicity, because we wanted to use hand
compilation to make sure we were measuring the performance of
architectures, not compilers.

Our hand compilation techniques include software pipelining and
register renaming [Forsell94c]. Loop unrolling was not extensively used,
because it changes the algorithms into more uninteresting ones, i.e., the
programs tend to became long sequences of single instructions. To
ensure the proper evaluation of the instruction-level parallel execution
models, no time consuming instructions like multiplication, division and
floating point operations were used in the benchmarks, except in the
examples presented in Section 1.9.

1.7 Simulators

We used four simulator programs to evaluate the performance of our
example architectures:

The execution of the DLX assembler programs was simulated using
dlxsim (version 1.1) [Hennessy90] (ftp://ftp-acaps.cs.mcgill.ca). It
contains debugger-like tools for managing the execution and statistical
tools for collecting information on the usage of instructions, pipeline
stalls, and branches.

We used the superDLX simulator (version 1.0) to investigate the
superscalar version of the DLX processor [Moura93] (ftp://ftp-
acaps.cs.mcgill.ca). Both the superDLX processor and the simulator are
being developed at McGill University, Canada. The simulator is a
configurable superscalar processor simulator including debugger-like
tools for managing execution, visualization tools for investigating the
state of the processor and statistical tools for collecting information on
the execution of instructions, the usage of functional units and buffers,
the branch prediction and the instruction issue.

To investigate the effectiveness of M5 and M11 processors we
implemented a simulator called MPAsim (version 1.0.1) [Forsell94b]
(ftp://cs.joensuu.fi). MPAsim includes debugger-like tools for managing
execution, visualization tools for inspecting the state of processor and
memory, and statistical tools for collecting information on the

14 Implementation of Instruction-Level and Thread-Level Parallelism

instruction execution, the utilization of functional units and the memory
usage. The program includes also a code translation utility that converts
DLX assembler programs into an MPA assembler and a parallelizer that
compresses the basic blocks of MPA code.

We also implemented a simulator called MTACsim (version 1.1.0)
[Forsell97b] (ftp://cs.joensuu.fi) to investigate the effectiveness of T5,
T7, T11 and T19 processors. MTACsim includes debugger-like tools for
managing execution, visualization tools for inspecting the state of
processor and memory, and statistical tools for collecting information on
the instruction execution, the utilization of functional units and the
memory usage.

All benchmarks testing processors were run assuming ideal memory
hierarchy (i.e., there were no cache misses or the cycle time of main
memory was assumed smaller than that of the processor).

1.8 Approach taken

We selected to investigate the realization of the SMM model, because it
is theoretically elegant and easy to program. In addition, if the model is
realizable a large number of algorithms written for it become instantly
usable [Fortune78, Leighton91, McColl92].

First, we investigated the feasibility of an obvious VLSI implementation
of a SMM. Therefore we outlined two possible structures for limited-size
multiport memory chips and estimated the cost-effectiveness of a
memory system using proposed chips. Unfortunately it turned out that
large machines using such multiport memories are not feasible.

After that we began to investigate the possibility of simulating a SMM by
a DMM work optimally. This, however, introduces two problems:

• The latency of memory operations is high due to message passing
• Messages can be contended in a network

According to earlier investigations these problems can be solved by
using two basic techniques—parallel slackness and randomized hashing
[Schwartz80, Gott l ieb83, Pfister85, Ranade87,Valiant90,
Abolhassan93]. The proposed architectures, however, leave many
practical problems open:

151. Introduction

1. What kind of a network topology is realizable and fast enough?
2. What kind of processors are fast and still capable of exploiting

parallel slackness?
3. How can we eliminate thread switch and message handling

overheads?
4. How can we exploit instruction-level parallelism in a processor

aimed for thread-level parallel execution?
5. How can we eliminate false dependencies between instructions?
6. How can we execute sequential programs efficiently in a parallel

machine?
7. How can we synchronize execution between processors and

threads?

We designed a CBM communication architecture to address problem 1.
CBM is physically scalable, because it can be fitted into a three
dimensional space, and the length of the wires is short and does not
depend on the number of processors. CBM combines limited size
multiport memories and a coated mesh topology providing a balancing
method to more cost-effective systems.

In addition, we outlined MPA to address problems 5 and 6. MPA uses
minimal pipelining to eliminate delays caused by the false dependencies
between instructions. This leads to a high performance when executing
sequential programs. Two implementations of MPA were evaluated with
simulations.

Finally, we outlined MTAC to address problems 2, 3, 4, 5 and 7.
MTAC uses multithreading to hide the latency of passing memory
request messages in a network, chaining to exploit inter-thread
instruction-level parallelism eliminating false dependencies between the
instructions, and superpipelining to maximize performance. There are
no thread switch and message handling overheads. Four
implementations of MTAC were evaluated with simulations.

This thesis combines the mentioned investigations into a single
architectural framework—Instruction Level Parallel Shared Memory
Architecture (IPSM)—consisting of four main components: limited-size
multiport memories, scalable two-level communication network,
minimally pipelined scalar unit architecture and superpipelined parallel
unit architecture. We selected to use a separate scalar unit because
MTAC turned out to be slow with sequential programs (see Section 1.9
for further information). According to our experiments MPA is a natural
choice for our scalar unit architecture, because it provides better

16 Implementation of Instruction-Level and Thread-Level Parallelism

performance than basic pipelined and superscalar processors with
sequential programs.

The evaluations of the proposed components were made by running
benchmark programs on processors and by sending random message
patterns on communication networks using parametric simulators. The
feasibility analysis was made by estimating the VLSI area needed for
implementations. We limited the discussion only to VLSI techniques,
because the state of optical computing is still rather undeveloped. The
situation may, however, change in the near future.

1.9 Why a scalar unit is needed?

IPSM has a two unit architecture resembling the two unit architecture
used in vector computers. All applications that are parallel enough are
executed in the parallel unit using MTAC, and the remaining
applications are executed in the scalar unit using MPA.

The advantages of the two unit architecture can be seen by looking at
two applications—Blk and Rand. Blk is a program that moves a 6 MB
memory block to another place in the memory. It is completely
paral lel izable, because the words of the memory block are
independently movable. Rand is a program that calculates a 1024th
random number using congruence generator method. It is strictly
sequential, because the value of a generator is unpredictably dependent
on the previous value of the generator.

Assume that we have a 32-bit IPSM computer with a parallel unit
consisting of 1536 512-thread T5 processors running at 600 MHz
connected to each others with a 3-dimensional 16x16x16-router mesh,
and a scalar unit consisting of a single M5 processor running at 300
Mhz. Assume also that the synchronization between consecutive steps
of the parallel unit can be issued in zero time and that the data
prefetching is perfect in the case of the scalar unit.

With these assumptions the execution time of Blk is 3.4 us in the
parallel unit and 11 ms in the scalar unit. Thus, the achieved speedup is
3100. In the case of Rand the situation is totally different. The
execution time of Rand is 3.5 ms in the parallel unit and 14 us in the
scalar unit. Now, the scalar unit is 260 times faster than parallel unit.

171. Introduction

1.10 Contents of the individual articles

The components of IPSM, except CBM, are original designs presented
first time in the research articles [Forsell94a, Forsell96b, Forsell97a]
which constitute the main body of thesis together with the joined article
[Forsel l96a]. The contents of these articles are presented in
chronological order.

1.10.1 Are multiport memories physically feasible?

This article [Forsell94a] is the oldest one. At that time we believed that
simulations of a shared memory machine by a distributed memory
machine were too slow for real applications: Mesh-based structures did
not have enough bandwidth to profit from paral lel slackness
[Prechelt93, Leppänen93] and efficient logarithmic diameter networks,
like butterflies, were impossible to build [Ranade87]. The situation has
changed after the introduction of remarkably faster communication
components and better topologies like the coated meshes [Forsell96a].

We investigate the possibility of building multiport memory chips, which
can be used as a building block of an ideal shared memory machine.
Two possible structures for such chips are proposed. Unfortunately, the
complexity of the proposed chips turns out to be very high. According
to an evaluation, p-port memory is p2 times more complex than a single
port memory of the same size. It is hard to imagine that multiport
memories could be implemented by another structure that is simpler
than that proposed.

1.10.2 Efficient two-level mesh based simulation of PRAMs

This article [Forsell96a] is joined work with Ville Leppänen and Martti
Penttonen. My contribution was mainly to propose limited size multiport
memories for low-level communication, propose hardware techniques
for retaining memory consistency and estimate the overall feasibility of
the proposed communication and memory hardware.

We extend the concept of coated mesh to coated block mesh and
introduce efficient routing techniques like synchronization wave and
moving threads. This simplifies the structure of router blocks
significantly, but makes processor-memory blocks much more complex.
At the same time the latency of memory requests decreases implying

18 Implementation of Instruction-Level and Thread-Level Parallelism

lower overloading factors. According to our measurements the
proposed routing techniques decrease the work of a parallel machine
using coated mesh or coated block mesh in relation to the work done by
an ideal shared memory machine below two. In addition, varying the
size of the block according to available resources provides a good
balancing method for more cost effective systems.

1.10.3 Minimal pipeline architecture—an alternative to
superscalar architecture

Superscalar processor architects use very deep pipelines to dynamically
eliminate delays caused by false data dependencies between instructions.
This increases the delays caused by control dependencies. Architects
have to use extensive branch prediction techniques to reduce the loss of
performance due to control delays. Unfortunately this (together with
dynamic instruction scheduling mechanism) leads to a complex internal
structure of processors.

An alternative approach is to minimize the length of a pipeline so that
both data and control delays are minimized. This requires novel
techniques like general forwarding, uncoded instructions, simple
instruction set and fast branching (see Chapter 4 for explanation). This
article [Forsell96b] focuses on describing these techniques and outlining
the structure of minimal pipeline architecture.

As the measurements indicate this approach gives better scalar unit
performance than superscalar architectures using out of order execution
while it requires no more silicon area.

1.10.4 MTAC—a multithreaded VLIW architecture for PRAM
simulation

This article [Forsell97a] is the newest one. Most current parallel
machines have been claimed inefficient. This is mainly because current
processor are not designed with a shared memory simulation in mind.
They lack proper mechanisms for handling parallel slackness, and they
suffer from unnecessary communication overheads.

We outline a multithreaded architecture with chaining, which is specially
designed for an efficient PRAM simulation. The list of techniques used is
extensive: superpipelining, multithreading, functional unit chaining and

191. Introduction

VLIW scheduling. The architecture uses multithreading to hide the
latency of memory requests in a communication network. VLIW
scheduling is needed to simplify the structure of the processor and to
allow for instruction-wise synchronization. Functional unit chaining gives
a possibility to run a block of code containing data dependencies within
a single clock cycle. Finally, extensive superpipelining decreases the
clock cycle to a minimum.

The described architecture yields high parallel unit performance for the
shared memory simulation, but fails to speedup the sequential parts of
programs (see Section 1.9). Thus, MTAC is not the ultimate solution for
a general purpose parallel computer, but it need designs like MPA for
an efficient scalar-unit execution.

1.11 Conclusions

The main contribution of this thesis is the IPSM. The following
statements represent the conclusions of the research on this
architecture:

• Our IPSM framework outlines a general purpose parallel computer
architecture based on the shared memory model. It succeeds to avoid
most architectural bottlenecks, which are present in most current
parallel computes, because they use architectures originally designed
for sequential computing. IPSM features a static VLIW-style scheduling
of instructions, and the absence of message passing and thread switch
overheads. In the execution of parallel programs, IPSM exploits
parallel slackness to hide the high memory system latency, and
interthread instruction-level parallelism to eliminate delays caused by
the dependencies between instructions belonging to a single thread. In
the execution of sequential programs, IPSM uses minimal pipelining to
minimize the delays caused by the dependencies between instructions.

• Limited-size multiport memories are shown physically feasible, but
unfortunately a proposed p-port memory system is p2 times more
expensive than a single-port memory system of the same size.
However, the proposed multiport memories can be used as a building
blocks for two-level communication systems or small shared memory
machines. The structure of such a limited-size multiport memory chip
is a simple extension of the structure of a single port memory chip.

20 Implementation of Instruction-Level and Thread-Level Parallelism

• As a generalization of the coated mesh, the 2-dimensional and 3-
dimensional coated block meshes simulate the PRAM model time-
processor optimally with moderate simulation cost. Using proper
amount of parallel slackness, the cost can be decreased clearly below 2
routing steps per a simulated PRAM step.

• A VLIW architecture using crossbar interconnection of functional units
and minimal pipelining (MPA) is not more complex than a basic
superscalar architecture using out of order execution and branch
prediction, but offers better performance.

• According to our experiments chaining seems to improve the
exploitation of instruction-level parallelism in MTAC to a level where
the achieved speedup corresponds to the number of functional units in
a processor.

• Minimal pipelining can be used to eliminate all false data and control
dependencies resulting high scalar-unit performance whereas extensive
superpipelining along with multithreading and functional unit chaining
can be used to eliminate even true dependencies between the
instructions belonging to a single thread resulting a good parallel unit
performance.

References

[Abolhassan93]
F. Abolhassan, R. Drefenstedt, J. Keller, W. Paul, D. Scheerer, On
the Physical Design of PRAMs, Computer Journal 36, 8 (1993),
756-762.

[Almasi94]
G. Almasi and A. Gott l ieb, Highly Parallel Computing ,
Benjamin/Cummings, Redwood City, 1994.

[Alverson 90]
R. Alverson, D. Callahan, D. Cummings, B. Kolblenz, A. Porterfield,
B. Smith, The Tera Computer System, Proceedings of the
International Conference on Supercomputing, Association for
Computing Machinery, New York, 1990, 1-6.

[Anderson67]
D. Anderson, F. Sparacio and R. Tomasulo, The IBM 360 Model
91: Machine philosophy and instruction handling, IBM Journal of
Research and Development 11, 1 (1967), 8-24.

211. Introduction

[Barnes68]
G. Barnes, R. Brown, M. Kato, D. Kuck, D. Slotnick and R. Stokes,
The Illiac IV computer, IEEE Transactions on Computing C-17,
(1968), 746-757.

[Bloch59]
E. Bloch, The engineering design of the Stretch computer,
Proceedings of the Fall Joint Computer Conference, 1959, 48-
59.

[Bucholz62]
W. Bucholz, Planning a Computer System: Project Stretch,
McGraw-Hill, New York, 1962.

[Chang91]
P. Chang, S. Mahlke, W. Chen, N. Warter and W. Hwu, IMPACT:
An architectural framework for multiple-instruction-issue processors,
Proceedings of the 18th Annual International Symposium on
Computer Architecture, Association for Computing Machinery,
New York, 1991, 266-275.

[Fisher81]
J. Fisher, Trace Scheduling: A technique for global microcode
compaction, IEEE Transactions on Computers C-30, (1981), 478-
490.

[Fisher83]
J. Fisher, Very Long Instruction Word Architectures and ELI-512,
Proceedings of the 10th Annual International Symposium on
Computer Architecture, Computer Society Press of the IEEE,
Washington, 140-150.

[Flynn95]
M. Flynn, Computer Architecture—Pipelined and Parallel
Processor Design, Jones and Bartlett Publishers, Boston, 1995.

[Forsell94a]
M. Forsell, Are multiport memories physically feasible?, Computer
Architecture News 22, 4 (1994), 47-54.

[Forsell94b]
M. Forsell, MPASim - A simulator for MPA, Report B-1994-3,
Department of Computer Science, University of Joensuu, Joensuu,
1994.

[Forsell94c]
M. Forsell, Design and Analysis of Some Chip Level Parallel
Architectures, Licentiate thesis, Department of Computer Science,
University of Joensuu, Joensuu, 1994.

22 Implementation of Instruction-Level and Thread-Level Parallelism

[Forsell96a]
M. Forsell, V. Leppänen and M. Penttonen, Efficient Two-Level
Mesh based Simulation of PRAMs, Proceedings of the
International Symposium on Parallel Architectures, Algorithms
and Networks, June 12-14, 1996, Beijing, China, 29-35.

[Forsell96b]
M. Forsell, Minimal Pipeline Architecture—an Alternative to
Superscalar Architecture, Microprocessors and Microsystems 20, 5
(1996), 277-284.

[Forsell97a]
M. Forsell, MTAC - a multithreaded VLIW architecture for PRAM
simulation, to be published in Journal of Universal Computer
Science (http://cs.joensuu.fi:8080/jucs_root), 1997.

[Forsell97b]
M. Forsell, MTACSim - A simulator for MTAC, Report B-1997-1,
Department of Computer Science, University of Joensuu, Joensuu,
1997.

[Fortune78]
S. Fortune and J. Wyllie, Parallelism in Random Access Machines,
Proceedings of 10th ACM STOC, Association for Computing
Machinery, New York, 1978, 114-118.

[Hennessy90]
J. Hennessy and D. Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kaufmann Publishers Inc., Palo
Alto, 1990.

[Hillis85]
W. D. Hillis, The Connection Machine, MIT Press, Cambridge,
1985.

[Hintz72]
R. Hintz and D. Tate, Control data STAR-100 processor design,
COMPCON, February 1972, 1-4.

[Gottlieb83]
A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph
and M. Snir, The NYU Ultracomputer - Designing a MIMD, shared-
memory parallel machine, IEEE Transactions on Computers C-32,
(1983) 175-189.

[Johnson89]
W. M. Johnson, Super-Scalar Processor Design, Technical Report
No. CSL-TR-89-383, Stanford University, Stanford, 1989.

[Kogge81]
P. M. Kogge, The Architecture of Pipelined Computers,
Hemisphere Publishing Corporation, Washington, 1981.

231. Introduction

[Kowalik85]
J. Kowalik (editor), Parallel MIMD computation: the HEP
supercomputer and its applications, MIT Press, Cambridge, 1985.

[Leighton91]
T. F. Leighton, Introduction to Parallel Algorithms and
Architectures: Arrays, Trees, Hypercubes, Morgan Kaufmann, San
Mateo, 1992.

[Leppänen93]
V. Leppänen and M. Penttonen, Simulation of PRAM Models on
Meshes, Research Report R-93-4, Department of Computer
Science, University of Turku, Turku, 1993.

[Leppänen95]
V. Leppänen and M. Penttonen, Work-Optimal Simulation of PRAM
Models on Meshes, Nordic Journal of Computing 2, 1 (1995), 51-
69.

[McColl92]
W. F. McColl, General Purpose Parallel Computing, Lectures on
Parallel Computation Proceedings 1991 ALCOM Spring School
on Parallel Computation (Editors: A. M. Gibbons and P.
Spirakis), Cambridge University Press, Cambridge, 1992, 333-387.

[Moore96]
S. Moore, Multithreaded Processor Design, Kluwer Academic
Publishers, Boston, 1996.

[Moura93]
C. Moura, SuperDLX - A Generic Superscalar Simulator, ACAPS
Technical Memo 64, McGill University, Montreal, 1993.

[Nicolau84]
A. Nicolau and J. Fisher, Measuring the parallelism available for very
long instruction word architectures, IEEE Transactions on
Computers C-33, 11 (1984), 968-976.

[Pfister85]
G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J.
Kleinfelder, K. P. McAuliffe, E.A. Melton, V. A. Norton and J.
Weiss, The IBM Research Parallel Processor Prototype (RP3):
Introduction and Architecture, Proceedings of International
Conference on Parallel Processing, 1985, 764-771.

[Prechelt93]
L. Prechelt, Measurements of MasPar MP-1216A Communication
Operations, Technical Report 01/93, Universität Karlsruhe,
Karlsruhe, 1993.

24 Implementation of Instruction-Level and Thread-Level Parallelism

[Ranade87]
A. G. Ranade, S. N. Bhatt, S. L. Johnson, The Fluent Abstract
Machine, Technical Report Series BA87-3, Thinking Machines
Corporation, Bedford, 1987.

[Russell78]
R. Russell, The Cray-1 computer system, Communications of the
ACM 21, 1 (1978), 63-72.

[Schwarz80]
J. T. Schwarz, Ultracomputers, ACM Transactions on
Programming Languages and Systems 2, 4 (1980) 484-521.

[Thornton64]
J. Thornton, Parallel operation in the Control Data 6600,
Proceedings of the Fall Joint Computer Conference 26, 1964,
33-40.

[Tomasulo67]
R. Tomasulo, An efficient algorithm for exploiting multiple arithmetic
units, IBM Journal of Research and Development 11, 1 (1967),
25-33.

[Tucker67]
S. Tucker, Microprogram control for the System/360, IBM Systems
Journal 6, 4 (1967), 222-241.

[Valiant90]
L. G. Valiant, A Bridging Model for Parallel Computation,
Communications of the ACM 33, 8 (1990), 103-111.

[Watson72]
W. Watson, The TI ASC—A highly modular and flexible super
computer architecture, Proceedings of the 1972 AFIPS Fall Joint
Computer Conference, 221-228.

[Wilkes53]
M. Wilkes, The best way to design an automatic calculating machine,
in Manchester University Computer Ibaugural Conference 1951,
Ferranti, Ltd., London, 1953.

252. Are multiport memories physically feasible?

Chapter 2

Are multiport memories
physically feasible?

Martti J. Forsell
Department of Computer Science, University of Joensuu, PB 111, FIN-80101 Joensuu, Finland

Abstract

A Parallel Random Access Machine (PRAM) is a popular model of
parallel computation that promises easy programmability and
great parallel performance, but only if efficient shared main

memories can be built. This would not be easy, because the complexity
of shared memories leads to difficult technical problems. In this paper we
consider the idea of true multiport memory that can be used as a building
block for efficient PRAM-style shared main memory. Two possible
structures for multiport memory chips are presented. We shall also give a
preliminary cost-effectivity and performance analysis for memory
systems using proposed multiport RAMs. Results are encouraging: At
least small size multiport memories seem to be physically feasible.

Keywords: PRAM, parallelism, shared memories, VLSI

2.1 Introduction

Efficient parallel computers are hard to manufacture because of difficult
technical problems. The most important is: how to arrange efficient
communication between processors?

