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Abstract

AUTOMATIC speaker recognition has been an active research area for more
than 30 years, and the technology has gradually matured to a state ready for
real applications. In the early years, text-depended recognition was more

studied but gradually the focus has moved towards text-independent recognition
because their application field is much wider, including forensics, teleconferencing,
and user interfaces in addition to security applications.

Text-independent speaker recognition is considerably more difficult problem com-
pared to text-depended recognition because the recognition system must be prepared
for an arbitrary input text. Commonly used acoustic features contain both linguistic
and speaker information mixed in highly complex way over the frequency spectrum.
The solution is to use either better features or better matching strategy, or a com-
bination of the two. In this thesis, the subcomponents of text-independent speaker
recognition are studied, and several improvements are proposed for achieving better
accuracy and faster processing.

For feature extraction, a frame-adaptive filterbank that utilizes rough phonetic
information is proposed. Pseudo-phoneme templates are found using unsupervised
clustering, and frame labeling is performed via vector quantization, so there is no
need for annotated training data. For speaker modeling, experimental compari-
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son of five clustering algorithms is carried out, and the answer to the question of
which clustering method should be used is given. For the combination of feature
extraction and speaker modeling, multiparametric speaker profile approach is stud-
ied. In particular, combination strategies for different fullband spectral feature sets
is addressed.

Speaker identification is computationally demanding due to the large number
of comparisons. Several computational speedup methods are proposed, including
prequantization of the test sequence and iterative model pruning, as well as their
combination.

Finally, selection of the cohort models (background models, anti-models) is ad-
dressed. A large number of heuristic cohort selection methods have been proposed in
literature, and there is controversy how the cohort models should be selected. Cohort
selection is formulated as a combinatorial optimization problem, and genetic algo-
rithm (GA) is used for optimizing the cohort sets for the desired security-convenience
balance. The solution provided by the GA is used for establishing a lower bound
to the error rate of an MFCC/GMM system, and the selected models are analyzed
with an aim to enlighten the mystery of the cohort selection.

Keywords: Text-independent speaker recognition, vector quantization, spectral
features, Gaussian mixture model, cohort modeling, classifier fusion, realtime recog-
nition.
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P1. T. Kinnunen, T. Kilpeläinen, P. Fränti. Comparison of Clustering Algorithms
in Speaker Identification, Proc. IASTED Int. Conf. Signal Processing and
Communications (SPC 2000), pp. 222-227, Marbella, Spain, September 19-
22, 2000.

P2. T. Kinnunen, Designing a Speaker-Discriminative Adaptive Filter Bank for
Speaker Recognition, Proc. 7th Int. Conf. on Spoken Language Processing
(ICSLP 2002), pp. 2325-2328, Denver, Colorado, USA, September 16-20, 2002.
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Chapter 1

Introduction

SPEECH signal (see Fig. 1.1) can be considered as a carrier wave to which the
talker codes linguistic and nonlinguistic information. The linguistic informa-
tion refers to the message, and nonlinguistic information to everything else,

including social factors (social class, dialect), affective factors (emotion, attitude),
and the properties of the physical voice production appratus. In addition, the signal
is transmitted over a communication channel to the listener/microphone which adds
it’s own characteristics. The different information are not coded in separate acoustic
parameters such as different frequency bands, but instead they are mixed in a highly
complex way.

In speaker recognition, one is interested in the speaker-specific information in-
cluded in speech waves. In a larger context, speaker recognition belongs to the field
of biometric person authentication [24, 176], which refers to authenticating persons
based on their physical and/or learned characteristics. Biometrics has been appear-
ing with increasing frequency in daily media during the past few years, and speaker
recognition has also received some attention. For instance, in 12th November 2002,
a voice on tape broadcast on Arabic television network referred to recent terrorist
strikes which US officials believed to be connected to al-Qaeda network lead by the
terrorist Osama bin Laden. The tape was sent for analysis for the IDIAP group
in Lausanne, Switzerland, which concluded that the voice on the tape, with high
probability, did not belong to bin Laden1 .

Forensics is an area where speaker recognition is routinely applied. For instance,
in Finland about 50 requests related to forensic audio research are sent each year to
the National Bureau of Investigation, of which a considerable amount (30-60%) are
related to speaker recognition [153]. Forensic voice samples are often from phone
calls or from wiretapping and can contain huge amounts of data (consider continuous

1http://news.bbc.co.uk/2/hi/middle east/2526309.stm
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recording in wiretapping, for instance). Automatic speaker recognition could be used
for locating given speaker(s) in a long recording, the task called speaker tracking.
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Figure 1.1: An example of speech signal: waveform (upper panel) and spectrogram
(lower panel). Utterance “What good is a phone call, if you are unable to speak?”
spoken by a male.

Recently, there has been increasing interest to apply automatic speaker recog-
nition methodology to help decision making process in forensic speaker recognition
[73, 174, 3, 154], which has traditionally been a task of a human operator hav-
ing phonetic-linguistic background [189]. Increased accuracy of automatic speaker
recognition systems has motivated to use them in parallel to support other analysis
methods. One problem with this approach is that the results must be interpretable
and quantifiable in the terms of accepted statistical protocols, which sets up more
challenges to the system design. The main difference between commercial and foren-
sic applications is that in the former case the system makes always a hard decision,
whereas in the latter case, the system should output a degree of similarity, and the
human operator is responsible for interpreting and quantifying the significance of
the match.

For commercial applications, voice biometric has many desirable properties.
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Firstly, speech is a natural way of communicating, and does not require special
attention from the user. By combining speech and speaker recognition technologies,
it is possible to give the identity claim via speech [85] (“I am Tomi, please verify
me”). Secondly, speaking does not require physical contact with the sensor as con-
trast to fingerprints and palm prints, for instance. Thirdly, the sensor (microphone)
is small, which makes speaker authentication systems attractive for mobile devices.
For instance, it could be used as an alternative to the PIN number, or for continuous
authentication so that if an unauthenticated person speaks to the phone, it locks
itself.

Voice biometric could also be used as an additional person authentication method
in e-commerce and bank transactions. PC microphones are cheap, and at home or
office, the environmental acoustics is predictable so that in most practical cases noise
or acoustic mismatch would not be a problem. Furthermore, as webcams have also
become increasingly popular, combining voice and face recognition could be used for
increasing the accuracy. In general, voice can be combined with arbitrary biometrics.

Speaker recognition and profiling has also potential to help solving other prob-
lems within speech technology. The most studied subproblem is speech recognition,
which refers to transcribing spoken language into text. Often speech and speaker
recognition are considered as separate fields, although from the technical side they
share many similarities. For instance, similar acoustic features are used for both
tasks with good success, which is somehow ironical considering the opposite nature
of the task. This indicates that the same features contain both phonetic and speaker
information, and it would be advantageous to combine the tasks [85, 20].

The main problems of speech are associated with the high variability of the signal
due to (1) speaker him/herself (mental condition, health, long-term physiological
changes), (2) technical conditions (environment acoustics, transmission line) and (3)
linguistic factors (speech content, language, dialectal variations). These variabilities
make it rather difficult to form a stable voice template over all different conditions.
Due to the high intra-person variability of speech, a relatively large template is
needed for modeling the variabilities.

1.1 Definitions

In automatic speaker recognition literature, speaker recognition is divided into iden-
tification and verification tasks [27, 67]. In the identification task, or 1:N matching,
an unknown speaker is compared against a database of N known speakers, and the
best matching speaker is returned as the recognition decision; “no one” decision is
also possible in the task called open set identification problem.

The verification task, or 1:1 matching, consists of making a decision whether a
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given voice sample is produced by a claimed speaker (the claimant or target). In
general, identification task is much more difficult since a large number of speakers
must be matched. The verification task, on the other hand, is less dependent on the
population size.

Speaker recognition systems can be further classified into text-dependent and
text-independent ones. In the former case, the utterance presented to the recognizer
is fixed, or known beforehand. In the latter case, no assumptions about the text is
made. Consequently, the system must model the general underlying properties of
the speaker’s vocal space so that matching of arbitrary texts is possible.

In text-dependent speaker verification, the pass phrase presented to the system
can be fixed, or alternatively, it can vary from session to session. In the latter case,
the system prompts the user to utter a particular phrase (text prompting). An
advantage of text prompting is that impostor can hardly know the prompted phrase
in advance, and playback of pre-recorded or synthesized speech becomes difficult.
The recognition decision can be a combination of utterance verification (“did the
speaker utter the prompted words?”) and speaker verification (“is the voice of
similar to the claimed person’s voice?”) [128, 188].

In general, text-dependent systems are more accurate, since the speaker is forced
to speak under restricted linguistic constraints. From the methodological side, text-
dependent recognition is a combination of speech recognition and text-independent
speaker recognition.

1.2 Human Performance

In forensics, auditory speaker recognition might have some use. An earwitness refers
to a person who heard the voice of the criminal during the crime. Although this
protocol has been used in actual crime cases, it is somehow questionable because of
the subjective nature. For instance, it has been observed that there are considerable
differences in recognition accuracies between individuals [193, 189].

Human and computer performance in speaker recognition have been compared
in [133, 193, 3]. Schmidt-Nielsen and Crystal [193] conducted a large-scale com-
parison in which nearly 50,000 listening judgments were performed by 65 listeners.
The results were compared with the state-of-the-art computer algorithms. It was
observed that humans perform better when the quality of the speech samples is
degraded with background noise, crosstalk, channel mismatch, and other sources of
noise. With matched acoustic conditions and clean speech, the performance of the
best algorithms was observed to be comparable with the human listeners.

Similar results were recently obtained by Alexander et al. [3]. In their experi-
ment, 90 subjects participated the aural recognition test. It was found out that in the
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matched conditions (GSM-GSM and PSTN-PSTN) the automatic speaker recogni-
tion system clearly outperformed human listeners (EER of 4 % vs. 16 %). However,
in mismatched conditions (for instance, PSTN-GSM), human outperformed the au-
tomatic system. The subjects were also asked to describe what “features” they
used in their recognition decisions. Pronounciation and accent were most popular,
followed by timbre, intonation and speaking rate. It is noteworthy that the auto-
matic system used only spectral cues (RASTA-PLP coefficients), but it still could
outperform human in matched conditions. This suggests that human auditory sys-
tem considers speaker features to some extent as irrelevant information or undesired
noise.

1.3 Speaker Individuality

It is widely known that the main determinants of speaker sex are the formant fre-
quencies and the fundamental frequency (F0) [18]. Formant frequencies correspond
to high-amplitude regions of the speech spectrum, and they correspond to one or
more resonance frequencies of the vocal tract which are, in turn, related to the sizes
of the various acoustic cavities. The overall vocal tract length (from glottis to lips)
can be estimated from the formants rather accurately [147]. The F0, on the other
hand, depends on the size of the vibrating segments of the vocal folds, and therefore
it is an acoustic correlate of the larynx size [189].

Studies in automatic speaker recognition have indicated the high frequencies to
be important for speaker recognition [82, 21]. For instance, in [82] the spectrum was
divided into upper and lower frequency regions, the cutoff frequency being a varied
parameter. It was found out that regions 0-4 kHz and 4-10 kHz are equally important
for speaker recognition. For high-quality speech, the low end of the spectrum (below
300 Hz) was found to be useful in [21].

Analysis of speaker variability of phonemes and phonetic classes has revealed
some differences in discrimination properties of individual phonemes [52, 191, 204,
168, 16, 106]. The most extensive study is by Eatock and Mason [52], in which
the authors studied a corpus of 125 speakers using hand-annotated speech sampled.
They found out that the nasals and vowels performed the best and stop consonants
the worst.

Intonation, timing, and other suprasegmental features are also speaker-specific,
and they have been applied in automatic speaker recognition systems [12, 190, 30,
198, 124, 215, 19, 28, 62, 183, 171, 2]. These are affected by the speaker’s attitude
and they can be more easily impersonated compared to vocal tract features (see [11]
for an imitation study). However, they have proven to be very robust against noise
[30, 124, 100].
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Chapter 2

Automatic Speaker Recognition

FROM the user’s perspective, a speaker authentication system has two oper-
ational modes: enrollment and recognition modes. In the enrollment mode,
the user provides his/her voice sample to the system along with his unique

user ID. In the recognition mode, the user provides another voice sample, which the
system compares with the previously stored sample and makes it’s decision.

Depending on the application, the biometric authentication system might include
several modalities, such as combination of speaker and face recognition [26]. In this
case, the user provides a separate biometric sample for each modality, and in the
recognition mode, the system combines the subdecisions of the different modalities.
Multimodal person authentication is a research topic on its own, and will not be
discussed here further.

2.1 Components of Speaker Recognizer

Identification and verification systems share the same components (see Fig. 2.1), and
they will not be discussed separately. Feature extractor is common for enrollment
and recognition modes. The feature extractor, or system front-end, transforms the
raw audio stream into a more manageable format so that speaker-specific properties
are emphasized and statistical redundancies suppressed. The result is a set of feature
vectors.

6



Figure 2.1: Components of an automatic speaker recognition system.

In the enrollment mode, the speaker’s voice template is formed by statistical
modeling of the features, and stored into speaker database. It depends on the fea-
tures what type of model is most appropriate. For example, the Gaussian mixture
model (GMM) [185, 184] has been established as a baseline model for spectral fea-
tures to which other models and features are compared.

In the recognition mode, feature vectors extracted from the unknown person’s
utterance are compared with the stored models. The component responsible for
this task is called 1:1 match engine, as it compares one voice sample against one
stored model. The match produce a single real number, which is a similarity or
dissimilarity score. In current systems, the match score is normalized relative to
some other models in order to make it more robust against mismatches between
training and recognition conditions [127, 67, 92, 182, 184, 196][P6]. The rationale
is that when there is an acoustic mismatch, it will affect equally all models, and
making the score relative to other models should provide a more robust score.

The component that is essentially different for identification and verification is
the decision module. It takes the match scores as input, and makes the final decision,
possibly with a confidence value [72, 95]. In the identification task, the decision is
the best matching speaker index, or “no one” in the case of open-set identification.
In the verification task, decision is “accept” or “reject”. In both cases, it is possible
to have a refuse-to-decide option, for instance due to low SNR. In this case, the
system might prompt the user to speak more.

2.2 Selection of Features

Feature extraction is necessary for several reasons. First, speech is a highly complex
signal which carries several features mixed together [189]. In speaker recognition we
are interested in the features that correlate with the physiological and behavioral

7



characteristics of the speaker. Other information sources are considered as undesir-
able noise whose effect must be minimized. The second reason is a mathematical
one, and relates to the phenomenon known as curse of dimensionality [25, 101, 102],
which implies that the number of needed training vectors increases exponentially
with the dimensionality. Furthermore, low-dimensional representations lead to com-
putational and storage savings.

2.2.1 Criteria for Feature Selection

In [216, 189], desired properties for an ideal feature for speaker recognition are listed.
The ideal feature should

• have large between-speaker and small within-speaker variability

• be difficult to impersonate/mimic

• not be affected by the speaker’s health or long-term variations in voice

• occur frequently and naturally in speech

• be robust against noises and distortions

It is unlikely that a single feature would fulfill all the listed requirements. For-
tunately, due to the complexity of speech signals, a large number of complemen-
tary features can be extracted and combined to improve accuracy. For instance,
short-term spectral features are highly discriminative and, in general, they can be
reliably measured from short segments (1-5 seconds) [151], but will be easily cor-
rupted when transmitted over a noisy channel. In contrast, F0 statistics are robust
against technical mismatches but require rather long speech segments and are not
as discriminative. Formant frequencies are also rather noise robust, and formant ra-
tios, relating to the relative sizes of resonant cavities, are expected to be something
that is not easily under the speaker’s voluntary control. The selection of features
depends largely on the application (co-operative/non co-operative speakers, desired
security/convenience balance, database size, amount of environmental noise).

2.2.2 Types of Features

A vast number of features have been proposed for speaker recognition. We divide
them into the following classes:

• Spectral features

• Dynamic features

8



• Source features

• Suprasegmental features

• High-level features

Table 2.1 shows examples from each class. Spectral features are descriptors of the
short-term speech spectrum, and they reflect more or less the physical characteris-
tics of the vocal tract. Dynamic features relate to time evolution of spectral (and
other) features. Source features refer to the features of the glottal voice source.
Suprasegmental features span over several segments. Finally, high-level features re-
fer to symbolic type of information, such as characteristic word usage.

Table 2.1: Examples of features for speaker recognition.
Feature type Examples
Spectral features MFCC, LPCC, LSF

Long-term average spectrum (LTAS)
Formant frequencies and bandwidths

Dynamic features Delta features
Modulation frequencies
Vector autoregressive coefficients

Source features F0 mean
Glottal pulse shape

Suprasegmental features F0 contours
Intensity contours
Microprosody

High-level features Idiosyncratic word usage
Pronounciation

An alternative classification of features could be phonetic-computational dichotomy.
Phonetic features are based on the acoustic-phonetic knowledge and they often have
a direct physical meaning (such as vibration frequency of vocal folds or resonances
of the vocal tract). In contrast, by computational features we refer to features that
aim at finding good presentation in the terms of small correlations and/or high dis-
crimination between speakers. These do not necessarily have any physical meaning,
but for automatic recognition this does not matter.

2.2.3 Dimension Reduction by Feature Mapping

By feature mapping we refer to any function producing a linear or nonlinear combi-
nation of the original features. Well-known linear feature mapping methods include

9



principal component analysis (PCA) [50], independent component analysis (ICA)
[97] and linear discriminant analysis (LDA) [65, 50]. An example of a nonlinear
method is the multilayer perceptron (MLP) [25].

PCA finds the directions of largest variances and can be used for eliminating
(linear) correlations between the features. ICA goes further by aiming at finding
statistically independent components. LDA utilizes class labels and finds the direc-
tions, on which the linear separability is maximized.

ICA can be used when it can be assumed that the observed vector is a linear
mixture of some underlying sources. This is the basic assumption in the source-
filter theory of speech production [57], in which the spectra of the observed signal
is assumed to be a product of the spectra of excitation source, vocal tract filter and
lip radiation. In cepstral domain, these are additive, which motivated the authors
of [104] to apply ICA on the cepstral features. ICA-derived basis function have also
been proposed as an alternative to discrete Fourier transform in feature extraction
[103].

MLP can be used as a feature extractor when trained for autoassociation task.
This means that the desired output vector is the same as the input vector, and the
network is trained to learn the reconstruction mapping through nonlinear hidden
layer(s) having a small number of neurons. In this way, the high-dimensional input
space is represented using a small number of hidden units performing nonlinear PCA.
Neural networks can also be used as an integrated feature extractor and speaker
model [86].

2.2.4 Dimension Reduction by Feature Selection

An alternative to feature mapping is feature selection [102], which was introduced
to speaker recognition in 1970s [39, 191]. The difference with feature mapping is
that in feature selection, the selected features are a subset, and not a combination,
of the original features. The subset is selected to maximize a separability criterion,
see [27] for a detailed discussion.

In addition to the optimization criterion, the search algorithm needs to be spec-
ified, and for this several methods exist. Naive selection takes the individually best-
performing features. Better approaches include bottom-up and top-down search
algorithms, dynamic programming, and genetic algorithms. For a general overview
and comparison, refer to [102], and for comparison in speaker recognition, see [32].

In [32], it is noted that the feature selection can be considered as a special case of
weighting the features in the matching phase with binary weights {0, 1} (0=feature is
not selected, 1=feature is selected). Thus, a natural extension is to consider weights
from a continuous set. The authors applied a genetic algorithm for optimizing the
weights, and there was only a minor improvement over the feature selection.
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In an interesting approach presented in [166] and later applied in [46, 40], per-
sonal features are selected for each speaker. This allows efficient exploitation of
features that might be bad speaker discriminators on average, but discriminative for
a certain individual.

2.3 The Matching Problem

Given a previously stored speaker model R and test vectors X = {x1, . . . , xT }
extracted from the unknown person’s sample, the task is to define a match score
s(X ,R) ∈ R indicating the similarity of X and R. Depending on the type of the
model, match score can be a likelihood, membership value, dissimilarity value, and
so on.

The intrinsic complexity of speech signal makes the speaker matching problem
difficult. Speech signal contains both linguistic and nonlinguistic information, which
are mixed in a nonlinear way, and it is nontrivial to extract features that would be
free of all other information except speaker characteristics. For example, HMM
and GMM modeling of MFCC coefficients have been successfully applied in speech
recognition [178], speaker recognition [181], emotion recognition [123, 126], and even
in language recognition [217]. The fact that the same features give reasonable results
in so diverse tasks suggests that MFCCs contain several information sources. Thus,
small distance between reference and test vectors does not necessarily indicate that
the vectors are produced by the same person, but they might be from different
speakers pronouncing different phoneme.

Another point that deserves attention is that statistical pattern recognition lit-
erature [50, 65, 101] deals mostly the problem of classifying single vectors, for which
the methodology is well-understood. However, in speaker recognition, we rather have
a sequence of vectors X = {x1, . . . ,xT } extracted from short-time frames around the
rate of 100 vectors/sec, and we need a joint decision for the whole vector sequence
presenting a complete utterance. Frames cannot be concatenated into a single vector
because utterances vary in their length, and so would the dimensionality also vary.
Even if one managed to equalize all the utterances to a fixed dimensionality, one
would have the problem of text dependence (arbitrary order of concatenation).

Thus, it is not obvious how the traditional classification methods for the single
vector case can be generalized to the problem that we call sequence classification.
One can argue that making certain assumptions, this is a well-defined problem. For
instance, it is common to assume mutual independence of the test vectors so that
the joint likelihood of the test sequence X = {x1, . . . ,xT } given the model R can
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be factorized as follows:

p(x1, . . . ,xT |R) =
T∏

t=1

p(xt|R). (2.1)

However, the independence assumption does not hold in general, but the feature
vectors have strong temporal correlations. An alternative strategy is to classify each
test vector separately using traditional single-vector methods, and to combine the
individual vector votes [163].

A compromise between the whole sequence classification and individual vector
voting is to divide X into temporal blocks of fixed length (say K vectors) [64], and
classify them independently. More advanced methods include segmentation of the
utterance into variable-length segments corresponding to linguistically or statisti-
cally meaningful units, which is discussed in the next section.

2.4 Segmentation as Preprocessing

The phonetic information (text content) is considered as the most severe inferring
information to speaker recognition, and a number of approaches have been proposed
for separating these two strands [76, 52, 157, 17, 138, 155, 55, 85, 1, 162, 84, 20,
145, 77][P2]. In text-dependent recognition, separation of phonetic and speaker
information is embedded into the recognizer which performs nonlinear alignment
of the reference and test utterances using Hidden Markov models (HMM) or dy-
namic time warping (DTW). In text-independent recognition, this kind of “stretch-
ing/shrinking” is not possible since comparable phonemes in two recordings are in
arbitrary positions.

Therefore, a segmenter can be considered in text-independent case as a pre-
processor that segments the signal. If the segmentation produces also the transcrip-
tion, the segments of the same type can be compared [7, 84]. The segmentation
is based on some linguistically relevant division such as phonemes/phoneme groups
[157, 17, 55, 84, 167, 78], broad phonetic categories [76, 106], phoneme-like data-
driven units [172][P2], unvoiced/voiced segments [187, 8], pitch classes [54], prosodic
patterns [1], and steady/transient spectral regions [134].

In general, the segmentation/alignment and the actual matching can, and prob-
ably should be, based on independent features and models because phonetic and
speaker information are, at least in theory, independent of each other. In [76],
smooth spectrum features derived from a 3rd order LPC model were used for broad
phonetic segmentation. In [155] the authors use principal component analysis to
project the feature vectors into “phonetic” and “speaker” subspaces, corresponding
to lower- and higher order principal components, respectively.
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The model and features for segmentation can be speaker-independent or speaker-
dependent, and these have been compared for text-depended case in [63, 33]. The
results in both studies [63, 33] indicate that speaker-dependent segmentation is more
accurate. However, speaker-independent segmentation needs to be done only once
which makes it computationally more efficient. In [167], speaker-dependent scoring is
made faster using a two-stage approach. In the first stage, a GMM speaker recognizer
and speaker-independent speech recognizer are used in parallel. The GMM produces
an N -best list of speakers, and for them speaker-dependent refined segmentation and
scoring is carried out. Similar approaches, with an aim to jointly improve speech and
speaker recognition performance, has been proposed in [85, 20]. The formulation
was done as finding the word sequence W and speaker S to maximize their joint
probability p(W,S|X ).

In speaker recognition, text content of the utterances is not of interest, and
one could replace the symbols by an arbitrary alphabet; it only matters that the
segmentation is consistent across different utterances. Annotated data is not needed
for training, but phoneme-like units can be found by unsupervised methods [77][P2].