Theoretically this problem was best solved by using a shared main
memory between processors [Schwarz66, Karp69, Fortune78]. In the
50’s, 60's and 70's however, the memory manufacturing technology
was so underdeveloped that the idea of building true shared memories
was considered impossible. Instead several other possibilities, like

Reprinted from SIGARCH Computer Architecture News, 22 4 Martti Forsell, Are multiport memories physically
feasible?, 47-54, 1994 with kind permission of Association for Computing Machinery, New York, USA.

26 Implementation of Instruction-Level and Thread-Level Parallelism

memory interleaving and memory distribution were investigated
[Burnett70, Enslow74, Schwarz80].

The use of true shared main memory continued among algorithm
writers, because of the simplicity of programming. Even several abstract
parallel programming models using shared memory were designed. The
most widely used model is a Parallel Random Access Machine
[Fortune78, Leighton91, McColl92] (see Section 2.2 for a brief
explanation).

During the 80’s one began to use message passing processor networks
to simulate the PRAM model [Schwatz80, Gottlieb83, Gajski83,
Hillis85, Pfister85, Ranade87, Abolhas91], because the manufacturing
of shared memories was still considered impossible. Despite of those
efforts, no serious commercial products are available yet.

In this paper we return to the original idea of a shared memory of
PRAM model and consider it in the light of current VLSI technology.
We claim that the progress in the VLSI area during the last two decades
has made it possible to consider manufacturing the main memory of a
PRAM-style computer of shared semiconductor memories.

The number of ports and size of multiport memories will be quite
limited, but it will be shown that even with small port count computers
with multiport memories will provide good performance. Two possible
structures of multiport memories will be presented. We will also estimate
the complexity, cost-effectiveness and performance of proposed
multiport memories.

2.2 Parallel random access machine

The Parallel Random Access Machine (PRAM) model is a logical
extension of the Random Access Machine (RAM) model. It is a widely
used abstract model of parallel computation [Fortune78, Leighton91,
McColl92].

A PRAM consists of P processors each having a similar register
architecture. All processors are connected to a shared memory (see
Figure 2.1). All processors run the same program synchronously, but a
processor may branch within the program independently of other
processors. That is, each processor has its own Program Counter.

272. Are multiport memories physically feasible?

Figure 2.1 The PRAM model. P1,...,PP are processors.

The model has several different variants according to level of shared
memory access. We refer to two of them in this paper (most of the
other models can be treated analogously):

CRCW Common Processors can read and write a memory cell
simultaneously. In the case of writing all processors
storing to the same cell must have identical data.

CRCW Priority Processors can read and write a memory cell
simultaneously. In the case of writing to the same
cell the processor with the lowest index succeeds.

The Recent PRAM algorithm research is valuable because it promises
that parallel processing power of multiprocessors can be exploited in
very large range of applications if PRAM-style computers can be built.

PRAM processors are easy to implement, because they are similar to
those in sequential machines. On the contrary, the implementation of
shared memory is very difficult due to technical problems. In the
following section we will consider these problems and proposed
solutions.

2.3 Proposed implementations of shared memories

Except multiport memories there are at least three different methods to
implement a shared memory: One can use an ordinary memory,
memory interleaving or shared memory simulation by distributed
memories.

2.3.1 Ordinary memory

Ordinary memories or single port memories are used to implement
shared memories in small multiprocessor systems. An ordinary memory

P1 P2 Pp

Shared memory

28 Implementation of Instruction-Level and Thread-Level Parallelism

module can be connected to several processors through a time-shared
bus [Enslow74] (see Figure 2.2).

Figure 2.2 A multiprocessor system using an ordinary memory.

By using this method, we however face serious bandwidth problems: If,
for example, P processors are simultaneously accessing the memory,
this will take P times longer than in the case of a single processor. That
is because only one memory access can be done through a single port
at the same time. This problem can be partially solved by using
snooping caches [Tomasevic93], but they will not help us in the case of
multiple simultaneous writes.

In order to use an ordinary memory in a multiprocessor system the
memory must be superfast, otherwise the performance of the system
will not be much greater than the performance of a single processor
system. Because the current access times of ordinary memory chips are
apparently equal to processor clock cycle times, the existence of a
superfast memory is considered unrealistic. Therefore, there is almost
no possibility for implementing any serious parallel computer system
with ordinary memories.

2.3.2 Memory interleaving

Memory interleaving is a memory system implementation method that
is used for example in current supercomputers. The memory of an
interleaved system is divided into several independent banks that are
connected to processors through a crossbar switch [Burnett70,
Enslow74] (see Figure 2.3).

Information is stored in the memory with sequential items residing in
banks that are consecutive, modulo the number of memory banks. A
memory bank is a memory block that is built as an ordinary memory.

P1 P2 Pp

Ordinary memory

Time shared bus

292. Are multiport memories physically feasible?

Thus, it is not possible that several processors simultaneously access a
memory within the same bank. However, several processors can access
several banks simultaneously.

Figure 2.3 A multiprocessor system using an interleaved memory. P1,...,PP

are processors and M1,...,Mb are memory banks.

The advantage of the memory interleaving is obvious with vectorizable
algorithms, because subsequent vector elements can be placed in
subsequent banks and accessed simultaneously. Thus parts of vectors
can be fetched in one memory cycle.

However interleaved memory systems fail to provide the ease of
programming and the performance of ideal shared memories.
Constantly i t happens that several processors try to access
simultaneously the same bank and some waiting is needed. This is very
usual especially in efficient parallel PRAM algorithms, like parallel
sorting and prefix calculation.

2.3.3 Simulation of a shared memory by a distributed memory

So far, the most promising method for implementing a shared memory
has been a simulation of a shared memory by a distributed memory.
In this solution an ordinary memory is distributed over a processor
network (see Figure 2.4).

P1 P2 Pp

M1

M2

Mb

connection network or crossbar switch

30 Implementation of Instruction-Level and Thread-Level Parallelism

Figure 2.4 A multiprocessor system using a shared memory simulation by
a distributed memory. Processors P1,...,Pp with their local
memories M1,...,Mp are organized here as a 2-dimensional mesh.

Each network node consists of both a processor and an ordinary local
memory. Processors use message passing to access memory locations
that do not lie in their local memory.

According to investigations such a processor networks can be used to
simulate a PRAM or some other parallel processing model [Schwatz80,
Gottlieb83, Hillis85, Pfister85, Alt87, Bilardi88, Ranade87, Valiant90,
Feldman92, Prechelt93]. The suggested network topologies range from
hypercubes to butterflies and meshes.

It has turned out that the proposed shared memory machines have poor
performance in relation to the ideal PRAM model [Ranade87,
Blelloch89, Prechelt93]. That is because the simulation of a shared
memory takes so much time.

Table 2.1 shows estimated average routing times of message
permutations in three architectures. As can be seen, hundreds or even
thousands of steps may be needed for simulating one permutation. As a
result one PRAM step would execute in several hundreds of steps. Thus,
we may need hundreds of processors even to get the performance of
single processor.

We should, however, be careful making radical conclusions from these
numbers. The performance of real parallel machines depend heavily on

A lti t i h d

M1

P1

M2

P2

M√p

P√p

M√p+1

P√p+1

M√p+2

P√p+2

M2√p

P2√p

Mp-√p+1

Pp-√p+1

Mp-√p+2

Pp-√p+2

Mp

Pp

312. Are multiport memories physically feasible?

very many technical and architectural things, which should be
mentioned explicitly when doing comparisons. The numbers indicate,
however, that the performance of the investigated systems will not be
sufficient for efficient PRAM simulation.

Machine Steps Processors
--
Fluent Machine [Ranade87] 3380 112k
PRAM on CM2 [Blelloch89] 600 64k
MasPar MP-1216A [Prechelt93] 4800 16k
--
Table 2.1 Latencies for permutation routing in memory cycles on certain

parallel machines.

2.4 A natural solution for shared memories: multiport
semiconductor RAM

The fourth and the most obvious way to implement shared memories is
to use multiport RAMs as building blocks for a true shared memory.

A Multiport Random Access Memory (multiport RAM) is a memory
having multiple ports that are to be used to access memory cells
simultaneously and independently of each other.

In parallel computers one processor is usually connected to one port.
From the processor point of view there exists a uniform shared memory
connected to it. Other processors do not affect the operation of a
processor; only the contents of a memory may be changed by
instructions executed by other processors.

Note that the term multiport memory is used here in different meaning
than in the 70’s, when multiport memories were actually interleaved
memories in which connection networks were closely integrated into the
memory systems [Enslow74].

Small and fast multiport Static Random Access Memories (SRAMs) are
currently commercially available, for example, from IDT. Sizes of
memories vary from 8 to 128 kbit and number of ports vary from 2 to
4.

It is possible to use these memories to build Concurrent Read
Exclusive Write (CREW) PRAM-style shared memories, but the limited

32 Implementation of Instruction-Level and Thread-Level Parallelism

size and port count badly affect the performance of such memory
systems in real world applications. Also the structure of these memories
does not allow simultaneous writes that is needed in CRCW PRAM-style
memories.

Figure 2.5 The logical structure of an ordinary single port m cell static RAM
chip. Chip select and power lines are not shown. The physical
lay-out of components does not reflect the actual placement of
semiconductor elements and is meant only for comparing single
port and multi port versions of memory chips. For the same
reason the connection matrices are rounded with dotted lines
and labelled with complexity numbers.

To estimate the theoretical feasibility of multiport main memories in
general, two more powerful structures of multiport RAMs are presented
and analyzed.

Address decoder √mDE1

Address
decoder
√mDE2

A1

Address line
connection matrix:
log m x 0.5log m lines

Data
In

Column selection
connection matrix:
√m x √m lines

Row selection
connection matrix:
√m x √m lines

Sel

In

Out Wri

Memory cell
MEM11

Sel

In

Out Wri

Memory cell
MEM12

Sel

In

Out Wri

Memory cell
MEM1√m

Sel

In

Out Wri

Memory cell
MEM21

Sel

In

Out Wri

Memory cell
MEM22

Sel

In

Out Wri

Memory cell
MEM2√m

Sel

In

Out Wri

Memory cell
MEM√m1

Sel

In

Out Wri

Memory cell
MEM√m2

Sel

In

Out Wri

Memory cell
MEM√m√m

Memory cells:
2√m x 3√m lines

Alog m

ADDRESS LINES
Data
Out

Read
/Write

332. Are multiport memories physically feasible?

2.4.1 The structure of a multiport RAM

Let us first take a look at the logical structure of an ordinary RAM. A
typical SRAM chip consists of two address decoders, memory cell array,
bus interface and some wiring (see Figure 2.5).

The memory chip is connected to other devices through address lines,
data lines, read/write line, chip select line and power lines. For the well
known complexity reasons memory cells are arranged into the form of a
square array instead of line array in current memory chips. The address
must therefore be divided into two parts for decoding.

To select an appropriate memory cell, appropriate row and column
select lines must be activated. Address decoders are used to select the
right memory cell by activating the right selection lines according to the
address information provided in address lines. The read operation (write
operation) is selected by activating (deactivating) read/write line.

A memory cell consists of few gates that are connected to each others
(see Figure 2.6). The cell is connected to other elements in the chip
through row and column select lines, read/write line, input line and
output line.

Figure 2.6 An example of a typical SRAM cell.

To transform a single port memory to a multiport memory ports are
added by adding new address lines, data lines, chip select lines and
decoders for each port. Inside the chip the selection circuit of memory
cells is duplicated for each port and the memory cells are made
multiported (see Figure 2.7).

R

S

Q

SRAM Memory Cell

Sel

In

Out

Wr

34 Implementation of Instruction-Level and Thread-Level Parallelism

Figure 2.7 An ordinary memory is made parallel by adding new lines for
each port and duplicating the cell selection circuitry for each
port. C1,...,Cm are multiported cells.

A memory chip now consists of two address decoders per port, a
common memory cell array and multiple wiring circuitries (see Figure
2.8). The multiport chip is connected to outside world through multiple
address lines, multiple data lines, multiple read/write lines, multiple chip
select lines and power lines.

The memory operations are done in the similar manner to that in the
ordinary memory except now multiple ports control multiple operations
in one or more cells. Address information provided in a memory port is
decoded in appropriate address decoders to select appropriate memory
cell by activating right row and column select lines of the cell.

The structure of a multiport memory cell is naturally more complex than
the structure of an ordinary cell. We present here the logical structure of
a CRCW Common cell and a CRCW Priority cell.

In CRCW Common-style memories several processors can
simultaneously write the same data to a memory cell. The correct
operation is obtained by ORing the input values together and then
feeding the result to the original cell (see Figure 2.9). A read/write
operation is determined by ORing read/write lines and cell select is
determined by ORing the select lines. Finally, the output circuitry is
duplicated for each port.

PORT1 PORT2 PORTp

C1 C2 C3 Cm

Decoder1 Decoder2 Decoderp

352. Are multiport memories physically feasible?

Figure 2.8 The logical structure of proposed n port m cell static RAM chip.
Chip select and power lines are not shown. The physical lay-out
of components does not reflect the actual placement of
semiconductor elements and is meant only for comparing
singleport and multiport versions of memory chips. For the same
reason the connection matrices are rounded with dotted lines
and labelled with complexity numbers.

In CRCW Priority-style memories several processors can simultaneously
write different data to the same memory cell. The processor with the
lowest index succeeds. The correct operation is obtained by selecting
the first inactive read/write line among all inactive read/write lines (see
Figure 2.10). Write data is selected by a parallel priority encoder which
activates all the read/write lines except the first inactive line.

√mDE11 √mDE12 √mDE1n

√mDE21

√mDE22

√mDE2n

A1 A2 An

Address line
connection matrix
nlog m
x0.5nlog m lines

O1..On W1..Wn

I1..In

Column selection
connection matrix:
n√m x n√m lines

Row selection
connection matrix:
n√m x n√m lines

Sel

In

Out Wri

Memory cell
nMEM11

Sel

In

Out Wri

Memory cell
nMEM12

Sel

In

Out Wri

Memory cell
nMEM1√m

Sel

In

Out Wri

Memory cell
nMEM21

Sel

In

Out Wri

Memory cell
nMEM22

Sel

In

Out Wri

Memory cell
nMEM2√m

Sel

In

Out Wri

Memory cell
nMEM√m1

Sel

In

Out Wri

Memory cell
nMEM√m2

Sel

In

Out Wri

Memory cell
nMEM√m√m

Data out &
Read/Write
connection
matrix:
2n x 2n√m
lines

Data in connection matrix:
n√m x n lines

Memory cells:
2n√m x 3n√m lines

ADDRESS LINES
Data
Out

Read
/Write

Column
address
decoders

Row
address
decoders

Data
In

36 Implementation of Instruction-Level and Thread-Level Parallelism

A read/write operation is determined by ORing these lines together.
The right input is selected among al l the inputs by ANDing
corresponding input line and output of parallel priority encoder.
Obtained input lines can then be ORed together to form the input of the
original cell. Finally, the output circuitry is duplicated for each port.

Figure 2.9 An example of a CRCW Common SRAM cell.

Figure 2.10 An example of a CRCW Priority SRAM cell.

The word length of a memory chip can be increased by duplicating data-
in lines, data-out lines and memory cells for each bit of memory word.
No changes are needed for cell selection circuitry, because a memory
word is selected simultaneously. This simplifies the memory cell array
relatively.

R

S

Q

SRAM Memory Cell

S1 S2 Sn

I1
I2

In

W1
W2

Wn

O1 O2 On

Sel

Wri

Inp

R

S

Q

SRAM Memory Cell

S1 S2 Sn

I1
I2

In

W1
W2

Wn

O1 O2 On

Wri

Inp

Parallel priority encoder

372. Are multiport memories physically feasible?

2.4.2 The cost-effectiveness of a multiport RAM

The relative cost-effectiveness of the multiport RAM is estimated by
calculating wiring and component count complexity factors for ordinary
and multiport memories. It is shown that multiport semiconductor RAMs
look adequate in the sense of cost-effectiveness.

Suppose we are comparing a m location w-bit word SRAM and a P port
m location w-bit word SRAM. Knowing that a log n-line to n-line
parallel decoder has nlog n + log n components and a 2log n

× 2n line
matrix (reflecting the area taken by wiring) we get: Ignoring memory
cells a P-port SRAM chip has P times more components (0.5P(1+

)log m compared to 0.5(1+)log m) and P times more lines than a
SRAM chip of the same size (Plog m × 2 compared to log m ×
2).

Both P-port and single port chips have the same count of memory cells,
but in the multiport case the cells are more complex: Table 2.2 shows
the complexity of memory cells in units of cell level gate inputs
(reflecting the number of transistors in cells). The complexity of parallel
N line priority encoder found in a CRCW Priority cell is assumed to be
N+2N log N inputs rather than N2+2N-1 inputs of unoptimized parallel
priority encoder.

Type of memory Cell level input count
--
Ordinary SRAM 13w + 2
CRCW Common 5Pw + 6P + 11w
CRCW Priority 5Pw + 5P + 2Plog P + 9w
--
Table 2.2 The complexity of RAMs (in units of cell level gate inputs)

Table 2.3 shows the complexity of memory cell array wiring in units of
lines.

Type of memory Cell array lines
--
Ordinary SRAM (w+1) × (w+2)
CRCW Common P(w+1) × P(w+2)
CRCW Priority P(w+1) × P(w+2)
--
Table 2.3 The complexity of RAMs (in units of connection matrix lines)

m m
m

m

m m
m m
m m

38 Implementation of Instruction-Level and Thread-Level Parallelism

Simple calculations show now that P-port CRCW Common-style RAM
requires P times more components and slightly less than P2 times more
silicon area in relation to single port RAM of same size. Assuming
P≤1024, P-port CRCW Priority-style RAM requires 2P times more
components and slightly less than P2 times more silicon area.

From the complexity numbers we conclude that CRCW Common-style
and CRCW Priority-style memories are slightly less than P2 times less
cost effective than ordinary memories of same size.

It is mainly the increase of wiring rather than the increase in the number
of components that explodes the complexity of multiport RAMs when
adding more ports. This makes the use of complex and powerful CRCW
PRAM-style memories desirable over simpler and less powerful CREW
PRAM-style memories currently available.

The size and port count of mult iport memory chips in real
multiprocessors will be quite limited, maybe within range of 4 kbit to 4
Mbit and 4 to 32 ports, because of the complexity of wiring. These
estimations are based on the state of current VLSI technology.

2.4.3 The performance of the multiport RAM system

The performance calculations are favorable for PRAMs using multiport
RAMs even with small count of processors. We will estimate the relative
memory cycle time of a multiport RAM and the performance of
multiprocessor using multiport RAMs.

If we do not count memory cells, the chip level delays are at least 3 gate
delays for both ordinary RAMs and the proposed multiport RAMs. (One
unit for chip selection and two units for address decoding.) The cell level
write operation delays are shown in Table 4. The cell level read
operation delay is one for both single port and multiport versions.

Type of memory Cell level Chip level
--
Ordinary SRAM 4 7
CRCW Common 6 9
CRCW Priority 7+log P 10+log P
--
Table 2.4 The length of cell level write operation datapaths and total chip

level datapaths of RAM’s (in units of gate delays)

392. Are multiport memories physically feasible?

The access times of multiport RAMs can likely be made small enough to
fit in one clock cycle of a typical processor, because the total datapath
of multiport RAM is only slightly longer than in ordinary RAM. If the
port count is high, however, the CRCW Priority chips may be a little
slower. Thus, the performance of a parallel machine using proposed
chips is likely to achieve the performance of the ideal PRAM machine.

Relatively short cycle times of proposed memories have a dramatic
effect on the memory system performance: A 16 processor PRAM-style
computer using proposed chips (referred as 16-PRAM) would be as fast
as a 10 000 processor network assuming the simulation of one PRAM
step requires approximately 600 memory cycles on network (see Table
2.1).

In the case of sequential algorithms the difference is even greater: A 16-
PRAM would run sequential algorithms even 600 times faster than 10
000 processor network. That is because 16-PRAM can run sequential
algorithms as a fast as sequential machine, but global memory access
takes so much time in machines with distributed memory.

On the other hand, there exist a lot of algorithms that do not require
extensive communication and can therefore be executed efficiently on
distributed machines. In these cases a PRAM style computer with a
shared memory and small number of processors provides performance
comparable to distributed machine with the same number of processors.

2.4.4 An example of a multiport RAM system within the limits
of current technology

To give a rough idea of the complexity of multiport memories and the
possibilities of the current technology, suppose for example, that we
want to manufacture a 16 port 16kb x 1 CRCW Common-style static
RAMs with access time of 20 ns. That should not be unrealistic because
such chips are equally complex as currently available single port 4096kb
x 1 static RAMs with access time of 15 ns. In fact, 7 to 128 decoders of
a 16-port RAM are 50 times less complex than the 11 to 2048
decoders of a single port RAM.

The pin count of 16 port chips would be 290 instead of 28 in single
port case. (The pin count of general w-bit word P port m location
memory is P(w + 2 + log m) + 2 pins assuming w bi-directional data
lines.)

40 Implementation of Instruction-Level and Thread-Level Parallelism

To build a true 16 port 1 MB shared main memory one needs 512 such
16 port 16kb x 1 CRCW Common-style chips. To reduce the
complexity of the motherboard of parallel computers maybe SIMM-style
packages could be used. The SIMM count of 1 MB memory would be
64 assuming one SIMM can hold 8 chips. The 1 MB 16 port memory
bus would be at least 848 lines wide assuming byte addressing and 32-
bit data bus. (The general P port M location W-bit word memory system
bus is P(W + 1 + log M) lines wide assuming word addressing.)

2.5 Summary

We have proposed two possibilities to implement true PRAM-style
shared main memories. The logical structure of building blocks,
multiport RAMs is shown to be a simple extension of ordinary RAMs.

We have compared the relative cost-effectiveness of ordinary memories
and multiport memories. The results are only adequate for multiport
memories. P-port CRCW Common-style memories and CRCW Priority-
style memories are slightly less than P2 times less cost-effective than
ordinary memories.

We have also compared the performance of some known message
passing systems and the proposed multiport memory system. The
results are favorable for multiport memories. Computers with multiport
memories may be even hundreds of times faster than computers with
message passing and distributed memory assuming the number of
processors is the same.

The complexity of multiport memories will prevent the manufacturing of
large PRAMs with multiport memory technology, but even with small
port count computers with multiport memories will provide performance
comparable to distributed memory systems with remarkably greater
processor count.

Proposed chips will also provide interesting possibilities to increase the
performance of distributed memory machines by replacing the
sequential processors of the machine by small PRAMs using multiport
memory technology.

The current research in the areas of wafer scale integration, multichip
module production and optical communication may also introduce

412. Are multiport memories physically feasible?

interesting new possibilities to exploit parallel processing technologies
beyond the limits of current technology.

Our results concerning multiport memories are quite theoretical and
there is lot of practical work to be done before we can take advantage
of actual products. Anyway the challenge to build multiport memories is
given. It is up to chip manufacturers to do appropriate development
decisions.

References

[Abolhas91]
F. Abolhassan, J. Keller, W. J. Paul, On the Cost-effectiveness and
Realization of the Theoretical PRAM Model, FB 14 Informatik, SFB-
Report 09/1991, Universität des Saarlandes, Saarbrucken, 1991.

[Alt87]
H. Alt, T. Hagerup, K. Mehlhorn, F. P. Preparata, Deterministic
simulation of idealized parallel computers on more realistic ones,
SIAM J. Comput. 16, 5 (1987), 808-835.

[Bilardi88]
G. Bilardi and K. T. Herley, Deterministic simulations of PRAMs on
bounded degree networks, Proceedings of 26th Annual Allerton
Conference on Communication, Control and Computation
(1988).

[Blelloch89]
Guy E. Blelloch, Scans as Primitive Parallel Operations, IEEE
Transactions on Computers 38, 11 (1989), 1526-1538.

[Burnett70]
G. J. Burnett and E. G. Coffman, A Study of Interleaved Memory
Systems, AFIPS Conference Proceedings SJCC 36, 1970, 467-
474.

[Enslow74]
P. H. Enslow, Multiprocessors and parallel processing, John
Wiley&Sons, New York, 1974.

[Feldman92]
Y. Feldman, E. Shapiro, Spatial Machines: A More Realistic
Approach to Parallel Computation, Communications of the ACM
35, 10 (1992), 61-73.

[Fortune78]
S. Fortune and J. Wyllie, Parallelism in Random Access Machines,
Proceedings of 10th ACM STOC, Association for Computing
Machinery, New York, 1978, 114-118.

42 Implementation of Instruction-Level and Thread-Level Parallelism

[Gajski83]
D. Gajski, D. Kuck, D. Lawrie and A. Sameh, CEDAR-A Large
Scale Multiprocessor, Proceedings of International Conference on
Parallel Processing, 1983, 524-529.

[Gottlieb83]
A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph
and M. Snir, The NYU Ultracomputer - Designing a MIMD, shared-
memory parallel machine, IEEE Transactions on Computers C-32,
(1983), 175-189.

[Hillis85]
W. D. Hillis, The Connection Machine, The MIT Press, Cambridge,
1985.

[Karp69]
R. M. Karp and R. E. Miller, Parallel Program Schemata, Journal of
Computer and System Sciences 3, 2 (1969), 147-195.

[Leighton91]
T. F. Leighton, Introduction to Parallel Algorithms and
Architectures: Arrays, Trees, Hypercubes, Morgan Kaufmann, San
Mateo, 1992.

[McColl92]
W. F. McColl, General Purpose Parallel Computing, Lectures on
Parallel Computation Proceedings 1991 ALCOM Spring School
on Parallel Computation (Editors: A. M. Gibbons and P. Spirakis),
Cambridge University Press, Cambridge, 1992, 333-387.

[Pfister85]
G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J.
Kleinfelder, K. P. McAuliffe, E.A. Melton, V. A. Norton and J.
Weiss, The IBM Research Parallel Processor Prototype (RP3):
Introduction and Architecture, Proceedings of International
Conference on Parallel Processing, 1985, 764-771.

[Prechelt93]
L. Prechelt, Measurements of MasPar MP-1216A Communication
Operations, Technical Report 01/93, Universität Karlsruhe,
Karlsruhe, 1993.

[Ranade87]
A. G. Ranade, S. N. Bhatt, S. L. Johnson, The Fluent Abstract
Machine, Technical Report Series BA87-3, Thinking Machines
Corporation, Bedford, 1987.

[Schwarz66]
J. T. Schwarz, Large Parallel Computers, Journal of the ACM 13,
1 (1966), 25-32.

432. Are multiport memories physically feasible?

[Schwarz80]
J. T. Schwarz, Ultracomputers, ACM Transactions on
Programming Languages and Systems 2, 4 (1980), 484-521.

[Tomasevic93]
M. Tomasevic and V. Milutinovic, A Survey of Maintenance of
Cache Coherence in Shared Memory Multiprocessors, Proceedings
of the Hawaii International Conference on System Sciences,
Koloa, January 5-8, 1993.

[Valiant90]
L. G. Valiant, A Bridging Model for Parallel Computation,
Communications of the ACM 33, 8 (1990), 103-111.

44 Implementation of Instruction-Level and Thread-Level Parallelism

453. Efficient two-level mesh based simulation of PRAMs

Chapter 3

Efficient two-level mesh based
simulations of PRAMs

Martti Forsell
Department of Computer Science, University of Joensuu, PB 111, FIN-80101 Joensuu, Finland

Ville Leppänen
Department of Computer Science, University of Turku, Lemminkäisenk 14, FIN-20520 Turku, Finland

Martti Penttonen
Department of Computer Science, University of Joensuu, PB 111, FIN-80101 Joensuu, Finland

Abstract

W e consider time-processor optimal simulations of PRAM
models on coated block meshes. A coated block mesh consists
of π-processor blocks and or router

blocks. The router blocks form a 2-dimensional or a 3-dimensional
regular mesh, and the processor&memory blocks are located on the
surface of the block mesh. As a generalization of the coated mesh, the 2-
dimensional and 3-dimensional coated block meshes simulate EREW,
CREW, and CRCW PRAM models time-processor optimally with
moderate simulation cost. Using proper amount of parallel slackness, the
cost can be decreased clearly below 2 routing steps per simulated PRAM
processor. The coated block mesh is actually an instance of a more
general two-level construction technique, which uses a seemingly
inefficient but scalable solution on top of a non-scalable but efficient
solution. Within blocks (chips) brute force techniques are applied,
whereas the mesh structure on top makes the whole construction
modular, simple, and scalable. The parameter π provides a method to
balance the construction with respect to the two techniques.

Keywords: PRAM, shared memory machine, simulation, time-processor
optimal, mesh, interconnection network

π × π π × π × π

© 1996 IEEE. Reprinted, with permission, from Proceedings of the 1996 International Symposium on Parallel
Architectures, Algorithms, and Networks; Beijing, China, June 12-14, 1996; 29-35.

46 Implementation of Instruction-Level and Thread-Level Parallelism

3.1 Introduction

The standard approach to PRAM (defined in Section 3.2.1)
implementation is to map the shared memory into a collection of P
distributed memory modules, to attach a memory module to each real
processor, and to map the N virtual processors of the PRAM to the P
real processors. Each real processor is assumed to simulate at most
N/P virtual processors (threads). The operations on shared memory
are translated to messages, which are routed from the sources to the
targets via a routing mechanism. The simulation itself is done stepwise
in order to make easier the preservation of atomic consistency.

Diameter ø of a routing machinery usually determines a lower bound for
the latency of messages. For many popular networks, ø = Ω(log P). If
N=O(P), the latency often determines the PRAM simulation cost.
Parallel slackness [Valiant90] (N>P) can be used to balance the cost of
local computation and global communication, and thus to improve the
efficiency of PRAM simulations. In Valiant's XPRAM framework
[Valiant90], the simulation is done in supersteps of length L, where L =
Ω(N/P). During a superstep, the real processors asynchronously do local
computations, and communicate with each other in order to simulate
the current step of the virtual processors. A superstep ends to a barrier
synchronization, which is used to check if all the processors have
managed to simulate their virtual processors, or if another superstep is
needed. Balancing is done by choosing N, L, and the routing machinery
so that, all the communication requests of the N virtual processors can
be delivered in time O(N/P) (with high probability). The simulation is
said to be time-processor optimal, if this is achieved.

3.1.1 Previous results

Many time-processor optimal PRAM simulation results have been
proved for completely connected graphs ((i)-type) [Diezfelbinger93,
Goldberg94, Meyerauf92, Valiant90]. In [Goldberg94], Goldberg,
Matias, and Rao provide so far the best (asymptotically smallest latency)
time-processor optimal P log log P-processor EREW PRAM simulation.

If the ø is not O(1), then to hide the delay we must either assume that
each node can deal with Ω(ø) routing requests at each step ((ii)-type), or
that the routing machinery is separated from the processor&memory
pairs and is considerably larger than P ((iii)-type). In the latter case, the

473. Efficient two-level mesh based simulation of PRAMs

nodes only need to make simple routing decisions, and therefore it
might be acceptable to ignore their hardware complexity and work.

In [Valiant90], Valiant proves a (ii)-type EREW result for a P-node binary
hypercube. He also gives a (iii)-type EREW result for a P-input butterfly.
Similar results are also established for most of the CRCW PRAMs in two
ways: By extending the routing machinery with combining [Ranade91],
or by requiring that N=P1+ε for some ε>0 [Valiant90]. In
[Leppänen95b], we prove (iii)-type results for EREW and CRCW
PRAMs by taking the routing machinery to be a 2D mesh or a 3D
mesh. Both for EREW and CRCW simulations, time-processor
optimality is achieved, when N=Ω(Pd/d-1). General leveled network
results [Leighton94] imply that (iii)-type results can also be shown for
several other networks.

3.1.2 Some critique

Because of routing machinery degree, the completely connected graphs
are not very realistic with current technology. Also Valiant's hypercube
result is based on some quite unrealistic assumptions. The degree log P
makes it difficult to expand the hypercube physically. The lengths of
connections increase, when the system is scaled up. Moreover, it is
somewhat unfair to assume that a processor can deal with all of its log P
input and output links in unit time.

Type (iii) results also have a price to pay: The routing machinery is large
in terms of the number of nodes. However, the hardware complexity
ratio of a processor&memory pair and a routing machinery node might
be significant, e.g., of one or two orders of magnitude. Due to non-
constant connection length, the unit time assumption and scalability are
problematic in the butterfly [Ranade91, Abolhassan93] but not in our
mesh based solution. In the 3D case, the routing machinery size is only

/61.5 times P [Leppänen95b]. If P=104, this ratio is ≈7. For the
butterfly, the same ratio log P+1≈15.

The proposed simulations differ also with respect to the required parallel
slackness. To achieve constant simulation cost per PRAM processor,
slackness level Ω(ø) is required. The cost decreases as the slackness level
increases. Supporting large number of threads per each processor is
possible (Tera [Alverson90]: 128 threads per processor; SB-PRAM:
32×32 threads), but the thread requirement sets restrictions for
successful programming, since achieving a processor utilization level

P

48 Implementation of Instruction-Level and Thread-Level Parallelism

requires certain amount of threads per processor. However, the actual
“cost” of some slackness level is unclear.

3.1.3 Contributions

We propose an improvement to the coated mesh [Leppänen95b] in
form of a coated block mesh. We group a bunch of routing machinery
nodes to a router block by using a sparse matrix type solution within
each router block. Consequently, the ø and slackness requirement
decrease. Also the ratio of the number of elementary routing machinery
nodes and processors improves by factor of πd/d-1 in the d-dimensional
case. The processors we divide to groups of π processors, and integrate
one shared memory module to each group. Each processor&memory
block is considered as a small PRAM.

The idea in both the router and processor&memory blocks is that in
small scale one can use special constructions (brute force) without
introducing any serious restrictions on the overall scalability. Brute force
solutions can be very efficient, if applied within chips. By integrating
somewhat costly small scale solutions to an elegant large scale solution,
we hope to produce an efficient and scalable overall architecture
solution. Large scale solutions tend to be slow in small scale whereas
fast special solutions are often non-scalable. (Similar design principle is
recently applied in constructing practical expanders [Brewer94].) By
properly choosing π, we hope to find solutions, where the cost of
communication, memory access, and thread management primitives are
properly balanced.

In Section 3.3, we show that the coated block mesh can efficiently
simulate PRAM model. In asymptotic sense the same results can be
derived from certain leveled network results [Leighton94]. However, the
theme of this paper is to characterize the cost more precisely, and to
observe that in practice it is very small. Our EREW simulation
experiments indicate that the cost can be decreased below 2 in the 3D
case, and to 1.1 … 1.3 in the 2D case. The latter means that 75% to
90% of the raw processing power can be given to arbitrary PRAM
computations. In our results we assume that each PRAM processor
makes an external memory reference at each step. This is hardly the
case in practice, and thus achieving smaller simulation cost is possible.

493. Efficient two-level mesh based simulation of PRAMs

3.2 Definitions

3.2.1 PRAM

The PRAM model consists of N processors, P0, P1, …, PN-1, and a
shared memory M of size m. Each Pi has some local memory and
registers. A step of Pi consists of a local operation, reading a shared
memory location, or writing to a shared memory location. The phases
of a step as well as steps are executed synchronously (system wide). A
read instruction returns the value of memory location in question before
the current step. In the EREW model concurrent reading and writing of
any particular shared memory cell is forbidden, but each shared memory
cell may be read and written once during a step. In the Arbitrary CRCW
model concurrent read and write operations are allowed. If two or more
processors write to a memory location in a given step, one of the values
is selected arbitrarily to become the new value.

3.2.2 Coated block mesh

Our coated block mesh (CBM) is a generalization of the coated mesh
(CM) [Leppänen95b], which consists of a 2D mesh or a 3D mesh based
routing machinery that is coated with processor&memory pairs (see
Figure 3.1). In the CBM, π processors and their memory modules are
integrated to a processor&memory block (pm-block). Respectively, a
bunch of routing machinery nodes are integrated to a router block. The
coated block mesh is then composed of blocks as the coated mesh is
composed of router nodes and processor&memory pairs. In a way, the
routing task is partially moved from the routing machinery to the pm-
blocks.

Formally, a dD coated block mesh CBM(P, π, d, q) consists of P/π pm-
blocks A0, A1, … AP/π-1 of π processors and one shared memory
module, and (P/(π2d))d/d-1 router blocks Bi1, i2, …, id, where 0≤ij<
(P/(π2d))d/d-1 and 1≤j≤d. Each router block has π bidirectional links on
each of its 2d surfaces, and is capable of receiving and sending one
message per link in one time unit. The router blocks Bi1, i2, …, id are
connected as a regular dD mesh.

50 Implementation of Instruction-Level and Thread-Level Parallelism

Figure 3.1 Coated mesh versus coated block mesh (π=4) in 2-dimensional
case.

3.2.2.1 Router block

We assume that the internal structure of a router block is a d-
dimensional -sided sparse matrix with π router nodes. Each
directed link has a buffer of size q packets. A packet entering Bi1, i2, …,
id via link k on surface j, can leave the block only via link k on some
surface l. The function of router nodes is defined by the PRAM
simulation algorithm.

Assume that the nodes of a router block and their I/O-entries are
located in a d-dimensional +2-sided space. Then, the I/O-entries
are on positions (x1, x2, …, xd), where exactly one of x1, x2, …, xd is
either 0 or +1.

The I/O-entries having the same coordinate xi equal 0 (or +1)
form surface S2i (respectively S2i+1). The indexing of I/O-entries on
surface Sj is a mapping f j: {1,…, }d-1→ {0,…,π -1}. For
constructibility we want the connections within router blocks to be axial.
Therefore we define the indexing on surfaces S2i and S2i+1 to be mirror
images of each other, i.e., f2i(a1, a2, …, ad-1) = f2i+1(a1, a2, …, ad-1) for
each 0≤i≤d. To complete the definition of internal structure of a router
block, we also assign an indexing g to the internal nodes. Partial
injective mapping g is a mapping from {1,…, }d to {0,…,π-1}.
There is one requirement concerning g: Each router node x and its
projective image on any of the 2d surfaces must have the same index.

MP

MP

MP

MP

MP

MP

MP

MP

MP

MP

MP

MP

M P

M P

M P

M P

M P

M P

M P

M P

M P

M P

M P

M P

P

P

P

P

Shared m
em

ory

P

P

P

P

Shared m
em

ory

Shared memory

P P P P

Shared memory

P P P P

Shared memory

P P P P

Shared memory

P P P P

Shared memory

P P P P

Shared memory

P P P P

P

P

P

P

Shared m
em

ory

P

P

P

P

Shared m
em

ory

P

P

P

P

Shared m
em

ory

= route of a packet= router nodeM = memory moduleP = processor

M M M M M M M M M M M M

PPPPPPPPPPPP

M M M M M M M M M M M M

PPPPPPPPPPPP

Coated mesh

P

P

P

P

Shared m
em

ory

Coated block mesh

πd-1

πd-1

πd-1

πd-1

πd-1

πd-1

513. Efficient two-level mesh based simulation of PRAMs

Consequently, a projective mapping of g-1 with respect to any surface
covers the whole surface. By defining g and one fj, we at the same time
define rest of the fj's. Clearly, the definition of f0 is irrelevant as long as
it is bijective. We use g2

-1(k) = {k,k} in the 2D case, and g3
-1(×k+l) =

{k+1, l+1, ((k+l) mod) + 1} in the 3D case (0≤k, l<).

3.2.2.2 Processor&memory block

The pm-blocks “coat” the whole surface of router blocks based routing
machinery. The degree of each processor (pm-block) is 1 (π). We
assume that each processor can receive and send a packet in one time
unit. For simplicity, we take the memory consistency model of the
shared memory modules to be the same as the whole CBM is
simulating. We do not define, how the pm-blocks are implemented, but
assume that fulfilling any proper memory request takes unit time. If π is
a small constant, possible implementations are, e.g., a π-port memory
[Forsell94], and a complete graph based π-processor DMM.

3.3 Simulation of PRAM models cbm-simulation

A somewhat standard approach [Ranade91,Valiant90] to simulate the
PRAM models is to assume that the shared memory of the PRAM is
mapped with a randomly chosen hash function h∈H into the distributed
memory modules; in our case, into the local memory of pm-blocks.
Then, the simulation is done by translating the memory references to
packets, which are routed via the routing machinery to targets. Replies
are generated to the read requests, and routed back to senders of the
read requests. Finally, the system is completed with a synchronization
mechanism, which guarantees that the simulation of consecutive steps
maintains the atomic memory consistency of the PRAM.

The idea in shared memory hashing is to initially arrange the shared
memory according to a randomly chosen hash function h, and to
rearrange the memory by choosing a new hash function hnew∈H, if h
turns out to be bad for the memory access patterns produced by the
programs executed on the PRAM.

Although each pm-block has the same memory consistency model as
the simulated PRAM model, we still must ensure that the write requests
will not influence the read requests on the current step. We can think of
several approaches to solve the problem. Here we assume that the

π
π π

52 Implementation of Instruction-Level and Thread-Level Parallelism

arriving requests are executed on fly, but simultaneously old memory
values are temporarily preserved. Such a construction could be based on
delayed write, where each memory cell is duplicated, and the delayed
write instructions take effect after the synchronization point between
separate PRAM steps is reached.

3.3.1 Simulation of EREW PRAM cbm-EREW

The following algorithm is derived from the EREW simulation algorithm
presented in [Leppänen95b] for the CM.

Algorithm 3.3.1 (EREW simulation on 2D CBM)
Pi simulates PRAM processors PiN/P, …, P(i+1)N/P-1.

1. Translate memory references to packets, and inject them uniformly to the
routing machinery.

2. Route the requests greedily to their target, and execute the memory
accesses.

3. Synchronize processors.
4. Build replies, and inject them uniformly to the routing machinery.
5. Route the replies back greedily.
6. Synchronize processors, and update virtual processor registers.

In [Leppänen95b] we proved that using the above algorithm and
polynomial hash functions, a 3D (2D) P-processor CM can simulate
P3/2-processor (P2-processor) EREW PRAM time-processor optimally
with probability 1-P-α log log P for any α>1. Because the coated block
mesh basically consists of π separate coated meshes (with P/π
processors in each), the simulation succeeds with high probability in
each of them simultaneously, if π = O(P/π). By “high probability”, we
mean a probability of the form 1-Pγ for some constant γ>1. Clearly, the
coated mesh result can be extended to Theorem 3.3.2.

Theorem 3.3.2
A CBM(P,π,d,q) can simulate an N=P×(P/2dπ)1/d-1-processor EREW PRAM
time-processor optimally using at most

36 + o(1), if d=2
78 + o(1), if d=3

routing steps per simulated PRAM processor with high probability, if
π=O().P

533. Efficient two-level mesh based simulation of PRAMs

3.3.2 Simulation of CRCW PRAMs cbm-CRCW

In [Leppänen95b] we proved that 2D and 3D coated meshes can
simulate the Arbitrary CRCW time-processor optimally (with high
probability), if N = Ω(Pd/d-1). Extending the simulation result to the CBM
is not as straightforward as in the EREW case, since CRCW simulation
is based on sorting, and implementing sorting on the CBM is not trivial.
However, it is enough to apply sorting within each of the π logical
coated meshes separately to maintain the memory consistency. We
state Theorem 3.3.3 without proof. Proving it requires similar
assumptions as in the EREW case. For details of the CRCW simulation
algorithm, see the details the simulation on the coated mesh
[Leppänen95].

Theorem 3.3.3
A CBM(P,π,d,q) can simulate an N=P×(P/2dπ)1/d-1-processor Arbitrary
CRCW PRAM time-processor optimally using at most

66 + o(1), if d=2
153 + o(1), if d=3

routing steps per simulated PRAM processor with high probability, if
π=O().

3.4 Improvements

A straightforward method to improve simulation cost is to increase the
parallel slackness factor of simulation, i.e., the load N/P of each
physical processor. Next, we briefly discuss another method to improve
the simulation cost.