2.5 Types of Models

Campbell [27] divides speaker models into template models and stochastic models. In
the former case, the model is nonparametric, and pattern matching deterministic; it
is assumed that the test sample is an imperfect replica of the reference template and
a dissimilarity measure between them needs to be defined. In the stochastic case,
it is assumed that the feature vectors are sampled from a fixed but an unknown
distribution. The parameters of the unknown distribution are estimated from the
training samples, and the match score is typically based on the conditional probabil-
ity (likelihood) of the observed test vectors X given the reference model R, p(X|R).
It is also possible to estimate the parameters of the test distribution parameters,
and to compare the model parameters [23].

Models can be also divided according to training method into unsupervised and
supervised (or discriminative) approaches [179]. In the former case, the target model
is trained using his/her training data only, whereas in the latter case, the data from
other classes is taken into account so that the models are directly optimized to
discriminate between speakers. This is usually done using an independent tuning
set matched against the models, and the models are adjusted so that the tuning
set samples are classified as accurately as possible. Using another validation set,
overfitting can be avoided. Unsupervised training is typical for statistical models
like GMM [185] and VQ [200], and supervised training is common for neural networks
[58, 86] and kernel classifiers [29, 213]. For a survey of various approaches, see [179].
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A compromise between unsupervised and supervised approaches is to use a unsu-
pervised model training and discriminative matching [63, 209, 141]. In this approach,
non-discriminating parts of the input signal contribute less to match score. For this,
likelihood ratio [63, 141], competitive model ranking [141], and Jensen difference
[209] have been used.

2.6 Template Models

The simplest template model is no model at all [93, 47]. In other words, the features
extracted in the training phase serve as the template for the speaker. Although this
represents the largest amount of information, it can lead to excessive matching times
and to overfitting. For this reason, it is common to reduce the number of test vectors
by clustering such as K-means [129]. Even simpler approach is to represent speaker
by a single mean vector [139].

In the following, the test template is denoted as X = {x1, . . . ,xT } and the
reference template as R = {r1, . . . , rK}. Theory of vector quantization (VQ) [69]
can be applied in template matching. The average quantization distortion of X ,
using R as the quantizer is defined as

DQ(X ,R) =
1
T

T∑

t=1

min
1≤k≤K

d(xt, rk), (2.2)

where d(·, ·) is a distance measure for vectors, e.g. the Euclidean distance or some
measure tailored for certain type of features (see [178]). In [36], nearest neighbor
distance is replaced by the minimum distance to the projection between all vec-
tor pairs, and improvement was obtained, especially for small template sizes. Soft
quantization (or fuzzy VQ) has also been used [208, 207].

For the vector distance d(·, ·), weighted distance measures of the following form
are commonly used:

d2
W (x, y) = (x− y)′W (x− y), (2.3)

in which W is a weighting matrix used for variance normalization or emphasizing
discriminative features. Euclidean distance is a special case when W is an identity
matrix. The Mahalanobis distance [50] is obtained from (2.3) when W is the inverse
covariance matrix. The covariance matrix can be same for all speakers or it can be
speaker-depended. In [180], the covariance matrix is partition-depended. Diagonal
covariance matrices are typically used because of numerical reasons.

14



2.6.1 Properties of DQ

The dissimilarity measure (2.2) is intuitively reasonable: for each test vector, the
nearest template vector is found and the minimum distances are summed. Thus, if
most of the test vectors are close to reference vectors, the distance will be small,
indicating high similarity. It is easy to show that DQ(X ,R) = 0 if and only if
X ⊆ R, given that d is a distance function [107]. However, DQ is not symmetric
because in general DQ(X ,R) 6= DQ(R,X ), which arises a question what should be
quantized with which one?

Symmetrization of (2.2) was recently proposed in [107] by computing the asym-
metric measures DQ(X ,R) and DQ(R,X ), and combining them using sum, max,
min and product operators. The maximum and sum are the most attractive ones
since they define a distance function. However, according to the experiments in [107],
neither one could beat out the nonsymmetric measure (2.2), which arises suspicion
whether symmetrization is needed after all.

Our answer is conditional. In principle, the measure should be symmetric by in-
tuition. However, due to imperfections in the measurement process, features are not
free from context, but they contain mixed information about the speaker, text, and
other factors. In text-independent recognition, the asymmetry might be advanta-
geous because of mismatched texts. However, there is experimental evidence in favor
of symmetrization. Bimbot et al. [23] studied symmetrization procedures for mono-
gaussian speaker modeling, and in the case of limited data for either modeling or
matching, symmetrization was found to be useful. In [107], rather long training and
test segments were used, which might explain the difference. The symmetrization
deserves more attention.

2.6.2 Alternative Measures

Higgins et al. [93] have proposed the following dissimilarity measure:

DH(X ,R) =
1
T

T∑

t=1

min
1≤k≤K

d(xt, rk)2 +
1
K

K∑

k=1

min
1≤t≤T

d(xt, rk)2

− 1
T

T∑

t=1

min
1≤k≤K,k 6=t

d(xt,xk)2 − 1
K

K∑

k=1

min
1≤t≤T,t6=k

d(rt, rk)2, (2.4)

in which d2 is the squared Euclidean distance. They also show that, under certain
assumptions, the expected value of DH is proportional to the divergence between the
continuous probability distributions. Divergence is the total average information for
discriminating one class from another, and can be considered as a “distance” between
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two probability distributions [41]. The first two sum terms in (2.4) correspond to
cross-entropies and the last two terms to self-entropies.

Several other heuristic distance and similarity measures have been proposed [143,
91, 10, 111, 116]. Matsui and Furui [143] eliminate outliers and perform matching in
the intersecting region of X and R to increase robustness. In [91], the discrimination
power of individual vectors is utilized. Each vector is matched against other speakers
using a linear discriminant designed in the training phase to separate these two
speakers. Discriminant values are then converted into votes, and the number of
votes for the target serves as the match score.

Heuristic weighting utilizing discriminatory information of the reference vectors
was proposed in [111, 116]. In the training phase, a weight for each reference vector
is determined, signifying its distance from the other speakers’ vectors. For vectors
away from other classes, higher contribution is given in the matching phase. In
the matching phase, the weight of the nearest neighbor is retrieved and used in the
dissimilarity [111] or similarity [116] measure.

2.6.3 Clustering

The size of speaker template can be reduced by clustering [200]. The result of
clustering is a codebook C of K code vectors, denoted as C = {c1, . . . , cK}. There
are two design issues in the codebook generation: (1) the method for generating the
codebook, and (2) the size of the codebook.

General and non-surprising result is that increasing the codebook size reduces
recognition error rates [200, 58, 83, 116][P1]. A general rule of thumb is to use a
codebook of size 64-512 to model spectral parameters of dimensionality 10-50. If
the codebook size is set too high, the model gets overfit to the training data and
increases errors [202][P5]. Larger codebooks increase also matching time. Usually
speaker codebooks are equal size for all speakers, but the sizes can also be optimized
for each speaker [60].

The most well-known codebook generation algorithm is the generalized Lloyd al-
gorithm (GLA) [129], also known as the Linde-Buzo-Gray (LBG), or as the K-means
algorithm depending on the context; the names will be used here interchangeably.
The algorithm minimizes the mean square error locally by starting from an initial
codebook, which is iteratively refined in two successive steps until the codebook does
not change. The codebook is initialized by selecting K disjoint random vectors from
the training set.

He et al. [83] proposed a discriminative codebook training algorithm. In this
method, codebooks are first initialized by the LBG algorithm, and then the code
vectors are fine-tuned using learning vector quantization (LVQ) principle [120]. In
LVQ, individual vectors are classified using template vectors, and the template vec-
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tors are moved either towards (correct classification) or away (misclassification) from
the tuning set vectors. In speaker recognition, the task is to classify a sequence of
vectors rather than individual vectors. For this reason, He et al. modified the LVQ so
that a group of vectors is classified (using average quantization distortion), and they
call their method group vector quantization (GVQ). The code vectors are tuned like
in standard LVQ. The GVQ method, when combined with the partition-normalized
distance measure [180], was reported to give the best results among several VQ-based
methods compared in [56].

2.7 Stochastic Models

2.7.1 Gaussian Mixture Model

Gaussian mixture model (GMM) [185, 184] is the state-of-the-practise model in text-
independent speaker recognition. A GMM trained for short-term spectral features
is often taken as the baseline to which new models and features are compared.
GMM can be considered as an extension of the VQ model, in which the clusters are
overlapping. The power of GMM lies in the fact that it produces smooth density
estimate, and that it can be used for modeling arbitrary distributions [25]. On the
other hand, a VQ equipped with Mahalanobis distance is very close to GMM.

A GMM is composed of a finite mixture of Gaussian components, and its density
function is given by

p(x|R) =
K∑

k=1

Pk N (x|µk,Σk), (2.5)

where

N (x|µk,Σk) = (2π)−
d
2 |Σk|−

1
2 exp

{
− 1

2
(x− µk)

′Σ−1
k (x− µk)

}
(2.6)

is the d-variate Gaussian density function with mean vector µ and covariance ma-
trix Σ. Pk ≥ 0 are the component prior probabilities and they are constrained
by

∑K
k=1 Pk = 1. In the recognition phase, the likelihood of the test sequence is

computed as
∏T

t=1 p(xt|R).
GMM parameters can be estimated using the Expectation-Maximization (EM)

algorithm [25], which can be considered as an extension of the K-means. The EM al-
gorithm locally maximizes the likelihood for the training data. Alternatively, GMM
can be adapted from a previously trained model called a world model or universal
background model (UBM). The idea in this approach is that parameters are not
estimated from scratch, but prior knowledge (“speech data in general”) is utilized.
The UBM is trained from a large number of speakers using the EM algorithm, and
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the speaker-depended parameters are adapted using maximum a posteriori (MAP)
adaptation [184]. As an example, the mean vectors are adapted as follows:

µk =
nk

nk + r
Ek(x) +

(
1− nk

nk + r

)
µUBM

k , (2.7)

where nk is the probabilistic count of vectors assigned to kth mixture component,
Ek(x) is posterior probability weighted centroid of the adaptation data, and r is a
fixed relevance factor balancing the contribution of the UBM and the adaptation
data. Compared to EM training, the MAP approach reduces both the amount of
needed training as well as the training time, and it is the preferred method, especially
for limited training data.

The UBM can be used in speaker verification to normalize the target score so
that it is more robust against environmental variations. The test vectors are scored
against the target model and the UBM, and the normalized score is obtained by
dividing the target likelihood by the UBM likelihood, giving a relative score. Note
that the UBM normalization does not help in closed-set identification, since the
background score is the same for each speaker, and will not change the order of
scores. In addition to UBM normalization, one can use a set of cohort models
[92, 185][P5, P6].

Typically the covariance matrices are taken to be diagonal (i.e. a variance vector
for each component) because of both numerical and storage reasons. However, it has
been observed that full covariance matrices are more accurate [224]. In [224], the
authors propose to use eigenvalue decomposition for the covariance matrices, where
the eigenvectors are shared by all mixture components but the eigenvalues depend
on the component. Although the proposed approach gave slightly smaller errors
compared to normal full covariance GMM, the training algorithm is considerably
much more complex than the EM algorithm.

Recently, the UBM-GMM has been extended in [219]. In this approach, the
background model is presented as a tree created using top-down clustering. From the
tree-structured background model, target GMM is adapted using MAP adaptation
at each tree level. The idea of this approach is to represent speakers with different
resolutions (the uppermost layers corresponding to most “coarse model”) to speed
up GMM scoring.

Another multilevel model has been proposed in [34] based on phonetically-
motivated structuring. Again, the most coarse level presents the regular GMM,
the next level contains division into vowels, nasals, voiced and unvoiced fricatives,
plosives, liquids and silence. The third and last level consists of the individual
phonemes. In this approach, phonetic labeling (e.g. using HMM) of the test vectors
is required. Similar but independent study is [84].
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Phoneme group specific GMMs have been proposed in [55, 167, 78]. For each
speaker, several GMMs are trained, each corresponding to a phoneme class. A neat
idea that avoids explicit segmentation in the recognition phase is proposed in [55].
The speaker is modeled using a single GMM consisting of several sub-GMMs, one
for each phonetic class. The mixture weight of the sub-GMM is determined from the
relative frequency of the corresponding phonetic symbol. Scoring is done in normal
way by computing the likelihood; the key point here is that the correct phonetic
class of the input frame is selected probabilistically, and there is no need for discrete
labeling.

In [209], two GMMs are stored for each speaker. The first one is trained normally
from the training data. Using this model, discriminativeness of each training vector
is determined and the most discriminative vectors are used for training the second
model. In the recognition phase, discriminative frames are selected using the first
model and matched against the second (discriminative) model. The discrimination
power is measured by deviation of vector likelihood values from a uniform distribu-
tion; if likelihood is same for all speakers, it does not help in the discrimination.

A simplified GMM training approach has been proposed in [121, 169], which com-
bines the simplicity of the VQ training algorithm but retains the modeling power of
GMM. First, the feature space is partitioned into K disjoint clusters using the LBG
algorithm. After this, covariance matrices of each cluster are computed from the
vectors that belong to that cluster. The mixing weight of each cluster is computed
as the proportion of vectors belonging to that cluster. The results in [121, 169] indi-
cate that this simple algorithm gives similar or better results with the GMM-based
speaker recognition with much simpler implementation.

Even more simple approach to avoid training totally is to use Parzen window
(or kernel density) estimate [65] from the speaker’s training vectors [186]. Given the
training data R = {r1, . . . , rK} for the speaker, the Parzen density estimate is

p(x|R) =
1
K

K∑

k=1

K(x− rk), (2.8)

where K is a symmetric kernel function (e.g. Gaussian) at each reference vector.
The shape of the kernel is controlled by a smoothing parameter controlling the trade-
off between over- and undersmoothing of the density. Indeed, there is no training for
this model at all, but the density estimate is formed “on the fly” from the training
samples for each test vector. The direct computation of (2.8) is time-consuming for
a large number of training samples, so the dataset could be reduced by K-means.
Rifkin [186] uses approximate k-nearest neighbor search to approximate (2.8) using
the k approximate nearest neighbors to the query vector.
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2.7.2 Monogaussian Model

A special case of the GMM, referred to as monogaussian model, is to use a single
Gaussian component per speaker [71, 70, 23]. The model consists of a single mean
vector µR and a covariance matrix ΣR estimated from the training data R. The
small amount of parameter makes the model very simple, small in size, and com-
putationally efficient. Monogaussian model has been reported to give satisfactory
results [27, 21, 225]. It is less accurate compared to GMM, but the computational
speedup in both training and verification is improved by one to three orders of
magnitude according to experiments in [225]. Also, it is pointed out in [23] that
monogaussian modeling could serve as a general reference model, since the results
are easy to reproduce (in GMM and VQ, the model depends on the initialization).

In some cases, the mean vector of the model can be ignored, leading to a single
covariance matrix per speaker. The motivation is that covariance matrix is not
affected by constant bias, which could be resulting from convolutive noise (which
is additive in cepstral domain). Bimbot et al. [23] found out experimentally that
when training and matching conditions are clean, including mean vector improves
performance, but in the case of telephone quality, the covariance model is better.

Several matching strategies for the monogaussian and covariance-only model
have been proposed [71, 70, 23, 27, 214, 225]. The basic idea is to compare the
differences in the parameters of the test and reference parameters, denoted here
as (µX ,ΣX ) and (µR,ΣR). This speeds up scoring compared to direct likelihood
computation, since the parameters of the test sequence need to be computed once
only.

The means are typically compared using Mahalanobis distance, and the covari-
ances matrices are compared using the eigenvalues of the matrix ΣXΣ−1

R . When
the covariance matrices are equal, ΣXΣ−1

R = I, and the eigenvalues will be equal
to 1. Thus, a dissimilarity of the covariance matrices can be defined in the terms
of the deviation of the eigenvalues from unity. Gish proposed the sum of absolute
deviations from unity [70]. Bimbot et al. compare several eigenvalue-based distance
measures, and propose different ways of symmetrizing them [23].

In some cases, the eigenvalues do need to be explicitely calculated, but the
measures can be represented using traces and determinants. For instance, Bimbot
et al. derive arithmetic-geometric sphericity measure which is the logarithm of the
ratio of arithmetic and geometric means of the eigenvalues, and can be calculated
as follows:

AGSM(ΣX ,ΣR) = log
1
dtr

(
ΣXΣ−1

R
)

(
|ΣX |

/
|ΣR|

)1/d
. (2.9)

Campbell [27] defines distance between two Gaussian based on divergence [41] and
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Bhattacharyya distance [65]. From these, he derives measures that emphasize dif-
ferences in the shapes of the two distributions. As an example, the measure derived
from the divergence, called divergence shape, is given by the following equation:

DS(ΣX ,ΣR) =
1
2
tr

[(
ΣX −ΣR

)(
Σ−1
R −Σ−1

X

)]
. (2.10)

To sum up, because of the simple form of the density function, the monogaussian
model enables usage of powerful parametric similarity and distance measures. More
complex models like GMM do not allow easy closed-form solutions to parametric
matching.

2.8 Other Models

Neural networks have been used in various pattern classification problems, including
speaker recognition [58, 75, 86, 125, 222]. One advantage of neural networks is that
feature extraction and speaker modeling can be combined into a single network
[86]. Recently, a promising speaker modeling approach has been the use of kernel
classifiers (see [150]). The idea in these methods is to use a nonlinear mapping into
a high-dimensional feature space, in which simple classifiers can be applied. The
idea is different from neural networks, in which the classifier itself has a complex
form.

In [29], polynomial functions are used as speaker models. The coefficients of the
polynomial form the speaker model, and these are learned using discriminative train-
ing. As an example, for two-dimensional vectors (x1, x2) and 2nd order polynomial,
mapping into 6-dimensional feature space is defined in [29] as follows:

(x1, x2) 7→ (1, x1, x2, x2
1, x1x2, x2

2). (2.11)

In the matching phase, each vector is mapped into feature space and the inner
product is computed between the speaker coefficient vector, giving an indication
of similarity. The utterance-level score is given by the average of the frame-level
scores. This model has a very small number of parameters; in [29] the best results
were obtained using 455 parameters per speaker.

In [149, 213], the speaker model parameters rather than the data are mapped
using kernels. This has the advantage that the parameter space has fixed dimension-
ality. For instance, in [149], the authors measure distance of monogaussian models
in the probability density space using divergence (which can be computed analyt-
ically in this case). The experiments of [149] indicate that this simple approach
outperforms GMM.

Speaker-specific mapping approach to speaker recognition has been proposed in
[138, 145], in which the focus is in features rather than statistical modeling. The
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idea is to extract two parallel feature streams with the same frame rate, a feature set
representing linguistic information, and a feature set containing both linguistic and
speaker information. Denoting the linguistic and linguistic-speaker feature vectors
as (lt, st), t = 1, . . . , T , the training consists of finding the parameters of the speaker-
specific mapping function F so that the mean square mapping error

E =
1
T

T∑

t=1

‖st −F(lt)‖2 (2.12)

is minimized. One can think F a “speaker coloring” of the “pure linguistic” spec-
trum: speaker-specific detail features are added on top of the linguistic information
to give the final spectrum containing linguistic and speaker features. In [138] the
mapping is found using subspace approach, and in [145] using a multilayer perceptron
(MLP) network. In the recognition phase, the two feature streams are extracted,
and score for the speaker is defined as the mapping error (2.12) using his personal
F .

Somewhat similar approach to the linguistic-to-speaker mapping is the autoasso-
ciate neural network [75, 222] approach, in which a multilayer perceptron is trained
to learn the reconstruction of features via a lower-dimensional subspace. The main
difference with [138, 145] is that only one feature stream is used and so that no
domain knowledge is used. The input vector and desired output vectors are the
same, and the network is trained to minimize the reconstruction error.

2.9 Information Fusion

Decision making in human activities involves combining information from several
sources (team decision making, voting, combining evidence in the court of law), in
the wish to arrive at more reliable decisions. Lately, these ideas have been adopted
into pattern recognition systems under the generic term information fusion. There
has been also a clearly increasing interest towards information fusion in speaker
recognition during the past few years [35, 59, 158, 197, 194, 64, 148, 179, 188, 43, 6,
136, 77][P3, P4].

Information fusion can take several forms, see [179] for an overview in speaker
recognition. For instance, the target speaker might be required to utter same utter-
ance several times (multi-sample fusion) so that match scores of different utterances
can be combined [136]. Alternatively, a set of different features could be extracted
from the same utterance (multi-feature fusion). Speech signal is complex and en-
ables extraction of several complementary acoustic-phonetic, as well computational
features that can capture different aspects of the signal.
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In classifier fusion, the same feature set is modeled using different classifiers [31,
59, 148]. The motivation is that classifiers are based on different underlying theories
such as linear/nonlinear decision boundaries, and stochastic/template approaches.
It is expected that combining different classifier types, the classifiers could correct
misclassifications made by other classifiers.

2.9.1 Input and Output Fusion

For multi-feature fusion there are two options available: input fusion and output
fusion. Input fusion refers to combining the features at the frame level into a vector
for which a single model is trained. In output fusion, each feature set is modeled
using a separate classifier, and the classifier outputs are combined. The classifier
outputs can be raw match scores, rank values, or hard decisions [221].

Input fusion, in particular, combining local static spectral features with the
corresponding time derivatives to capture transitional spectral information [66, 201],
has been very popular. The main advantages are straightforward implementation,
the need for a single classifier only, and the fact that feature dependencies are taken
into account, providing potentially better discrimination in the high-dimensional
space.

However, input fusion has several limitations. For instance, it is difficult to
apply when the features to combined have different frame rates, or if some feature
stream has discontinuities (like F0 of unvoiced frames). Feature interpolation could
be used in these cases, but this is somewhat artificial - creating data that does
not exist. Moreover, curse of dimensionality may pose problems especially with
limited training data. Careful normalization of the features is also necessary because
individual features might have different variances and discrimination power.

Output fusion enables more flexible combination strategy, because the best-
suited modeling approaches can be used for different features. Because of the lower
dimensionality, simple models can be used and less training data is required. Also,
different features can have different meaning, they can have different scales and dif-
ferent number of vectors, and these can be processed in a unified way. In fact, the
classifiers might present even different biometric modalities like face and voice [26].

Output fusion has some disadvantages as well. Firstly, some discrimination
power might be lost if the features are statistically dependent. Secondly, memory
and time requirements are increased if there is a large number of feature streams.
However, this is true also for input fusion. Based on these arguments, score fusion
is more preferable option in general.
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2.9.2 Combining Classifier Outputs

If the individual classifiers output crisp labels, they can be combined using majority
voting, i.e. by assigning the class label to the most voted one; a majority of votes
is required. In [6], framework for combining rank-level classifier outputs for speaker
recognition is proposed.

If classifier outputs are continuous match scores, they must be converted into
compatible scale before combining. Let sk(X , i) denote the raw match score for
speaker i given by the classifier k. It is customary to normalize the scores to be
nonnegative and so that they sum to unity. In this way, they can be interpreted
as estimates of posterior probabilities or membership degrees. Using a nonnegative
function g(s), the normalization [35]

s′k(X , i) =
g(sk(X , i))∑N

j=1 g(sk(X , j))
(2.13)

ensures that s′k(X , i) ≥ 0 and
∑N

i=1 s′k(X , i) = 1 for all k. The function g(s) take
different forms depending on the scores. For probabilistic classifier one can select
g(s) = s and for distance classifiers g(s) = exp(−s).

The sum and product rules [119, 205, 4], sometimes refered to also as linear
opinion pool and logarithmic opinion pool respectively, are commonly used. They
are given as follows:

Fsum(X , i) =
K∑

k=1

wks
′
k(X , i) (2.14)

Fprod(X , i) =
K∏

k=1

s′k(X , i)wk , (2.15)

where wk ≥ 0 are the relative significance of the individual classifiers to the final
score. The weights can be determined from the accuracies of the classifiers, from
classifier confusion matrices using information theoretic approach [5], or from esti-
mated acoustic mismatch between training and recognition [192]. Properties of the
sum and product rules for the equal weights case (wk = 1/K) have been analyzed
in [119, 205, 4]. In general, the sum rule is preferred option since the product rule
amplifies estimation errors [119].
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Chapter 3

Feature Extraction

SPEECH signal changes continuously due to the articulatory movements, and
the signal must be analyzed in short segments or frames, assuming local sta-
tionarity within each frame. Typical frame length is 10-30 milliseconds, with

an overlap of 25-50 % of the frame length. From each frame, feature vector(s) are
computed.

Estimation of the short-term spectrum forms a basis for many feature representa-
tions. Spectrum can be estimated using the discrete Fourier transform (DFT) [160],
linear prediction [137], or some other methods. Common steps for most spectrum
estimation methods in speech processing are pre-emphasis and windowing, see Fig.
3.1 for an example. Pre-emphasis boosts higher frequency region so that vocal tract
related features are emphasized. Pre-emphasis also makes linear prediction (LP)
analysis more accurate at higher frequencies. The purpose of windowing is to pick
the interesting part of the “infinite-length” signal for short-term analysis.