Separating consecutive steps by naive synchronization attempts is
expensive, and we would like to apply a more flexible synchronization
method. Such a technique is synchronization wave. A synchronization
wave is sent by the processors (sources) to the memory modules
(destinations) and vice versa. This technique has been successfully used
for PRAM simulation on the butterfly [Ranade91] and on the mesh of
trees [Leppänen95a]. The idea is that when a source has sent all its
packets on their way, i t sends a synchronization packet.
Synchronization packets from various sources push on the actual
packets, and spread to all possible paths, where the actual packets could
go. When a node receives a synchronization packet from one of its

P

54 Implementation of Instruction-Level and Thread-Level Parallelism

inputs, it waits, until it has received a synchronization packet from all of
its inputs, then it forwards the synchronization wave to all of its outputs.
The synchronization wave may not bypass any actual packets and vice
versa. When a synchronization wave sweeps over a leveled network
based routing machinery [Leighton94]—or more generally a directed
acyclic graph (DAG), all nodes and processors receive exactly one
synchronization packet via each input link and send exactly one via each
output link.

The CBM is not directly a leveled network, but it can be seen as one, or
more precisely, each CM can be seen as a virtual leveled network.
Embedding a leveled network to a mesh is described in [Leighton94].
Their technique is improved in [Leppänen96b], and applied to coated
meshes by embedding a DAG to a CM with duplicated connections. The
idea is that each routing machinery node has d unidirectional “injection”
and d unidirectional “removal” edges (one for each axis), and d
bidirectional “normal” edges. A packet is routed by first choosing
randomly an intermediate target from the closer half of the pile of nodes
axial to the source processor. After arriving to the first intermediate
target, the packet advances along the normal edges (greedy XY-routing)
and moves to the second randomly chosen intermediate target at the
closer half of the pile of nodes axial to the target processor. Finally, the
packet is routed to the target by using the removal edges. The above
routing process in a natural way organizes all unidirectional connections
of a CM and a CBM (with duplicated connections) to a DAG.

Continuous synchronization wave based EREW simulation can now be
derived by setting one DAG from processors to memory modules
(requests) and another from memory modules to processors (replies),
and letting the synchronization wave reflect from one DAG to the other
(see [Leppänen96b]). We denote such a coated block mesh by CBM+.

3.5 Experimental results cbm-experiments

We run about 400 experiments simulating altogether approximately
20000 steps of an N-processor EREW PRAM on 2D and 3D CBM+s.
We assume that each unidirectional connection has a buffer of size q
packets, only the head of each queue resides at the receiving end, and a
routing machinery node can only move packets from the heads of
incoming queues to the tails of outgoing queues (if there is room). Each
processor can receive and send at most 1 packet per routing step.

553. Efficient two-level mesh based simulation of PRAMs

In practice, we expect a randomly chosen hash function to turn typical
EREW memory reference patterns to almost random ones. However,
being short of typical EREW reference patterns, we did choose the
destinations of memory references randomly (using Unix function
random). The only additional assumption about the computation is that
the number of PRAM processors remains the same throughout the
computation. More details about experiments and results can be found
in [Leppänen96a].

3.5.1 Continuous EREW simulation

As a reference point for measuring the time to simulate a single PRAM
step, we use the moment when the last “part” of a synchronization
wave leaves the processors. The continuous simulation means that each
processor processes the requests and replies (and the synchronization
wave) in the order they arrive, and injects replies and new requests back
to the routing machinery as soon as possible. Next, we study the
dependence of simulation cost c(λ, ø, π, d, q) on the diameter ø of the
routing machinery, the load N/P = λø per processor, π, and q on dD
CBM+s. The simulation cost is calculated as an average time over 30 to
50 simulated EREW steps divided by the load.

3.5.1.1 2-dimensional case cbm-EREW-mvt-sync-2d

We run our 2D simulation experiments on CBM+(4π×10, π, 2,q) and
CBM+(4π×50, π, 2,q) , where the diameter ø is 40 and 200,
respectively. The influence of buffer size q on the simulation cost on
10×10 CBM+ is shown in Figure 3.2. Even, when q=2 the simulation
cost decreases below 2. However, with buffers of size 16 or 32 one can
achieve cost 1.1 … 1.2. The cost 1 is the best one can achieve. The
curves of Figure 3.2 are obtained by using π=1. To our surprise, the
same curves for π=4, 8, 16, and 32 are identical, or off by cost 0.1.
Thus by applying π=32 (instead of 1), one can decrease the diameter ø
to 1/32'th and consequently also the required load to achieve certain
cost!

56 Implementation of Instruction-Level and Thread-Level Parallelism

Figure 3.2 EREW simulation cost on 2D CBM+.

The curves for 50×50 CBM+ were practically identical for those of
Figure 3.2 (occasionally off by 0.1). We conclude that the simulation
cost depends strongly on λ and q, but not on ø. Small π-values seem to
have minor effect on the simulation cost, and thus the advantage
obtained via smaller diameter seems to translate linearly to smaller
parallel slackness advantage. Clearly, the cost function begins to show
asymptotic behavior, when λ=1 … 2.

3.5.1.2 3-dimensional case

Our results concerning simulation of EREW on 3D CBM+ are very
similar to those for 2D CBM+ (see [Leppänen96a] for details). Again,
the simulation cost mainly depends on q and λ. Small π-values and ø
seem to have practically no effect on c(λ,ø,π,3,q). Now the advantage
provided by π does not imply linearly smaller parallel slackness level, but
only ≈ times smaller level. The curves show asymptotic behavior
when λ>1, and at best cost 1.68 was achieved (with λ=5, q=32). This is
clearly worse than in the 2D case. The reason is that in the 3D CBM+,
the routing machinery bandwidth is simply too small [Leppänen96b] for
all PRAM processors to make a shared memory reference at every step.
Insufficient bandwidth makes the cost approach 1.5 in the 3D case.

3.6 Conclusions

We have proposed the coated block mesh as a platform for time-
processor optimal implementation of PRAM models. The CBM is a
generalization of the CM with respect to the integration degree π of
processing and memory elements. The coated block mesh itself has
many desirable properties.

λc(,20,1,2,32)
λc(,20,1,2,8)
λ

cost

λ
c(,20,1,2,2)

2
4
6

3 4 5 6 7

8

1

10

21

π

573. Efficient two-level mesh based simulation of PRAMs

• As a mesh based construction, it has a regular and feasible layout.

• The whole structure is modularly extendible. E.g., the hypercube
lacks this property. The modularity also suggest fairly easy physical
maintenance.

• The CBM is truly scalable in the sense that x-folding the physical
system (x t imes more processors) provides x t imes more
computational power, if the processors can support approximately
x1/d-1 times more threads per processor.

• The connections between logical neighbors (processors/nodes) are
of small constant length.

When claiming our PRAM implementations time-processor optimal, we
ignore the work and hardware complexity of the router blocks. If d=3,
then the ratio of router and processor&memory blocks is /61.5× .
If π = 4 and P = 86400, then this ratio is only 10. On the other hand,
the processors, and especially the memory modules, are apparently
more expensive in terms of hardware than the routing machinery nodes.

The CBM is an application of more general design method: It applies a
theoretically elegant and scalable but rather inefficient solution on top of
a non-scalable but efficient small scale solution. The blocks represent
non-scalable but efficient solutions whereas the mesh structure
represents the elegant part. The parameter π provides a method to
balance the cost of elementary operations: memory access, thread
management, and communication with neighboring elements.

Our experiments show that by using the synchronization wave+DAG
approach, the cost can be pushed below 2 in the 3D case, and very
close to 1 in the 2D case. These results are based on the assumption
that on each step each PRAM processor makes an external reference
on every step! By processing threads that make local references during
the “idle” cycles, further performance improvements can be expected.
The larger the π-value the smaller the diameter and the smaller the
required parallel slackness level to achieve a certain simulation cost.
Experiments indicate that load ≈ø is enough to achieve good
performance in the 2D and 3D cases. To our surprise, even relatively
large π-values (32) seem to have no influence on c(λ, ø, π, d, q). Thus,
the smaller diameter advantage of the CBM over the CM translates
directly to smaller parallel slackness requirement advantage.

P π

58 Implementation of Instruction-Level and Thread-Level Parallelism

3.6.1 Topics for further research

The two-level approach itself seems healthy, but can one apply it more
efficiently in another context—i.e., would it be better to use other large
scale and small scale methods. One could also study several variants of
our coated block mesh. Instead of one π-degree memory module, we
could have ρ π-degree or π/ρ-degree memory modules per pm-block.
We could also extend the degree of processors from 1 to ρ. That would
make the delivery of packets harder but perhaps improve the
constructibility of memory modules. If the router blocks are very big, we
could consider locating τ pm-blocks on the surface of each instead of
one. Supporting τ=ρ processor&memory blocks would be rather
straightforward from the routing point of view.

References

[Abolhassan93]
F. Abolhassan, R. Drefenstedt, J. Keller, W Paul and D. Scheerer,
On the Physical Design of PRAMs, The Computer Journal 36, 8
(1993), 756-762.

[Alverson90]
R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield
and B. Smith, The Tera Computer System, Computer Architecture
News 18, 3 (1990),1-6.

[Brewer94]
E. Brewer, F. Chong and F. Leighton, Scalable Expanders:
Exploiting Hierarchical Random Wiring, Proceedings of the 26th
Symposium on Theory of Computing, 1994, 144-152.

[Dietzfelbinger93]
M. Dietzfelbinger and F. Meyer auf der Heide, Simple, Efficient
Shared Memory Simulations, Proceedings of the 5th Symposium
on Parallel Algorithms and Architectures, 1993, 110-119.

[Forsell94]
M. Forsell, Are Multiport Memories Physically Feasible?, Computer
Architecture News 22, 5 (1994), 3-10.

[Goldberg94]
L. Goldberg, Y. Matias and S. Rao, An Optical Simulation of Shared
Memory, Proceedings of the 6th Symposium on Parallel
Algorithms and Architectures, 1994, 257-267.

593. Efficient two-level mesh based simulation of PRAMs

[Leighton94]
F. Leighton, B. Maggs, A. Ranade and S. Rao, Randomized Routing
and Sorting on Fixed-Connection Networks, Journal of Algorithms
17, 1 (1994), 157-205.

[Leppänen96a]
V. Leppänen, Experimental PRAM on Coated Block Mesh
Simulation Results, In preparation, 1996.

[Leppänen95a]
V. Leppänen, On Implementing EREW Time-Processor Optimally
on Mesh of Trees, Journal of Universal Computer Science1, 1
(1995), 23-34.

[Leppänen96b]
V. Leppänen, Performance of Work-Optimal PRAM Simulation
Algorithms on Coated Meshes, to appear in The Computer
Journal, 1996.

[Leppänen95b]
V. Leppänen and M. Penttonen, Work-Optimal Simulation of PRAM
Models on Meshes, Nordic Journal on Computing 2, 1 (1995), 51-
69.

[Mayerauf92]
F. Meyer auf def Heide, Hashing Strategies for Simulating Shared
Memory on Distributed Memory Machines, Parallel Architectures
and Their Efficient Use, LNCS 678, 1992, 20-29.

[Ranade91]
A. Ranade, How to Emulate Shared Memory, Journal of Computer
and System Sciences 42, (1991), 307--326.

[Valiant90]
L.G. Valiant, General Purpose Parallel Architectures, In Algorithms
and Complexity, Handbook of Theoretical Computer Science,
943-971, 1990.

60 Implementation of Instruction-Level and Thread-Level Parallelism

614. Minimal pipeline architecture—an alternative to superscalar

Chapter 4

Minimal pipeline architecture
—an alternative to superscalar
architecture

Abstract

P ipelining is used in almost all recent processor architectures to
increase the performance. It is, however, difficult to achieve the
theoretical speedup of pipelining, because code dependencies

cause delays in execution. Superscalar processor designers must use
complex techniques like forwarding, register renaming and branch
prediction to reduce the loss of performance due to this problem. In this
paper we outline and evaluate abstract Minimal Pipeline Architecture
(MPA) featuring cross-bar interconnect of functional units and special two
level pipelining. According to our evaluation MPA is not more complex
than a basic superscalar architecture using out of order execution, but
offers remarkably better performance.

Keywords: computer architecture, pipelining, superscalar processor,
VLIW

4.1 Introduction

Pipelining is very popular technique in increasing the performance of
processors. This is because ideal pipelining gives the speedup of the
number of pipeline stages with only marginal hardware effort. In
practice it is, however, difficult to achieve the speedup of ideal
pipelining, because data dependencies and branches cause delays in
execution [Kogge81, Flynn95, Hennessy90].

Reprinted from Microprocessors and Microsystems, 20 5 Martti Forsell, Minimal pipeline architecture—an alter-
native to superscalar architecture, 277-284, Copyright © 1996 with kind permission of Elsevier Science - NL,
Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands.

62 Implementation of Instruction-Level and Thread-Level Parallelism

Superscalar processor designers must use complex techniques like
forwarding, register renaming and branch prediction to reduce the loss
of performance due to this problem [Tomasulo67, Smith84,
Johnson89].

This paper introduces four techniques for minimizing the performance
penalty of pipelining—general forwarding, simple instruction set,
uncoded instructions and fast branching. They both reduce the depth of
deep pipelines and eliminate unnecessary pipelining. These techniques
are applied to a basic VLIW core to outline a new abstract architecture
featuring cross-bar interconnect of functional units and two level
pipelining. We call the obtained architecture as Minimal Pipeline
Architecture (MPA).

The paper gives also a performance, code size, functional unit utilization
and complexity evaluation of two instances of MPA and basic pipelined
and superscalar architectures. According to the evaluation cross-bar
based MPA is not more complex than a basic superscalar architecture
using out of order execution, but offers remarkably better performance.
In addition to that MPA offers interesting advantages over architectures
using deeper pipelines: Pipeline delays as well as register file bandwidth
problems are absent in MPA. Also the utilization of functional units is
better in MPA than in basic pipelined RISC machines.

4.2 Dependencies and execution models

There are two basic models for exploiting instruction level parallelism—
pipelined and superscalar execution model.

In the pipelined model [Kogge81, Flynn95] the execution of
instructions is divided into parts called pipeline stages, such that the
different parts of consecutive instructions can be executed
simultaneously.

In the superscalar model [Johnson89, Hennessy90] multiple
instructions are executed in multiple functional units simultaneously. The
pure superscalar execution model is, however, very rare. It is usually
combined with the pipelined model such that the execution of
instructions over functional units is pipelined.

The execution of instructions in both models can be divided into two
clearly separate parts—instruction fetch (IF) and instruction execute

634. Minimal pipeline architecture—an alternative to superscalar

(IE)—which are always committed sequentially. Furthermore, the IE part
is usually divided into three or more subparts.

Let us denote the number of these subparts increased by one
(representing the effect of IF part) with S. In the pipelined execution
model S clearly equals the number of pipeline stages.

4.2.1 Non-pipelined execution

An execution model is non-pipelined if no explicit division of instruction
execution into parts is made, i.e., the latency of instruction equals the
length of clock cycle.

Dependencies do not cause delays in the scalar non-pipelined execution
model, because instructions are executed in order and no overlapping
happens. This model is, however, inefficient—the ideal S-level pipelined
execution model performs S times better than this model.

4.2.2 Pipelined execution

Let us assume that we are dealing with the S-level pipelined execution
model without any specific knowledge about the IE part of the
execution.

It is quite obvious that data dependencies in the code cause delays in
execution if IE parts of dependent instructions overlap (see Figure 4.1).

Figure 4.1 Situations where data and branch dependency delays occur.

IF

IE Time

Instruction 1

Instruction 2

Branch instruction

Target instruction

Data dependency delay occurs

Branch dependency delay occurs

64 Implementation of Instruction-Level and Thread-Level Parallelism

Let lX be the latency of the part X. Now we can say, that no data
dependency delay exists if following equation holds:

lIE ≤ lIF (4.1)

Similarly, no delay is caused by a branch instruction if the IF part of the
branch target instruction does not overlap with the IE part of the branch
instruction:

lIE(Branch instruction) ≤ 0 (4.2)

These two equations suggest that dependency delays can be avoided
with two level pipelining where the latency of IE part of branch
instructions is zero.

4.2.3 Superscalar execution

In the superscalar model data and branch dependencies cause similar
delays as in the pipelined model.

Some superscalar architectures use internal buffers, which allow out of
order execution of decoded instructions [Johnson89]. This leads to good
exploitation of available instruction level parallelism, because execution
is now limited only by actual data dependencies. Unfortunately fetching,
decoding and buffering of decoded instructions take some time causing
a lot of branch delays. The performance degradation due to these delays
can be partially eliminated by branch prediction and speculative
execution [Smith84, Johnson89].

A much simpler alternative to a superscalar processor is a Very Long
Instruction Word (VLIW) processor [Fisher83, Nicolau84]. A VLIW
processor consists of multiple functional units that operate in parallel
controlled by a single sequencer. Advanced compilers are used to
parallelize the program before the execution in a VLIW processor
[Fisher81, Chang91].

4.3 Implementation techniques

This section describes the four key implementation techniques we used
in designing MPA—general forwarding, simple instruction set, uncoded
instruction format and fast branching.

654. Minimal pipeline architecture—an alternative to superscalar

4.3.1 General forwarding

The pipeline depth of four or more stages is very usual in current RISC
machines. This causes a lot of data dependency delays, because the left
side of equation 4.1 becomes at least three times greater than the right
side.

An old hardware technique called forwarding eliminates the data
dependency delays presuming the actual operation is executed in a
single fixed stage of the pipeline [Hennessy90] (see Figure 4.2).

Figure 4.2 Forwarding eliminates data dependency delays.

We get a novel technique called general forwarding by applying the
idea of forwarding to the selection of all operands: The results of
functional units including the contents of registers are passed to the
input multiplexers of functional units. The correct operands are selected
by appropriate bits in the operation code of an instruction.

The use of general forwarding requires simultaneous access to all
registers, which requires quite complex wiring with ordinary multiported
register files.

Simultaneous access to all registers can be implemented by a novel
register file organization called distributed register file, in which single
registers are treated as separate functional units that are connected to
each other by a cross-bar switch-like forwarding mechanism (see Figure
4.3).

In a processor using general forwarding the separate operand select
stage is unnecessary, because the forwarding machinery now selects
operands between the operations of consecutive stages.

Instruction 1

Dependent instruction

No data dependency delay occurs

IF

IF

Operation execute

Forward

The result is forwarded

66 Implementation of Instruction-Level and Thread-Level Parallelism

Figure 4.3 A conventional register file with two read ports and one write
port (left). A distributed register file with one external input and
eight outputs (right).

4.3.2 Simple instruction set

The instruction sets of basic RISC processors do not support execution
in two level pipeline properly, because most instructions require
sequential involvement of more than just one operational unit (see
Figure 4.4).

Figure 4.4 Some instructions occupy many functional units in DLX pipeline
[Hennessy90].

Decoder

In, Out1-2

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

R

R

R

R

R

R

R

R

Decoder Decoder

R

R

R

R

R

R

R

R

Address1 Address2 Address3

w lines
single line In

Out

Out

Out

Out

Out

Out

Out

Out

LW R1,d(R2) IF DE EX ME WB

ALU is used to calculate the effective address

Memory unit is used to load word from the memory

IF DE EX ME WBADD R1,R2,R3

ALU is used to do the addition

Memory unit is not used, but occupied in vain

674. Minimal pipeline architecture—an alternative to superscalar

The problem disappears by using a simple instruction set: Instructions
involving the use of multiple functional units are divided into multiple
instructions occupying exactly one functional unit and using always
absolute or indirect addressing.

A processor using simple instruction set potentially offers better
utilization of functional units than a conventional RISC processor using
typical instruction set. This is because one has more accurate control of
functional units with the simple instruction set. There are for example
no situations where an instruction occupies a functional unit in vain (see
the ADD instruction in figure 4.4).

4.3.3 Uncoded instruction format

Instruction coding is used in almost all current processors to reduce the
size of program code. This does not come for free, because usually the
processor must decode instructions in a separate pipeline stage before
they can be executed.

This stage can be eliminated by using an uncoded instruction format,
in which instructions are left completely uncoded: The operation code
of an instruction is fetched directly into the operation register and
separate bitfields in the code control directly the operation of different
parts of the processor.

The negative consequence of using uncoded instruction format is that
according to our tests the width of instruction word increases by a
constant factor of two to ten.

4.3.4 Fast branching

Equation 4.2 reveals that the main reason for control delays is the long
latency of branch instructions.

Fast branching is a technique in which general forwarding is applied
also to the operation of sequencer: The result bit of the compare unit
controls forwarding mechanism, which selects the next instruction
memory fetch address from the next instruction address calculated by
sequencer adder and absolute target address in operation code. All this
happens before the next instruction fetch is started.

68 Implementation of Instruction-Level and Thread-Level Parallelism

Fast branching eliminates branch delays presuming the operation is
executed in stage two. Otherwise one or more delay slots are required
between compare instructions and branch instructions (see Figure 4.5).
In comparison to branch prediction fast branching offers better
possibilities for code scheduling and speculative execution, because
branches have no delay.

Figure 4.5 Fast branching requires the operation is executed in stage two
otherwise delay slots are added.

The use of fast branching has also two disadvantages: The program
loader must calculate branch target addresses while loading programs
into the memory and the use of absolute addressing increases the size of
the program slightly.

4.4 Architecture

In order to outline an abstract architecture with two level pipelining and
fast branching, we apply the four described implementation techniques
to the basic VLIW core [Fisher83]. We call the obtained architecture as
Minimal Pipeline Architecture (MPA) [Forsell94].

Branch

Target

No branch delay

IF

IF

Forward

Fetch address

IF

Compare

Branch

Target

IF

IF

Fetch address

IF

Compare

Condition bits

IFDelay slot

Condition bits

Operation execute

694. Minimal pipeline architecture—an alternative to superscalar

The main parts of a MPA processor are a arithmetic and logic units
(ALU0-ALUa-1), arithmetic unit for condition codes (AIC), m memory
units (M0-Mm-1), r registers (R0-Rr-1) and sequencer (S). Parts are
connected to each other by a large cross-bar switch, which acts as
general forwarding mechanism (see Figure 4.6).