3.1 Spectral Analysis Using DFT

When discrete Fourier transform (DFT) [160, 98] is used as a spectrum estimation
method, each frame is multiplied by a window function to suppress the discontinu-
ity at the frame boundaries. Notice that the “no windowing” case in fact applies a
window, however, a rectangular one. Frame multiplication in the time domain cor-
responds to convolving the true signal spectrum with the spectrum of the window
function [81, 45, 177, 160]. In other words, the window function itself causes error
to the spectrum estimation (leading to so-called spectral leakage effect which means
that the spectral energy “leaks” from DFT bins to each other). If frame smoothing
is not done, this is equivalent to measuring a blurred version of the actual spectrum.
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Framing

Pre-emphasis

Windowing

Time domain Frequency domain

Figure 3.1: Effects of framing, pre-emphasis and windowing in time and frequency
domains.

For a detailed discussion of the desired properties for a window function, see [81].
In addition to selecting the window function, other crucial parameters are the

frame length and overlap. The frequency resolution of the DFT can be increased by
using longer frame, but this leads to decreased time resolution. Wavelets [203] offer
a nonuniform tiling of the time-frequency plane, but the short-term DFT remains
the mainstream approach.

Framing is straightforward to implement but it has several shortcomings, from
which the frame adjustment needs special caution as demonstrated in [108]. The
authors demonstrate with a synthetic example that for a periodic signal, two equal
length frames started from different positions lead to high spectral distance. As a
solution, the authors propose to use a variable frame length chosen to be an integer
multiple of the local pitch period.

Pitch-synchronous analysis has also been utilized in [227], but with different mo-
tivation than in [108]. Although source and filter features are in theory separated by
the conventional spectral feature representations like MFCC and LPCC, in practise
the spectral features are affected by pitch. The authors of [227] denote that in NIST
evaluations, pitch mismatch between training and recognition has been observed
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Figure 3.2: Effects of windowing parameters to speech magnitude- and phase spec-
trograms.

to increase errors, and hypothesize that by removing the harmonic structure from
the spectrum, “depitching” the local spectrum, would be advantageous for speaker
recognition. Unfortunately, the verification accuracy turned out to be worse for the
depitched case. Pitch-class depended spectral feature modeling has been proposed
in [54, 8]. In this approach, each pitch class (e.g. voiced/unvoiced) is associated
with its own model.

3.2 DFT in Feature Extraction

Formally, the result of an N -point DFT is an N -dimensional complex vector, which
can be expressed in equivalent magnitude-phase form by using the polar coordinates.
Magnitude and phase spectra are N/2-dimensional vectors, from which the original
time-domain signal can be restored.

Typically, only the magnitude spectrum is retained and the phase spectrum is
neglected. In this way, half of the data is dropped away, and there is no hope of
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restoring the original signal anymore. Very few studies have considered using phase
information as a potential feature for speaker recognition [87]. The motivation for
not using phase is based on the general belief that phase has little effect on perception
of speech [80, 68]. However, there is recent evidence to support just the opposite.
In [164], the authors conducted a consonant intelligibility task by resynthesizing
auditory stimuli from magnitude or phase spectrum only and destroying the other
one. It was observed that the intelligibility is a function of the window function type
and the window size. In particular, for longer time windows, the phase spectrum
turned out to be more useful.

Figure 3.2 shows the low frequency part of the magnitude and phase spectra from
an utterance spoken by a male speaker. Frame length is varied in the three panels,
while keeping the frame shift fixed to 2/3 of the frame length. The window function
is Hamming and the number of FFT bins is 512. The magnitude spectrum shows
somewhat more structured signal, but the phase spectrum does not look completely
random either.
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Figure 3.3: An example of filtering in the frequency domain.

DFT has several other limitations in addition to spectral leakage. A fundamental
problem is that the base frequencies are constrained to be harmonically related of
the form ωk = (2πk)/N , where k = 0, 1, . . . , N − 1. The Fourier spectrum can be
considered as a least squares fit of sines and cosines of predetermined frequencies
to the input data [99]. The authors in [99] utilize a more flexible approach known
as Hildebrand-Prony method in which the basis functions are periodic, but not
constrained to be harmonically related.

Another alternative spectrum model known as Fourier-Bessel expansion was
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utilized in [74]. The method is similar to standard Fourier analysis in that the
basis functions are orthogonal, and the Fourier-Bessel coefficients are unique. The
difference is that the basis functions are aperiodic and decay with time, which might
better suit to the physics of speech.

A machine-learning approach to finding speaker-depended basis functions was
proposed in [103]. The authors compare Fourier basis functions and cosine basis
functions (DCT) with principal component analysis (PCA) and independent com-
ponent analysis (ICA) derived basis functions. The experiments on a subset of
TIMIT corpus indicated that ICA-derived basis functions perform the best.
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Figure 3.4: Examples of filter banks with different filter shapes and frequency warp-
ings.

3.3 Subband Processing

Subband processing enables independent processing and fusion of different subbands.
The block carrying out the division into individual frequency bands is called a fil-
terbank, and it can be implemented in both time and frequency domains. In the
former case, time-domain signal is convolved with a set of bandpass-type of filter
kernels, each one designed to pick a certain frequency band. This produces a set
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of filtered time-domain signals, for which normal overlapping frame feature extrac-
tion can be performed. In the frequency-domain approach, DFT is applied to every
frame, and the frequency bands are selected from the spectrum by windowing the
Fourier spectrum (see Fig. 3.4). The DFT approach (implemented using FFT)
is computationally more efficient, and for this reason also more popular. For an
example about the convolution approach in speaker recognition, see [43].

Filterbank provide a smoothed version of the raw magnitude spectrum by aver-
aging spectral bands over certain sets of frequencies, see Fig. 3.3 for an example.
The upper panels show the DFT magnitude spectrum and the filters. The lower
panels show the smoothed spectrum that is obtained as a weighted sum using the
filters as the weighting function. In this example, the filters are triangular shaped
and their center frequencies are linearly spaced on the frequency axis so that the
response of the whole filterbank equals 1 over all frequencies.

3.3.1 Emphasizing Important Frequencies

The filter center frequencies can be linearly spaced, or according to a nonlinear fre-
quency warping function. Frequency warping can be used to adjust the amount of
resolution around specified subbands. Psychoacoustically motivated warping func-
tions have been popular. For instance, the mel- and the Bark-scales [80] both give
more resolution to the low end of the spectrum, and lump together higher frequen-
cies more aggressively. Some examples of warped filterbank magnitude responses
are shown in Fig. 3.4 with different filter shapes and warping functions.

In [42, 161], speaker discriminating division of the frequency domain is imple-
mented by placing more filters with narrower bandwidths on the discriminating
regions. For instance, the authors of [161] determine the discrimination power using
F -ratio [27] and a heuristic vector ranking criterion. In [14], the authors hypothesize
that it would be advantageous to equalize the error rates over different subbands.
Based on the error rates of individual frequency bands and other empirical obser-
vations, they designed an equalizing warping function. The experiments confirmed
that the subband error rates had more flat distribution, and for a female speaker set
the error rates were degreased from mel-warped filterbank. However, for male subset
there was no improvement. In [146], a parametric warping function was proposed for
speaker recognition. The first parameter defines the frequency band, and the sec-
ond parameter controls the amount of resolution around this band. The filterbank
parameters were optimized for both GMM and VQ models using a gradient-search
type algorithm.

30



3.3.2 Subband Modeling

Some subbands might be corrupted by noise whereas others are still usable. Moti-
vated by this, separate model for each subband can be used [22, 21, 223, 195, 43, 144].
For instance, in [22, 21] subbands are modeled using a monogaussian model and in
[144] using a GMM.

Damper and Higgins [43] combine the subband likelihoods by the product rule
without any weighting, whereas Sivakumaran et al. [195] use three weighting ap-
proaches based on subband error rate, SNR, and discrimination power using com-
peting speaker models. Discriminative weighting yielded the lowest error rates.

The approach by Ming et al. [144] is an interesting one because of its sim-
plicity and minimal assumptions about the type or amount of noise. The method
selects automatically subbands that are less contamined by noise. This is based on
maximizing the a posterior probability of a given speaker model with respect to
the uncontaminated subbands. Intuitively, if a subband is contamined by noise, it
matches poorly all speaker models, and will not be selected to scoring.

3.3.3 Filterbank Cepstrum

Spectral subbands are correlated, and some form of dimensionality reduction should
be applied. The most well-known approach is the discrete cosine transform (DCT)
applied to mel-warped filterbank outputs, the approach known as mel-cepstrum [44].
Denoting the outputs of an M -channel filterbank as Y (m),m = 1, . . . , M , the cep-
stral coefficients are given as follows [94]:

cn =
M∑

m=1

log Y (m) cos

[
πn

M

(
m− 1

2

)]
. (3.1)

Notice that c[0] equals the sum of log-compressed filter outputs and correlates with
the total energy of the frame. Thus, it depends on the distance to microphone and
is not usually included in the cepstral vector. Usually 10-20 low-order coefficients
are retained, and possibly weighted (cepstral liftering) to increase their robustness
or to emphasize speaker differences.

In [90], DCT was replaced by FIR filtering of the log magnitude spectrum, in
other words, convolution in the frequency domain. The motivation of the authors
was a combined decorrelation and emphasis of important features. The experiments
on four different filters indicated that a smaller EER can be obtained by using
FIR filtering. The best result was obtained by using a second order bandpass filter
z − z−1, which corresponds to so-called bandpass liftering [178].
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3.4 Linear Prediction

3.4.1 Linear Model of Speech Production

Linear prediction (LP) [137] is an alternative spectrum estimation method to DFT.
LP can be considered as a rough formulation for the source-filter theory of speech
production [57]. The “filter” of the LP model represents a transfer function of an
all-pole model, consisting of a set of spectral peaks that are more or less related to
the resonance structure of the vocal tract, as well as to the spectral properties of
the excitation signal. The prediction residual signal represents temporal properties
of the signal that are not captured by the all-pole model.

The linear speech production model is given in the time domain by the following
equation [178]:

s[n] =
p∑

k=1

aks[n− k] + G u[n], (3.2)

where s[n] is the observed signal, ak are the predictor coefficients, u[n] is the source
signal and G is the gain. The predictor equation of LP is given as follows:

s̃[n] =
p∑

k=1

aks[n− k]. (3.3)

Equation (3.3) states that current speech sample can be predicted from a linear
combination of past p samples, which is an intuitively reasonable assumption in
short term (within the analysis frame). The predictor coefficients ak are determined
so that the square error is minimized:

min
(a1,...,ap)

∑
n

(
s[n]−

p∑

k=1

aks[n− k]

)2

(3.4)

The coefficients are typically solved using the Levinson-Durbin algorithm [178, 94,
80]. Frequency-domain interpretation of the model (3.2) is obtained by taking Z-
transforms of both sides of (3.2) and solving for the filter transfer function:

H(z) =
S(z)
U(z)

=
G

1−∑p
k=1 akz−k

, (3.5)

where S(z) and U(z) are the Z-transforms of s[n] and u[n], respectively. This is a
transfer function of an all-pole filter. The poles are the roots of the denominator,
and they correspond to local maxima in the spectrum. Examples of all-pole spectra
(bold line) are shown in Fig. 3.5. The DFT spectrum (thin line) is shown for
comparison.
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Figure 3.5: FFT versus all-pole spectrum estimation.

It is interesting to note that when the actual process that generated the speech
signal is close to (3.2), the prediction residual e[n] = s[n]− s̃[n] should be close to the
scaled excitation signal G u[n]. Thus, the residual signal can be used for extracting
voice-source related features. In speech recognition, the residual signal is considered
as noise, but it has been shown to contain some speaker related information [206,
61, 175]. For instance, in [175], fine structure of the glottal waveform is estimated
by finding the parameters of a parametric glottal flow model.

Selection of correct analysis order is crucial [145]. For a low-order analysis, say
p = 4, . . . , 10, the LP envelope represent mainly linguistic information, and due to
low dimensionality, the discrimination between speakers is low. For higher orders,
say p > 15, the LP spectrum represents a mixture of linguistic and speaker informa-
tion. Although increasing the order makes speaker differences more apparent, for
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too high an order, LP model starts to capture individual harmonic peaks, and the
model becomes more close to Fourier spectrum.

3.4.2 LP-Based Features

In addition to the predictor coefficients, the Levinson-Durbin algorithm produces
intermediate variables called reflection coefficients k[i], i = 1, . . . , p as a side product.
These are interpreted as the reflection coefficients between the tubes in the lossless
tube model of the vocal tract [45]. From the reflection coefficients, log area ratios
(LAR) or arcus sine reflection coefficients [27] can be also computed. Formant
frequencies and bandwidths can be estimated from the poles z1, . . . , zp of the transfer
function as follows [45]:

F̂i =
Fs

2π
tan−1

(
Im zi

Re zi

)
(3.6)

B̂i = −Fs

π
ln |zi|. (3.7)

Among a large number of parameters, LPC-derived formant frequencies were ex-
perimentally studied in [110]. Formants were observed to perform slightly poorer
compared to other spectral features, but they are nevertheless an interesting fea-
ture set. The filterbank and cepstral features are continuous parameters describing
the distribution of amplitudes of all frequencies. Formants, on the other hand, are
a discrete parameter set that picks discrete feature points from the spectrum, the
locations of resonances, and not their amplitudes.

Given the predictor coefficients ak, linear predictive cepstral coefficients (LPCC)
can be computed as follows [94]:

cn =





an +
∑n−1

k=1
k
nckan−k, 1 ≤ n ≤ p

∑n−1
k=n−p

k
nckan−k, n > p.

(3.8)

An equivalent presentation of the predictor coefficients are so-called line spectral
frequencies (LSF) [45, 94, 68]. Unlike other LP-based features listed here, LSFs
have a special property of being ordered according to frequency. In other words,
LSFs are not fullband features, and some LSFs can be still usable if some frequency
bands are contaminated by noise. LSFs have been applied to speaker recognition in
[132, 131, 27, 226, 152, 110].

Perceptual linear prediction (PLP) [88] exploits three psychoacoustic principles,
namely, critical band analysis (Bark), equal loudness pre-emphasis, and intensity-
loudness relationship. PLP and its variants have been used succesfully in speaker
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Figure 3.6: Time trajectories of first MFCC coefficient (c1) and its delta and double-
delta coefficients.

recognition [220, 159, 181, 211, 79]. Scanning the literature, it seems that conven-
tional features like MFCC can outperform PLP in clean environment, but PLP gives
better results in noisy and mismatched conditions.

Atal [13] compared the performance of the LPCC parameters with the following
parameters for speaker recognition: LPC coefficients, impulse response of the filter
specified by the LPC coefficients, autocorrelation function, and area function. From
these features, the LPC cepstral coefficients performed the best. Unfortunately,
Atal’s data consists only of 10 speakers. In [110], a large number of DFT- and LP-
derived spectral features were experimentally compared using two corpora of 110
speakers (Finnish) and 100 speakers (English). Cube root compressed filterbank
cepstral coefficients, LPCC, LSF and arcus sine reflection coefficients performed the
best when modeled using vector quantization.
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3.5 Dynamic Features

While speaking the articulators make gradual movements from a configuration to
another one, and these movements are reflected in the spectrum. The rate of these
spectral changes depends on the speaking style, speaking rate and speech context.
Some of these dynamic spectral parameters are clearly indicators of the speaker
itself.

So-called delta features [66, 201] are the most widely used method for estimating
feature dynamics. They give an estimate of the time derivative of the features
they are applied to, and they can be estimated by differentiating or by polynomial
representations [66, 201]. Figure 3.6 shows an example of the time trajectory of the
first MFCC, and the first two derivatives estimated using linear regression over ± 2
frames.

The boundaries in delta processing can be handled by adding extra frames in
both ends filled with zeroes, random numbers, or copies of adjacent frames [96].
If higher order derivatives are estimated, the boundaries should be handled with
more care since the error accumulates each time the deltas are computed from the
previous deltas. It can be noted also that different window lengths should be used
for different coefficients, simply because they have different variance [96].

Delta processing is a linear filtering (convolution) in the feature domain, and
it would be possible to design more general filters designed to emphasize speaker
differences. Importance of modulation frequencies for speaker recognition have been
studied in [212], but somewhat surprisingly, there are not many speaker recognition
studies in which modulation spectrum would have been used. So-called RelAtive
SpecTrA (RASTA) processing [89] aims suppressing modulation frequencies that
are not important for human hearing. RASTA and related methods have been
used for speaker recognition in [181, 79, 159]. In [135], time-frequency features are
modeled using principal component analysis. Spectral vectors from a time context of
±q frames are concatenated into a single vector of dimensionality (2q + 1)p, where
p is the dimensionality of the original vectors, and PCA is used for reducing the
dimensionality. Nonlinear dynamic features have been proposed in [173].

3.6 Prosodic and High-Level Features

Prosodics refers to non-segmental aspects of speech, including for instance syllable
stress, intonation patterns, speaking rate and rhythm. Prosodic features are also
called suprasegmental features. The main acoustic correlates of prosodic phenomena
are fundamental frequency and intensity, which are more or less easily voluntarily
controlled by the speaker (see [11] for an imitation study). However, they have
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shown to be robust against noise and channel effects [30, 124] and experiments have
shown that they can complement spectral features [30, 198, 100], especially when
the SNR is low.

Pitch information can be also used for noise-robust feature extraction [122]. SNR
at the pitch harmonics can be assumed to be higher than on the valleys of the spec-
trum, and the authors in [122] model harmonic structure by Gaussian pulses whose
parameters are estimated, and a noise-free spectrum is estimated as the sum of the
pulses. From the conditioned spectrum, MFCCs were extracted, and improvement
were obtained in very noisy and mismatched conditions.

In [140, 8] separate GMMs are used for unvoiced and voiced frames. In [140],
intercorrelation of F0 and spectral features is modeled by appending F0 to voiced
vectors. For the unvoiced case, the original features are used and thus the feature
spaces for the two cases have different dimension. In [54], pitch axis is split into
four experimentally defined intervals, and for each pitch class, a separate GMM on
MFCC features is trained.

Atal utilized pitch contours for text-depended recognition already in 1972 [12] by
applying PCA to smoothed pitch contours. In text-independent studies, long-term
F0 statistics, especially mean and median have been studied [139, 156, 30]. In [30],
mean, variance, skew and kurtosis were used for parameterizing the distributions of
F0, energy, and their first two time derivatives. F0 statistics can be matched using
simple Euclidean distance, or by divergence [30, 198, 199]. In [30] the divergence
was reported to be more accurate.

Sometimes the logarithm of F0 is used instead of F0 [198, 38]. In [38] it was
experimentally found out that log F0 yielded smaller EERs for a Cantonese database.
In [198], it is theoretically shown that log F0 follows normal distribution under some
general assumptions (high correlation between successive pitch periods).

Temporal aspects of pitch have been considered in [124, 199, 2]. In [124], the
authors simply divide the pitch track into fixed-length segments considered as vec-
tors, which were modeled using the vector quantization approach. Unfortunately,
the test material was small (18 speakers), and it was not reported what type of text
or language was used. It is likely that the fixed-length segmentation poses problems
with other data sets because the vector components are in arbitrary order.

In [199, 2], each voiced segment is parameterized, or stylized, by a piecewise
linear model, which has two advantages. First, it removes noisy microperturbations
of F0 from the general trend, and second, it reduces the amount of data. Thus,
contour stylization is feature extraction from the original contour. In [199], median
and slope of the stylized contour were extracted, as well as the durations of line
segments, voiced segments, and pauses. The median log F0 and segment slope were
modeled using Gaussian distribution, and the duration features with an exponential
distribution.
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Recently, so-called high-level features have reached attention in speaker recog-
nition after the discussion was initiated by Doddington [48]. The idea is to model
symbolic information captured by symbol N -grams, such as characteristic word us-
age. For instance, speaker might habitually use phrases like “uh oh” or “well yeah”
in conversations. Some examples of symbolic information modeling include word us-
age [48], prosodics [2, 37], phone sequences [7], and UBM component indices [218].
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Chapter 4

Summary of the Publications

IN the first paper [P1], five unsupervised codebook generation algorithms in
VQ-based speaker identification are experimentally compared. In addition to
the widely used K-means algorithm, two hierarchical methods (Split, PNN),

self-organizing map (SOM) and randomized local search (RLS) are studied. For
the experiments, a database of 25 voluntary participants was collected, consisting
of university staff and students. The results indicate that there is not much differ-
ence between the methods, and K-means is a good choice in general. Even randomly
selected code vectors produce acceptable results (one misclassified speaker) for code-
book sizes 128-256.

The result is supported by the observations in another publication [118], in which
the clustering structure of short-term spectral features was studied using variance
ratio based clustering validity index and principal component analysis. No clear
clustering structure was observed, and for this reason, the role of the clustering
algorithm is more or less sampling the training data rather than clustering it.

In the second paper [P2], an alternative front-end to the conventional MFCC
processing is proposed, with two major differences. Firstly, conventional MFCC
processing treats every frame in a similar manner ignoring phonetic information. In
the proposed method, each broad phonetic class is processed differently. Secondly,
filterbank is not based on psychoacoustic principles but on the speaker discriminating
power of the phonetic class-subband pairs.

The broad phonetic classes are found using unsupervised clustering, which has an
advantage that the method can be optimized for different databases and languages
without the need for annotated data. In the matching phase, vector quantization is
applied for labeling each frame. The experiments on a subset of the TIMIT corpus
indicate that the proposed method can decrease the error rate from 38 % to 25 %
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compared to conventional MFCC features for a test sample of 1 second. This shows
the potential of the proposed approach for very short test segments.

In the third paper [P3], classifier fusion in a multiparametric speaker profile ap-
proach is studied. Distance-based classifier outputs are combined using weighted
sum, and different weight assignment methods and feature sets are compared on
a database of 110 native Finnish speakers. The proposed scheme is designed for
combining diverse feature sets of arbitrary scales, number of vectors and dimension-
alities.

Regarding the individual feature sets, the experiments indicate the potential of
LTAS and MFCC, giving error rates of 5.4 % and 6.4 % for a test segment of length
1.8 seconds. By combining LTAS, MFCC and F0, the error rate is decreased to 2.7
%. This shows the potential of the proposed fusion approach for relatively short test
segments. From the weight assignment methods considered, Fisher’s criterion is a
practical choice.

In the fourth paper [P4], the classifier fusion approach is further studied with
two goals in mind. Firstly, the complementariness of commonly used short-term
spectral feature sets is addressed. Secondly, different combination levels of classifiers
is studied: feature level fusion (concatenation), score level fusion (sum rule with
equal weights), and decision level fusion (majority voting).

A single spectral feature set (MFCC or LPCC) is usually combined with the
delta parameters, prosodic features or other high-level features. Another recent ap-
proach has been combining partial match scores from subband classifiers. However,
there are few studies dealing with the combination of different fullband feature sets
systematically. In this study, MFCC, LPCC, arcus sine reflection coefficients, for-
mant frequencies, and the corresponding delta parameters are combined, yielding 8
feature sets. Individually best feature set on a subset of the NIST-1999 corpus is
LPCC, giving 16.0 % error rate. The fusion gives slightly better results (14.6 - 14.7
%) if all the subclassifiers are reliable, but the accuracy degrades if the combined
classifiers perform poorly. Majority voting is more resistant to errors in the individ-
ual classifiers, and gives the best result (12.6 %) when used for combining all the 8
feature sets. This shows that a simple combination strategy can work if there are
enough classifiers.

In the fifth paper [P5], computational complexity of speaker recognition is ad-
dressed. Recognition accuracy has been widely addressed in the literature, but the
number of studies dealing with time optimization directly is small. Speaker identi-
fication from a large database is a challenging task itself, and the aim of the study
is to further speed it up.

Both the number of test vectors and the number of speaker models is reduced to
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decrease the number of distance calculations. An efficient nearest neighbor search
structure is also applied in VQ matching. The methods are formulated for the VQ
model, but they can be adopted to GMM as demonstrated by the experiments.

The number of speakers is reduced by iteratively pruning out poor-scoring speak-
ers. Three novel pruning variants are proposed: static pruning, adaptive pruning,
and confidence-based pruning, and the results are compared with the hierarchical
pruning proposed in [165]. According to the experiments on the NIST-1999 corpus,
adaptive pruning yields the best time-error tradeoff, giving speedup factors up to
12:1 with modest degradation in accuracy (17.3 % → 19.4 %).

The number of test vectors is reduced by simple decimation and clustering meth-
ods (prequantization). The experiments indicate that K-means clustering of the test
sequence is efficient, especially for GMM. For the laboratory quality TIMIT, pre-
quantization and pruning could be also combined, but this was not successful for
the telephone quality NIST corpus. On the other hand, for the NIST corpus, sim-
ple prequantization combined with normal GMM scoring yielded a speed-up of 34:1
with degradation 16.9 % → 18.5 %.