Figure 4.6 A block diagram of a MPA processor.

MPA uses VLIW-style instruction format, where single instruction
consists of two word operands and several subinstructions that are
assigned to appropriate functional units. The types of subinstructions
are arithmetic and logical subinstructions (A), compare subinstructions
(AIC), load and store subinstructions (M), write back subinstructions (R),
and control subinstructions (S) (see Figure 4.7). In order to avoid
separate decoding stage in MPA pipeline, instructions are uncoded and
operands are always directly forwarded to appropriate functional units.

The instruction set of MPA is derived from DLX [Hennessy90] such that
MPA subinstructions use only one functional unit. DLX instructions
involving sequential use of many functional units are divided into
separate MPA subinstructions.

Mux Mux

AA0 AB0

ALU0

Mux Mux

AA1 AB1

ALU1

Mux Mux

AAa-1 ABa-1

ALUa-1

Mux

R0

Mux

R1

Mux

Rr-1

PC

Mux

ALUPC

Mux

Tmp

INSTRUCTION CACHE

MuxMux

MD0 MA0

MULTIPORT DATA CACHE

D-In0 A-In0 D-Out0

PORT0

MuxMux

MAm-1

D-Inm-1 A-Inm-1 D-Outm-1

PORTk
I-Out A-In

OMuxMux

MD1 MA1

D-In1 A-In1 D-Out1

PORT1

AIA

Mux

AIC

Mux

AIB

OO
S

MDm-1

70 Implementation of Instruction-Level and Thread-Level Parallelism

Figure 4.7 The operations for different types of subinstructions of M5
processor. The indexes are not shown.

MPA processor has a single addressing mode called forwarded absolute
addressing. The address of a memory reference is always an absolute
value, which is selected through the cross-bar from ALU operation
result, memory unit result, data word operands or register contents. The
more complicated addressing modes must be built from several
sequential instructions: The address must first be calculated using ALU
and then the result must be forwarded to memory unit.

4.4.1 MPA Pipeline

The pipeline of MPA consists of two stages: Instruction Fetch (IF) and
Execute (EX). Both IF and EX stages are divided into three phases:
Bypass Phase (BP), Latch Delay Phase (LD) and Execution Phase (EX)
(see Figure 4.7).

The BP and LD phases of the IF stage are controlled by the previous
instruction, which will select the correct value for PC according to
operation code and condition codes. During the EX phase of the IF
stage the processor fetches an operation code of an instruction from the

A AIC M R S

Clock

Clock

Latch

Latch

Bypass

Bypass

OO←I[PC]Fetch

Execute

PC←MuxPC

AA←MuxAA
AB←MuxAB

A←AA⊕AB

Bypass

O←OO

AIC←AIA⊕AIB

AIA←MuxAIA
AIB←MuxAIB

PC←MuxPCMA←MuxMA
MD←MuxMD

M←M[MA]
M[MA]←MD

←MuxAA←
←MuxAB←

←MuxAIA←
←MuxAIB←

←MuxMA←
←MuxMD←

←MuxPC←←MuxR←

R←MuxR

←MuxPC←

IF
STAGE

EX
STAGE

714. Minimal pipeline architecture—an alternative to superscalar

instruction cache. This value on the instruction bus (OO) is used to
control the beginning of instruction execution before the operation code
is actually written into operation register (O) at the LD phase of the EX
stage.

During the BP phase of the EX stage the operands of an instruction are
selected and forwarded to operand registers of appropriate functional
units. During the LD phase of the EX stage the values provided by the
forwarding mechanism are written into operand registers of the
functional units. The write back and control transfer operations are
completed with this phase.

During the EX phase of the EX stage the functional units except the
register units and sequencer commit their operations: The ALU
executes an ALU subinstruction, the AIC unit executes a compare
subinstruction, the memory unit executes a memory reference
subinstruction. By the end of execution phase the results of the executed
operations are ready for the bypassing phase of the next instruction.

4.4.2 Multicycle operations and exceptions

Multicycle operations can be implemented by two alternative techniques
in MPA—dividing long operations into one cycle parts or allowing
multicycle pipelines. Dividing long operations into one cycle parts
unfortunately increases the complexity of the processor, because
separate communication lines are needed. Allowing multicycle
operations saves wiring space, but introduces unavoidable data
dependencies between long instructions.

Exceptions can be implemented by saving both general and temporary
register values also to exception registers during the LD phase of the EX
stage and by selecting the given exception service address into PC in the
case of exception. After the exception service is completed execution
can be continued from the instruction which was interrupted by
selecting the exception registers instead of actual registers during the BP
phase of the IF stage. This technique allows also overlapping exceptions
by the use of multiple sets of exception registers.

72 Implementation of Instruction-Level and Thread-Level Parallelism

4.5 Evaluation

We evaluated the performance, code size, utilization of functional units
and complexity of four processors—DLX, superDLX, M5 and M11 (see
Figure 4.8). The first two were included for comparison purposes as
representatives of basic pipelined and superscalar processors.

Figure 4.8 Evaluated processors.

DLX is an experimental load/store RISC architecture featuring basic five
level pipeline [Hennessy90]. SuperDLX [Moura93] is an experimental
superscalar processor derived from DLX architecture featuring out of
order execution and out of order completion of instructions and branch
prediction. M5 and M11 are instances of MPA containing four and ten
functional units respectively [Forsell94].

The number are chosen such that DLX has approximately the same
amount of processing resources as M5, and superDLX has the same
amount of resources as M11.

4.5.1 Simulations

The evaluation was made by simulating the execution of five hand
compiled toy benchmarks in the processors:

Processor DLX sDLX M5 M11

Operation code length 32 320 320 512
Instruction scheduling pipelined superscalar VLIW VLIW
Pipeline stages 5 5 2 2
Functional units 4 10 4 10

Arithmetic and logic units 1 2+2+2 1 4
Compare units 1 1 1 1
Memory units 1 4 1 4
Sequencers 1 1 1 1

734. Minimal pipeline architecture—an alternative to superscalar

block A program that moves a block of words to the other
location in memory

fib A program that calculates the fibonacci value
sieve A program that calculates prime numbers using the sieve

of Eratosthenes
sort A program that sorts a table of words using recursive

quicksort algorithm
trans A program that returns the transpose of a matrix of words

Toy benchmarks were chosen, because we wanted to use hand
compilation to make sure we were measuring the performance of
architectures not compilers. The benchmarks were run assuming ideal
memory hierarchy, i.e., there are no cache misses or the cycle time of
main memory is smaller than the cycle time of the processor.

We measured the execution time in clock cycles, program code size in
bytes and utilization of functional units. The results of simulations are
shown in Figure 4.9. According to them M5 runs benchmarks 266%
faster than DLX and approximately as fast as superDLX. The speedups
range from 2.0 to 3.7. M11 runs benchmarks 587% faster than DLX
and 222% faster than superDLX. The speedups range from 3.1 to 12.

The size measurements of the simulated benchmark programs reveal
that M5 code is 5.3 times longer than DLX code and M11 code is 6.9
times longer than DLX code.

The average utilization of functional units in M5 is 67.1% that is 2.4
times better than in DLX. The average utilization of functional units in
M11 is 70.0% which is 2.3 times better than in superDLX. The high
functional unit utilizations of MPA are partially due to certain hand
optimization techniques that decrease execution time by adding
subinstructions to suitable locations in code.

74 Implementation of Instruction-Level and Thread-Level Parallelism

Figure 4.9 The relative performance, size of programs and utilization of
functional units.

4.5.2 Complexity and clock cycle length

Let us compare the wiring area needed for a w-bit i-issue superDLX and
w-bit MPA processor both having r registers and f functional units, i.e.,
a ALUs, one compare unit, m memory units and one sequencer.
Assume that the superDLX processor has q-slot instruction queue, b-slot
reorder buffer and b-slot central window. Assume also that the number
of immediate operands is o and the length of instruction word is c in the
MPA processor.

To simplify the comparison let us locate all elements of a processor in
one dimension and assume that all elements are equally wide (see Figure
4.10). By calculating the areas needed for communication lines we get

DLX
superDLX
M5
M11

EXECUTION SPEED CODE SIZE

UTILIZATION OF FUNCTIONAL UNITS

0,00

2,00

4,00

6,00

8,00

10,00

12,00

block fib sieve sort trans
0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

block fib sieve sort trans

0

10

20

30

40

50

60

70

80

90

block fib sieve sort trans

754. Minimal pipeline architecture—an alternative to superscalar

that 4-issue superDLX occupies 75% of the area needed for M5 and
10-issue superDLX occupies 106% of area needed for M11 (see Figure
4.10). A lot of additional die area is needed for an instruction queue,
decoder, reorder buffer, central window, memory buffer and branch
target buffer in superDLX.

Figure 4.10 The die area and delay calculations of communication lines.
Terms like “4iw” indicate the number of lines. The width of
elements are shown in parenthesis.

Due to similar functional unit construction in superDLX and in MPA
only the forwarding mechanism delay may affect the clock cycle in
MPA. The length of forwarding paths are the width of functional units
plus three including the width of reorder buffer and central window in
the case of superDLX and the width of register unit and operand
register in the case of MPA (see Figure 4.10). We get that the
forwarding path of MPA and superDLX are equally long and thus the
clock cycles are potentially equally long.

I-QUEUE REGISTERS REORDER
BUFFER

CENTRAL
WINDOW

ALUS COMPARE
UNIT

SEQUENCERMEMORY
UNITS

DECODER

ALUS AIC MEMORY
UNITS

SEQUENCERREGISTERSOPERATION
REGISTER

iw
iw

iw
2iw

2iw
iw 2fw

fw

ow
(f+r)wc

c+ow 2rw 3aw 2w+1 3mw 3w

wq 4iw iw wb 2wb 3aw 3w 3mw 2w

superDLX

MPA

a b f i m q w AREA DELAY

1 20 4 4 1 17 32 4.86K 7
4 50 10 10 4 47 32 17.9K 13

a c f m o r w AREA DELAY

1 320 4 1 2 32 32 6.46K 7
4 512 10 4 4 32 32 16.8K 13

(1) (1) (1) (1) (1) (a) (1) (m) (1)

(1) (1) (a) (1) (m) (1)

76 Implementation of Instruction-Level and Thread-Level Parallelism

4.6 Conclusions

We have described techniques to eliminate pipeline delays without losing
the performance advantage of pipelining. We applied these techniques
to a basic VLIW architecture. As a result we outlined Minimal Pipeline
Architecture (MPA) using cross-bar interconnect of functional units and
pipeline that has only two stages.

We evaluated two MPA processors and two reference processors, DLX
and superDLX, by simulations. The results are quite favorable to MPA:

M5, a five unit implementation of MPA, performs over two and a half
times better than DLX, a RISC processor, that has same number of
functional units than M5. The better performance comes from better
exploitation of available instruction level parallelism, which is due to
over two times better utilization of functional units and absence of
pipeline hazards. Unfortunately the code size expands by the factor of
five.

M11, an eleven unit implementation of MPA, performs almost six times
better than DLX and over two times better than superDLX, a
superscalar processor featuring out of order execution and branch
prediction, and the same number of functional units than M11.
Furthermore, the complexity of cross-bar based M11 does not exceed
the complexity of superDLX. Also in this case the code size expands by
the factor of almost seven.

The difference in performance is quite surprising, because in theory
superscalar and VLIW processors should perform equally well and one
would have assumed that the complexity of superscalar processor were
lower. We believe that the difference in performance is an evidence that
the static compile time scheduling in a VLIW processor performs better
than the dynamic run-time scheduling in a superscalar processor. We
believe also that the high complexity of a basic superscalar processor
indicates that the development of superscalar architectures has reached
the point where alternative approaches like MPA are possible.

The increased code size of MPA unfortunately implies larger instruction
caches and more expensive chips or more instruction cache misses and
slightly decreased performance. Alternatively one may use decoded
instruction cache (DINC) [Dizel87] between the main memory and
processor to return the code density to the level of DLX. This would,

774. Minimal pipeline architecture—an alternative to superscalar

however, require predecoding and fetch address prediction quite like in
superscalar processors.

The code size reduction techniques, instruction cache analysis and
feasibility issues of MPA would be interesting topics for further
investigation.

References

[Chang91]
P. Chang, S. Mahlke, W. Chen, N. Warter and W. Hwu, IMPACT:
An architectural Framework for Multiple-Instruction-Issue Processors,
Proceedings of the 18th Annual International Symposium on
Computer Architecture, Association for Computing Machinery,
New York, 1991, 266-275.

[Dizel87]
D. Dizel, The Hardware Architecture of the CRISP Microprocessors,
Proceedings of the 14th Annual International Symposium on
Computer Architecture, Computer Society Press of the IEEE,
Washington, 1987, 309-319.

[Fisher81]
J. Fisher, Trace Scheduling: A technique for global microcode
compaction, IEEE Transactions on Computers C-30, (1981) 478-
490.

[Fisher83]
J. Fisher, Very Long Instruction Word Architectures and ELI-512,
Proceedings of the 10th Annual International Symposium on
Computer Architecture, Computer Society Press of the IEEE,
Washington, 1983, 140-150.

[Flynn95]
M. Flynn, Computer Architecture—Pipelined and Parallel
Processor Design, Jones and Bartlett Publishers, Boston, 1995.

[Forsell94]
M. Forsell, Design and Analysis of Some Chip-level Parallel
Architectures, Licentiate thesis, Department of Computer Science,
University of Joensuu, Joensuu, 1994.

[Hennessy90]
J. L. Hennessy, D. A. Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kaufmann Publishers Inc., San
Mateo, 1990.

[Johnson89]
W. M. Johnson, Super-Scalar Processor Design, Technical Report
No. CSL-TR-89-383, Stanford University, Stanford, 1989.

78 Implementation of Instruction-Level and Thread-Level Parallelism

[Kogge81]
P. M. Kogge, The Architecture of Pipelined Computers,
Hemisphere Publishing Corporation, Washington, 1981.

[Moura93]
C. Moura, SuperDLX - A Generic Superscalar Simulator, ACAPS
Technical Memo 64, McGill University, Montreal, 1993.

[Nicolau84]
A. Nicolau and J. Fisher, Measuring the parallelism available for very
long instruction word architectures, IEEE Transactions on
Computers C-33, 11 (1984), 968-976.

[Smith84]
A. Smith and J. Lee, Branch Prediction Strategies and Branch
Target Buffer Design, Computer 17, 1 (1984), 6-22.

[Tomasulo67]
R. M. Tomasulo, An efficient algorithm for exploiting multiple
arithmetic units, IBM Journal of Research and Development 11, 1
(1967), 25-33.

795. MTAC—a multithreaded VLIW architecture for PRAM simulation

Chapter 5

MTAC—A Multithreaded
VLIW Architecture for PRAM
Simulation

Martti J. Forsell
Department of Computer Science, University of Joensuu, PB 111, FIN-80101 Joensuu, Finland

Abstract

T he high latency of memory operations is a problem in both
sequential and parallel computing. Multithreading is a technique,
which can be used to eliminate the delays caused by the high

latency. This happens by letting a processor to execute other processes
(threads) while one process is waiting for the completion of a memory
operation. In this paper we investigate the implementation of
multithreading in the processor-level. As a result we outline and evaluate
a MultiThreaded VLIW processor Architecture with functional unit
Chaining (MTAC), which is specially designed for PRAM-style
parallelism. According to our experiments MTAC offers remarkably
better performance than a basic pipelined RISC architecture and
chaining improves the exploitation of instruction level parallelism to a
level where the achieved speedup corresponds to the number of
functional units in a processor.

Keywords: PRAM, VLIW, multithreading, chaining

5.1 Introduction

Efficient parallel computers are hard to manufacture due to yet unsolved
theoretical and technical problems. The most important is: how to
arrange efficient communication between processors?

To be published in Journal of Universal Computer Science (http://cs.joensuu.fi:8080/jucs_root), 1997.

80 Implementation of Instruction-Level and Thread-Level Parallelism

A theoretically elegant solution is to arrange communication by building
a shared memory between processors [Schwarz66, Karp69,
Fortune78]. In the 50’s, 60’s and 70’s , however, the idea of building
true shared memories was considered impossible. Instead several other
possibilities, like memory interleaving, and memory distribution, were
investigated [Burnett70, Enslow74, Schwarz 80.

Despite of their poor feasibility, the use of shared memory models
continued among algorithm designers due to the simplicity of
programming. The most widely used model is parallel random access
machine (PRAM) [Fortune78, Leighton91, McColl92] (see Section 5.2
for a definition).

While building of shared memory has remained unfeasible, there has
been a considerable effort to simulate an ideal shared memory machine
like a PRAM with a physically distributed memory machine, which
consists of processors and memory modules connected to each others
through a communication network [Schwartz80, Gottlieb83, Gajski83,
Hillis 85, Pfister85, Ranade87, Abolhassan93, Forsell96a].

Efficient processor architectures are not as hard to design as entire
parallel computers, but there are still two major problems that reduce
the performance of them: Typical thread-level parallel processor
architectures suffer from low utilization of processors, because a large
portion of time is wasted in waiting for memory requests to complete,
and typical instruction-level parallel architectures suffer from delays
caused by instruction dependencies, because typical sequential code
contains a lot of dependencies.

In this paper we try to find a common solution to both of these
problems by using multithreading to increase the utilization of
processors and functional unit chaining to eliminate dependencies. With
this in mind, we apply multithreading and chaining along with extensive
superpipelining to a basic very long instruction word (VLIW) [Fisher83,
Nicolau84] (see Section 5.3 for a definition) architecture [Forsell96b]. As
a result we outline a MultiThreaded VLIW processor Architecture with
functional unit Chaining (MTAC), which specially suits for efficient
simulation of a PRAM.

MTAC features a very short clock cycle, chained operations and
absence of pipeline and memory system hazards. A preliminary
performance evaluation of MTAC as a processor architecture is given.

815. MTAC—a multithreaded VLIW architecture for PRAM simulation

According to our experiments MTAC offers remarkably better
performance than a basic pipelined RISC architecture with the same
number of functional units and chaining improves the efficiency of
instruction level parallelism to a level where the achieved speedup
corresponds to the number of functional units in processors.

5.2 The idea of simulation

In this section we outline briefly how an ideal shared memory machine
(SMM), like a PRAM, can be simulated by a physically distributed
memory machine.

5.2.1 Parallel random access machine

The Parallel Random Access Machine (PRAM) model is a logical
extension of the Random Access Machine (RAM) model. It is a widely
used abstract model of parallel computation [Fortune78, Leighton91,
McColl92]. A PRAM consists of p processors each having a similar
register architecture. All processors are connected to a shared memory
(see Figure 5.1). All processors run the same program synchronously,
but a processor may branch within the program independently of other
processors. That is, each processor has its own Program Counter.
There are no memory access restrictions: If all p processors initiate a
memory reference simultaneously, the memory system will complete all
references in a single clock cycle.

Figure 5.1 A Parallel Random Access Machine with processors P1,...,Pp.

The ideal shared memory of large PRAMs is very difficult to build directly
due to extreme complexity and very high costs: According to our earlier
investigations multiport memories are feasible, but the silicon area and
cost of a p-port shared memory are p2 times greater than the required
silicon area and cost of an ordinary single port memory [Forsell94]. It is
hard to imagine that multiport memories could be implemented by
another structure that is simpler than that proposed in [Forsell94].

P1 P2 Pp

Shared memory

82 Implementation of Instruction-Level and Thread-Level Parallelism

5.2.2 Distributed memory machine

A physically distributed memory machine (DMM) is a computer,
which consists of p processors and m memory modules connected to
each others through a communication network (see Figure 5.2).
Processors use message passing to access memory locations.

Figure 5.2 A physically distributed memory machine, where processors
P1,...,Pp are connected to memory modules M1,...,Mm through a
communication network.

Most current parallel computers are DMMs [Hillis85, Prechelt93],
because a DMM is a lot easier to build than a SMM [Forsell94].

Note that the term shared memory is currently widely used in the
computer industry in a different meaning: A machine has a shared
memory if all processors have access to a single memory, even if access
is serialized. We consider this misleading because this terminology
classifies both a parallel computer using the PRAM model and a parallel
computer with a time-shared bus between processors and the memory
to the same shared memory class, although the PRAM computer has
considerably higher performance in most applications.

5.2.3 Simulating SMM on DMM

According to earlier investigations, DMMs can be used to simulate
SMMs like PRAMs [Schwartz80, Gottlieb83, Gajski83, Hillis85,
Pfister85, Ranade87, Abolhassan93, Forsell96a].

The standard solution uses two special techniques—random hashing and
processor overloading.

M1

P1

M2

P2

Mm

Pp

COMMUNICATION
NETWORK

835. MTAC—a multithreaded VLIW architecture for PRAM simulation

Random hashing is used to distribute memory locations of a SMM to
the modules of a DMM: A memory mapping function is randomly
picked up from a family of memory mapping functions, which distribute
memory locations evenly over the memory modules. If the function does
not work well with a particular application the function is changed to
another. The main purpose of hashing is to prevent contention of
messages in the communication network.

Processor overloading means simulating a number of virtual processors
by a single physical processor. Processor overloading is used to hide the
latency of long operations, which slow down the execution of parallel
programs: While, e.g., a memory request initiated by an instruction of a
virtual processor is being processed in a network, the processor
executes instructions of the other virtual processors. This is possible
because the instructions of virtual processors are independent of each
others within a cycle of a physical processor.

The current RISC and superscalar processors with large register files
and long reorder buffers and pipelines [Johnson89, Hennessy90] are
not suitable for processor overloading, because they lack mechanisms
for fast process switches, and the number of registers is still far too small
for efficient data prefetching. The objective of this paper is to outline a
processor architecture that is capable for processor overloading and
extracting enough instruction level parallelism.

5.3 Multithreading, distribution and chaining

In this section we describe four main techniques—multithreading,
register file distribution, VLIW scheduling and functional unit chaining—
that are necessary for an efficient PRAM processor architecture.