Prequantization is also applied for speeding up unconstrained cohort normaliza-
tion (UCN) method [9] for speaker verification. A speed-up of 23:1 was obtained
without degradation in EER, giving an average processing time of less than 1 second
for a 30 second test sample on the current implementation.

In the sixth paper [P6], the problem of cohort model selection for match score
normalization is addressed. In literature, a number of heuristic cohort model se-
lection approaches have been proposed, and there has been controversy over which
method should be used. Cohort normalization has been less popular compared to the
widely used world model (UBM) normalization, probably because of the difficulties
and ambiguities in the selection of the cohort models.

The problem is attacked by optimizing the cohort sets for a given cost function
using a genetic algorithm (GA), and by analyzing the cohort sets for the given
security-convenience tradeoff. The motivation is not to present a practical selection
algorithm, but to analyze the results of the optimized cohorts, and to provide an
estimate of the accuracy obtainable by tuning score normalization only.

The main finding of the paper is that there is a lot of room for improving the
selection heuristics, especially at the user-convenient end of the error tradeoff curve.
Experiments on a subset of the NIST-1999 corpus show that for a FAR ≤ 3%, the
best heuristic methods yields a FRR of 10.2 %. For a FRR ≤ 3%, the best heuristic
yields FAR of 31.6 %. The “oracle” selection scheme implemented using GA suggests
that it would be possible to reduce these numbers down to FRR = 2.0 % and FAR
= 2.7 %.

In comparison of the UBM and cohort approaches, they perform similarly at the

41



user-convenient and EER regions. However, at the secure end, the cohort selection is
more accurate. Regarding the design parameters for the cohort approach, larger size
is better in general. Even randomly selected cohorts give tremendous improvement
to the baseline if the cohort size is large enough. From the studied normalization
formula, arithmetic mean is the preferred choice because it has the smallest vari-
ance and good performance in overall. In a user-convenient application, the cohort
speakers should be selected closer to the target speaker than in secure applications.
In particular, it is advantageous to include speaker into his own cohort.

The contributions of the thesis can be summarized as follows. The author of this
thesis has analyzed and proposed improvements to feature extraction [P2], modeling
and matching [P1, P5], multi-feature fusion [P3, P4], and score normalization [P6].
The author of the thesis is the principal author of all publications, and responsible for
the ideas presented. In [P2] the author also implemented the proposed method and
run the experiments. In [P1, P4], the author implemented the feature extraction
scripts.
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Chapter 5

Summary of the Results

IN this chapter, main results of the original publications [P1]-[P6] are summarized
and compared with the results obtained in literature.

5.1 Data Sets

In the experimental part of the original publications, five different data sets were
used (see Table 5.1). Four of the datasets are recorded in laboratory environments,
and present highly controlled conditions, whereas the fifth dataset includes conver-
sational speech recorded over telephone line. Examples of speech samples from the
TIMIT and NIST-1999 corpora are shown in Fig. 5.1.

Table 5.1: Summary of the data sets.
Description Self-collected subset TIMIT Helsinki subset

of TIMIT of NIST-1999
Language Finnish English English Finnish English
Speakers 25 100 630 110 207
Speech type Read Read Read Read Conversat.
Record. condit. Lab Lab Lab Lab Teleph.
Handset mismatch No No No No No
Sampling rate 11.025 kHz 8.0 kHz 8.0 kHz 44.1 kHz 8.0 kHz
Quantization 16-bit lin. 16-bit lin. 16-bit lin. 16-bit lin. 8-bit µ-law
Train speech 66 sec. 15 sec. 22 sec. 10 sec. 119 sec.
Test speech 18 sec. 1 sec. 9 sec. 10 sec. 30 sec.
Publication [P1] [P2] [P5] [P3] [P4, P5, P6]
where used
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Figure 5.1: Speech samples from TIMIT (file SI2203, female) and NIST-1999 (file
4928b, male).

For the purposes of the first paper [P1], a small corpus was collected by re-
cruiting voluntary participants from the university staff and students. Each speaker
was prompted to read a long word list designed to include all Finnish phonemes
in different contexts, as well as a few sentences from a university brochure. The
word list was used as the training set, and the read sentences as the test set. The
recordings took place in a normal office room, using a high-quality microphone1

for the recordings. Slight echoing and background noise is present in the samples
arising from the recording computer fans.

For the publication [P3], the feature sets were provided by the Department of
Phonetics at the University of Helsinki, and the details of the speech material can
be found in [53]. We did not have the original audio files.

For the rest of the publications, two standard corpora were used: TIMIT and
NIST-1999 Speaker Recognition Evaluation Corpus, both obtainable from the Lin-
guistic Data Consortium [130]. In the publication [P2], a subset of the TIMIT was
used for testing; another independent subset of the TIMIT was used for tuning the
parameters of the proposed method. In the publication [P6], the whole TIMIT cor-

1AKG UHF HT40 wireless microphone, http://www.akg.com
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pus was used in the experiments, and it acted as a preliminary testbed on which
the parameters of the proposed realtime algorithms were tuned. The TIMIT corpus
was lowpass downsampled to 8 kHz to make it closer to telephone bandwidth.

The most challenging corpus is NIST-1999, and it was used as the testbed in
the publications [P4, P5, P6]. The NIST corpus [142] is collected from telephone
conversations between two participants who have been randomly paired by the data
collection system. There are several differences to TIMIT and other laboratory-
quality corpora. Firstly, the data is conversational, including turn-taking, hesita-
tions, laughter, pauses, and simple phrases like “aha”, “mmh”. Secondly, the data
is technically of poor quality as it is recorded over the telephone network and using
several different handsets. Thirdly, there is material from several sessions, setting
more challenge due to long-term changes in speaker’s voice.

For all the publications where the NIST corpus is included [P4, P5, P6], the
same subset is used. The data set consists of the male speaker data from the 1-
speaker detection task in the matched telephone line case. This means that the
training and testing telephone numbers are the same for each speaker, and for this
reason, the handsets are also very likely matched [142]. However, the handset types
can be different for different speakers. There are 230 male speakers in total, and 207
from these fulfill the matched telephone line case. During writing of the paper [P5],
the authors were not aware of any studies reporting speaker identification results on
this corpus, and the selection of the subset was therefore arbitrarily made.

The difficulty of the NIST-1999 was studied in publication [P4], in which eight
different feature sets were combined. The distribution of correct votes is shown
in Fig. 5.2. There are 54 test samples which none of the eight classifiers voted
correctly, and 155 which all the eight classifiers voted correctly.

5.2 Main Results

The most interesting results (in the author’s personal opinion) are summarized in
Table 5.2 for each corpus. The error rates of [P4, P5, P6] are comparable because
the same dataset has been used. The best identification result is 12.6 %, which is
obtained by majority voting on the eight spectral classifiers [P4]. The best verifi-
cation result is EER of 2.2 %, which is obtained by the “oracle” cohort selection
[P6].

Unfortunately, due to the diversity of databases and the lack of discipline to
follow accurately standard benchmark tests (also in this thesis), the recognition
accuries reported here are difficult to compare directly with the literature. After
scanning recent literature, we came up with a few references [184, 51, 222, 210] where
subsets of the NIST-1999 corpus have been studied, also for the matched conditions
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Figure 5.2: Distribution of correct votes over the 8 classifiers on the NIST-1999
corpus [P4].

case. The equal error rates (EER) for matched case reported in [184, 51, 222, 210]
vary approximately between 5-15 %2 . The results obtained in this thesis are at the
lower end of this range, and the theoretical lower bound estimated using GA in [P6]
(2.2 % EER) is clearly better. It is unfortunate that the identification problem has
been focused much less in literature, and the author is not aware of any identification
studies reported on the NIST-1999 corpus.

Regarding computational speedup by trading of the accuracy, the best identifi-
cation result is 18.5 % (full search rate is 16.9 %). This is obtained by preprocessing
the test sequence using K-means and performing normal GMM scoring using the
obtained code vectors. This gives a speedup of 34:1 compared to the baseline GMM
without prequantization. Making the processing times relative to the average test
sample length of 30 seconds, the current implementation runs in 30 times realtime
with a modest increase of error. Note that K-means runs relatively slow compared
to the splitting method considered in [P1], and further speedup would therefore be
likely to be obtained by replacing the K-means by the splitting method.

An interesting further question is why pre-quantization works when combined
with normal GMM scoring. A possible explanation is that clustering the test se-
quence reduces the temporal correlations of the test vectors. The partitioning of
the test vectors corresponds to segmenting the signal into homogenous units: fea-

2In some cases, only the error tradeoff curve is given, so the numbers are approximated from
these figures.
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Table 5.2: Summary of the main result for each data set. IER = identification error
rate, EER = equal error rate.
Data set Method Evaluation
Self-collected [P1] K-means (baseline) IER = 0.0 %

PNN, Split, RLS IER = 0.0 %
Subset of TIMIT [P2] MFCC (baseline) IER = 38.0 %

ADFB-cepstrum IER = 25.1 %
TIMIT [P5] VQ full search (baseline) IER = 0.0 % in 8.2 sec.

PQP IER = 0.0 % in 0.7 sec.
NIST-1999 subset [P5] Identification

GMM full search (baseline) IER = 16.9 % in 37.9 sec.
PQ + GMM IER = 18.5 % in 1.1 sec.

Verification
Unconstrained cohort (baseline) EER = 7.5 % in 18.9 sec.
K-means + GMM EER = 6.9 % in 0.8 sec.

Helsinki [P3] LTAS (baseline) IER = 5.5 %
Score fusion IER = 2.7 %

NIST-1999 subset [P4] LPCC (baseline) IER = 16.0 %
Majority voting IER = 12.6 %
Oracle (theoretical) IER = 7.8 %

NIST-1999 subset [P6] GMM/UBM (baseline) EER = 8.4 %
Max. spread close (baseline) EER = 7.2 %
GA oracle (theoretical) EER = 2.2 %
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Table 5.3: Comparison of computational speedup methods (IER = identification
error rate, EER = equal error rate.)
Method Ident./ Speed-up Effect to

Verif. factor accuracy
Hash GMM [15] Verif. 10:1 ∼EER 18 % → 18%
vs. GMM
Cov. model [225] Verif. 17:1 ∼EER 18 % → 30 %
vs. GMM
Structural GMM/SBM [219] Verif. 17:1 EER 12.9 % → 13.5 %
vs. GMM/UBM
Decim. + GMM/UBM [105] Verif. 32:1 ∼EER 10.5 → 14.0 %
vs.GMM/UBM
Vector reord. + GMM pruning [170] Ident. 140:1 0.7 IER → 0.7 IER
vs. GMM
K-means preq. + GMM [P5] Ident. 34:1 IER 16.9 % → 18.5 %
vs. GMM
Fast cohort scoring [P5] Verif. 23:1 EER 7.5 % → 6.9 %
vs. UCN

ture vectors close in their spectral shape will be clustered together corresponding to
rough phonetic classes of the unknown speaker. On the other hand, due to relatively
slow articulatory movements, frames close in time are close to each other in the fea-
ture space. Thus, clustering performs a pseudo-temporal segmentation of the test
sequence. The resulting code vectors will be less independent, and the independence
assumption in the GMM scoring holds better. Intuitively, similar vectors to each
other do not bring additional information.

The advantages of prequantizing data prior to GMM are also supported by the
experiments in [105], in which a speed-up of 20:1 with minor degradation in accuracy
was obtained by simple decimation of the vector sequence, i.e. using every Kth
vector.

Comparison with computational speedup methods studied in the literature are
summarized in Table 5.3. Again, the numbers should be read cautiously because of
different datasets, features, and measuring protocols. For [105, 15, 225], the error
rates are estimated from the figures since the original publication did not contain
tabulated values. It can be seen that the studied methods are competitive with
the existing methods, except for the method reported in [170], in which a speed-up
factor of 140:1 was obtained without degradation in identification accuracy.
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Chapter 6

Conclusions

“A conclusion is the place where you get tired of thinking.”

– Arthur Bloch

IN this thesis, text-independent speaker recognition based on spectral features has
been studied. Several improvements have been achieved from both accuracy and
computational points of view. Identification error rate on the NIST-1999 dataset

was improved from 16.0 % to 12.6 % by using an ensemble classifier of 8 feature sets
combined using majority voting. Speedup factors up to 34:1 were were obtained
with a modest degradation in the accuracy. An optimization approach to the cohort
model selection was proposed, and used for obtaining a lower bound to verification
error rates obtainable by MFCC features modeled using GMM. The experiments
indicate high potential of the cohort normalization approach, and currently used
heuristics do not take full advantage of score normalization. In particular, a large
gap between the theoretical error rate and the heuristics was observed at the user-
convenient region.

It can be concluded that for laboratory-quality speech and controlled tasks (read-
ing passages, prompted text), speaker recognition is a relatively easy task. For
example, for the entire TIMIT corpus (630 speakers), closed-set error rate of 0.0
% can be reached with baseline methods. However, for conversational telephone-
quality speech in which handset mismatch and session intervariability are present,
the results degrade dramatically as seen also from the results of this thesis. This
is evidenced by the fact that the studied subset of the NIST-1999 corpus includes
nearly three times less speakers compared to TIMIT, and it has five and three
times more training and testing data, respectively. Nevertheless, the best closed-set
identification result obtained in this thesis is 12.5 %.

The data sets studied here reflect only partly the difficulty of text-independent
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speaker recognition. For mismatched training and recognition conditions, the recog-
nition accuracy is known to degrade dramatically [49], but in this thesis we con-
centrated on the matched case only. One reason for the author’s selection into this
direction was that rather many research sites are already concentrating on finding
engineering solutions to the mismatch problem, and there is more room in the basic
research. Referring to the literature review of the thesis, the field of speaker recog-
nition is hot, and highly multidisciplinary. A large number of interesting ideas are
presented in the main forums of the field, and the good (or even bad) ideas could
be combined to decrease error rates. As an example, in the SuperSID project [183],
an EER of 0.2 % was reported, which was obtained by combining nine subsystem
using a neural network, so that each subsystem was based on different features and
methods (spectral baseline, pitch statistics, word N -grams, etc.)

In general, the fusion approach is promising and worth pursuing further. One
possible future direction here is designing a speaker-specific fusion methodology that
uses a personal feature set for each speaker, similar to feature selection described in
[166]. In order for the fusion approach to be useful in real applications, reducing the
computational overhead is also an important issue. When the number of classifiers is
increased, the matching time will increase, and especially for the identification task,
the multiple classifier approach might not be feasible in practise. A potential future
direction would be realtime recognition on multiple classifiers, possibly following the
pruning ideas presented in [P5], but generalized to multiple classifiers case.

The most serious problem with the spectral features is that they contain a mix-
ture of linguistic, speaker-related and environment-depended factors, which cannot
be easily separated. Despite of this, the features are treated by the statistical mod-
els as if they would be free of other factors, and they neglect the nature of speech
data by considering it as arbitrary data. Moreover, the current spectral repre-
sentations are crude mathematical models of the physical reality underlying the
acoustic-articulatory inter-speaker differences. In order to understand better what
is individual in the speech spectrum, there is a call for more basic research in speech
science.

In automatic speaker recognition, machine learning approaches can be used for
finding better feature representations, and this already has been proposed in a few
studies [103, 146]. There is more room for studying the speaker-specific mapping
approach [138, 145] and speaker-centered feature representations in general. The
potential of prosodic features has not been fully exploited yet; for example, modeling
speech rhythm and other temporal aspects of speech have reached relatively little
attention.

The segmentation approach and adaptive weighting of segments based on their
speaker-discriminating power would be also an interesting direction to follow. The
existing segmentation approaches based on HMM and heuristic rules consider pho-
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netically relevant segmentation. However, it is not clear what type of units are
most discriminative, and it would be interesting to consider segmentation based
on maximizing speaker differences. By establishing such a procedure, it would be
also possible to gain some deeper understanding to the speaker-specific features of
spectrum.
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sets for accurate speaker identification. In Proc. 9th Int. Conf. Speech and
Computer (SPECOM’2004) (St. Petersburg, Russia, 2004), pp. 361–365.

[114] Kinnunen, T., Karpov, E., and Fränti, P. Real-time speaker identifica-
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- statistical analysis of cepstral features. In Proc. 7th European Conf. on Speech
Communication and Technology (Eurospeech 2001) (Aalborg, Denmark, 2001),
pp. 2627–2630.

[119] Kittler, J., Hatef, M., Duin, R., and Matas, J. On combining classi-
fiers. IEEE Trans. on Pattern Analysis and Machine Intelligence 20, 3 (1998),
226–239.

[120] Kohonen, T. Self-Organizing Maps, third extended ed. Springer-Verlag,
Berlin, 2001.

[121] Kolano, G., and Regel-Brietzmann, P. Combination of vector quan-
tization and gaussian mixture models for speaker verification. In Proc. 6th
European Conf. on Speech Communication and Technology (Eurospeech 1999)
(Budapest, Hungary, 1999), pp. 1203–1206.

[122] Krishnakumar, S., Kumar, K. P., and Balakrishnan, N. Pitch maxima
for robust speaker recognition. In Proc. Int. Conf. on Acoustics, Speech, and
Signal Processing (ICASSP 2003) (2003), vol. 2, pp. 201–204.

[123] Kwon, O.-W., Chan, K., Hao, J., and Lee, T.-W. Emotion recognition
by speech signals. In Proc. 8th European Conf. on Speech Communication and
Technology (Eurospeech 2003) (Geneva, Switzerland, 2003), pp. 125–128.

[124] Kyung, Y., and Lee, H.-S. Text independent speaker recognition using
microprosody. In Proc. Int. Conf. on Spoken Language Processing (ICSLP
1998) (Sydney, Australia, 1998).

[125] Lapidot, I., Guterman, H., and Cohen, A. Unsupervised speaker recog-
nition based on competition between self-organizing maps. IEEE Transactions
on Neural Networks 13 (2002), 877–887.

[126] Lee, C., Yildirim, S., Bulut, M., Kazemzadeh, A., Busso, C., Deng,
Z., Lee, S., and Narayanan, S. Emotion recognition based on phoneme
classes. In Proc. Int. Conf. on Spoken Language Processing (ICSLP 2004)
(Jeju Island, Korea, 2004), pp. 889–892.

[127] Li, K.-P., and Porter, J. Normalizations and selection of speech segments
for speaker recognition scoring. In Proc. Int. Conf. on Acoustics, Speech, and
Signal Processing (ICASSP 1988) (New York, 1988), pp. 595–598.

[128] Li, Q., Juang, B.-H., and Lee, C.-H. Automatic verbal information veri-
fication for user authentication. IEEE Trans. on Speech and Audio Processing
8 (2000), 585–596.

[129] Linde, Y., Buzo, A., and Gray, R. An algorithm for vector quantizer
design. IEEE Transactions on Communications 28, 1 (1980), 84–95.

[130] Linguistic data consortium. WWW page, September 2004. http://www.ldc.
upenn.edu/.

61



[131] Liu, C.-S., Huang, C.-S., Lin, M.-T., and Wang, H.-C. Automatic
speaker recognition based upon various distances of LSP frequencies. In Proc.
25th Annual 1991 IEEE International Carnahan Conference on Security Tech-
nology (1991), pp. 104–109.

[132] Liu, C.-S., Wang, W.-J., Lin, M.-T., and Wang, H.-C. Study of line
spectrum pair frequencies for speaker recognition. In Proc. Int. Conf. on
Acoustics, Speech, and Signal Processing (ICASSP 1990) (Albuquerque, New
Mexico, USA, 1990), pp. 277–280.

[133] Liu, L., He, J., and Palm, G. A comparison of human and machine in
speaker recognition. In Proc. 5th European Conf. on Speech Communication
and Technology (Eurospeech 1997) (Rhodes, Greece, 1997), pp. 2327–2330.

[134] Louradour, J., André-Obrecht, R., and Daoudi, K. Segmentation
and relevance measure for speaker verification. In Proc. Int. Conf. on Spoken
Language Processing (ICSLP 2004) (2004), pp. 1401–1404.

[135] Magrin-Chagnolleau, I., Duroy, G., and Bimbot, F. Application of
time-frequency principal component analysis to text-independent speaker iden-
tification. IEEE Trans. on Speech and Audio Processing 10, 6 (September
2002), 371–378.

[136] Mak, M.-W., Cheung, M.-C., and Kung, S.-Y. Robust speaker verifica-
tion from GSM-trascoded speech based on decision fusion and feature trans-
formation. In Proc. Int. Conf. on Acoustics, Speech, and Signal Processing
(ICASSP 2003) (Hong Kong, 2003), pp. 745–748.

[137] Makhoul, J. Linear prediction: a tutorial review. Proc. of the IEEE 64, 4
(1975), 561–580.

[138] Malayath, N., Hermansky, H., Kajarekar, S., and Yegnanarayana,
B. Data-driven temporal filters and alternatives to GMM in speaker verifica-
tion. Digital Signal Processing 10 (2000), 55–74.

[139] Markel, J., Oshika, B., and A.H. Gray, j. Long-term feature averaging
for speaker recognition. IEEE Trans. Acoustics, Speech, and Signal Processing
25, 4 (1977), 330–337.

[140] Markov, K., and Nakagawa, S. Text-independent speaker recognition
using multiple information sources. In Proc. Int. Conf. on Spoken Language
Processing (ICSLP 1998) (Sydney, Australia, 1998), pp. 173–176.

[141] Markov, K., and Nakagawa, S. Text-independent speaker recognition
using non-linear frame likelihood transformation. Speech Communication 24
(1998), 193–209.

[142] Martin, A., and Przybocki, M. The NIST 1999 speaker recognition eval-
uation - an overview. Digital Signal Processing 10 (2000), 1–18.

[143] Matsui, T., and Furui, S. A text-independent speaker recognition method
robust against utterance variations. In Proc. Int. Conf. on Acoustics, Speech,
and Signal Processing (ICASSP 1991) (Toronto, Canada, 1991), pp. 377–380.

62



[144] Ming, J., Stewart, D., Hanna, P., Corr, P., Smith, J., and Vaseghi,
S. Robust speaker identification using posterior union models. In Proc. 8th
European Conf. on Speech Communication and Technology (Eurospeech 2003)
(Geneva, Switzerland, 2003), pp. 2645–2648.

[145] Misra, H., Ikbal, S., and Yegnanarayana, B. Speaker-specific mapping
for text-independent speaker recognition. Speech Communication 39 (2003),
301–310.

[146] Miyajima, C., Watanabe, H., Tokuda, K., Kitamura, T., and Kata-
giri, S. A new approach to designing a feature extractor in speaker identifi-
cation based on discriminative feature extraction. Speech Communication 35
(2001), 203–218.

[147] Mokhtari, P., Clermont, F., and Tanaka, K. Toward an acoustic-
articulatory model of inter-speaker variability. In Proc. Int. Conf. on Spoken
Language Processing (ICSLP 2000) (Beijing, China, 2000), vol. 2, pp. 158–161.

[148] Moonasar, V., and Venayagamoorthy, G. A committee of neural net-
works for automatic speaker recognition (asr) systems. In Proc. Int. Joint Con-
ference on Neural Networks (IJCNN 2001) (Washington, D.C., USA, 2001),
pp. 2936–2940.

[149] Moreno, P., and Purdy, P. A new SVM approach to speaker identification
and verification using probabilistic distance kernels. In Proc. 8th European
Conf. on Speech Communication and Technology (Eurospeech 2003) (Geneva,
Switzerland, 2003), pp. 2965–2968.
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[187] Rodŕıguez-Liñares, L., and Garćıa-Mateo, C. On the use of acoustic
segmentation in speaker identification. In Proc. 5th European Conf. on Speech
Communication and Technology (Eurospeech 1997) (Rhodes,Greece, 1997),
pp. 2315–2318.
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ABSTRACT

A new filter bank approach for speaker recognition front-end
is proposed. The conventional mel-scaled filter bank is
replaced with a speaker-discriminative filter bank. Filter bank
is selected from a library in adaptive basis, based on the broad
phoneme class of the input frame. Each phoneme class is
associated with its own filter bank. Each filter bank is
designed in a way that emphasizes discriminative subbands
that are characteristic for that phoneme. Experiments on
TIMIT corpus show that the proposed method outperforms
traditional MFCC features.

1. INTRODUCTION

Several studies have indicated that different phonemes have
unequal discrimination powers between speakers [3, 10, 12].
That is, the inter-speaker variation of certain phonemes are
different from other phonemes. For instance, in [3] vowels and
nasals were found to be most discriminating phoneme groups.

Discrimination analysis of speech sounds can be, however,
carried out from a non-phonetic viewpoint also. In several
engineering-oriented studies, evidence of the different
discrimination properties of certain frequency bands have been
discovered [6, 14, 15]. For example, in [6] the spectra of
speech were divided into upper and lower frequency regions
with the cutoff frequency being the varied parameter. It was
found, among other observations, that regions 0-4 kHz and 4-
10 kHz are equally important for speaker recognition.

In [11] a more detailed analysis of frequency band
discrimination was performed. Spectral analysis was carried
out with a filter bank with triangular overlapping filters.
Discrimination powers of these subbands were then evaluated
with three different criteria, the F-ratio [1] being one criterion.
A non-linear frequency warping based on the discrimination
values was then proposed: more filters with narrower
bandwidths were placed in the discriminative regions, while
less filters with broader bandwidth were placed in the non-
discriminative regions. The proposed system outperformed
conventional mel-frequency warped filter bank.

Although the phonetic studies indicate differences in
phoneme-level discrimination powers, no segmentation is
usually done prior to discrimination analysis with the
engineering-oriented approaches. The problem is, however,

that when all different phoneme classes’ data are pooled
together, some discriminative frequency bands that are
characteristic for a certain phoneme may be averaged away.
The frequency of occurence of phonemes reflects directly to
the discrimination values. As a consequence, if the corpus
used in experiments contains a discriminating phoneme which
is infrequent, its significance decreases.

In this work, we introduce an approach which falls in the
middle ground between the ”phonetical”- and ”engineering”-
oriented discrimination analyses.

Idea of the proposed front-end is illustrated in Fig. 1. Each
speech frame is processed with a filter bank which is selected
from a library of filter banks according to the phoneme class
of the frame. Thus, each phoneme class is filtered in a
customed way instead of a global filter bank as in [11].

Figure 1: The idea of adaptive filter bank

The basic idea of the proposed method is simple. However,
there arises immediately the following design issues:
• Which parametrization to choose in the determination of

the phoneme class,
• How to generate and represent the phoneme templates,
• What is “optimal number” of the phoneme templates,
• How to compute discriminative values for subbands in

phoneme-depended filter banks,
• How to exploit the filter bank in the feature extraction.

These are the substantial topics of this paper.
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2. THE PHONEME CLASSIFIER

2.1 Representation of the phoneme templates

In order to be of general use, the phoneme template model
must be speaker (or even language) independent. That is, the
same model for all speakers can be used to find the phoneme
classes. We denote this model as the universal phoneme
model (UPM). Due to the requirement of speaker-
independence, the UPM must be designed such that it
accounts the differences between speakers and other sources
of variability.

Note in Fig. 1 the block labeled “speaker-normalizing spectral
parametrization”. Speaker normalization means that we wish
to de-emphasize speaker-depended features. We use the
following parametrization which is general in speech
recognition [12]:

• High emphasis with H(z)=1 - 0.97z-1,
• Frame length 30 ms, Hamming-windowed and shifted

by 20 ms (33 % overlap),
• 12 lowest mel-frequency coefficients (MFCC), 20

triangular filters in the bank, coefficient c0 discarded,
• Cepstral coefficients weighted by raised sine function.

2.2 Generation of the templates

We use clustering techniques [4, 5, 7] for generating the
UPM from MFCC vectors. We use 100 speakers from the
TIMIT corpus [9] as the training set. For each speaker, we
take five speech files in the training data. These are
downsampled to 8 kHz and processed with the
parametrization given above. Final training set consists of
approximately 100,000 vectors.

From the training set, a codebook is generated by the RLS
algorithm [4]. The following different codebook sizes K are
used: K=4, 8, 16, 32, 64.

The worth noticing point here is that we use unsupervised
learning in the UPM generation; i.e. we do not use any
explicit segmentation of speech or labeling of phonemes,
since we are not interested in decoding the linguistic message
of the input signal.

2.3 Classification of a frame

When applying the UPM in the phoneme classification, the
class is simply determined by the nearest neighbor rule.
Frame is first parametrized in the way described in Section
2.1, resulting in a single MFCC vector x. The label of the
phonetic class is then given by

),(minarg
* px

p
d

UPM

i
∈

= ,
(1)

where d is the squared Euclidean distortion measure. The
index i* is sent to the filter bank library to select the
associated filter bank (see Fig. 1).

3. DESIGNING THE LIBRARY OF
DISCRIMINATIVE FILTER BANKS

3.1 Subband processing

We want to assign discriminative values for each subband per
each phoneme class present in the UPM. To get started, we
must specify what we mean here by a subband.

As in general speech processing front-ends [2] we use
overlapping triangular filters to cover the entire frequency
range (see Fig. 2). Filters are uniformly spaced and overlap by
50%. In this phase we wish to avoid using any nonlinear
frequency warping, such as mel or Bark-scales, in order to be
sure that each subband has equal contribution in the
discrimination analysis.

Figure 2: Uniform triangular filter bank

For a Hamming-windowed frame s, an N-point FFT S[k] is
first computed. The magnitude spectrum in dB-scale is then
computed as 10log10|S[k]|. The dB magnitude spectrum is
weighted by the triangular filterbank of M filters, thus
implying M subband energies Ej, j=1,...,M. These are
collected in a M-dimensional vector E = (E1,...,EM)T.
Hereafter, by “jth subband” we simply refer to Ej. We fix the
number of filters to M=40. Thus, for the speech with sampling
rate Fs = 8 kHz, the bandwidth of each filter is 100 Hz.

3.2 Assigning the discrimination values to subbands

We use the F ratio [1] for assigning a discrimination value for
the jth subband of ith phoneme:

.

 phoneme of

  subband of eer variancintraspeak  Average

  phoneme of

  subband of meansspeaker   of Variance

,

i

j

i

j

F ji =
(2)

If the inter-speaker variability is large while inter-speaker
variability being low, F ratio is large.

Since we wish to assign the F ratios for each phoneme-
subband pair, we must first segment the training data into
phonetic classes using the UPM described in Section 2. Then,
for each “phonetic class pool” (i) we can compute the
discrimination values for subbands (j) using F-ratio (2). The
segmentation of the data into the pools is outlined in the
following pseudocode.  
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Inputs:
• Frames of speech {sk,t}, where k is the speaker number

and t is the frame number,
• The UPM of K phoneme templates, UPM={p1,...,pK},
• The number of subbands, M
Outputs:
• K pools of subband vectors

Procedure:
FOR EACH speaker k DO

• Get next frame s = sk,t ;
• Compute the MFCC vector x for s (as described in

Section 2.1) ;
• Compute the subband vector E for s (as described in

Section 3.1) ;
• Find nearest phoneme i* for x from UPM by (1) ;
• Add the vector E to the pool of  phoneme i* ;

ENDFOR

Figure 3: Segmentation of the training data for
discrimination analysis

To put it in words, each frame is classified by its phonetic
content, the UPM code vectors {pi} serving as the phoneme
class representatives. The subband vector of the frame is
assigned to the best matching phoneme template.

After the pooling, F ratios of each pool are computed. Indeed,
different phonemes have different F curves as seen in Fig. 4,
where we have used an UPM of size K=8.

A few prelimary observations can be made from the F curves.
Firstly, nearly all phonemes have a peak in discrimination
values approximately in the subbands 2-4, which correspond
to frequency range 50-250 Hz. Secondly, one may see some
resemblance of the F ratio shapes with the envelopes of
smoothed LPC spectra, thus indicating the importance of
formant structure and overall spectral envelope in speaker
recognition.

Figure 3: F ratios of subbands for different phonemes
(UPM size K=8)

We run also an experiment in which, instead of pre-
smoothing the spectra with a filter bank, we used all the
magnitude values from FFT analysis as such and computed
the F ratios. We found soon out that the F curves obtained in
this way were very noisy; further, the computational load for
this method is huge compared pre-smoothing using the filter
bank. For these reasons, we end up using the filter bank.

3.3 Utilization of the filter bank in feature extraction

Once the F ratios are computed for each phoneme-subband
pair, it is straightforward to utilize them in the feature
extraction. The broad phoneme class i* is first found by (1).
This is followed by the subband analysis as described in
Section 3.1, leading to vector E. The components of E are
then weighted by the relative F ratio of the subband:

∑ =

=
M

m mi

ji
jj

F

F
EE

1 *,

*,’
(3)

An example of subband weighting is shown in Fig. 4. The
figures from top to down show the magnitude spectrum,
filtered magnitude spectrum, relative weights for each
subband, and the weighted filter outputs.

Figure 4 : An Example of subband weighting

Weighted filter outputs are then fed to discrete cosine
transform (DCT) for decorrelating the features. Only the
lowest L coefficients of DCT are retained, excluding the 0th
coefficient.

In summary, the processing steps are same to that of the
conventional MFCC analysis, except for that the mel-spaced
filter bank is replaced with the discriminative filter bank.
Hereafter, we abbreviate the features obtained in this way by
ADFB-cep (standing for Adaptive Discriminative Filter Bank
Cepstrum).
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4. RESULTS

The overall process of evaluating the proposed approach
consists of the following steps:
• Create UPM as described in Section 2 (Using speaker set

SET 1),
• Use independent data for finding the F ratios as described

in Sections 3.1 and 3.2 (SET 2),
• Using third speaker set (SET 3), compute the ADFB-cep

features as described in Section 3.3. We choose the
number of filters to M=40 and number of coefficients to
L=20. SET 3 is further divided into training and
evaluation sets.

All the three sets are disjoint. In this way we ensure that
results will be not biased by the tuning to the training set; that
is, we wish to have a general front-end without the need to
construct the UPM and/or the filter design data each time the
database is switched.

Each of the three sets consist of 100 speakers. We use VQ
codebooks as speaker models [8, 13], each model having 64
code vectors and created using the RLS clustering method [4].
Average duration of the training speech data is 15 seconds.

Each test set X = {x1,...,xT} is divided into overlapping
segments as shown in the following:

Average duration of the test segment is about 1 second. Each
of the segments is classified using the speaker models by the
minimum average quantization error rule [13]. We use the
percentage of correctly classified segments as the evaluation
criterion.. The results for different UPM sizes are shown in
Table 1.

Table 1: Evaluation results
UPM size ID rate (%)
4 69.37
8 74.85
16 67.071
32 58.49
64 55.73

For comparison, conventional 20 mel-cepstral coefficients
(MFCC) were computed with same frame rate and equal
parameters: number of mel-filters was 40 and the number of
coefficients was 20. The identification rate using MFCC was
61.96.

Based on these experiments, we make several observations.
Firstly, the optimum size of UPM is K=8. When the UPM size
is increased, results get poor. Also, the differences in
performance are quite large, which suggests that we should
use a linear scale instead of exponential when finding the
“optimum size”.

Secondly, and more interestingly, the proposed method
outperforms MFCC parameters, even if the UPM size is not
“optimal”. The overall identification rates are quite poor in all
cases, due to the very short test segment length.

5. CONCLUSIONS

A new feature set based on discriminative weighting of the
characteristic subbands for each “phoneme class” was
proposed and evaluated experimentally. Prelimary results are
very encouraging since they outperform the popular MFCC
features. In future experiments, we plan to include cross-
language evaluation, careful optimization of the UPM, and
other discrimination criteria in addition to F ratio.
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Abstract
In this work, we describe a speaker identification system that
uses multiple supplementary information sources for computing
a combined match score for the unknown speaker. Each speaker
profile in the database consists of multiple feature vector sets
that can vary in their scale, dimensionality, and the number of
vectors. The evidence from a given feature set is weighted by its
reliability that is set ina priori fashion. The confidence of the
identification result is also estimated. The system is evaluated
with a corpus of 110 Finnish speakers. The evaluated feature
sets include mel-cepstrum, LPC-cepstrum, dynamic cepstrum,
long-term averaged spectrum of /A/ vowel, and F0.

1. Introduction
Speaker individuality is a complex phenomenon, where differ-
ent supplementary information sources contain a part of evi-
dence of the speaker identity. The individual speaker char-
acteristics occur both at the lexical, segmental and prosodic
levels [11]. At the lexical level [15] this is reflected, for in-
stance, in usage of certain word patterns. At the segmental
level, speaker differences occur at the acoustic differences of
phoneme realizations that arise from physiology and anatomy
of the voice production organs. Prosodic speaker characteris-
tics are reflected in the usage of pitch, stress and timing.

Extraction of individual characteristics is realized by mea-
suringacoustic parametersor featuresfrom the speech signal.
Commonly used features in automatic speaker recognition sys-
tems include mel-cepstrum, LPC-cepstrum [1], line spectral fre-
quencies [10], subband processing [6], dynamic cepstral param-
eters [14], and prosodic parameters [15].

Spectral parameters alone, especially the cepstrum with its
variants, have shown good performance in speaker recognition.
However, cepstrum carries only one source of evidence. To
achieve better recognition accuracy, several supplementary in-
formation sources should be used.

The idea of using multiple features in speaker recognition is
not new. A well-known classifier fusion strategy is to concate-
nate the cepstral vectors with their delta- and delta-delta cepstra
into a long feature vector [1]. Also the fundamental frequency
has been used in addition with the cepstral vectors to improve
recognition accuracy. In general, vector concatenation is termed
asclassifier input fusion[12].

Although classifier input fusion is simple to implement and
works reasonably well, it has a few shortcomings. Firstly, the
feature space formed by concatenation of different features is
somewhat superficial. The higher the dimensionality of the
space becomes, the less and less effect a single feature has to
the overall match score. Also, fusion becomes difficult if the
feature is missing (e.g. F0 for unvoiced sounds) or it should be
computed with a different frame rate.

Another way of performing classifier fusion is to combine
different classifiers. Inclassifier output fusion, each individual
data source is modeled separately, and the outputs of the indi-
vidual classifier scores are combined to give the overall match
score. For instance, output fusion of the cepstral and delta-
cepstral features has been performed using VQ codebooks [14]
and Gaussian mixture models [12] as the individual classifiers.

Slomka & al. [12] compared input and output fusion for
the mel-cepstrum and corresponding delta features. They found
out that the output fusion performed consistently better. Fur-
thermore, they demonstrated that the computational complexity
for the input fusion is higher than that of the output fusion.

Classifier output fusion is, with to many respects, a flexible
combination strategy. For instance, it enables the same data
source to be modeled by several different classifiers. In [9], a
committee of five learning vector quantization (LVQ) networks
with different network structures was applied. The combination
was done with majority voting rule.

The main objective of this paper is to design the fusion strat-
egy such that evidences from diverse data sets could be com-
bined in a coherent way. Problems arise when the data sources
differ in (1) the number of features (dimensionality), (2) the
number of measurements, (3) the scales. Furthermore, a model
that works well for one data source might not be good to model
another feature. Thus, each individual feature stream should be
modelled with the most suitable model for that stream. The pro-
posed classifier is invariant to different scales of feature sets,
their dimensionality, and the number of measurements. For
each feature set, ana priori weight is set based on the reliability
of the feature set.

This work was carried out in co-operation with the De-
partment of Phonetics at the University of Helsinki as a part
of larger speaker recognition project [5]. To be reliable in,
for instance, realistic forensic uses, speaker recognition should
be based on many parameters instead of only spectral parame-
ters. Forensic speech samples often suffer from different types
of noises and distortions, and therefore, supplementary identity
cues should be used to give a joint decision. The combination
of supplementary evidences from diverse feature sets, however,
is not a straightforward task. In this paper, we report the struc-
ture of the fusion system we designed for the use of this project.
The experiments show that using multiple feature sets together
improves recognition accuracy.

2. The structure of the system
The structure of the proposed classifier fusion system is shown
in Fig. 1. Theprofile of each of the registered� speakers
����� � � �� � � � � � , consists of� distinct models,���� �
������� � � � � �� ����. Each of the models consists of a set
of feature vectors. For each model, there is a correspond-
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Figure 1:Structure of the proposed system.

ing sub-classifieror expert. Given an unknown speaker pro-
file � � ���� � � � � ���, each of the experts� computes a
match score�������� 	� for each speaker	. The match score
�������� 	� indicates the degree of similarity (or dissimilarity)
between point sets�� and
��	�.

The individual expert outcomes�������� 	�� � � �� � � � ��

are weighted bya priori weights���� that indicate the re-
liability of the expert. The weighted match scores from the
different experts are then combined into a single match score
�������������
�	�� that indicates the degree of similarity (or
dissimilarity) between the speakers� and
�	�. The decision
is given by returning the ID number of the most similar speaker
to�. The confidence of the decision is also estimated based on
the spread of the distribution of the match scores from different
speakers.

2.1. Sub-classifiers

For simplicity, we will use dissimilarity-based classifiers for all
feature sets. For each speaker, the individual feature sets are
modeled by codebooks [10, 6, 13] generated by clustering the
feature vectors of that feature set by randomized local search
algorithm [3].

Dissimilarity of point sets sets�� and
��	� is computed
by the average quantization distortion:


��� 	� �
�

��� �

�

�����

���
��������

���� ����� (1)

where��� � denotes the cardinality of�� and��� denotes the
Euclidean norm. The match score for the sub-classifier is com-
puted as normalized distortion:

�������� 	� �

��� 	�

��

���

��� ��

� (2)

In other words, the distortion of each speaker within the sub-
classifier is normalized by the sum of the distortions from all
speakers within that sub-classifier. This ensures that� �
�������� 	� � �. In this way, the outputs of the individual
classifiers are in the same order of magnitude regardless of the
dimensionality or the number of vectors.

2.2. Fusion strategy

There are several options for combining the outputs from the
sub-classifiers [2, 7]. Kittler & al. [7] compared several com-
monly used fusion criteria in the context of of probabilistic clas-
sifiers. Their theoretical and experimental results indicated that
the sum ruleis most resilient to estimation errors. Therefore,
we define the combination rule as the weighted sum:

�������������
�	�� �

	�

���

���� �������� 	�� (3)

where���� is the weight for the feature set�. The weights
are normalized such that

�	

���
���� � �, which allows the

weights to be interpreted as relative importances. For instance,
if there are two feature sets and we set���� � ��� and
���� � ��	, then the second set gets four times more weight in
the fusion compared to the first one.

2.3. Decision and confidence estimation

The identification decision is the speaker	� which produces the
smallest combined score:

	
�
� 
�� ���

	����
�������������
�	��� (4)

We also estimate theconfidenceof the decision. Intuitively, one
should expect high confidence if the selected speaker is very
distinctive, i.e. the scores for all other speakers are significantly
higher. On the other hand, if there exists another speaker that is
close to	�, the decision is more uncertain. Based on this idea,
we define the confidence as

� � ��
�����
��

�����
���

� (5)

where�����
�� and �����
��� are the scores for the nearest
and second nearest speakers, respectively.

2.4. Determination of the weights

We consider two ways of determining the weights in Eq. (3).
In both cases, we use the same database for the weight com-
putation and matching itself. In other words, the weights are
optimized for the given database. In the first approach, we ap-
ply a separability criterion for the within- and between-speaker
distance scores within each feature set. The distances are
computed between every speaker pair in the given database
using Eq. (1). Then, the separability of the within- and
between-speaker distance score distributions is computed using
the Fisher’s criterion [4]:

� �
��
 � ���

�

��
 
 ���
� (6)

where�
� �� and��
� �
�
� are the means and variances of the

two distributions, respectively. The Fisher’s criterion gives a
high value if the two distribution are well-separated.

In the second approach, we use exhaustive search to find the
optimum weight combination. In other words, the performance
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Table 1: Summary of the data sets.
Dimensionality Vectors Range

MFCC 16 499 [-102.9, 48.4]
�-MFCC 16 499 [-12.7,13.4]
��-MFCC 16 499 [-5.5, 6.5]

LFCC 20 1990 [-18.1,48.4]
LTAS 513 1 [-25.6, 57.6]

F0 1 469 [57.9, 323.0]

of the system is evaluated for every weight combination, and
the best weight combination is selected. For a small number of
feature sets this approach can be applied.

3. Experiments
3.1. Corpus description

The test material consists of 110 native Finnish speakers from
various dialect regions in Finland [5]. The recordings were done
in a silent environment by a professional reporter C-cassette
recorder. The data was digitized using 44.1 kHz sampling fre-
quency with 16 bits per sample. All speakers read the same
material which was divided into training and evaluation sets of
length 10 seconds both.

3.2. Acoustic measurements

The original acoustic measurements as provided by the Uni-
versity of Helsinki consisted of four data sets [5]: fundamen-
tal frequency (F0), long-term averaged spectrum (LTAS) for
vowel /A/ , linear frequency cepstral coefficients (LFCC) and
mel-cepstral coefficients (MFCC). We furthermore added the
dynamic cepstrum parameters (�-MFCC,��-MFCC) due to
their popularity in automatic speaker recognition systems.

The data sets are summarized in Table 1. From this table,
we can see that input fusion would be impossible due to the
diversity of the data sets. The fusion system enables using arbi-
trary feature sets together.

3.3. Sub-classifier performance

First, the performances of each feature set alone were evaluated.
After some experimentation, we fixed the model sizes as fol-
lows. For MFCC, LFCC,�-MFCC and��-MFCC the mod-
els consist of 100 code vectors. For F0, the model consists of
5 code vectors. For LTAS, the model consists of, by definition,
one long vector containing 513 averaged subband outputs from
different instances of /A/ vowels.

The performances of the individual data sets are summa-
rized in Table 2 for segment length 1.8 seconds. Both the identi-
fication error rate and average confidence for the correctly clas-
sified speakers are shown.

We found out that in general increasing the model size and
the test segment length improves recognition results. An excep-
tion was F0, for which the behaviour was somewhat inconsis-
tent with respect both to the model size and to the test segment
length. From the six sets, MFCC and LTAS performed best and
F0 worst.

Notice that the confidences do not go in parellel with the
recognition rates. For instance, F0 gives poor identification re-
sult but the confidence for the correctly classifier speakers is
higher than that of MFCC, for instance.

Table 2: Performances of the subclassifiers.
Error rate Avg. confidence

MFCC 6.36 % 0.14
�-MFCC 52.72 % 0.05
��-MFCC 46.36 % 0.04

LFCC 46.36 % 0.10
LTAS 5.45 % 0.53

F0 93.64 % 0.35

3.4. Fusion of data sources

Since the fundamental idea of the fusion is that the classifiers
could complement each others results, the fusion of correlated
classifiers is not reasonable. In other words, if two classifiers
misclassify the same speakers, there is little gain in combining
their outputs; in fact, the results may even get worse. To attack
this potential problem, we computed the correlations between
the classifier score outputs which are listed in Table 3.

We can see from Table 3 that LFCC is highly correlated
with MFCC. This is an expected result, since both of them de-
scribe essentially the same quantity, spectral shape. Also, dy-
namic cepstral parameters are highly correlated with each other,
which can be explained by the method they are computed:��-
MFCC is merely a differenced version of�-MFCC.

From the six data sets, LTAS and F0 are least correlated
with the other feature sets. Based on these observations, we
selected MFCC, LTAS and F0 for the evaluation of classifier
fusion. The results for a test segment of length 1.8 seconds for
the two best sub-classifiers and the fusion are compared in Table
4. It can be seen that by combining the data sets, the error rate is
halved. This shows that the fusion strategy works as designed.

3.5. Weight selection

Next we study the effect of the weight selection. The results
for equal weights, Fisher’s criterion, and exhaustive search are
compared in Fig. 2 for different input segment lengths.

Figure 2 indicates that the selection of weights has some
importance. With exhaustive search, we can find the opti-
mum weight combination for given model size and test segment
length. However, this is computationally intensive approach
and furthermore, the weights computed in this way do not give
any insight into data sets themselves. Thus, the Fisher’s crite-
rion seems more appropriate choice for practical use. Both of
these approaches outperform the equal weights case, which sug-
gests that the feature sets, indeed, have unequal discrimination
powers (reliability).

We continue by fixing the weights according to Fisher’s cri-

Table 3:Correlations of the feature sets.
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Table 4: Comparison of the two best subclassifiers and the clas-
sifier fusion.

Error rate Avg. confidence
LTAS 5.45 % 0.53
MFCC 6.36 % 0.14
Fusion 2.72 % 0.19
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Figure 2:Comparison of weight selection.

terion and examine what is the effect of excluding the best fea-
ture set, LTAS. The results are compared with MFCC in the
Fig. 3. We observe that excluding LTAS increases error rate.
Therefore, the gain in the fusion is mostly due to LTAS feature
set. Fusion without LTAS is close to the results obtained using
MFCC alone. For very short segments, the classifier fusion still
improves recognition accuracy.

4. Conclusions
Information fusion of diverse data sets is a difficult task.
We have evaluated the performance of classifier output fu-
sion for multiparametric speaker identification in the case of
dissimilarity-based classifiers. The results indicate that by using
multiple uncorrelated feature sets, the recognition performance
of the fusion system is better than any of the sub-classifiers
alone.
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Abstract

Several features have been proposed for automatic
speaker recognition. Despite their noise sensitivity, low-
level spectral features are the most popular ones because
of their easy computation. Although in principle dif-
ferent spectral representations carry similar information
(spectral shape), in practice the different features differ
in their performance. For instance, LPC-cepstrum picks
more “details” of the short-term spectrum than the FFT-
cepstrum with the same number of coefficients. In this
work, we consider using multiple spectral presentations
simultaneously for improving the accuracy of speaker
recognition. We use the following feature sets: mel-
frequency cepstral coefficients (MFCC), LPC-cepstrum
(LPCC), arcus sine reflection coefficients (ARCSIN), for-
mant frequencies (FMT), and the corresponding delta-
parameters of all feature sets. We study the two ways
of combining the feature sets: feature-level fusion (fea-
ture vector concatenation), score-level fusion (soft com-
bination of classifier outputs), and decision-level fusion
(combination of classifier decision).