5.3.1 Multithreading

A processor is multithreaded if it is able to execute multiple processes
(threads) of a single program in an overlapped manner [Moore96]. The
threads in a multithreaded processor are executed in fixed order or
scheduled by a scheduling mechanism utilizing, e.g., a priority queue.
The use of a complex scheduling mechanism usually requires that more
than one instruction of a thread must be executed before next thread
can be changed to execution. This is caused by the time taken by the
scheduling decision [Moore96].

84 Implementation of Instruction-Level and Thread-Level Parallelism

5.3.2 Register file distribution

An efficient realization of multithreading requires simultaneous access to
a large number of registers, because the execution of multiple threads is
overlapped in a multithreaded processor. This causes problems, because
large multiport register files are slow and very difficult to build.

Quick simultaneous access to all registers can be implemented by a
novel register file organization called distributed register file, in which
single registers are treated as separate functional units that are
connected to each other by a cross-bar like selection network where
needed (see Figure 5.4) [Forsell96b].

5.3.3 VLIW scheduling

A Very Long Instruction Word (VLIW) processor is a processor, which
executes instructions consisting of the fixed number of smaller
subinstructions [Fisher83, Nicolau84]. Subinstructions are executed in
multiple functional units in parallel. Subinstructions filling actual
instructions are determined under compile time.

In order to achieve high speedups the programs for VLIW processors
must be compiled using advanced compilation techniques breaking the
basic block structure of the program [Fisher81, Chang91].

We selected the VLIW scheduling for MTAC, because the main
alternative—the dynamic runtime scheduling with out of order execution
and branch prediction used in superscalar processors [Johnson89,
Hennessy90]—is not suitable for strictly synchronous PRAM simulation.
Furthermore, there is evidence that a VLIW processor with the same
number of functional units is faster than a superscalar processor with
out of order execution and dynamic branch prediction, while the VLIW
solution requires no more silicon area [Forsell96b].

5.3.4 Functional unit chaining

In a processor consisting of multiple functional units [Hennessy90] one
can chain the units so that a unit is able to use the results of its
predecessors in the chain. We call this technique functional unit
chaining (see Figure 5.3).

855. MTAC—a multithreaded VLIW architecture for PRAM simulation

Figure 5.3 A set of functional units that operate (a) in parallel and (b) in
chain. Symbols with two inputs and a single output are
multiplexers.

5.3.5 Efficient parallel multithreading with chaining

Functional unit chaining allows for execution of a code fraction
containing dependencies within a single clock cycle of a thread.
Unfortunately, this significantly increases the length of the clock cycle.

Chaining can, however, be combined with superpipelining [Jouppi89] to
retain short clock cycles. This solution generates delays due to
dependencies in a sequential program code, but in the case of parallel
programs, threads are independent within a cycle of a physical
processor by definition.

5.4 Multithreaded architecture with chaining

In order to outline an abstract multithreaded processor architecture for a
simulation of a PRAM we apply functional unit chaining, fixed order
multithreading, and superpipelining to the basic VLIW core with a
distributed register file [Forsell96b]. We call the obtained architecture the
MultiThreaded Architecture with Chaining (MTAC).

U1 U2 Uu

U1

U2

Uu

REGISTER FILE

REGISTER FILE

(a)

(b)

86 Implementation of Instruction-Level and Thread-Level Parallelism

Figure 5.4 A detailed block diagram of a MTAC processor.

I-In0

R1 Rr-1 A0 Aq-1 Aq ... Aa-1 S M0 ... Mm-1 ID O............

Instruction
Fetch

Instruction
Decode

Operand
Select

ALU0
Operation

Result
Bypass

ALUq-1
Operation

Result
Bypass

Hash
Address

Calculation

Memory
Request

Send

Memory
Request
Receive

P-Out0
D-Out0
A-Out0
D-In0
P-In0

Registers Arithmetic and Logic Units Sequencer Memory Units Proc Id Opcode

IA-Out

Processing element (e.g. ALU slice)
Register or latch

Multiplexer
Comparator

Decoder

Thread
Management

SYMBOL EXPLANATION:

Result
Bypass

Sequencer
Operation

Result
Bypass

(Pre M) (Post M)

ALUq
Operation

....
ALUa-1

Operation

Thread x
cycling
around

the pipeline

875. MTAC—a multithreaded VLIW architecture for PRAM simulation

The main features of MTAC are

• Multithreaded operation with single instruction length threads and
a zero-time switch between threads.

• Variable number of threads.
• Multiple functional units connected as a chain, so that a unit is able

to use the results of its predecessors in the chain.
• A very short clock cycle due to a reqular structure without long

lines that cannot be pipelined.
• VLIW-style instruction scheduling allowing for a complex coding of

instructions if necessary.
• The construction of a compiler is easier than with average VLIW

machines due to functional unit chaining allowing for the execution
of dependent subinstructions within an instruction.

• No need for on-chip (or off-chip) data or instruction caches or
branch prediction. Multithreading is used to hide memory,
communication network and branch latencies.

• Completely queued operations — no memory reference message
handling overhead.

The main parts of a MTAC processor are a arithmetic and logic units
(A0-Aa-1), m memory units (M0-Mm-1), operation register (O), process
identification register (ID), r general registers (R0-Rr-1) and sequencer (S).
Each part consists of a set of registers and processing elements
connected to each others in a chain-like manner. Some subparts of
chains are also connected to each others (see Figure 5.4).

A horizontal line of latches store contents of a single thread (see Figure
5.4). From this point of view a MTAC processor consists of tmax slices,
which store and process threads. Any of the lowermost tmax-tmin+1
slices can be connected to the topmost slice so that the pipeline of
MTAC can store simultaneously tmin to tmax threads. In every clock cycle
threads are forwarded one step in the pipeline. Thus, the processor
contains a variable number of threads which are cycling around the
pipeline.

5.4.1 MTAC pipeline

The pipeline of a MTAC consists of i instruction fetch stages (IF0-IFi-1), d
decode stages (DE0-DEd-1), o operand select stages (OS0-OSo-1), e
execute stages (EX0-EXe-1), h hash calculate stages (HA0-HAh-1), u
memory request stages (ME0-MEu-1), b result bypass stages (BB0-BBb-1),

88 Implementation of Instruction-Level and Thread-Level Parallelism

one sequencer stage (SE) and 1 to tmax-tmin+1 thread management
stages (TM0-TMtmax-tmin+1). Symbols i, d, o, e, h, u, b, tmin , and tmax
are implementation dependent constants.

The cycle of a thread begins with the fetch of a very long operation
code word from the local memory (IF stages). The latency of the
memory is embedded into i stages. During the DE stages the operation
code of the instruction is decoded. Due to very short clock cycle d
stages are needed for decoding. OS stages take care of the operand
selection and the transfer of operands to operand registers of
appropriate functional units. To transfer all operands o stages are
needed.

During the EX stages ALUs commit their operations. Due to the varying
order of instructions in a typical basic block, the first q ALUs (A0-Aq-1)
are placed before memory units and the rest a-q ALUs (Aq-Aa-1) are
placed after memory units. Totally e stages are needed for all execute
operations.

In the middle of the EX stages physical addresses of memory references
are calculated (HA stages) and all reference messages are transmitted
simultaneously to the communication network (ME stages). Before the
end of ME stages a thread receives the possible reply messages of its
memory requests. If a thread issuing a memory read request reaches the
last ME stage without receiving the reply message, the whole processor
is halted until the message arrives.

The processing of a thread ends with the selection of the next PC
address according to the results of compare operations (SE stage). The
last 1 to tmax-tmin+1 stages are used for transferring the contents of
threads to the beginning of the chain and allowing for the number of
threads to vary from tmin to tmax.

5.4.2 Other aspects

We selected not to chain memory units, because sequential memory
requests within an instruction cycle of a thread in multithreaded
processor cannot be done without losing memory consistency or
performing full synchronization between the requests.

The order of the functional units is chosen according to typical
instruction order in a basic block of code: Memory units are placed in

895. MTAC—a multithreaded VLIW architecture for PRAM simulation

the middle of ALUs. The sequencer is the final unit in the chain. We
added also a special mechanism to benefit more from chaining: An ALU
or sequencer may use the result of a compare operation committed in
one of the previous ALUs to select one of its operands.

Synchronization between processors and threads is be done by a
separate synchronization network between processors: A processor is
equipped with a mechanism, which freezes a thread after it has
executed a synch instruction by blocking its memory references and PC
changes until the processor receives a synch message from a separate
synchronization network.

PRAM model assumes unrealisticly that the number of processors p can
be as high as an algorithm requires, whereas the number of threads is
limited to tmax in a MTAC processor. This is not, however, a difficult
problem, because any task TQ consisting of Q operations and taking U
time steps with enough processors can be executed with t processors in
time U+(Q-U)/t [Brent74]. On the other hand, if the number of threads
is set to T < tmin, the processor creates tmin-T null threads, so that the
processor remains functional. Alternatively, we can quite easily add a
support for fast context switches to MTAC, if more than tmax
simultaneous threads are absolutely required: Add w switch stages (SW)
in the beginning of the pipeline of MTAC. During these stages a thread
sends its contents to the local memory and receives the contents of a
stored thread from the local memory.

5.5 Performance evaluation

We evaluated the performance, the static size of code and the utilization
of functional units for five processors—DLX, T5, T7, T11, T19 (see
Table 5.1).

Table 5.1 Evaluated processors.

UNITS DLX T5 T7 T11 T19

Functional Units 4 4 6 10 18
- Arithmetic and Logic Unit (ALU) 1 1 3 6 12
- Compare Unit (CMP) 1 1 1 1 1
- Memory Unit (MU) 1 1 1 2 4
- Sequencer (SEQ) 1 1 1 1 1

Register Unit 1 1 1 1 1

90 Implementation of Instruction-Level and Thread-Level Parallelism

DLX is an experimental load/store RISC architecture featuring basic five
level pipeline [Hennessy90]. It is included for comparison purposes as a
representative of basic pipelined processor. DLX provides a good
reference point for an architectural comparison, although there are
faster sequential processors available.

T5, T7, T11 and T19 are instances of MTAC containing four, six, ten
and eighteen functional units plus one register unit, respectively. The
numbers are chosen so that DLX and T5 have the same number of
functional units. The final ALU was changed to a compare unit (CMP) in
MTAC processors for comparison purposes, because DLX has a
dedicated hardware (CMP) for calculating and solving branch target
addresses.

To measure the exploited instruction level parallelism we included also
T7, T11 and T19. T11 has twice the processing resources of T7 and
T19 has twice the processing resources of T11. T5 was not used as a
base machine for instruction level parallelism measurements, because it
does have enough arithmetic power for proper comparisons.

We also evaluated the performance of six machines—D-1, D-16, D-16s,
T5-1, T5-16 and T19-16 (see Table 5.2).

Table 5.2 Evaluated machines. The numbers are assumptions based on
available technology (see the discussion in Section 5.6).
(IL=Interleaved, B=Banked).

PROPERTIES D-1 D-16 D-16s T5-1 T5-16 T19-16

Type of processor DLX DLX DLX T5 T5 T19
Number of processors 1 16 16 1 16 16
Number of threads 1 512 1 512 512 512
Clock frequency (MHz) 300 300 300 600 600 600
Thread swithing time (clk) - 70 - 0 0 0
Latency of a network (clk) - 6 6 - 6 12
Memory module technology IL B B B B B
Interleaving factor 4 - - - - -
Number of memory modules 1 16 16 1 16 64
Number of banks in a module - 32 32 64 64 64
Assumed number of bank collisions - 3 3 3 3 3
Cycle time of a memory module (clk)27 27 27 54 54 54
Access time of a memory module (clk)15 15 15 30 30 30
Access time of a level 1 cache (clk) 1 - - - - -
Line length of a level 1 cache (word)4 - - - - -
Cache miss time (clk) 16 - - - - -
Next cache line word available (clk) 4 - - - - -

915. MTAC—a multithreaded VLIW architecture for PRAM simulation

D-1 is a sequential machine with a single DLX processor, a single cycle
four-word line level 1 cache, and a 4-way interleaved DRAM memory
system. In a case of a cache miss, we assume that, the cache line is filled
so that first word is available after 16 clock cycles and the remaining are
available after 4 cycle delay each. D-1 is included for comparison
purposes as a representative of conventional sequential computer. D-1
provides a good reference point for a system level comparison, although
there are faster sequential computers available.

D-16 and D-16s are parallel machines using sixteen DLX processors
connected to each others with a communication network. D-16 uses
512 threads per processor in order to the hide message latency. D-16s
uses a single thread per processor. T5-1 is a sequential machine with a
single 512-thread T5 processor. T5-16, T19-16 are parallel machines
using sixteen 512-thread T5 or T19 processors connected to each
others with a communication network, respectively. The memory
system of all parallel machines consists of 16 to 64 memory modules. A
memory module is divided into 32 or 64 banks with access queues due
to slow cycle time of a memory module.

5.5.1 Simulation methods

We made two kinds of experiments—processor level simulations and
machine level estimations.

Processor level simulations were made by simulating a single thread of
execution of seven hand compiled toy benchmarks (see Table 5.3) in the
processors.

Table 5.3 The benchmark programs.

PROGRAM NOTES---
add A program that calculates the sum of two matrices
block A program that moves a block of words to other location in

memory
fib A non-recursive program that calculates a fibonacci value
max A program that finds the maximum value of matrix of integers
pre A program that calculates the presum of a matrix of words
sort A program that sorts a table of words using recursive mergesort

algorithm
trans A program that returns the transpose of a matrix of words---

92 Implementation of Instruction-Level and Thread-Level Parallelism

Single thread simulations are based on the fact that in the most parallel
applications the size of the problem, N, is much bigger than the number
of the processors, P, in a parallel machine. Now, a typical way to
spread the problem of size N to P processors is to divide the problem
into P subproblems of size N/P. Then these P subproblems are solved
with P processors using sequential algorithms. Finally, if necessary, the
results of these P subproblems are combined with P processors. Usually
the sequential part dominates the execution time. Now, it is possible to
extract a single thread of execution from the sequencial part, and that is
how these benchmarks were created. The purpose of these processor
level simulations was to figure out the architectural characteristics of
MTAC without the effect of a memory system.

The benchmarks, except fib, are frequently used primitives in parallel
programs. They were chosen for simplicity, because we wanted to use
hand compilation to make sure we were measuring the performance of
architectures, not compilers. The benchmarks were run assuming
processors have an ideal distributed memory system, i.e., every memory
request is completed before the result is used. We assumed also that all
processors are able to run at the same clock frequency and DLX is able
to run multithreaded code perfectly.

Machine level estimations were made by simulating the execution of
full versions of two hand compiled toy benchmarks (add and max) (see
Table 5.3) in the machines and taking into account the effect of the
assumed memory system. Due to randomized hashing of memory
locations it is possible that two memory reference messages collide, i.e.,
they are trying to enter into a single memory bank simultaneously. In
the case of collision, one message have to wait in an access queue until
another has completed its memory access. We assumed that the
maximum number of collisions is three. The purpose of these machine
level estimations was to figure out the more realistic performance of a
MTAC system. Due to a speculative nature of these estimations we
included only two benchmarks.

We used dlxsim (version 1.1) [Hennessy90] for DLX programs and the
MTACSim (version 1.1.0) simulator [Forsell97] for MTAC programs. A
code example for the max benchmark is shown in Table 5.4.

935. MTAC—a multithreaded VLIW architecture for PRAM simulation

5.5.2 Results

In our processor level simulations we measured the execution time in
clock cycles, the static program code size in instructions and the
utilization of functional units for all processors. The normalized results
are shown in Figure 5.5.

Table 5.4 An Example code of the max benchmark for T5-1 and T5-16
machines. Subinstructions written on a single line belong to the
same instruction. See [Forsell97] for further information.

According to the tests T5 runs benchmarks 2.7 times faster than DLX.
T7, T11 and T19 perform 4.1, 8.1 and 16.6 times faster than DLX.

The exploited instruction level parallelism in MTAC seemed to scale up
exceptionally well in this case of small number of functional units: T11
was 1.97 times faster than T7 and T19 was 2.05 times faster than T11.

; An example code of max benchmark for T5-1 and T5-16 machines
;
; R1 Pointer to the table
; R2 The end address of the table
; R3 Memory(Ponter) contents
; R4 Max value
; R5 Thread interleave constant (threads * word/processor)
; R6 Thread number sifted for word/processor
; R7 Save address for combining
; R8 Combining pointer
; R9 Combining interleave stepping down
; R10 Constant 4

_MAIN

SHL0 O0,O1 WB5 A0 OP0 THREAD OP1 2
SHL0 R30,O0 WB6 A0 OP0 2
LD0 A0 ADD0 O0,R6 WB1 A0 WB4 M0 WB7 A0 OP0 _TABLE
ADD0 R1,R5 WB1 A0 WB2 O0 WB10 O1 OP0 _ENDING OP1 4

L0
LD0 R1 WB3 M0 SLE M0,R4 BNEZ O1 OP1 L1

ADD0 R1,R5 SLT R1,R2 BNEZ 01,O0 WB1 A0 WB4 R3 OP0 L2 OP1 L0

L1 ADD0 R1,R5 SLT A0,R2 BNEZ 01 WB1 A0 OP1 L0

L2 SHR0 R5,O0 WB9 A0 OP0 1
ADD0 R7,R9 ST0 R4,R7 WB8 A0

L3
SHR0 R9,O0 LD0 R8 WB3 M0 SLE M0,R4 BNEZ O1 WB9 A0 OP0 1 OP1 L4

ADD0 R7,R9 ST0 R3,R7 SGE R9,R10 BNEZ O1,O0 WB4 R3 WB8 A0 OP0 L5 OP1 L3
L4 ADD0 R7,R9 SGE R9,R10 BNEZ O1 WB8 A0 OP1 L3

L5 TRAP O0 OP0 0

_TABLE:
.RANDOM 4096

_ENDING:

94 Implementation of Instruction-Level and Thread-Level Parallelism

The static code size reduces almost as one might expect by execution
time measurements. According to measurements the code size in
instructions of T5, T7, T11 and T19 are 0.38, 0.28, 0.22 and 0.20
times the code size of DLX, respectively.

Figure 5.5 The results of experiments. The relative performances, the
relative static code size and the utilization of functional units in
the evaluated processors (upper left charts). The relative
performances of the evaluated machines (the lower right chart).

The size of code would have been reduced more in the case of longer
basic blocks, because in some of the benchmarks main blocks reduced
into a single instruction that was not compressible.

0,00

10,00

20,00

30,00

40,00

50,00

60,00

ad
d

bl
oc

k fib

m
ax

pr
es

um so
rt

tr
an

s

DLX

T5

T7

T11

T19

0,00

0,20

0,40

0,60

0,80

1,00

ad
d

bl
oc

k fib

m
ax

pr
es

um so
rt

tr
an

s

0,00

0,20

0,40

0,60

0,80

1,00

ad
d

bl
oc

k fib

m
ax

pr
es

um so
rt

tr
an

s

0,10

1,00

10,00

100,00

1000,00

10000,00

add max

D-1

D-16

D-16s

T5-1

T5-16

T19-16

S
P

E
E

D
U

P
 (

M
A

C
H

IN
E

S
)

S
IZ

E
 O

F
 C

O
D

E
U

T
IL

IZ
A

T
IO

N

S
P

E
E

D
U

P

955. MTAC—a multithreaded VLIW architecture for PRAM simulation

The average utilization of functional units in DLX was only 25.8%. In
the T5, T7, T11 and T19 average utilizations were 58.6%, 59.2%,
60.4% and 63.5%, respectively. Thus, the utilizations in MTAC
processors were roughly twice than that in DLX.

In our machine level estimations we measured the execution time in
milliseconds for all machines. The normalized results are shown in
Figure 5.5.

According to the tests T5-1 runs add benchmark 10.5 times faster and
max benchmark 12.0 times faster than D-1. T5-16 performs add 168,
109 and 126 times better than D-1, D-16 and D-16s. The numbers are
191, 354 and 88,5 for the max benchmark. T19-16 performs add
895, 583 and 671 times better than D-1, D-16 and D-16s. The
numbers are 1460, 2700 and 675 for the max benchmark.

The performance of MTAC machines seemed to scale up exceptionally
well in this case of small number of processors: T5-16 was 16.0 and
15.9 times faster than T5-1.

In the case of DLX systems, the execution time of benchmarks were
capitalized by memory systems delays. The performance of these
benchmarks would not be much higher even if the DLX processor of D-
1 was replaced by a faster superscalar processor. The performance of
parallel DLX machines, D-16 and D-16s, did not scale up from a single
processor version, D-1. This due to inability of a DLX processor to deal
with overloading.

5.6 Other projects and feasibility

Currently there are many research and development projects going on
in the area of multithreading [Moore96]. Among them are Saarbrücken
Parallel Random Access Machine (SB-PRAM) [Abolhassan93] based
on Fluent Abstract Machine [Ranade87] and Berkley-RISC I
[Patterson82] style multithreaded processor [Keller94], Alewife Project
based on Sparcle processors in MIT [Agarwal93], and TERA MTA
supercomputer from Tera Computer Corporation [Alverson90].

Unlike MTAC and TERA, SB-PRAM and Sparcle are not high speed
designs: A SB-PRAM processor runs at 8 MHz and a MIT Sparcle
processor runs at 33 MHz. The GaAs based TERA runs at 333 MHz
and it is capable of using up to 128 threads per processor. However, a

96 Implementation of Instruction-Level and Thread-Level Parallelism

TERA does not have the a distributed register file architecture as a
MTAC and fails to provide the instruction level parallelism and degree of
superpipelining of MTAC.

MTAC processors contain a larger number of components compared to
basic pipelined processors like DLX. This increases the silicon die area
and manufacturing costs of MTAC processors. On the other hand, one
does not need to use silicon area for large on-chip caches with MTAC
saving die area for other use.