1 Introduction

Front-end or feature extractor is the first component in
an automatic speaker recognition system. Feature extrac-
tion transforms the raw speech signal into a compact but
effective representation that is more stable and discrimi-
native than the original signal.

Speaker differences in the acoustic signal are coded
in complex way in both segmental (phoneme) level,
prosodic (suprasegmental) level and lexical level. Mod-
eling of prosody and lexical features has shown great
promises in automatic speaker recognition systems lately
[19]. However, the segmental features are still the most
popular approach because of their easy extraction and
modeling.

In most automatic speaker and speech recognition sys-
tems, segmental features are computed over a short time
window (around 30 ms), which is shifted forward by a
constant amount (around 50-70 % of the window length).
Two most popular features are mel-frequency cepstral co-
efficients (MFCC) and linear predictive cepstral coeffi-
cients (LPCC) [9]. These features are often augmented

with the corresponding delta features. The delta features
give an estimate of the time derivative of each feature, and
therefore they are expected to carry information about vo-
cal tract dynamics. Sometimes, the delta parameters of
the delta parameters (double-deltas) are also used, as well
as the fundamental frequency (F0). For each time win-
dow, the different features are simply concatenated into a
one higher dimensional (around d = 40) feature vector.

Augmenting the static parameters with the correspond-
ing delta parameters can be seen as one way to per-
form information fusion by using different information
sources, in the hope that the recognition accuracy will be
better. The vector level feature augmentation is denoted
here as feature-level fusion.

Although feature-level fusion may improve recogni-
tion accuracy, it has several shortcomings. First, fusion
becomes difficult if a feature is missing (e.g. F0 of un-
voiced sounds) or the frame rates of the features are dif-
ferent. Second, the number of training vectors needed
for robust density estimation increases exponentially with
the dimensionality. This phenomenon is known as the
curse of dimensionality [2].

An alternative to feature-level fusion is to model each
different feature set separately, design a specialized clas-
sifier for this feature set, and combine the classifier output
scores. Each of the different feature sets acts as an inde-
pendent “expert”, giving its opinion about the unknown
speaker’s identity. The fusion rule then combines the in-
dividual experts’ match scores. This approach is referred
here as score-level fusion.

Score-level fusion strategy can also be abstracted by
hardening the decisions of the individual classifiers. In
other words, each of the experts produces a speaker label,
and the fusion rule combines the individual decisions e.g.
by majority voting. We call this fusion strategy decision-
level fusion.

In a previous work [11], we documented our imple-
mentation of an score-level fusion system that uses vec-
tor quantization (VQ) based classifiers. The system can
be used for combining an arbitrary number of diverse fea-
ture sets varying in scale, dimensionality and the number
of vectors. For each speaker and feature set, a codebook
is trained using a clustering algorithm. In the recogni-
tion phase, features extracted from the unknown speaker
are presented to the corresponding classifiers. Each vec-



tor quantizer computes average quantization distortion of
the unknown sequence. Within each quantizer, the dis-
tortions are scaled so that they sum up to unity over dif-
ferent speakers. The scaled distortions are then weighted
and summed to give the final combined match score. The
weights are feature set depended, but same for all speak-
ers.

Extensive experiments in [10] were carried out on two
corpora, a 100 speaker subset of the American English
TIMIT corpus [16] and a corpus of 110 native Finnish
speakers, documented in [6]. There were some differ-
ences between the two corpora and feature sets, but these
were relatively small; many of the feature sets reached
error rates close to zero. Therefore, it seemed unneces-
sarily to experiment with different fusion strategies with
these features since the individual features already per-
formed so well. The reason for this is that the both cor-
pora were recorded in unrealistic laboratory conditions.
We have found out that the performance decreases radi-
cally in real-world conditions.

In this study, we have selected the spectral parameters
that seem most promising in the light of the findings of
[10]. We study these on a more realistic corpus, a sub-
set of the 1999 Speaker Recognition Evaluation Corpus.
We aim at studying whether different spectral feature sets
can complement each other, and which one of the fusion
strategies (feature, score, and decision-level) is most ap-
propriate for VQ-based classification in practice.

2 Selected Spectral Features

2.1 Mel-Frequency Cepstral Coefficients

Mel-frequency cepstral coefficients (MFCC) are moti-
vated by studies of the human peripheral auditory system.
First, the pre-emphasized and windowed speech frame is
converted into spectral domain by the fast Fourier trans-
form (FFT). The magnitude spectrum is then smoothed
by a bank of triangular bandpass filters that emulate the
critical band processing of the human ear. Each of the
bandpass filters computes a weighted average of that sub-
band, which is then compressed by logarithm. The log-
compressed filter outputs are then decorrelated using the
discrete cosine transform (DCT). The zeroth cepstral co-
efficient is discarded since it depends on the intensity of
the frame.

There are several analytic formulae for the mel scale
used in the filterbank design. In this study, we use the
following mapping [7]:

fmel(fHz) =
1000

log10 2
log10

(
1 +

fHz

1000

)
, (1)

having the inverse mapping

fHz(fmel) = 1000
(
1 + 10

log10 2
1000 fmel

)
. (2)

First, the number of filters (M ) is specified. Filter center
frequencies are then determined by dividing the mel axis

into M uniformly spaced frequencies and computing the
corresponding frequencies in the hertz scale with the in-
verse mapping. The filterbank itself is then designed so
that the center frequency of the mth filter is the low cutoff
frequency of the (m+1)th filter. The low and high cutoff
frequencies of the first and last filters are set to zero and
Nyquist frequencies, respectively.

2.2 LPC-Derived Features

In addition to the MFCC coefficients, we consider the fol-
lowing representations that are computed via linear pre-
diction analysis: arcus sine reflection coefficients (ARC-
SIN), linear predictive cepstral coefficients (LPCC), and
formant frequencies (FMT).

The linear predictive model of speech production [17,
5] is given in the time domain:

s[n] ≈
p∑

k=1

a[k]s[n − k], (3)

where s[n] denotes the speech signal samples, a[k] are the
predictor coefficients and p is the order of the predictor.
The total squared prediction error is:

E =
∑

n

(
s[n] −

p∑
k=1

a[k]s[n − k]
)2

. (4)

The objective of linear predictive analysis is to determine
the coefficients a[k] for each speech frame so that (4) is
minimized. The problem can be solved by setting the
partial derivatives of (4) with respect to a[k] to zero. This
leads to so called Yule-Walker equations that can be effi-
ciently solved using so-called Levinson-Durbin recursion
[8].

The Levinson-Durbin recursion generates as its side
product so-called reflection coefficients, denoted here as
k[i], i = 1, . . . , p. The name comes from the multi-
tube model, each reflection coefficient characterizing the
transmission/reflection of the acoustic wave at each tube
junction. Instead of using the reflection coefficients, we
use instead the numerically more stable arcus sine reflec-
tion coefficients [3].

In the frequency domain, the linear predictive coeffi-
cients specify an IIR filter with the transfer function:

H(z) =
1

1 −∑p
k=1 a[k]z−k

. (5)

The poles of the filter (5) are the zeroes of the denomi-
nator. They are denoted here as z1, z2, . . . , zp, and they
can be found by numerical root-finding techniques. The
coefficients a[k] are real, which restricts the poles to be
either real or occur in complex conjugate pairs.

If the poles are well separated in the complex plane,
they can be used for estimating the formant frequencies
[5]:

F̂i =
Fs

2π
tan−1

(
Im zi

Re zi

)
. (6)



Table 1: Summary of the NIST-1999 subset
Language English
Speakers 230
Speech type Conversational
Quality Telephone
Sampling rate 8.0 kHz
Quantization 8-bit µ-law
Training speech (avg.) 119.0 sec.
Evaluation speech (avg.) 30.4 sec.

Given the LPC coefficients a[k], k = 1, . . . , p, the LPCC
coefficients are computed using the recursion [1]:

c[n] =

⎧⎨
⎩

a[n] +
∑n−1

k=1
k
nc[k]a[n − k], 1 ≤ n ≤ p

∑n−1
k=n−p

k
nc[k]a[n − k], n > p.

(7)

2.3 Delta Features

There are two different ways for computing the delta fea-
tures: (1) differentiating, and (2) fitting a polynomial ex-
pansion. We have found out that the differentiator method
works systematically better than the first order polyno-
mial, i.e. the linear regression method [10]. Let fk[i]
denote the ith feature in the kth time frame. The differen-
tiator method estimates the time derivative of the feature
as follows [5]:

∆fk[i] = fk+M [i] − fk−M [i], (8)

where M is typically 1-3 frames.

3 Experiments

3.1 Speech Material and Parameter Setup

For the experiments, we used a subset of the NIST 1999
speaker recognition evaluation corpus [18] (see Table
1). We decided to use the data from the male speakers
only. For training, we used both the “a” and “b” ses-
sions. For identification, we used the one speaker test
segments from the same telephone line. In general it can
be assumed that if two calls are from different lines, the
handsets are different, and if they are from the same line,
the handsets are the same [18]. In other words, the train-
ing and matching conditions have very likely the same
handset type (electret/carbon button) for each speaker,
but different speakers can have different handsets. The
total number of test segments for this condition is 692.

The parameters for different feature sets and training
algorithm were based on our previous experiments with
the NIST corpus [12]. The frame length and shift were set
to 30 ms and 20 ms, respectively, and the window func-
tion was Hamming. For MFCC computation, the number
of filters was set to 27, and the number of coefficients was
12. For LPCC, ARCSIN and FMT, we used LPC predic-
tor of order p = 20. We selected 12 LPCC and ARC-
SIN coefficients, and 8 formant frequencies. The delta

features were computed using the differentiator method
with M = 1. Throughout the experiments, codebook size
was fixed to 64, and the codebooks were trained using the
Linde-Buzo-Gray (LBG) clustering algorithm [15].

3.2 Individual Feature Sets

The identification error rates of the individual feature
sets are reported in Table 2. The static features (MFCC,
LPCC, ARCSIN, FMT) all give good results. The delta
features, on the other hand, are worse than the static fea-
tures. The error rate of delta formants is very high.

Table 2: Accuracies of the individual feature sets
Static features Dynamic features

Feature set Error rate (%) Feature set Error rate (%)
MFCC 16.8 ∆MFCC 21.2
LPCC 16.0 ∆LPCC 25.1
ARCSIN 17.1 ∆ARCSIN 28.6
FMT 19.4 ∆FMT 70.5

3.3 Fusion Results

Next, we experimented by fusing the static parameters
and their corresponding delta features using all the three
strategies. We also combined all the 8 feature sets. For
the feature-level fusion, each feature vector was normal-
ized by its norm, and the normalized vectors were then
concatenated. For the score-level fusion, we used the nor-
malized VQ distortions giving unity weights to all feature
sets [11]. For the decision-level fusion, we use majority
voting, by selecting speaker label that is voted most by all
classifiers. If no speaker received majority, then speaker
label is selected randomly from the highest number of
votes.

The fusion results are shown in Table 3, along with the
best individual performance from the pool. The score-
level fusion gives the best result in all cases fusing fea-
ture with it’s delta parameters, except with the formant
data for which fusion is not succesfull. The reason for
poor performance in this case is the poor performance
of delta formants. Situation could be alleviated by de-
emphasizing the delta formants.

It can be seen that the feature-level fusion improves the
performance over the individual classifier in the case of
MFCC and its delta features. However, in all other cases
it degrades the performance. The decisionl-level fusion
is the best fusion strategy, when all feature sets are used.
Majority voting is not applicable for only two classifier
system as seen for all other cases, where performance is
degraded.

In the case, when user has only feature set and its delta
parameters, results show that the score-level fusion seems
to be the method to be preferred in the case of reliable ex-
perts. However, if some of the “experts” produces a lot
of classification errors (∆FMT), the weight for the unre-
liable features or feature sets should be set small. In this
study, we did not attempt to weight individual features or



Table 3: Accuracies of the fused systems.
Combination Best individual Feature-level Score-level Decision-level Oracle

MFCC + ∆MFCC 16.8 15.8 14.6 19.0 12.3
LPCC + ∆LPCC 16.0 19.8 14.7 20.5 12.6
ARCSIN + ∆ARCSIN 17.1 18.2 16.8 22.8 15.0
FMT + ∆FMT 19.4 29.9 52.0 44.9 18.5
All feature sets 16.0 21.2 15.2 12.6 7.8

Table 4: Q statistic between all classifier pairs.
MFCC ∆MFCC LPCC ∆LPCC ARCSIN ∆ARCSIN FMT ∆FMT

MFCC 0.916 0.976 0.861 0.953 0.875 0.925 0.594
∆MFCC 0.909 0.934 0.869 0.847 0.838 0.527
LPCC 0.907 0.984 0.929 0.952 0.637
∆LPCC 0.866 0.898 0.854 0.517
ARCSIN 0.948 0.956 0.753
∆ARCSIN 0.921 0.505
FMT 0.842

feature sets. In the case of feature-level fusion, it is not
obvious how the individual features should be weighted.

3.4 Feature Set Diversity

Although the fusion improves performance in most cases,
the gain is rather low. Intuitively, if the different classi-
fiers misclassify the same speech segments, we do not ex-
pect as much improvement as in the case where they com-
plement each other. There are several indices to assess
the interrelationships between the classifiers in a classi-
fier ensemble [4].

Given classifiers i and j, we compute the Q statistic
[4]:

Qi,j =
N11N00 − N01N10

N11N00 + N01N10
, (9)

where N00 is the number of test segments misclassified
by both i and j; N11 is the number of segments correctly
classified by both; N10 and N01 are the numbers of seg-
ments misclassified by one and correctly classified by the
other. It can be easily verified that −1 ≤ Qi,j ≤ 1. The
Q value can be considered as a correlation measure be-
tween the classifier decisions.

The Q statistics between all feature set pairs are shown
in Table 4. It can be seen that all values are positive
and relatively high, which indicates that the classifiers
function essentially the same way. In other words, the
classifiers are competitive instead of complementary [13].
This partially explains why the performance is not greatly
improved by fusion. Interestingly, although the perfor-
mance of delta formants is very poor, it has lowest Q
values on average. This means that delta formants make
different decisions compared to other feature sets.

Table 5: Distribution of the number of correct votes.
8 7 6 5 4 3 2 1 0

155 269 72 39 43 23 22 15 54
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Figure 1: Performance of the “Oracle” classifier.

We can also analyze the difficulty of the test segments.
Table 5 shows how many classifiers voted correctly on
the same test segments out of 692. Interestingly, most
test segments are voted correctly by 6,7 or 8 classifiers
(72 %), which means that most of the test segments are
relatively “easy”. However, in the other end, there were
54 test segments (8 %) that no classifier voted correctly.
This shows that some speakers are more difficult to rec-
ognize.

3.5 “Oracle” Classifier

We can estimate the lower limit of the identification er-
ror rate using an abstract machine called Oracle classi-
fier [14]. The Oracle assigns correct class label to the test
segment if at least one feature set classifies it correctly.
Figure 1 shows the performance of this abstract classifier
as a function of the classifier pool size. New classifiers
are added to the pool in a greedy manner, starting from
the best individual feature set (LPCC) and adding the fea-



ture set that decreses the error rate most. The lowest error
rate (7.8 %) is reached by using six feature sets. The
test segments classified correctly by the ARCSIN and
∆ARCSIN feature sets are already classified correctly by
some of the other feature sets. It must be emphasized that
this is only a theoretical classifier, giving an idea of the
lowest possible error rate if the diversity of the feature
sets was taken fully into account.

4 Conclusions

We have compared and analyzed different ways of us-
ing several spectral feature sets for speaker identification.
From the individual feature sets considered, linear pre-
dictive cepstral coefficients performed the best giving an
error rate of 16.0 %. The best fusion result reduced this to
12.6 %, and it was obtained by decision-level fusion with
all feature sets. If many different feature sets are availe-
ble we recommend to use majority voting, otherwise in
more traditional setting score-level fusion is the best.

Although fusion improves performance, the difference
is not big. The analysis of the classifier diversities
showed that the different feature sets classify speakers
essentially in the same way. It is possible to reduce the
error rate further by setting feature set depended weights
reflecting the relative importances of the feature set. In
future, we plan to use speaker-dependent weights and re-
cent advances in information fusion, e.g. decision tem-
plates and consensus classification [13].
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Real-Time Speaker Identification and Verification
Tomi Kinnunen, Evgeny Karpov, and Pasi Fränti
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Abstract— In speaker identification, most of the computation
originates from the distance or likelihood computations between
the feature vectors of the unknown speaker and the models in
the database. The identification time depends on the number
of feature vectors, their dimensionality, the complexity of the
speaker models and the number of speakers. In this paper,
we concentrate on optimizing vector quantization (VQ) based
speaker identification. We reduce the number of test vectors
by pre-quantizing the test sequence prior to matching, and the
number of speakers by pruning out unlikely speakers during
the identification process. The best variants are then generalized
to Gaussian mixture model (GMM) based modeling. We apply
the algorithms also to efficient cohort set search for score
normalization in speaker verification. We obtain a speed-up
factor of 16:1 in the case of VQ-based modeling with minor
degradation in the identification accuracy, and 34:1 in the case of
GMM-based modeling. An equal error rate of 7 % can be reached
in 0.84 seconds on average when the length of test utterance is
30.4 seconds.

Index Terms— Speaker recognition, real-time, speaker prun-
ing, pre-quantization, VQ, GMM

I. INTRODUCTION

Speaker recognition refers to two different tasks: speaker
identification (SI) and speaker verification (SV) [1]–[3]. In
the identification task, an unknown speaker X is compared
against a database of known speakers, and the best matching
speaker is given as the identification result. The verification
task consists of making a decision whether a voice sample
was produced by a claimed person.

A. Motivation

Applications of speaker verification can be found in biomet-
ric person authentication such as an additional identity check
during credit card payments over the Internet. The potential
applications of speaker identification can be found in multi-
user systems. For instance, in speaker tracking the task is to
locate the segments of given speaker(s) in an audio stream [4]–
[7]. It has potential applications in automatic segmentation of
teleconferences and helping in the transcription of courtroom
discussions.

Speaker identification could be used in adaptive user in-
terfaces. For instance, a car shared by many people of the
same family/community could recognize the driver by his/her
voice, and tune the radio to his/her favorite channel. This
particular application concept belongs to the more general

Corresponding author: Tomi Kinnunen. Contact address: Department of
Computer Science, University of Joensuu, P.O. Box 111, FIN-80101 Joensuu,
FINLAND. E-mail: Tomi.Kinnunencs.joensuu.fi, Tel. +358 13 251 7905,
Telefax. +358 13 251 7955.

group of speaker adaption methods that are already employed
in speech recognition systems [8], [9]. Speaker-specific codecs
in personal speech coding have been also demonstrated to give
smaller bit rates as opposed to a universal speaker-independent
codec [10].

Speaker identification have also been applied to the ver-
ification problem in [11], where the following simple rank-
based verification method was proposed. For the unknown
speaker’s voice sample, K nearest speakers are searched
from the database. If the claimed speaker is among the K
best speakers, the speaker is accepted and otherwise rejected.
Similar verification strategy is also used in [12].

Speaker identification and adaptation have potentially more
applications than verification, which is mostly limited to secu-
rity systems. However, the verification problem is still much
more studied, which might be due to (1) lack of applications
concepts for the identification problem, (2) increase in the
expected error with growing population size [13], and (3) very
high computational cost. Regarding the identification accuracy,
it is not always necessary to know the exact speaker identity
but the speaker class of the current speaker is sufficient
(speaker adaptation). However, this has to be performed in
real-time. In this paper, we focus on decreasing the compu-
tational load of identification while attempting to keep the
recognition accuracy reasonably high.

B. Review of Computational Speed-Up Methods

A large number of methods have been proposed for speeding
up the verification process. Specifically, Gaussian mixture
model (GMM) based verification systems [14], [15] have
received much attention, since they are considered as the
state-of-the-art method for text-independent recognition. Usu-
ally, speaker-dependent GMMs are derived from a speaker-
independent universal background model (UBM) by adapting
the UBM components with maximum a posteriori (MAP)
adaptation using each speaker’s personal training data [15].
This method incudes a natural hierarchy between the UBM
and the personal speaker models; for each UBM Gaussian
component, there is a corresponding adapted component in the
speaker’s personal GMM. In the verification phase, each test
vector is scored against all UBM Gaussian components, and a
small number (typically 5) of the best scoring components in
the corresponding speaker-dependent GMMs are scored. This
procedure effectively reduces the amount of needed density
computations.

In addition to the basic UBM/GMM approach, a number of
other hierarchical methods have been considered for GMM.
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Beigi & al. [12] propose a hierarchical structuring of the
speaker database with the following merging strategy. Two
closest GMMs are merged, and the process is repeated until the
number of GMMs is 1. A similar approach using the ISODATA
clustering algorithm has been recently proposed by Sun &
al. [16] for the identification task. They report identification
accuracy close to full search with speed-up factors from 3:1
to 6:1. The relative speed-up of their algorithm was higher for
increased number of speakers.

Auckenthaler and Mason [17] applied UBM-like hash
model, in which for each Gaussian component, there is a
shortlist of indices of the expected best scoring components for
each individual GMM. Using the shortlist of the hash model,
only the corresponding components in the individual GMM
are then scored. By increasing the lengths of the shortlists,
scores can be computed more accurately, but with an increased
computational overhead. Auckenthaler and Mason reported a
speed-up factor of about 10:1 with a minor degradation in the
verification performance.

McLaughlin & al. [18] have studied two simple speed-up
methods for the GMM/UBM-based verification system: (1)
decreasing the UBM size, and (2) decimating the sequence
of test vectors with three simple methods. They noticed that
the UBM could be reduced by a factor of 4, and the test
sequence up to a factor of about as high as 20 without affecting
the verification performance. McLaughlin & al. [18] state (p.
1218):

“What is surprising is the degree to which feature vectors
can be decimated without loss in accuracy. . . . The key
factor seems to be the acoustic variety of the vectors
scored, not the absolute number of vectors.”

However, they did not experiment the combination of decima-
tion and reduced UBM.

An efficient GMM-based speaker identification system has
also been presented by Pellom and Hansen [19]. Since the
adjacent feature vectors are correlated and the order of the
vectors does not affect the final score, the vector sequence can
be reordered so that non-adjacent feature vectors are scored
first. After the scoring, worst scoring speakers are pruned
out using a beam search technique where the beam width is
updated during processing. Then, a more detailed sampling of
the sequence follows. The process is repeated as long as there
are unpruned speakers or input data left, and then the best
scoring speaker is selected as the winner. Pellom and Hansen
reported speed-up factor of 6:1 relative to the baseline beam
search.

Recently, more advanced hierarchical models have been
proposed for efficient speaker verification [20], [21]. Xiang
and Berger [20] construct a tree structure for the UBM. Mul-
tilevel MAP adaptation is then used for generating the speaker-
specific GMMs with a tree structure. In the verification phase,
the target speaker scores and the UBM scores are combined
using an MLP neural network. Xiang and Berger reported a
speed-up factor of 17:1 with a 5 % relative increase in the
EER. They also compared their method with the hash model
of Auckenthaler and Mason [17]. Although the method of
Xiang and Berger gave slightly better verification accuracy
(from EER of 13.9 % to EER of 13.5 %) and speed-up (from

15:1 to 17:1) as compared to the hash GMM, the Xiang’s and
Berger’s method is considerably more complex than the hash
GMM.

C. Contributions of This Study

The literary review herein shows that most of the speed
optimizations have been done on GMM-based systems. In this
study, we optimize vector quantization (VQ) based speaker
recognition, because it is straightforward to implement, and
according to our experiments, it yields equally good or better
identification performance than the baseline GMM based on
maximum likelihood training using the EM algorithm.

Most of the computation time in VQ-based speaker identifi-
cation consists of distance computations between the unknown
speaker’s feature vectors and the models of the speakers
enrolled in the system database. Speaker pruning [19], [22],
[23] can be used to reduce the search space by dropping out
unlikely speakers “on the fly” as more speech data arrives.
We survey and compare several speaker pruning variants. We
also propose a new speaker pruning variant called confidence-
based speaker pruning. The idea is to wait for more speech
data until we are confident to decide whether a certain speaker
could be safely pruned out.

We optimize the other components of the recognition system
as well. We reduce the number of test sequence vectors
by silence removal and pre-quantization, and show how the
pre-quantization methods can be combined with the speaker
pruning for more efficient identification. A vantage-point tree
(VPT) [24] is used for indexing the speakers’ code vectors
for speeding up the nearest neighbor search. Our main contri-
bution is a systematic comparison and combining of several
optimization methods.

Although the framework presented in this study is built
around VQ-based speaker modeling, the methods are expected
to generalize to other modeling paradigms. We demonstrate
this by applying the best pre-quantization and pruning variants
to GMM-based identification.

Finally, we demonstrate that the methods apply also to the
verification task. Pre-quantization is applied for searching a
cohort set online for the client speaker during the verification
process, based on the closeness to the input vectors. We
propose a novel cohort normalization method called fast cohort
scoring (FCS) which decreases both the verification time and
the equal error rate.

The rest of the paper is organized as follows. In Section II,
we review the baseline speaker identification, and consider the
computational complexity issue in more detail, focusing on the
real-time processing in general level. A detailed description
of the speaker pruning algorithms follows then in Section
III. In Section IV, we utilize the speed-up methods to the
verification problem. Section V describes the experimental
setup. Test results with discussion are given in Section VI,
and conclusions are drawn in Section VII.

II. VQ-BASED SPEAKER IDENTIFICATION

A. General Structure

The components of a typical VQ-based speaker identifica-
tion [25]–[28] system are shown in Fig. 1. Feature extraction
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Fig. 1. Typical VQ-based closed set speaker identification system.

transforms the raw signal into a sequence of 10- to 20-
dimensional feature vectors with the rate of 70-100 frames
per second. Commonly used features include mel-cepstrum
(MFCC) and LPC-cepstrum (LPCC) [29], [30]. They mea-
sure short-term spectral envelope, which correlates with the
physiology of the vocal tract.

In the training phase, a speaker model is created by clus-
tering the training feature vectors into disjoint groups by a
clustering algorithm. The LBG algorithm [31] is widely used
due to its efficiency and simple implementation. However,
other clustering methods can also be considered; a comparative
study can be found in [32]. The result of clustering is a set of
M vectors, C = {c1, c2, . . . , cM}, called a codebook of the
speaker.

In the identification phase, unknown speaker’s feature vec-
tors are matched with the models stored in the system
database. A match score is assigned to every speaker. Finally,
a 1-out-of-N decision is made. In a closed-set system this
consists of selecting the speaker that yields the smallest
distortion.

The match score between the unknown speaker’s feature
vectors X = {x1, . . . , xT } and a given codebook C =
{c1, . . . , cM} is computed as the average quantization dis-
tortion [25]:

Davg(X,C) =
1
T

T∑

i=1

e(xi, C), (1)

where e(xi, C) = mincj∈ C ‖xi − cj‖2, and ‖ · ‖ denotes the
Euclidean norm. Several modifications have been proposed to
the baseline VQ distortion matching [27], [33]–[37].

B. Time Complexity of Identification

In order to optimize speaker identification for real-time
processing, first the dominating factors have to be recognized.

In order to compute Davg(X, C), the nearest neighbors of
each xi ∈ X from the codebook C are needed. With a sim-
ple linear search this requires O(TM) distance calculations.
Computation of the squared Euclidean distance between two
d-dimensional vectors, in turn, takes d multiplications and d−1
additions. Therefore, the total number of floating point oper-
ations (flops) for computing Davg(X, C) is O(TMd). The
computation of Davg(X, C) is repeated for all N speakers, so
the total identification time is O(NTMd).

The efficiency of the feature extraction depends on the
selected signal parametrization. Suppose that the extraction
of one vector takes O(f) flops. The total number of flops for
feature extraction is then O(Tf), where T is the number of
vectors. Notice that the feature extraction needs to be done
only once. To sum up, total number of flops in identification
is O(Tf + NTMd) = O(T (f + NMd)). The standard
signal processing methods (MFCC, LPCC) themselves are
very efficient. By assuming f � NMd, we can approximate
the overall time as O(TNMd).

The dimensionality d is much smaller than N , M and T .
For instance, about 10-20 mel-cepstral coefficients is usually
enough due the fast decay of the higher coefficients [29]. There
is no reason to use a high number of cepstral coefficients
unless they are properly normalized; the coefficients with a
small magnitude do not contribute to the distance values much.

C. Reducing the Computation Time

The dominating factors of the total identification time are
the number of speakers (N ), the number of vectors in the
test sequence (T ), and the codebook sizes (M ). We reduce
the number of speakers by pruning out unlikely speakers
during the matching, and the number of vectors by silence
removal and by pre-quantizing the input sequence to a smaller
number of representative vectors prior to matching. In order
to speed up the nearest neighbor search of the codebooks,
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Fig. 2. Diagram of the real-time identification system.

we utilize vantage-point trees (VPT) [24] for indexing the
code vectors in the models. VPT is a balanced binary search
tree where each node represents a code vector. In the best
case (fully balanced binary tree), the search takes O(log2 M)
distance computations. Unfortunately, the VPT as well as
other indexing structures [38] apply only to metric distance
functions. Since (1) does not satisfy the triangular inequality,
we can index only the code vectors but not the codebooks
themselves.

D. Real-Time Speaker Identification

The proposed system architecture is depicted in Fig. 2. The
input stream is processed in short buffers. The audio data in
the buffer divided into frames, which are then passed through a
simple energy-based silence detector in order to drop out non-
information bearing frames. For the remaining frames, feature
extraction is performed. The feature vectors are pre-quantized
to a smaller number of vectors, which are compared against
active speakers in the database. After the match scores for each
speaker have been obtained, a number of speakers are pruned
out so that they are not included anymore in the matching on
the next iteration. The process is repeated until there is no
more input data, or there is only one speaker left in the list of
active speakers.

E. Pre-quantization

In pre-quantization (PQ), we replace the original test vector
sequence X by a new sequence X̂ so that |X̂| < |X|. In order
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Fig. 3. Illustration of speaker pruning (pruning interval = 7 vectors).

to gain time, the total time spent for the PQ and matching must
be less than the matching time without PQ. The motivation
for using PQ is that, in practise, the adjacent feature vectors
are close to each other in the feature space because of the
gradual movements of the articulators. McLaughlin & al. [18]
applied three simple PQ methods prior to GMM matching,
and reported that the test sequence could be compressed by a
factor of 20:1 without compromizing the verification accuracy.
This clearly suggests that there is a lot of redundancy in the
feature vectors.

We consider four different pre-quantization techniques: (1)
random subsampling, (2) averaging, (3) decimation, and (4)
clustering-based PQ. In random subsampling and averaging,
the input buffer is processed in non-overlapping segments of
M >1 vectors. In random subsampling, each segment is rep-
resented by a random vector from the segment. In averaging,
the representative vector is the centroid (mean vector) of the
segment. In decimation, we simply take every M th vector of
the test sequence, which corresponds to performing feature
extraction with a smaller frame rate. In clustering-based PQ,
we partition the sequence X into M clusters using the LBG
clustering algorithm.

III. SPEAKER PRUNING

The idea of speaker pruning [19], [22], [23] is illustrated in
Fig. 3. We must decide how many new (non-silent) vectors are
read into the buffer before next pruning step. We call this the
pruning interval. We also need to define the pruning criterion.

Figure 4 shows an example how the quantization distortion
(1) develops with time. The bold line represents the correct
speaker. In the beginning, the match scores oscillate, and when
more vectors are processed, the distortions tend to stabilize
around the expected values of the individual distances because
of the averaging in (1). Another important observation is that
a small amount of feature vectors is enough to rule out most
of the speakers from the set of candidates.

We consider next the following simple pruning variants:
static pruning [23], hierarchical pruning [22], and adaptive
pruning [23]. We also propose a novel pruning variant called
confidence-based pruning. The variants differ in their pruning
criteria.
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Algorithm 1 Static Pruning (SP)

A := {1, 2, . . . , N} ; X := ∅ ;
while (|A| > 1) and (speech data left) do

Insert M new vectors into buffer X ;
Update Davg(X, Ci) for all i ∈ A ;
Prune out K worst speakers from A ;

end while
Decision: i∗ = arg mini{D(X, Ci)|i ∈ A} ;

The following notations will be used:

X Processing buffer for new vectors
A Indices of the active speakers
Ci Codebook of speaker i
N Size of the speaker database

A. Static Pruning (SP)

The idea is to maintain an ordered list of the best matching
speakers. At each iteration, M new vectors are read in,
match scores of the active speakers are updated, and K worst
matching speakers are pruned out (Algorithm 1). The update of
the match scores can be done efficiently by using cumulative
counts of the scores. The control parameters of the method
are M and K. Fig. 3 gives an example of the method with
parameters M = 7 and K = 2.

B. Hierarchical Pruning (HP)

For each speaker i, two codebooks are stored in the
database: a coarse and a detail codebook, denoted here as Cc

i

and Cd
i , respectively. Both codebooks are generated from the

same training data, but the coarse codebook is much smaller
than the detail one: |Cc

i | � |Cd
i |. First, K worst speakers are

pruned out by matching the vectors against the coarse models.
Scores of the remaining models are then recomputed using the
detail models (Algorithm 2). The control parameters of the
method are the the sizes of the codebooks and K.
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Algorithm 2 Hierarchical Pruning (HP)

Let Cc = {Cc
1 , . . . , Cc

N} be the coarse models ;
Let Cd = {Cd

1 , . . . , Cd
N} be the detail models ;

A := {1, 2, . . . , N} ;
Read the whole test sequence into buffer X ;
Compute Davg(X, Cc

i ) for all i ∈ A ;
Prune out K worst speakers from A ;
Compute Davg(X, Cd

i ) for all i ∈ A ;
Decision: i∗ = arg mini{Davg(X, Cd

i )|i ∈ A} ;

Algorithm 3 Adaptive Pruning (AP)

A := {1, 2, . . . , N} ; X := ∅ ;
while (|A| > 1) and (speech data left) do

Insert M new vectors into buffer X ;
Update Davg(X, Ci) for all i ∈ A ;
Update Pruning threshold Θ ;
Prune out speaker i if Davg(X, Ci) > Θ ;

end while
Decision: i∗ = arg mini{Davg(X, Ci)|i ∈ A} ;

C. Adaptive Pruning (AP)

Instead of pruning a fixed number of speakers, a pruning
threshold Θ based on the distribution of the scores is com-
puted, and the speakers whose score exceeds this are pruned
out (see Algorithm 3). The pruning threshold Θ is computed
as

Θ = µD + η · σD, (2)

where µD and σD are the mean and the standard deviation
of the active speakers’ match scores, and η is a control
parameter. The larger η is, the less speakers are pruned out, and
vice versa. The formula (2) has the following interpretation.
Assuming that the match scores follow a Gaussian distribution,
the pruning threshold corresponds a certain confidence interval
of the normal distribution, and η specifies its width. For η = 1,
the speakers above the 68 % confidence interval of the match
score distribution will be pruned out; that is approximately
(100-68)/2 = 16 % of the speakers. This interpretation is
illustrated in the right panel of Fig. 5. We have found out
experimentally that the Gaussian assumption holds sufficiently
well in practise. The left panel of Fig. 5 shows two real
score distributions computed from two different subsets of the
TIMIT corpus [39].

Notice that the mean and variance of the score distribution
can be updated efficiently using the running values for these.
Since the unlikely speakers (large scores) are pruned out
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Fig. 6. Illustration of the confidence-based pruning.

iteratively, the variance of the match scores decreases with
time. The control parameters of the method are M and η.

D. Confidence-Based Pruning (CP)

In confidence-based pruning, only speakers whose match
scores have stabilized are considered for pruning. If the match
score is poor but it still oscillates, the speaker can still
change its rank and become the winner. Thus, we remove only
speakers that have already stabilized and whose match score is
below a given threshold. This is illustrated in Fig. 6, in which
the speakers are at given one per line, and the time (vector
count) increases from left to right. The numbers in the cells
show the match scores, gray color indicates that the speaker
has stabilized, and black indicates that the speaker has been
pruned out. Notice that both the stabilization and pruning can
happen in the same iteration.

The pseudocode of the method is given in Algorithm 4. Two
score values are maintained for each active speaker i: the one
from the previous iteration (Dprev[i]), and the one from the
current iteration (Dcurr[i]). When these two are close enough
to each other, we mark the speaker as stabilized. Stabilized
speakers are then checked against the pruning threshold as
defined in (2). There are three adjustable parameters: the
pruning interval (M ), the stabilization threshold (ε) and the
pruning threshold control parameter (η).

E. Combining PQ and Pruning (PQP)

Pre-quantization and pruning can be combined. Algorithm
5 combines clustering-based PQ and static pruning. First, the
whole input data is pre-quantized by the LBG algorithm [31].
Using the match scores for the quantized data, K worst scoring
speakers are pruned out, and the final decision is based on
comparing the unquantized data with the remaining speaker
models. We refer the ratio of the number of pruned speakers
to the number of all speakers as the pruning rate.

Algorithm 4 Confidence-Based Pruning (CP)

A := {1, 2, . . . , N} ; X := ∅ ;
for i := 1, . . . , N do

Dprev[i] := 0 ; stable[i] := false ;
end for
while (|A| > 1) and (speech data left) do

Insert M new vectors into buffer X ;
Update Davg(X, Ci) for all i ∈ A ;
Update pruning threshold Θ ;
for i ∈ A do

Dcurr[i] := Davg(X, Ci) ;
end for
for i ∈ A do

if ( |1 − Dprev[i]/Dcurr[i]| < ε ) then
stable[i] = true ;

end if
if (stable[i]) and (Dcurr(X, Ci) > Θ) then

Prune out speaker i from A ;
else

Dprev[i] := Dcurr[i] ;
end if

end for
end while
Decision: i∗ = arg mini{Davg(X, Ci)|i ∈ A} ;

Algorithm 5 PQ + Static Pruning (PQP)

A := {1, 2, . . . , N} ;
Read new data into buffer X ;
X̂ := LBG-Clustering(X, M)
Compute Davg(X̂, Ci) for all i ∈ A ;
Prune out K worst speakers from A ;
Compute Davg(X, Ci) for all i ∈ A ;
Decision: i∗ = arg mini{Davg(X, Ci)|i ∈ A} ;

IV. EFFICIENT COHORT SCORING FOR VERIFICATION

In this Section, we apply pre-quantization for speeding up
the scoring in the verification task. Current state-of-the-art
speaker verification systems use the Bayesian likelihood ratio
[40] for normalizing the match scores [41], [42]. The purpose
of the normalization is to reduce the effects of undesirable
variation that arise from mismatch between the input and
training utterances.

Given an identity claim that speaker S produced the vectors
X = {x1, . . . ,xT }, two likelihoods p(X|S) and p(X|S̄) are
estimated. The former presents the likelihood that speaker
S produced X (null hypothesis), and the latter presents the
likelihood that X was produced by someone else (alternative
hypothesis). The two likelihoods are combined using the log-
likelihood ratio [1]:

score(X,S) = log p(X|S) − log p(X|S̄). (3)

This score is then compared with a predefined verification
threshold. The speaker is accepted if the score exceeds the
verification threshold, and otherwise rejected. We assume a
common (global) threshold for all speakers.

The problem in the computation of (3) is that the likelihood
of the alternative hypothesis is not directly accessible since this
requires information of all other speakers of the world. There
are two main approaches for the estimation of p(X|S̄) [41]:
universal background model (or world model) and cohort set.
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Algorithm 6 Fast Cohort Scoring (FCS)

Let X be the unknown speaker’s feature vectors ;
Let CS be the claimed speaker’s codebook ;
Let K > 1 be the desired cohort size ;
X̂ := LBG-Clustering(X, M) ;
Let Coh := K best scoring speakers based on Davg(X̂, Ci),
excluding the client ;
score(X, S) = Davg(X̂, CS)/ 1

K

�
i∈Coh Davg(X̂, Ci) ;

The world model is generated from a large set of speakers, and
it attempts to model speech in general. In the cohort approach,
for each client speaker, an individual set of cohort speakers is
defined. Usually the cohort set contains the nearest speakers
to the client, since intuitively these are the “best” impostors to
the client speaker. We are not aware of large-scale comparison
of the world model and cohort approaches, and it seems that
currently there is no consensus which one of these is more
accurate.

Cohort normalization methods can be divided into two
classes: those that select the cohort speakers offline in the
training phase [43], and those that select the cohort online
[44] based on the closeness to the test vector sequence X .
The online approach, also known as unconstrained cohort
normalization (UCN) [41], [44], has been observed to be
more accurate [42], [44], probably due to its adaptive nature.
Another desirable feature of the UCN is that it does not require
updating of the cohort sets when new speakers are enrolled in
the system.

The usefulness of the online cohort selection is limited
by its computational complexity. The computation of the
normalized score (3) includes searching the cohort speakers,
whose time increases linearly with the number of cohort
candidates. Ariyaeeinia and Sivakumaran [44] noticed that a
smaller equal error rate (EER) is obtained, if the cohort is
selected among the client speakers instead of using an external
cohort set.

We propose to use pre-quantization for reducing the com-
putational load of cohort search (see Algorithm 6). The input
sequence X is first quantized into a smaller set X̂ using the
LBG algorithm [31], and majority of the speakers are pruned
out based on the scores Davg(X̂, Ci), i = 1, . . . , N . The
remaining set of K > 1 best scoring speakers constitutes
the cohort for the client speaker. The client score is also
computed using the quantized sequence, and the normalized
match score is computed as the ratio between the client score
and average cohort speaker score. A small value indicates that
the client score deviates clearly from the impostor distribution.
The control parameters of the algorithm are the cohort size (K)
and the size of the quantized test set (M ).

In acoustically mismatched conditions, both the client and
cohort scores are expected to degrade, but their ratio is
assumed to remains the same. This is the fundamental rationale
behind score normalization. In other words, we assume:

Davg(X, CS)∑
j Davg(X, Cj)

≈ Davg(X̂, CS)
∑

k Davg(X̂, Ck)
, (4)

where j and k go over the indices of the cohort speakers

TABLE I

SUMMARY OF THE CORPORA USED

TIMIT NIST

Language English English
Speakers 630 230
Speech type Read speech Conversational
Quality Clean (hi-fi) Telephone
Sampling rate 8.0 kHz 8.0 kHz
Quantization 16-bit linear 8-bit µ-law
Training speech (avg.) 21.9 sec. 119.0 sec.
Evaluation speech (avg.) 8.9 sec. 30.4 sec.

selected using X and X̂ , respectively. The approximation (4) is
good when X and X̂ follow the same probability distribution.

V. EXPERIMENTS

A. Speech Material

For the experiments, we used two corpora, the TIMIT corpus
[39] and the NIST 1999 speaker recognition evaluation corpus
[45]. The TIMIT corpus was used for tuning the parameters
of the algorithms, and the results were then validated using
the NIST corpus.

Main features of the evaluated corpora are summarized in
Table I. For consistency, the TIMIT files were downsampled
from 16 to 8 kHz. This was preceded by alias cancellation
using a digital low-pass FIR filter. TIMIT contains 10 files
for each speaker, of which we selected 7 for training and 3
for testing. The files “sa” and “sx” having the same phonetic
content for all speakers were included in the training material.

To our knowledge, no speaker identification experiments
have been performed previously on the NIST-1999 corpus,
and therefore, we needed to design the test setup ourselves.
We selected to use the data from the male speakers only.
Because we do not apply any channel compensation methods,
we selected the training and recognition conditions to match
closely. For training, we used both the “a” and “b” files for
each speaker. For identification, we used the one speaker test
segments from the same telephone line. In general it can
be assumed that if two calls are from different lines, the
handsets are different, and if they are from the same line, the
handsets are the same [45]. In other words, the training and
matching conditions have very likely the same handset type
(electret/carbon button) for each speaker, but different speakers
can have different handsets. The total number of test segments
for this condition is 692.

B. Feature Extraction, Modeling and Matching

We use the standard MFCCs as the features [29]. A pre-
emphasiz filter H(z) = 1 − 0.97z−1 is used before framing.
Each frame is multiplied with a 30 ms Hamming window,
shifted by 20 ms. From the windowed frame, FFT is computed,
and the magnitude spectrum is filtered with a bank of 27
triangular filters spaced linearly on the mel-scale. The log-
compressed filter outputs are converted into cepstral coeffi-
cients by DCT, and the 0th cepstral coefficient is ignored.
Speaker models are generated by the LBG clustering algorithm
[31]. The quantization distortion (1) with Euclidean distance
is used as the matching function.
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C. Performance Evaluation

The recognition accuracy of identification is measured by
identification error rate, and the accuracy of the verification
is measured by the equal error rate (EER). The methods were
implemented using C/C++ languages. All experiments were
carried out on a computing cluster of two Dell Optiplex G270
computers, each having 2.8 GHz processor and 1024 MB of
memory. The operating system is Red Hat Linux release 9 with
2.4.22-openmosix2 kernel. We use system function clock
divided by the constant CLOCKS_PER_SEC to measure the
running time.

VI. RESULTS AND DISCUSSION

A. Baseline System

First, a few preliminary tests were carried out on the TIMIT
corpus in order to find out suitable silence detection threshold.
The number of MFCCs and model sizes were fixed to 12 and
64, respectively. With the best silence threshold (lowest error
rate), about 11-12 % of the frames were classified as silent
and the average identification time improved by about 10 % as
compared without silence detection. Recognition accuracy also
improved slightly when silence detection was used (626/630
correct → 627/630 correct). Using the same silence detection
threshold on the NIST, only 2.6 % of the frames were classified
as silent, and there was no improvement in the identification
time.

The effect of the number of MFCCs was studied next. In-
creasing the number of coefficients improved the identification
accuracy up to 10-15 coefficients, after which the error rates
stabilized. For the rest of the experiments, we fixed the number
of coefficients to 12.

Table II summarizes the performance of the baseline system
on the TIMIT corpus. The identification times are reported
both for the full-search and for the VPT-indexed code vectors.
The last row (no model) shows the results for using all training
vectors directly as the speaker model as suggested in [46].
Increasing the model size improves the performance up to
M = 256. After that, the results start to detoriate due to the
overfitting effect, as observed also in [47]. The identification
time increases with the codebook size. For small codebooks,
VPT indexing does not have much effect on the identification
times, but it becomes effective when M ≥ 32. For the rest of
the experiments, VPT indexing is used.

TABLE II

PERFORMANCE OF THE BASELINE SYSTEM (TIMIT).

Codebook size Error rate (%) Avg. id. time (s)
Full search VPT

8 10.5 0.29 0.33
16 2.22 0.57 0.62
32 0.63 1.15 1.11
64 0.48 2.37 2.07
128 0.16 4.82 4.14
256 0.16 10.2 8.21
512 0.32 21.6 12.9
No model 1.59 42.8 23.7
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Fig. 7. Comparison of the PQ methods with codebook size 64 (TIMIT).

B. Pre-Quantization

Next, we compare the pre-quantization methods with code-
book size fixed to M = 64. Parameters were optimized with
extensive testing for each PQ method separately. The best
time-error curves for each method are shown in Fig. 7. We
observe that the clustering PQ gives the best results, especially
at the low-end when time is critical. In general, PQ can be
used to reduce the time about to 50 % of the full search with
a minor degradation in the accuracy.

C. Speaker pruning

Next, we evaluate the performance of the speaker pruning
variants with the pre-quantization turned off and speaker
model size fixed to 64. Several experiments were carried out
in order to find out the critical parameters. First, the variants
were considered individually (see Figs 8 to 11).

For the SP algorithm, we fixed the pruning interval (M =
5, 10, 15 vectors) and varied the number of pruned speakers
(K). The shortest pruning interval (M = 5) gives the poorest
results and the largest interval (M = 15) the best. The
difference between M = 10 and M = 15 is relatively small.

For the HP algorithm, we fixed the coarse speaker model
size (M = 4, 8, 16) and varied the number of pruned speakers
(K). We observe that the model sizes M = 4 and M = 8 give
the best trade-off between the time and identification accuracy.
If the codebook size is increased, more time is spent but the
relative gain in accuracy is small.

For the AP algorithm, we fixed the parameter η in (2) to
η = {0.0, 0.1, 0.5, 0.9} and varied the pruning interval (M ).
The values η = 0.5 and η = 0.9 give the best results.

For the CP algorithm, we fixed the two thresholds (ε =
0.1, 0.5 ; η = 0.1, 1.0) and varied the pruning interval. The
best result is obtained with combination η = 1.0, ε = 0.5.
The selection of the stabilization threshold ε seems to be less
crucial than the pruning parameter η.

The pruning variants are compared in Fig. 12. The AP
variant gives the best results, whereas the static pruning gives
the poorest results. Next, we select the best PQ and pruning
variants as well as the combination of PQ and pruning (PQP)
as described in Section III-E and compare their performance.
From the Fig. 13 we observe that the pruning approach
gives slightly better results. However, in a time-critical ap-
plication PQ might be slightly better. The combination of
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Fig. 10. Performance of the AP algorithm for different pruning
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Fig. 11. Performance of the CP algorithm for different parameters
(TIMIT).

pre-quantization and pruning (PQP) gives the best result as
expected.