In addition to that, DLX cannot compete with MTAC in the area of
parallel computing, because MTAC is superior in dealing with processor
overloading as seen in machine level estimations: MTAC switches
threads without any cost in every clock cycle, whereas DLX uses at least
70 clock cycles to switch to another thread. In addition to that, MTAC
features a multithread pipeline and it can be extensively superpipelined
without the fear of instruction dependencies whereas DLX features
single threaded execution with five level single thread pipelining.

We believe that the clock frequency of a MTAC processor can be made
as high as the clock frequency of fastest commercial processors (600
MHz) with current technology, or even higher, because there is no need
for forwarding within a single clock cycle in MTAC, the structure of
MTAC is very regular, and there are no long wires that can not be
pipelined. In this sense MTAC closely resembles Counterflow Pipeline
Processor Architecture (CFPP) from Sun Microsystems Laboratories
and Oregon State University, which uses regular structure, local control
and local communication to achieve maximum speed [Sproull94,
Janik97]. CFPP is, however, not designed for parallel processing like
MTAC.

We also believe that the maximum number of threads in MTAC tmax
can be made as high as 500 with current technology, or even higher,
because a MTAC processor can be divided to multiple chips placed in a
multichip module, if it does not fit into a single chip. Thus, the latency
of a fast communication network and the approximate 90 ns cycle time
of current main memory building blocks, DRAM chips, could be hided in
a parallel computer using MTAC processors and fast parallel
communication system like CBM outlined in [Forsell96a].

975. MTAC—a multithreaded VLIW architecture for PRAM simulation

5.7 Conclusions

We have described techniques for reducing performance loss due to low
utilization of functional units and delays caused by instruction
dependencies in thread-level parallel and instruction-level parallel
architectures. We applied these techniques along with extensive
superpipelining to a basic VLIW architecture. As a result we outlined the
MultiThreaded Architecture with Chaining (MTAC), which specially suits
for efficient PRAM simulation.

We evaluated four MTAC processors and one reference processor by
simulations. The results are favorable for MTAC:

T5—a five unit implementation of MTAC—performed 2.7 times faster
than a basic pipelined processor with the same number of functional
units. T7, T11 and T19— six, ten and eighteen unit implementations of
MTAC—performed 4.1, 8.1 and 16.6 times faster than the basic
pipelined processor, respectively.

The better performance comes from better exploitation of available
instruction-level parallelism, which is due to more than two times better
utilization of functional units, the absence of pipeline and memory
system hazards, and the ability of MTAC to execute code blocks
containing dependencies within a single clock cycle.

In addition to better performance, the absence of pipeline and memory
system hazards implies that there is no need for cache memories to get
full performance. Furthermore, there are no long wires in MTAC, so
everything in MTAC can be extensively superpipelined allowing for a
very short clock cycle.

We also evaluated three machines based on MTAC procesors and three
reference machines by simulations. The effect of of assumed memory
systems was estimated and taken into account. The results are even
better for MTAC based machines than in the case of plain processors:

T5-1—a machine with a single T5 processor and banked memory
system—performs 11 times faster than a conventional sequential
machine with a basic pipelined processor and a cached memory system.
T5-16 and T19-16—16-processor machines based on T5 and T19
processors—perform respectively 90 to 350 and 580 to 2700 times
faster than two 16-processor machines using the basic pipelined
processor.

98 Implementation of Instruction-Level and Thread-Level Parallelism

Functional unit chaining seems to improve the exploitation of instruction
level parallelism to the level where the achieved speedup corresponds to
the number of functional units in a processor at least in the case of small
number of units: T11, which has almost twice the processing resources
of T7, performs two times faster than T7 and T19, which has almost
two times the processing resources of T11, performs two times faster
than T11.

Chaining also simplifies the VLIW compiler technology required to
achieve the full computing power, because MTAC can execute code
containing true dependencies. Unfortunately the object code compiled
for one MTAC processor is not compatible with another version of
MTAC processor. This is a common problem with VLIW architectures,
but it is a problem with superscalar processors too. The maximum
performance cannot be achieved without recompilation.

A general purpose supercomputer cannot be based solely on MTAC,
because there are certain strictly sequential problems that can be
executed much faster with conventional processors. Moreover, high
speed realtime applications may need faster response than MTAC can
serve. A possible solution could be a two unit structure with a dedicated
scalar unit just like in vector processors.

References

[Abolhas93]
F. Abolhassan, R. Drefenstedt, J. Keller, W. J. Paul and D.
Scheerer, On the Physical Design of PRAMs, Computer Journal
36, 8 (1993), 756-762.

[Agarwal93]
A. Agarwal, J. Kubiatowicz, J. Kranz, D. Lim, D. Yeung, G.
D’Souza and M. Parkin, Sparcle: An Evolutionary Processor Design
for Large-Scale Multiprocessors, IEEE Micro, (1993), 48-61.

[Alverson90]
R. Alverson, D. Callahan, D. Cummings, B. Kolblenz, A. Porterfield
and B. Smith, The Tera Computer System, Proceedings of the
International Conference on Supercomputing, June 11-15, 1990,
Amsterdam, The Netherlands, 1-6.

[Brent74]
R. Brent, The parallel evaluation of general arithmetic expressions,
Journal of the ACM 21, (1974), 201-206.

995. MTAC—a multithreaded VLIW architecture for PRAM simulation

[Burnett70]
G. J. Burnett and E. G. Coffman, A Study of Interleaved Memory
Systems, AFIPS Conference Proceedings SJCC, 36 (1970), 467-
474.

[Chang91]
P. Chang, S. Mahlke, W. Chen, N. Warter and W. Hwu, IMPACT:
An architectural framework for multiple-instruction-issue processors,
Proceedings of the 18th Annual International Conference on
Computer Architecture, Association for Computing Machinery,
New York, 1991, 266-275.

[Enslow74]
P. H. Enslow, Multiprocessors and parallel processing, John
Wiley&Sons, New York, 1974.

[Feldman92]
Y. Feldman, E. Shapiro, Spatial Machines: A More Realistic
Approach to Parallel Computation, Communications of the ACM
35, 10 (1992) 61-73.

[Fisher81]
J. Fisher, Trace Scheduling: A technique for global microcode
compaction, IEEE Transactions on Computers C-30, (1981), 478-
490.

[Fisher83]
J. Fisher, Very Long Instruction Word Architectures and ELI-512,
Proceedings of the 10th Annual International Symposium on
Computer Architecture, Computer Society Press of the IEEE,
1983, 140-150.

[Forsell94]
M. Forsell, Are multiport memories physically feasible?, Computer
Architecture News 22, 4 (1994), 47-54.

[Forsell96a]
M. Forsell, V. Leppänen and M. Penttonen, Efficient Two-Level
Mesh based Simulation of PRAMs, Proceedings of the
International Symposium on Parallel Architectures, Algorithms
and Networks, June 12-14, 1996, Beijing, China, 29-35.

[Forsell96b]
M. Forsell, Minimal Pipeline Architecture—an Alternative to
Superscalar Architecture, Microprocessors and Microsystems 20, 5
(1996), 277-284.

[Forsell97]
M. Forsell, MTACSim - A simulator for MTAC, In preparation,
Department of Computer Science, University of Joensuu, Joensuu,
1997.

100 Implementation of Instruction-Level and Thread-Level Parallelism

[Fortune78]
S. Fortune and J. Wyllie, Parallelism in Random Access Machines,
Proceedings of 10th ACM STOC, Accosiation for Computing
Machinery, New York, 1978, 114-118.

[Gajski83]
D. Gajski, D. Kuck, D. Lawrie and A. Sameh, CEDAR-A Large
Scale Multiprocessor, Proceedings of International Conference on
Parallel Processing,1983, 524-529.

[Gottlieb83]
A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph
and M. Snir, The NYU Ultracomputer - Designing a MIMD, shared-
memory parallel machine, IEEE Transactions on Computers C-32,
(1983), 175-189.

[Hennessy90]
J. Hennessy and D. Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kaufmann Publishers Inc., San
Mateo, 1990.

[Hillis85]
W. D. Hillis, The Connection Machine, The MIT Press, Cambridge,
1985.

[Janik97]
K. Janik, S. Lu, M. Miller, Advances of the Counterflow Pipeline
Microarchitecture, to appear in Proceedings of the Third
International Symposium on High-Performance Computer
Architecture, 1997.

[Johnson89]
W. M. Johnson, Super-Scalar Processor Design, Technical Report
No. CSL-TR-89-383, Stanford University, Stanford, 1989.

[Jouppi89]
N. Jouppi and D. Wall, Available Instruction Level Parallelism for
Superscalar and Superpipelined Machines, Proceedings of the 3rd
Conference on Architectural Support for Programming
Languages and Operating Systems, 1989, Boston, USA, 272-282.

[Karp69]
R. M. Karp and R. E. Miller, Parallel Program Schemata, Journal of
Computer and System Sciences 3, 2 (1969), 147-195.

[Keller94]
J. Keller, W. Paul, D. Scheerer, Realization of PRAMs: Processor
Design, Proceedings of WDAG '94, 8th International Workshop on
distributed Algorithms, 1994, Terschelling, The Netherlands, 17-27.

1015. MTAC—a multithreaded VLIW architecture for PRAM simulation

[Leighton91]
T. F. Leighton, Introduction to Parallel Algorithms and
Architectures: Arrays, Trees, Hypercubes, Morgan Kaufmann, San
Mateo, 1992.

[McColl92]
W. F. McColl, General Purpose Parallel Computing, Lectures on
Parallel Computation Proceedings 1991 ALCOM Spring School
on Parallel Computation (Editors: A. M. Gibbons and P.
Spirakis), Cambridge University Press, Cambridge, 1992, 333-387.

[Moore96]
S. Moore, Multithreaded Processor Design, Kluwer Academic
Publishers, Boston, 1996.

[Nicolau84]
A. Nicolau and J. Fisher, Measuring the parallelism available for very
long instruction word architectures, IEEE Transactions on
Computers C-33, 11 (1984), 968-976.

[Patterson82]
D. Patterson and C. Sequin, A VLSI RISC, Computer 15, 9 (1982),
8-21.

[Pfister85]
G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J.
Kleinfelder, K. P. McAuliffe, E.A. Melton, V. A. Norton and J.
Weiss, The IBM Research Parallel Processor Prototype (RP3):
Introduction and Architecture, Proceedings of International
Conference on Parallel Processing (1985), 764-771.

[Prechelt93]
L. Prechelt, Measurements of MasPar MP-1216A Communication
Operations, Technical Report 01/93, Universität Karlsruhe,
Karlsruhe, 1993.

[Ranade87]
A. G. Ranade, S. N. Bhatt, S. L. Johnson, The Fluent Abstract
Machine, Technical Report Series BA87-3, Thinking Machines
Corporation, Bedford, 1987.

[Schwarz66]
J. T. Schwarz, Large Parallel Computers, Journal of the ACM 13,
1 (1966), 25-32.

[Schwarz80]
J. T. Schwarz, Ultracomputers, ACM Transactions on
Programming Languages and Systems 2, 4 (1980), 484-521.

[Sproull94]
R. Sproull, I. Sutherland and C. Molnar, Counterflow Pipeline
Processor Architecture, IEEE Design and Test of Computers 11, 3
(1994), 48-59.

102 Implementation of Instruction-Level and Thread-Level Parallelism

103Implementation of Instruction-Level and Thread-Level Parallelism

APPENDIX A. THE DLX ARCHITECTURE

DLX is a simple load/store architecture developed for Hennessy’s and
Patterson’s book Computer Architecture—A Quantitative Approach
[Hennessy90] (see Figure A.1). In this appendix we describe the DLX
architecture like it is described in Hennessy’s and Patterson’s book.

Figure A.1 The block diagram of DLX processor.

Note: DLX assembly language notation uses reverse ordering of
operands: The destination operand is always on the left and the source
operands are always on the right.

104 Implementation of Instruction-Level and Thread-Level Parallelism

A.1 ARCHITECTURE

The DLX architecture has thirty two 32-bit general purpose registers.
The value of R0 is always 0. Additionally, there is a set of floating-point
registers, which can be used as 32 single-precision (32-bit) registers, or
as even-odd pairs holding double precision values. The 64-bit floating-
point registers are named F0,F2,...,F28,F30. Both single and double
precision operations are provided.

Memory is byte addressable in Big Endian mode with a 32-bit address.
All memory references are through loads or stores between memory
and either general purpose registers or floating point registers. All
memory accesses must be aligned.

All instructions are 32-bits and must be aligned. The instruction set is
described later in this appendix.

A.2 OPERATIONS

There are four classes of instructions: load and stores, ALU operations,
branches and jumps, and floating-point operations.

Any of the general purpose or floating point registers may be loaded or
stored except that loading R0 has no effect. There is a single addressing
mode, base register + 16-bit signed offset. Halfword and byte loads
place the loaded object in the lower portion of the register. The upper
portion of the register is filled with either the sign extension of the
loaded value or zeroes, depending on the opcode.

All ALU instructions are register-register instructions. The operations
include simple arithmetic and logical operations: add, subtract, AND,
OR, XOR and shifts. Immediate forms of all these instructions, with a
16-bit sign extended immediate, are provided. The operation LHI (load
high immediate) loads the top half of a register, while setting the lower
half to zero. This allows a full 32-bit constants to be built in two
instructions.

There are also compare instructions, which compare two registers (=, ≠,
<, >, ≤, ≥). If the condition is true, these instructions place a 1 in the
destination register (to represent true); otherwise they place the value 0.

105Implementation of Instruction-Level and Thread-Level Parallelism

Control is handled through a set of jumps and a set of branches. The
four jump instructions are differentiated by the two ways to specify the
destination address and whether or not a link is made. Two jumps use a
26-bit signed offset added to the program counter (of the instruction
sequentially following the jump) to determine the destination address.
The other two jumps specify a register that contains the destination
address. There are two flavors of jumps: plain jump, and jump and link
(used for procedure calls). The latter places the return address in R31.

All branches are conditional. The branch condition is specified by the
instruction, which may test the register source for zero or non-zero. The
tested register may be a data value or the result of a compare.

A.3 PIPELINE

DLX uses five stage pipelining, which divides instruction execution into
five stages—Instruction Fetch (IF), Instruction Decode and Operand
Fetch (DE), Execution and Effective Address Calculation (EX), Memory
Reference (ME), and Write Result Back to the Register File (WB)

In the IF stage an opcode of an instruction is fetched according to
address pointed by PC and PC is increased. During the DE stage
opcode is decoded and operands are selected and fetched by
multiplexers controlled by opcode in operation register. In addition, new
PC value is computed and PC value is changed if the condition of
branch instruction is true for branch instructions.

In the EX stage an ALU operation is performed for ALU instructions, or
a address calculation is performed for load and store instructions.

During the ME stage the result of ALU operation is transferred to the
WB stage for ALU instructions, or memory access is performed
according to address calculated during previous stage for load and store
instructions. Finally, the WB stage writes the result of ALU operation or
memory load into a register.

DLX uses forwarding and delayed branching to avoid some pipeline
hazards. A simple hardware solution is used to implement delayed
branches with one delay slot: A separate adder is used to calculate the
branch target address during the DE stage. Additionally, special logic
devoted to testing is used to find out whether the branch is taken or not
during the DE stage.

106 Implementation of Instruction-Level and Thread-Level Parallelism

A.4 THE COMPLETE INSTRUCTION SET OF DLX

Symbols used for describing DLX instructions

Fd Floating destination register
Fs1 Floating source register 1
Fs2 Floating source register 2
Rd Integer destination register
Rs1 Integer source register 1
Rs2 Integer source register 2
d16 16-bit signed offset
d26 26-bit signed offset
i16 16-bit signed immediate

Load
LB Rd,d16(Rs1) Load Byte
LBU Rd,d16(Rs1) Load Byte Unsigned
LH Rd,d16(Rs1) Load Halfword
LHU Rd,d16(Rs1) Load Halfword Unsigned
LW Rd,d16(Rs1) Load Word
LF Fd,d16(Rs1) Load Floating
LD Fd,d16(Rs1) Load Double

Store
SB d16(Rd),Rs1 Store Byte
SH d16(Rd),Rs1 Store Halfword
SW d16(Rd),Rs1 Store Word
SF d16(Rd),Fs1 Store Floating
SD d16(Rd),Fs1 Store Double

Transfer
MOVI2S S,Rs1 Move to Special Register
MOVS2I Rd,S Move from Special Register
MOVF Fd,Fs1 Move Floating
MOVD Fd,Fs1 Move Double

MOVFP2I Rd,Fs1 Move word from floating to integer register
MOVI2FP Fd,Rs1 Move word from integer to floating register

Arithmetic
ADD Rd,Rs1,Rs2 Add
ADDI Rd,Rs1,i16 Add Immediate
ADDU Rd,Rs1,Rs2 Add Unsigned

107Implementation of Instruction-Level and Thread-Level Parallelism

ADDUI Rd,Rs1,i16 Add Unsigned Immediate
SUB Rd,Rs1,Rs2 Subtract
SUBI Rd,Rs1,i16 Subtract Immediate
SUBU Rd,Rs1,Rs2 Subtract Unsigned
SUBUI Rd,Rs1,i16 Subtract Unsigned Immediate
MULT Fd,Fs1,Fs2 Multiply
MULTU Fd,Fs1,Fs2 Multiply Unsigned
DIV Fd,Fs1,Fs2 Divide
DIVU Fd,Fs1,Fs2 Divide Unsigned

Logical
AND Rd,Rs1,Rs2 Logical And
ANDI Rd,Rs1,i16 Logical And Immediate
OR Rd,Rs1,Rs2 Logical Or
ORI Rd,Rs1,i16 Logical Or Immediate
XOR Rd,Rs1,Rs2 Logical Exclusive Or
XORI Rd,Rs1,i16 Logical Exclusive Or Immediate
LHI Rd,Rs1,i16 Load High part
SLL Rd,Rs1,Rs2 Logical Shift Left
SRL Rd,Rs1,Rs2 Logical Shift Right
SRA Rd,Rs1,Rs2 Arithmetic Shift Right
SLLI Rd,Rs1,i16 Logical Shift Left Immediate
SRLI Rd,Rs1,i16 Logical Shift Right Immediate
SRAI Rd,Rs1,i16 Arithmetic Shift Right Immediate
SLT Rd,Rs1,Rs2 Set Less Than
SGT Rd,Rs1,Rs2 Set Greater Than
SLE Rd,Rs1,Rs2 Set Less or Equal
SGE Rd,Rs1,Rs2 Set Greater or Equal
SEQ Rd,Rs1,Rs2 Set Equal
SNE Rd,Rs1,Rs2 Set Not Equal
SLTI Rd,Rs1,i16 Set Less Than Immediate
SGTI Rd,Rs1,i16 Set Greater Than Immediate
SLEI Rd,Rs1,i16 Set Less or Equal Immediate
SGEI Rd,Rs1,i16 Set Greater or Equal Immediate
SEQI Rd,Rs1,i16 Set Equal Immediate
SNEI Rd,Rs1,i16 Set Not Equal Immediate

Control
BEQZ Rs1,d16 Branch Equal Zero
BNEZ Rs1,d16 Branch Not Equal Zero
BFPT Rs1,d16 Floating Branch Equal Zero
BFPF Rs1,d16 Floating Branch Not Equal Zero
J d26 Jump

108 Implementation of Instruction-Level and Thread-Level Parallelism

JR Rs1 Jump Register
JAL d26 Jump and Link
JALR Rs1 Jump and Link Register
TRAP d26 Trap
RFE d26 Return from Exception

Floating point
ADDF Fd,Fs1,Fs2 Add Floating
ADDD Fd,Fs1,Fs2 Add Double
SUBF Fd,Fs1,Fs2 Subtract Floating
SUBD Fd,Fs1,Fs2 Subtract Double
MULTF Fd,Fs1,Fs2 Multiply Floating
MULTD Fd,Fs1,Fs2 Multiply Double
DIVF Fd,Fs1,Fs2 Divide Floating
DIVD Fd,Fs1,Fs2 Divide Double
CVTF2D Fd,Fs1 Convert Floating to Double
CVTF2I Fd,Fs1 Convert Floating to Integer
CVTD2F Fd,Fs1 Convert Double to Floating
CVTD2I Fd,Fs1 Convert Double to Integer
CVTI2F Fd,Fs1 Convert Integer to Floating
CVTI2D Fd,Fs1 Convert Integer to Double
LTF Fs1,Fs2 Set Less Than Floating
LTD Fs1,Fs2 Set Less Than Double
GTF Fs1,Fs2 Set Greater Than Floating
GTD Fs1,Fs2 Set Greater Than Double
LEF Fs1,Fs2 Set Less or Equal Floating
LED Fs1,Fs2 Set Less or Equal Double
GEF Fs1,Fs2 Set Greater or Equal Floating
GED Fs1,Fs2 Set Greater or Equal Double
EQF Fs1,Fs2 Set Equal Floating
EQD Fs1,Fs2 Set Equal Double
NEF Fs1,Fs2 Set Not Equal Floating
NED Fs1,Fs2 Set Not Equal Double

References

[Hennessy90]
J. Hennessy and D. Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kaufmann Publishers Inc., 1990.

109Implementation of Instruction-Level and Thread-Level Parallelism

APPENDIX B. THE SUPERDLX ARCHITECTURE

SuperDLX is an abstract superscalar processor architecture, which
implements multiple-out-of-order issue, multiple-out-of-order
completion, register renaming and branch prediction [Moura93] (see
Figure B.1). It uses the same instruction set and register structure as
DLX (see Appendix A).

Figure B.1 The block diagram of superDLX processor. The floating point
unit is not shown.

Being a scalable architecture, superDLX has parametric number of
functional units. We chose an example configuration for our
benchmarks to have 4 ALUs, 1 compare unit, 1 branch unit and 4
memory units. In addition, we assumed that superDLX is able to detect
and eliminate empty operations in DLX code. Otherwise the
performance of superDLX would be remarkably lower than shown in
Chapter 4. We will use the name superDLX processor for this
configuration of superDLX architecture.

Fetcher

BTB

Instruction
Queue

Decoder

Reorder Buffer Register
File

Central Window

Branch ALU Shifter Comp Address

Store Buffer

Load Buffer

110 Implementation of Instruction-Level and Thread-Level Parallelism

SuperDLX has a five stage pipeline which is not similar to one in DLX.
The pipeline stages in superDLX are: Instruction Fetch (IF), Decode
(DE), Execute (EX), Write Back (WB), and Result Commit (RC).

In the IF stage instructions are fetched from the cache and placed in an
instruction queue. Because instruction fetching depends on the results of
branch instruction execution, 2-bit dynamic branch prediction is used.
The maximum number of instruction fetched per clock cycle in
superDLX processor is 10.

In the DE stage, instructions are taken from the instruction queue,
decoded and dispatched to their appropriate operational unit (entries in
the reorder buffer and the central instruction window are created). The
maximum number of instruction decoded per clock cycle in superDLX
processor is 10.

During the EX stage issue logic examines instructions in the instruction
window and selects the ready ones for execution. An instruction is ready
if the operands are ready and the functional unit is available. When two
instructions conflict for the same functional unit the oldest one has the
highest priority.

The processor is allowed to determine the effective outcome of
predicted branches: If a branch prediction happens to be wrong, the
instructions following the branch in reorder buffers are flushed.

During the WB stage the completed operations are identified in the
reorder buffer and freed in the corresponding functional units. The
completed results are validated and forwarded to the instructions that
need them in the instruction windows.

In the RC stage validated results in the reorder buffer are sent to the
register file. Invalidated instruction (that follow a wrong branch
prediction) are discarded. The maximum number of result committed
per clock cycle in superDLX processor is 10.

References

[Moura93]
C. Moura, SuperDLX - A Generic Superscalar Simulator, ACAPS
Technical Memo 64, McGill University, Montreal, Canada, 1993.

111Implementation of Instruction-Level and Thread-Level Parallelism

APPENDIX C. THE MINIMAL PIPELINE ARCHITECTURE

The Minimal Pipeline Architecture (MPA) is an abstract superscalar
load/store architecture using VLIW-style instruction scheduling policy
and very short pipelines. In this appendix we will explain the symbols
used to describe the MPA. Additionally we will give a complete list of
MPA instructions. The architecture is described in Chapter 4 in detail.

The symbols used for describing MPA operations:

Ax Result of ALU x
AAx Input register 1 of ALU x
ABx Input register 2 of ALU x
AIA Input register 1 of ALU for integer condition codes
AIB Input register 2 of ALU for integer condition codes
AIC Result of ALU for integer condition codes
d 32-bit immediate value
I[x] Location x of instruction memory
Mx Result of memory x operation
Mx[y] Location y of memory x
MAx Address register for memory x
MDx Data register for memory x
MuxY Multiplexer for Y.
O Operation register
Ox Operand x of an instruction
OO Result of operation code fetch
O1 Immediate operand field of operation register
PC Program counter
RA Return address
Rx Contents of register x
Xx Ax, Mx, Ox or Rx

C.1 THE COMPLETE INSTRUCTION SET OF THE MPA

Load
LDBn Xx Load byte from memory n address Xx
LDBUn Xx Load byte from memory n address Xx unsigned
LDHn Xx Load halfword from memory n address Xx
LDHUn Xx Load halfword from memory n address Xx unsigned
LDn Xx Load word from memory n address Xx

112 Implementation of Instruction-Level and Thread-Level Parallelism

Store
STBn Xx,Xy Store byte Xx to memory n address Xy
STHn Xx,Xy Store halfword Xx to memory n address Xy
STn Xx,Xy Store word Xx to memory n address Xy

Write Back
WBn Xx Write Xx to register Rn. Old value of Rn is

preserved if x is r-1.
Operand Input
OPn d Input value d into operand n

Align
ALBn Xx,Xy Align load byte Xx by Xy in ALU n
ALBUn Xx,Xy Align load byte Xx by Xy in ALU n unsigned
ALHn Xx,Xy Align load halfword Xx by Xy in ALU n
ALHUn Xx,Xy Align load halfword Xx by Xy in ALU n unsigned
ASSBn Xx,Xy Align store source byte Xx by Xy in ALU n
ASSHn Xx,Xy Align store source halfword Xx by Xy in ALU n
ASDBn Xx,Xy Align store destination byte Xx by Xy in ALU n
ASDHn Xx,Xy Align store destination halfword Xx by Xy in ALU n

Arithmetic
ADDn Xx,Xy Add Xx and Xy in ALU n
SUBn Xx,Xy Subtract Xy from Xx in ALU n
MULn Xx,Xy Multiply Xx by Xy in ALU n
MULUn Xx,Xy Multiply Xx by Xy in ALU n unsigned
DIVn Xx,Xy Divide Xx by Xy in ALU n
DIVUn Xx,Xy Divide Xx by Xy in ALU n unsigned
MODn Xx,Xy Determine Xx modulo Xy in ALU n
MODUn Xx,Xy Determine Xx modulo Xy in ALU n unsigned

Logical
ANDn Xx,Xy And of Xx and Xy in ALU n
ORn Xx,Xy Or of Xx and Xy in ALU n
XORn Xx,Xy Exclusive or of Xx and Xy in ALU n
ANDNn Xx,Xy And not of Xx and Xy in ALU n
ORNn Xx,Xy Or not of Xx and Xy in ALU n
XNORn Xx,Xy Exclusive nor of Xx and Xy in ALU n

SHRn Xx,Xy Shift right Xx by Xy in ALU n
SHLn Xx,Xy Shift left Xx by Xy in ALU n
SHRAn Xx,Xy Shift right Xx by Xy in ALU n arithmetic
NOPn No operation in ALU n

113Implementation of Instruction-Level and Thread-Level Parallelism

RORn Xx,Xy Rotate right Xx by Xy in ALU n
ROLn Xx,Xy Rotate left Xx by Xy in ALU n

Compare
SEQ Xx,Xy Set IC if Xx equals Xy
SNE Xx,Xy Set IC if Xx not equals Xy
SLT Xx,Xy Set IC if Xx is less than Xy
SLE Xx,Xy Set IC if Xx is less than or equals Xy
SGT Xx,Xy Set IC if Xx is greater than Xy
SGE Xx,Xy Set IC if Xx is greater than or equals Xy
SLTU Xx,Xy Set IC if Xx is less than Xy unsigned
SLEU Xx,Xy Set IC if Xx is less than or equals Xy unsigned
SGTU Xx,Xy Set IC if Xx is greater than Xy unsigned
SGEU Xx,Xy Set IC if Xx is greater than or equals Xy unsigned

ADDCC Xx,Xy Add Xx and Xy and set CC
SUBCC Xx,Xy Subtract Xy from Xx and set CC
MULCC Xx,Xy Multiply Xx by Xy and set CC
MULUCC Xx,Xy Multiply Xx by Xy unsigned and set CC
DIVCC Xx,Xy Divide Xx by Xy and set CC
DIVUCC Xx,Xy Divide Xx by Xy unsigned and set CC
MODCC Xx,Xy Determine Xx modulo Xy and set CC
MODUCC Xx,Xy Determine Xx modulo Xy unsigned and set CC

ADDXn Xx,Xy Add with carry Xx and Xy in ALU n
SUBXn Xx,Xy Subtract with carry Xy from Xx in ALU n
ADDXCC Xx,Xy Add with carry Xx and Xy and set CC
SUBXCC Xx,Xy Subtract with carry Xy from Xx and set CC
TADDn Xx,Xy Tagged add Xx and Xy in ALU n
TSUBn Xx,Xy Tagged subtract Xy from Xx in ALU n
TADDCC Xx,Xy Tagged add Xx and Xy and set CC
TSUBCC Xx,Xy Tagged subtract Xy from Xx and set CC

ANDCC Xx,Xy And of Xx and Xy in ALU n and set CC
ORCC Xx,Xy Or of Xx and Xy in ALU n and set CC
XORCC Xx,Xy Exclusive or of Xx and Xy in ALU n and set CC
ANDNCC Xx,Xy And not of Xx and Xy in ALU n and set CC
ORNCC Xx,Xy Or not of Xx and Xy in ALU n and set CC
XNORCC Xx,Xy Exclusive nor of Xx and Xy in ALU n and set CC

Control
BEQZ Ox Branch to Ox if IC equals zero
BNEZ Ox Branch to Ox if IC not equals zero

114 Implementation of Instruction-Level and Thread-Level Parallelism

FBT Ox Floating Branch to Ox if FC equals zero
FBF Ox Floating Branch to Ox if FC not equals zero

JMP Xx Jump to Xx
JMPL Xx Jump and link PC+1 to register RA
TRAP Xx Trap

BA Ox Branch always to Ox
BN Ox Branch newer to Ox
BNE Ox Branch on not equal to Ox (BNZ)
BE Ox Branch on equal to Ox (BZ)
BG Ox Branch on greater to Ox
BLE Ox Branch on less than or equal to Ox
BGE Ox Branch on greater than or equal to Ox
BL Ox Branch on less than to Ox
BGU Ox Branch on greater to Ox unsigned
BLEU Ox Branch on less than or equal to Ox unsigned
BCC Ox Branch on carry clear to Ox (BGEU)
BCS Ox Branch on carry set to Ox (BLU)
BPOS Ox Branch on positive to Ox
BNEG Ox Branch on negative to Ox
BVC Ox Branch on overflow clear to Ox
BVS Ox Branch on overflow set to Ox

Register window
SAVE Save register window
REST Restore register window

Floating Point
FADDn Xx,Xy Floating add Xx and Xy in ALU n
FSUBn Xx,Xy Floating subtract Xy from Xx in ALU n
FMULn Xx,Xy Floating multiply Xx by Xy in ALU n
FDIVn Xx,Xy Floating divide Xy by Xx in ALU n
FMODn Xx,Xy Floating Xx modulo Xy in ALU n
FSEQ Xx,Xy Floating set FC if Xx equals Xy
FSNE Xx,Xy Floating set FC if Xx not equals Xy
FSLT Xx,Xy Floating set FC if Xx is less than Xy
FSLE Xx,Xy Floating set FC if Xx is less than or equals Xy
FSGT Xx,Xy Floating set FC if Xx is greater than Xy
FSGE Xx,Xy Floating set FC if Xx is greater than or equals Xy
DADDn Xx,Xy Double add Xx and Xy in ALU n
DSUBn Xx,Xy Double subtract Xy from Xx in ALU n
DMULn Xx,Xy Double multiply Xx by Xy in ALU n

115Implementation of Instruction-Level and Thread-Level Parallelism

DDIVn Xx,Xy Double divide Xy by Xx in ALU n
DMODn Xx,Xy Double Xx modulo Xy in ALU n
DSEQ Xx,Xy Double set FC if Xx equals Xy
DSNE Xx,Xy Double set FC if Xx not equals Xy
DSLT Xx,Xy Double set FC if Xx is less than Xy
DSLE Xx,Xy Double set FC if Xx is less than or equals Xy
DSGT Xx,Xy Double set FC if Xx is greater than Xy
DSGE Xx,Xy Double set FC if Xx is greater than or equals Xy
CVTFIn Xx Convert floating Xx to integer in ALU n
CVTFDn Xx Convert floating Xx to double in ALU n
CVTDIn Xx Convert double Xx to integer in ALU n
CVTDFn Xx Convert double Xx to floating in ALU n
CVTIFn Xx Convert integer Xx to floating in ALU n
CVTIDn Xx Convert integer Xx to double in ALU n

116 Implementation of Instruction-Level and Thread-Level Parallelism

117Implementation of Instruction-Level and Thread-Level Parallelism

APPENDIX D. THE MULTITHREADED ARCHITECTURE WITH
CHAINING

The Multithreaded Architecture with Chaining (MTAC) is an abstract
multithreaded load/store architecture using VLIW-style instruction
scheduling policy and functional unit chaining. In this appendix we will
explain the symbols used to describe the MTAC. Additionally we will
give a complete list of MTAC instructions. The architecture is described
in Chapter 5 in detail.

The symbols used for describing MPA operations:

Ax Result of ALU x
AAx Input register 1 of ALU x
ABx Input register 2 of ALU x
AIA Input register 1 of ALU for integer condition codes
AIB Input register 2 of ALU for integer condition codes
AIC Result of ALU for integer condition codes
d 32-bit immediate value
I[x] Location x of instruction memory
Mx Result of memory x operation
Mx[y] Location y of memory x
MAx Address register for memory x
MDx Data register for memory x
MuxY Multiplexer for Y.
O Operation register
Ox Operand x of an instruction
OO Result of operation code fetch
O1 Immediate operand field of operation register
PC Program counter
RA Return address
Rx Contents of register x
Xx Ax, Mx, Ox or Rx

D.1 THE COMPLETE INSTRUCTION SET OF THE MTAC

Load
LDBn Xx Load byte from memory n address Xx
LDBUn Xx Load byte from memory n address Xx unsigned
LDHn Xx Load halfword from memory n address Xx
LDHUn Xx Load halfword from memory n address Xx unsigned
LDn Xx Load word from memory n address Xx

118 Implementation of Instruction-Level and Thread-Level Parallelism

Store
STBn Xx,Xy Store byte Xx to memory n address Xy
STHn Xx,Xy Store halfword Xx to memory n address Xy
STn Xx,Xy Store word Xx to memory n address Xy

Write Back
WBn Xx Write Xx to register Rn. Old value of Rn is

preserved if x is r-1.

Operand Input
OPn d Input value d into operand n

Align
ALBn Xx,Xy Align load byte Xx by Xy in ALU n
ALBUn Xx,Xy Align load byte Xx by Xy in ALU n unsigned
ALHn Xx,Xy Align load halfword Xx by Xy in ALU n
ALHUn Xx,Xy Align load halfword Xx by Xy in ALU n unsigned
ASSBn Xx,Xy Align store source byte Xx by Xy in ALU n
ASSHn Xx,Xy Align store source halfword Xx by Xy in ALU n
ASDBn Xx,Xy Align store destination byte Xx by Xy in ALU n
ASDHn Xx,Xy Align store destination halfword Xx by Xy in ALU n

Arithmetic
ADDn Xx,Xy Add Xx and Xy in ALU n
SUBn Xx,Xy Subtract Xy from Xx in ALU n
MULn Xx,Xy Multiply Xx by Xy in ALU n
MULUn Xx,Xy Multiply Xx by Xy in ALU n unsigned
DIVn Xx,Xy Divide Xx by Xy in ALU n
DIVUn Xx,Xy Divide Xx by Xy in ALU n unsigned
MODn Xx,Xy Determine Xx modulo Xy in ALU n
MODUn Xx,Xy Determine Xx modulo Xy in ALU n unsigned
SELn Xx,Xy Select Xx or Xy according to the result of previous

compare operation in functional unit chain

Logical
ANDn Xx,Xy And of Xx and Xy in ALU n
ORn Xx,Xy Or of Xx and Xy in ALU n
XORn Xx,Xy Exclusive or of Xx and Xy in ALU n
ANDNn Xx,Xy And not of Xx and Xy in ALU n
ORNn Xx,Xy Or not of Xx and Xy in ALU n
XNORn Xx,Xy Exclusive nor of Xx and Xy in ALU n

119Implementation of Instruction-Level and Thread-Level Parallelism

SHRn Xx,Xy Shift right Xx by Xy in ALU n
SHLn Xx,Xy Shift left Xx by Xy in ALU n
SHRAn Xx,Xy Shift right Xx by Xy in ALU n arithmetic
NOPn No operation in ALU n
RORn Xx,Xy Rotate right Xx by Xy in ALU n
ROLn Xx,Xy Rotate left Xx by Xy in ALU n

Compare
SEQ Xx,Xy Set IC if Xx equals Xy
SNE Xx,Xy Set IC if Xx not equals Xy
SLT Xx,Xy Set IC if Xx is less than Xy
SLE Xx,Xy Set IC if Xx is less than or equals Xy
SGT Xx,Xy Set IC if Xx is greater than Xy
SGE Xx,Xy Set IC if Xx is greater than or equals Xy
SLTU Xx,Xy Set IC if Xx is less than Xy unsigned
SLEU Xx,Xy Set IC if Xx is less than or equals Xy unsigned
SGTU Xx,Xy Set IC if Xx is greater than Xy unsigned
SGEU Xx,Xy Set IC if Xx is greater than or equals Xy unsigned

ADDCC Xx,Xy Add Xx and Xy and set CC
SUBCC Xx,Xy Subtract Xy from Xx and set CC
MULCC Xx,Xy Multiply Xx by Xy and set CC
MULUCC Xx,Xy Multiply Xx by Xy unsigned and set CC
DIVCC Xx,Xy Divide Xx by Xy and set CC
DIVUCC Xx,Xy Divide Xx by Xy unsigned and set CC
MODCC Xx,Xy Determine Xx modulo Xy and set CC
MODUCC Xx,Xy Determine Xx modulo Xy unsigned and set CC

ADDXn Xx,Xy Add with carry Xx and Xy in ALU n
SUBXn Xx,Xy Subtract with carry Xy from Xx in ALU n
ADDXCC Xx,Xy Add with carry Xx and Xy and set CC
SUBXCC Xx,Xy Subtract with carry Xy from Xx and set CC
TADDn Xx,Xy Tagged add Xx and Xy in ALU n
TSUBn Xx,Xy Tagged subtract Xy from Xx in ALU n
TADDCC Xx,Xy Tagged add Xx and Xy and set CC
TSUBCC Xx,Xy Tagged subtract Xy from Xx and set CC

ANDCC Xx,Xy And of Xx and Xy in ALU n and set CC
ORCC Xx,Xy Or of Xx and Xy in ALU n and set CC
XORCC Xx,Xy Exclusive or of Xx and Xy in ALU n and set CC
ANDNCC Xx,Xy And not of Xx and Xy in ALU n and set CC
ORNCC Xx,Xy Or not of Xx and Xy in ALU n and set CC
XNORCC Xx,Xy Exclusive nor of Xx and Xy in ALU n and set CC

120 Implementation of Instruction-Level and Thread-Level Parallelism

Control
BEQZ Ox Branch to Ox if IC equals zero
BNEZ Ox Branch to Ox if IC not equals zero
FBT Ox Floating Branch to Ox if FC equals zero
FBF Ox Floating Branch to Ox if FC not equals zero

JMP Xx Jump to Xx
JMPL Xx Jump and link PC+1 to register RA
TRAP Xx Trap

BA Ox Branch always to Ox
BN Ox Branch newer to Ox
BNE Ox Branch on not equal to Ox (BNZ)
BE Ox Branch on equal to Ox (BZ)
BG Ox Branch on greater to Ox
BLE Ox Branch on less than or equal to Ox
BGE Ox Branch on greater than or equal to Ox
BL Ox Branch on less than to Ox
BGU Ox Branch on greater to Ox unsigned
BLEU Ox Branch on less than or equal to Ox unsigned
BCC Ox Branch on carry clear to Ox (BGEU)
BCS Ox Branch on carry set to Ox (BLU)
BPOS Ox Branch on positive to Ox
BNEG Ox Branch on negative to Ox
BVC Ox Branch on overflow clear to Ox
BVS Ox Branch on overflow set to Ox

Register window
SAVE Save register window
REST Restore register window

Floating Point
FADDn Xx,Xy Floating add Xx and Xy in ALU n
FSUBn Xx,Xy Floating subtract Xy from Xx in ALU n
FMULn Xx,Xy Floating multiply Xx by Xy in ALU n
FDIVn Xx,Xy Floating divide Xy by Xx in ALU n
FMODn Xx,Xy Floating Xx modulo Xy in ALU n
FSEQ Xx,Xy Floating set FC if Xx equals Xy
FSNE Xx,Xy Floating set FC if Xx not equals Xy
FSLT Xx,Xy Floating set FC if Xx is less than Xy
FSLE Xx,Xy Floating set FC if Xx is less than or equals Xy
FSGT Xx,Xy Floating set FC if Xx is greater than Xy
FSGE Xx,Xy Floating set FC if Xx is greater than or equals Xy

121Implementation of Instruction-Level and Thread-Level Parallelism

DADDn Xx,Xy Double add Xx and Xy in ALU n
DSUBn Xx,Xy Double subtract Xy from Xx in ALU n
DMULn Xx,Xy Double multiply Xx by Xy in ALU n
DDIVn Xx,Xy Double divide Xy by Xx in ALU n
DMODn Xx,Xy Double Xx modulo Xy in ALU n
DSEQ Xx,Xy Double set FC if Xx equals Xy
DSNE Xx,Xy Double set FC if Xx not equals Xy
DSLT Xx,Xy Double set FC if Xx is less than Xy
DSLE Xx,Xy Double set FC if Xx is less than or equals Xy
DSGT Xx,Xy Double set FC if Xx is greater than Xy
DSGE Xx,Xy Double set FC if Xx is greater than or equals Xy
CVTFIn Xx Convert floating Xx to integer in ALU n
CVTFDn Xx Convert floating Xx to double in ALU n
CVTDIn Xx Convert double Xx to integer in ALU n
CVTDFn Xx Convert double Xx to floating in ALU n
CVTIFn Xx Convert integer Xx to floating in ALU n
CVTIDn Xx Convert integer Xx to double in ALU n

Dissertations at the Department of Computer Science

Rask, Raimo. Automating Estimation of Software Size During the
Reguirements Specification Phase—Application of Albrecht’s Function
Point Analysis Within Structured Methods. Joensuun yliopiston
luonnontieteellisiä julkaisuja 28—University of Joensuu. Publications in
Sciences, 28. 128 p. + appendix. Joensuu, 1992.

Ahonen, Jarmo. Modelling Physical Domains for Knowledge Based
Systems. Joensuun yliopiston luonnontieteellisiä julkaisuja 33—
University of Joensuu. Publications in Sciences, 33. 127 p. Joensuu,
1995.

Kopponen, Marja. CAI in CS. University of Joensuu, Computer
Science, Dissertations 1. 97 p. Joensuu, 1997.

Forsell, Martti. Implementation of Instruction-Level and Thread-Level
Parallelism in Computers, University of Joensuu, Computer Science,
Dissertations 2. 121 p. Joensuu, 1997.