D. Validation with NIST and GMM

Since TIMIT is known to give overly optimistic perfor-
mance due to its laboratory quality and lack of intersession
data, we validate the results on the NIST corpus. The best pre-
quantization and pruning variants are also generalized to GMM
modeling [14] as follows. Instead of using the log-likelihood
log p(X|GMMi) as score, we use − log p(X|GMMi) instead.
In this way, the scores are interpreted as dissimilarities, and
the algorithms do not require any changes. We used diagonal
covariance GMMs since they are widely used with the MFCC
features, and they require significantly less computation and
storage.

The best results for both corpora and model types are
summarized in Tables III and IV. For pre-quantization, we
use the clustering-based method, and for the pruning we use
the adaptive variant. For the combination, we selected the
clustering PQ and static pruning.

We optimized the model sizes for VQ and GMM separately.
For VQ, larger codebook give more accurate results on both
corpora as expected. GMM, on the other hand, is more
sensitive to the selection of the model size. With TIMIT, model
sizes larger than 64 degraded results dramatically (for model
size 256 the error rate was 16.5 %). There is simply not enough
training data for robust parameter estimation of the models.
For NIST, there is 5 times more training data, and therefore
large models can be used.

The problem of limited training data for GMM parameter
estimation could be attacked by using, instead of the maximum
likelihood (ML) training, the maximum a posteriori parameter
(MAP) adaptation from the world model as described in [15].
Taking advantage of the relationship between the world model
and the speaker-depended GMMs, it would also possible to
reduce the matching time [15], [20]. In this paper, however,
we restricted the study on the baseline ML method.

From the results of Tables III and IV we can make the
following observations:

• Identification time depends on the size and the type of
the model.
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Fig. 13. Comparison of the best PQ and speaker pruning variants with
speaker model size 64 (TIMIT).

• The error rates are approximately of the same order for
both VQ and GMM. For TIMIT, the error rates are close
to zero, and for NIST they are around 17-19 %.

• The speed-up factor of PQ increases with the model size
as expected. Relative speed-up is higher for GMM than
for VQ. Improvement of the pruning, on the other hand,
depends much less on the model size.

• With TIMIT, PQP doubles the speed-up relative to PQ.
With NIST, on the other hand, the PQP is not successful.

• The best speed-up factor for NIST with VQ is 16:1
increasing the error rate from 17.34 % to 18.20 %. For
GMM, the corresponding speed-up factor is 34:1 with the
increase of the error rate from 16.90 % to 18.50 %.

In general, we conclude that the results obtained with
TIMIT hold also for NIST although there are differences
between the corpora. More importantly, the studied algorithms
generalize to GMM-based modeling. In fact, the speed-up
factors are better for GMM than for VQ on the NIST corpus.
The optimized systems are close to each other both in time
and accuracy, and we cannot state that one of the models
would be better than the other in terms of time/error trade-off.
The ease of implementation, however, makes the VQ approach
more attractive. In fact, prototype implementation for Symbian
series 60 operating system for mobile devices is currently in
progress.

The combination of PQ and GMM gives a good time-
accuracy trade-off, which is consistent with the verification
experiments carried out by McLaughlin & al. [18]. They
noticed that the test sequence could be decimated up to factor
20:1 with minor effect on the verification performance. They
found out that the fixed decimation (every Kth vector) gave
the best performance. However, as we can see from the Fig.
7, the clustering based pre-quantization performs better. This
explains partially why we obtained a better speed-up (up to
34:1).

E. Fast Cohort Scoring for Verification

The proposed cohort normalization method (FCS) was stud-
ied next on the NIST corpus. We used the same subset for veri-

fication than for the identification experiments, thus consisting
of N = 692 genuine speaker trials and N(N−1)/2 = 239086
impostor trials. The speaker model size was set to 128 for
both VQ and GMM based on the identification results, and
the PQ codebook size for the FCS method was set to 32 after
preliminary experiments. In both normalization methods, the
client score is divided by the average cohort score. In the case
of VQ, models are scored using the quantization distortion,
and in the case of GMM, the log likelihood.

We consider the following methods:

• No normalization
• Closest impostors to the test sequence
• Fast cohort scoring (FCS)
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Fig. 14. Effect of the cohort size using different scoring methods (model
sizes = 128; M = 32) (NIST).

The cohort size is varied from K = 1 to K = 20. The
equal error rates of the normalization methods are shown in
Fig. 14, along with the unnormalized case as a reference. We
observe an decreasing trend in EER with increasing cohort
size for both normalization methods and for both modeling
techniques. GMM gives better results for both normalization
methods. More interestingly, the proposed method (FCS) out-
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TABLE III

SUMMARY OF THE BEST RESULTS ON THE TIMIT CORPUS.

Vector quantization (VQ) Gaussian mixture model (GMM)
Setup Model Error Time (s) Speed-up Model Error Time (s) Speed-up

size rate (%) factor size rate (%) factor

Baseline 64 0.32 2.07 1:1 8 0.95 0.93 1:1
PQ 0.64 0.48 4:1 0.95 0.49 2:1
Pruning 0.48 0.43 5:1 1.11 0.21 4:1
PQP 0.32 0.27 8:1 0.95 0.21 4:1
Baseline 128 0.00 4.14 1:1 16 0.16 1.77 1:1
PQ 0.64 0.59 7:1 0.48 0.77 2:1
Pruning 0.00 1.88 2:1 0.16 0.92 2:1
PQP 0.00 0.31 13:1 0.16 0.18 10:1
Baseline 256 0.00 8.21 1:1 32 0.32 3.47 1:1
PQ 0.64 1.18 7:1 0.32 0.72 5:1
Pruning 0.00 3.28 3:1 0.32 1.80 2:1
PQP 0.00 0.65 13:1 0.32 0.40 9:1

TABLE IV

SUMMARY OF THE BEST RESULTS ON THE NIST 1999 CORPUS.

Vector quantization (VQ) Gaussian mixture model (GMM)
Setup Model Error Time (s) Speed-up Model Error Time (s) Speed-up

size rate (%) factor size rate (%) factor

Baseline 64 18.06 2.92 1:1 64 17.34 9.58 1:1
PQ 18.20 0.62 5:1 18.79 0.73 13:1
Pruning 19.22 0.48 6:1 19.36 0.82 12:1
PQP 18.06 0.50 6:1 17.34 0.94 10:1
Baseline 128 17.78 5.80 1:1 128 17.05 18.90 1:1
PQ 18.93 0.64 9:1 18.20 0.84 23:1
Pruning 18.49 0.86 7:1 17.34 2.88 7:1
PQP 17.78 0.67 9:1 17.63 1.34 14:1
Baseline 256 17.34 11.40 1:1 256 16.90 37.93 1:1
PQ 18.20 0.70 16:1 18.50 1.11 34:1
Pruning 17.49 1.46 8:1 17.48 5.78 7:1
PQP 17.49 0.90 13:1 18.06 2.34 16:1

performs the method of closest impostors even though only
the quantized test sequence is used for scoring. This result
supports the claim that redundancy in the test sequence should
be removed. The result also indicates that the assumption (4)
holds in practise.

Table V summarizes the performances of the two score
normalization methods. The speed-up factor is relative to the
closest impostors method. The proposed method speeds up the
verification by a factor of 23:1 and it also decreases the error
rate at the same time. The equal error rates are relatively high
in general, which is because of a simple acoustic front-end. We
did not apply either delta processing nor channel compensation
methods such as cepstral mean subtraction.

TABLE V

SUMMARY OF THE COHORT SELECTION METHODS (COHORT SIZE = 20;

MODEL SIZES = 128; M = 32) (NIST).

Method Model EER (%) Avg. verif. Speed-up
time (s) factor

Closest VQ 7.80 5.79 1:1
impostors GMM 7.51 18.94 1:1
FCS VQ 7.48 0.65 9:1

GMM 6.94 0.84 23:1

VII. CONCLUSIONS

A real-time speaker identification system based on vector
quantization (VQ) has been proposed. The most dominating

factors of the identification time are the number of test vectors
and the number of speakers. We used silence detection and
pre-quantization for the reduction of the vectors, and speaker
pruning for the reduction of the speakers. A VPT tree was
applied for speeding up the nearest neighbor search from the
speaker codebook.

We used the TIMIT corpus for tuning the parameters, and
validated the results using the NIST-1999 speaker recognition
evaluation corpus. With TIMIT, a speed-up factor of 13:1 was
achieved without degradation in the identification accuracy.
With NIST, a speed-up factor of 16:1 was achieved with a
small degradation in the accuracy (17.34 % vs. 18.20 %).

We demonstrated that the methods formulated for VQ
modeling generalize to GMM modeling. With TIMIT, a speed-
up factor of 10:1 was achieved. With NIST, a speed-up factor
of 34:1 was achieved with a small degradation (16.90 % vs.
18.50 %) in the accuracy.

We also applied pre-quantization for efficient cohort normal-
ization in speaker verification. The proposed method turned
out to be both faster and more accurate than the commonly
used method of closest impostors. An EER of 6.94 % was
reached in average verification time of 0.84 seconds when the
length of test utterance is 30.4 seconds, with a speed-up of
23:1 compared to the widely used closest impostors method.

Regarding the selection between pre-quantization and prun-
ing methods, the former seems more attractive in the light of
the experimental results on the NIST corpus, and the findings
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reported in [18]. Clustering can be effectively applied for
removing redundancy from the test sequence with small or
no degradation in the accuracy. A possible future direction
could be towards developing more adaptive pre-quantization
methods (all pre-quantization methods studied here assume
either fixed buffer or codebook size).

In this paper we restricted the study of the GMM to the
baseline ML method. However, it is expected that the studied
methods generalize to the UBM/GMM framework [15] and
further speedups are possible by combining UBM/GMM with
pre-quantization and speaker pruning. It is also possible to use
UBM idea in the VQ context in the same way by generating a
large speaker-independent codebook and adapting the speaker-
dependent codebooks from it.

Finally, it must be noted that the acoustic front-end was
fixed to MFCC processing in this study, and it seems that
further speed optimization with these features is difficult.
A possible future direction could be to use multiparametric
classification: a rough estimate of the speaker class could
be based on pitch features, and the matching could then be
refined using spectral features. Alternatively, one could use
initially high-dimensional features, such as a combination of
cepstrum, delta-parameters, F0 features and voicing informa-
tion, followed by a mapping into a low-dimensional space
by linear discriminant analysis (LDA), principal component
analysis (PCA), or neural networks. In this way, probably more
discriminative low-dimensional features could be derived.
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Abstract

In speaker verification, cohort refers to a speaker-depended set of “anti-

speakers” that are used in match score normalization. A large number of

heuristic methods have been proposed for the selection of cohort models. In

this paper, we use genetic algorithm (GA) for minimizing a cost function

for a given security-convenience cost balance. The GA jointly optimizes

the cohort sets and the global verification threshold. Our motivation is

to use GA as an analysis tool. When comparing with heuristic selection

methods, GA is used for obtaining a lower bound to error rates reachable

by MFCC-GMM verification system. On the other hand, we analyze the

models selected by GA, attempting to gain understanding into how cohort

models should be selected for an application with given security-convenience

tradeoff. Our findings with a subset of the NIST-1999 corpus suggest that

in user-convenient application, the cohort models should be selected more

close to the target than in secure application. The lower bounds in turn show

that that there is a lot of room for further studies in score normalization,

especially in the user-convenient end of the detection error tradeoff (DET)

curve.

1 Introduction

Speaker verification [1] is the task of deciding whether a given speech utterance

was produced by a claimed person (target). In biometric verification, two errors

are possible: false acceptance (FA) and false rejection (FR). The former means

accepting an impostor, and the latter refers to rejecting a genuine speaker. By

1



adjusting the verification threshold, the system administrator can balance be-

tween the error types. By lowering the threshold, the number of false rejections

can be reduced (“user-convenient” applications), but with the cost of increased

number of false acceptances. By setting a high threshold, the number of false

acceptances can be reduced (“secure” application).

In state-of-the-art verification systems, the features extracted from the un-

known speaker’s utterance are matched against the target and nontarget models.

Normalized score [2, 3, 4, 5] is a function of the two scores, and it is compared

with the verification threshold. The rationale is to make the match score relative

to other models so that it is more robust against acoustic mismatches between

training and recognition. Setting of speaker independent verification threshold

becomes also easier because the scores are in common range.

The nontarget hypothesis represents the possibility that anyone else expect

the target produced the unknown utterance. Thus, in principle the nontarget

model should be composed of all possible speakers. Two popular approaches

for approximating the nontarget likelihood are world modeling [5] and cohort

modeling [6, 3, 7, 8, 9, 4, 10, 11], see Fig. 1. The world model, or universal

background model (UBM), represents “the world of all possible speakers”, and it

is represented by a single model, which is same for all speakers. In the cohort

approach, nontarget likelihood is approximated using a small number of speaker-

depended “antispeakers”, called the cohort set of the speaker.

The UBM normalization is straightforward and computationally efficient, but

there are two motivations to study cohort selection more closely. Firstly, since

the normalization depends on the speaker, it can change speaker rankings and

could be also applied in the identification task (1:N matching); the UBM nor-

malization does not help in this because the match scores are scaled by the same

number. The second motivation comes from the field of forensic speaker identi-

fication [12]. In forensic cases, the acoustic evidence must be contrasted against

a relevant background population (e.g. speakers of same gender and dialectal

region) to estimate the likelihood of a random match. Cohort selection could

be applied to find the background population automatically from a database of

several thousands of speakers.
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Figure 1: Illustration of the world and cohort modeling approaches.

In addition to the verification threshold, the selection of cohort models has

influence on the accuracy. Traditionally, the balancing between FA/FR errors has

been tackled by adjusting the verification threshold. However, the FA and FR

errors are functions of both the score distributions and the verification threshold,

and therefore, should be optimized jointly when setting up the verification system

for a certain application.

Our goal is to gain some insight into the selection of the cohort models for a

given secure-convenience balance. We approach the problem from two directions.

Firstly, we give experimental comparison of existing cohort selection methods by

comparing their performance at three different operating points. Secondly, we

consider the cohort selection as a combinatorial optimization problem which we

attack by a genetic algorithm. Both the cohort sets and the verification threshold

are jointly optimized to minimize detection cost function (DCF). In this way, we

can estimate a lower bound reachable by the acoustic features and model if the

cohort models would be selected optimally. We also analyze the distances of the

selected cohort models to the target speaker.

The rest of the paper is organized as follows. In Section 2 we review the back-

ground of GMM-based speaker verification. In Section 3 we define the optimiza-

tion problem and formula the GA for solving it. Section 4 includes experiments

and discussion. Finally, conclusions are drawn in Section 5.
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2 Verification Background

2.1 GMM Speaker Modeling

The state-of-the-practise text-independent speaker model is the Gaussian mixture

model (GMM) [13, 5]. GMM is well-suited for modeling of short-term spectral

features like mel-frequency cepstral coefficients (MFCC) and linear predictive

cepstral coefficients (LPCC) (see [14]), possibly appended with the corresponding

dynamic features [15, 16].

A GMM of speaker i, denoted as R(i), consists of a linear mixture of K

Gaussian components. Its density function is

p(x|R(i)) =
K∑

k=1

P
(i)
k N (x|µ(i)

k ,Σ(i)
k ), (1)

where N (x|µ(i)
k ,Σ(i)

k ) denotes multivariate Gaussian density function with mean

vector µ
(i)
k and covariance matrix Σ(i)

k . P
(i)
k are the component prior probabilities

(mixing weights) and they are constrained by P
(i)
k ≥ 0,

∑K
k=1 P

(i)
k = 1.

Assuming independent and identically distributed (i.i.d.) observations X =

{x1, . . . ,xT }, the likelihood given a GMM R(i) is

p(X|R(i)) =
T∏

t=1

p(xt|R(i)) =
T∏

t=1

K∑

k=1

P
(i)
k N (xt|µ(i)

k ,Σ(i)
k ), (2)

and the log-likelihood is

log p(X|R(i)) =
T∑

t=1

log
K∑

k=1

P
(i)
k N (xt|µ(i)

k ,Σ(i)
k ). (3)

Usually GMM is trained with maximum a posteriori adaptation (MAP) from

a universal background model (UBM) [5]. The UBM is a GMM trained from a

large pool of different speakers and it is supposed to represent the distribution

of speech parameters in general. In this way, the amount of training data can

be small since the parameters are not estimated from scratch. A relevance factor

parameter is used for balancing between the background model and the new data.
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2.2 Bayesian Framework

In speaker verification, we are given an input sample X = {x1, . . . ,xT }, and an

identity claim. The verification is defined as a two-class classification problem

(or hypothesis testing) with the following possible decisions:
{

Accept identity claim, i.e. classify X → Target

Reject identity claim, i.e. classify X → Nontarget.

We set nonnegative decision costs CFR and CFA for the FA and FR error

types. As an example, for a high security system, we might set CFR = 1 and

CFA = 10, i.e. accepting an impostor is ten times more costly than rejecting

a true speaker. According to Bayes’ rule for minimum risk classification [17],

speaker is accepted if

p(X|Target)
p(X|Nontarget)

≥ P (Nontarget)
P (Target)

· CFA

CFR
, (4)

where p(X|·) are the likelihoods and P (·) are the prior probabilities. Notice that

the right hand side of (4) does not depend on X, and therefore, decision rule is

of the form l(X) ≥ Θ, where

l(X) =
p(X|Target)

p(X|Nontarget)
(5)

is the likelihood ratio and Θ is the verification threshold. Equivalently, for the

log likelihood ratio, we accept speaker if

log p(X|Target)− log p(X|Nontarget) ≥ log Θ. (6)

The likelihood ratio concept is intuitively easy to understand: when the evidence

in favor of the target hypothesis is large while the evidence for the nontarget

hypothesis is small, we are confident that the speaker is the one who he claims

to be. On the other hand, when l(X) ¿ 1, we are confident that the speaker is

not the claimed one, and the case l(X) = 1 corresponds to the most uncertain

case (“no decision”).

The likelihood ratio l(X) is called normalized score as it is a relative score

computed by normalizing the target score by the nontarget score. Score nor-

malization is expected to reduce the acoustic mismatch between training and
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testing. When the acoustic conditions change, both the target and nontarget

scores change but the relative score is expected to remain unchanged [18]. The

same idea can be applied to other than likelihood scores. In addition to cohort

and world modeling approaches, the scores can be normalized using impostor

score distribution mean and variance [2, 4]. Some of the various background

normalization methods have been compared experimentally in [19, 20, 10, 21].

2.3 World and Cohort Normalization

In the world modeling (UBM) approach, nontarget likelihood is computed using

a single world model p(X|RUBM). Thus, the log likelihood ratio for speaker i is

simply

log l(X) = log p(X|R(i))− log p(X|RUBM). (7)

In the cohort approach, each speaker has a set of personal cohort1 models which

we index by Ci. In addition to the target likelihood p(X|R(i)), we have the

cohort likelihoods p(X|R(j)), where j ∈ Ci. The nontarget likelihood can be

approximated by applying geometric mean [7], arithmetic mean [3] or maximum

[18] to the cohort likelihoods. For cohort size M = |Ci|, the log likelihood ratios

for these are given respectively by

log l(X) = log p(X|R(i))− 1
M

∑

j∈Ci

log p(X|R(j)) (8)

log l(X) = log p(X|R(i))− log
1
M

∑

j∈Ci

p(X|R(j)) (9)

log l(X) = log p(X|R(i))−max
j∈Ci

log p(X|R(j)). (10)

Different normalization approaches have been proposed e.g. in [22, 23, 24].

The world model approach is more popular because of the following reasons.

Firstly, in the MAP adaptation [5], the world model is needed anyway, so it in-

tegrates into the GMM framework naturally without extra storage requirements.
1According to Oxford English Dictionary, cohort was a body of infantry in the Roman army,

of which there were ten in a legion, each consisting of from 300 to 600 men. In demography,

cohort refers to a group of persons having a common statistical characteristic, for instance, being

born in the same year.
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Figure 2: Problem of redundant cohort models.

Secondly, there is no ambiguity in defining the normalized score, whereas the

cohort approach requires selection of the cohort speakers and fixing both the

normalization formula and the cohort size. However, the cohort approach is intu-

itively reasonable, and because of the flexibility, it is potentially more accurate.

2.4 Cohort Selection

A large number of cohort selection methods have been proposed [6, 3, 7, 8, 25, 9, 4,

26, 10, 11]. Closest speakers to the target are the most competitive ones, and they

are good candidates for the cohort speakers. This approach [6, 25, 8, 27, 4, 21] is

the most commonly used one, and will referred here to as the closest impostors

(CI) method. One problem with this approach is that it prepares for impostor

attacks only against “similar” speakers. However, if the impostor is dissimilar

(e.g. another gender), the data will be in the tails of both target and nontarget

distributions, giving rise to poorly estimated likelihood ratio [28]. Thus, the

cohort should include models both from close and far from the target [3].

If the cohort size is small, selection of redundant models should be avoided,

see Fig. 2 for an illustration. Approaches presented in [3, 10] prevent adding

redundant models into the cohorts. In both studies, initial cohort candidate set

is first constructed, and the final cohort set is obtained by pruning out similar
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models [3] or by clustering them [10].

Cohort speakers are usually selected in the training phase because of computa-

tional reasons. Unconstrained cohort selection (UCN) that selects the competing

models based on the test utterance likelihood is proposed in [8]. This method is

computationally expensive, but it can be made more efficient by clustering the

test sequence [11]. Usually cohort sets are composed of full speaker models; an

alternative approach has been proposed in [9, 29], in which the impostor model

is built from the individual Gaussian components of different speakers.

In the model selection algorithms, a similarity or distance measure between

two GMMs is needed. Rosenberg et al. [6] propose the following similarity

measure:

s(R(i),R(j)) =
1
2

{
log p(Xi|R(j)) + log p(Xj |R(i))

}
, (11)

where Xi and Xj are the training data used for constructing the models Ri and

Rj , respectively. Reynolds [3] proposes the following divergence-like dissimilarity

measure:

d(R(i),R(j)) = log
p(Xi|R(i))
p(Xi|R(j))

+ log
p(Xj |R(j))
p(Xj |R(i))

. (12)

3 Optimization Framework

We assume that the speaker models R(i), i = 1, . . . , N have already been trained.

In general, these can be other than GMMs since we operate on the score space.

All cohort sets are denoted collectively as C = (C1, . . . , CN ). We consider each

speaker’s model Ri and the cohort models {R(j)|j ∈ Ci} together as a one model,

called the compound model. The compound model for speaker i is denoted as

M(i) = (R(i), {R(j)|j ∈ Ci}), and we will denote the normalized match score as

s(X,M(i)). The task is to optimize the compound models M(i) from the existing

single models so that a cost function is minimized. In a sense, cohort selection

can be seen as discriminative training of speaker models.

3.1 False Acceptance and Rejection

The match score s(X,M(i)) ∈ R is a continuous random variable with an un-

known probability distribution p(s) which can be divided into genuine and im-

8



postor distributions p(s|genuine), p(s|impostor), see upper panel of Fig. 3. These

represent the distributions obtained by matching a random utterance X against

genuine speaker model (the speaker who actually produced X) and someone else’s

model, respectively.

Figure 3: Increasing Θ decreases false acceptances and increases false rejections.

The true distributions p(s|target), p(s|nontarget) are not available, so we need

to estimate them empirically. For this, we use a labeled development set Z =

{(Xj , Yj)|j = 1, 2, . . . , L}, including at least one segment per speaker (L ≥ N).

Here, Xj ’s are the test segments, and Yj ’s are the correct class labels (Yj ∈
{1, . . . , N}).
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First, we define the error counts FRi and FAi for each speaker i as follows:

FRi =
L∑

j=1

I{Yj = i ∧ s(Xj ,Mi) < Θ} (13)

FAi =
L∑

j=1

I{Yj 6= i ∧ s(Xj ,Mi) ≥ Θ}, (14)

where I{A} = 1, if proposition A is true and 0 otherwise. False rejection rate

(FRR) and false acceptance rate (FAR) can now be calculated as

FRR(C, Θ) =
1

N · L
N∑

i=1

FR(Ci, Θ) (15)

FAR(C, Θ) =
1

N · L
N∑

i=1

FA(Ci, Θ), (16)

where we used the notation to emphasize their dependence on both the cohort

sets and the verification threshold Θ. Because the errors depend on both, they

should be jointly optimized.

By keeping the cohort sets fixed and sweeping the verification threshold over

the real line, we can calculate FRR and FAR at every threshold. By plotting

FRR as a function of FAR, we get a curve that shows the trade-off between the

two error types. On the other hand, by varying the cohort sets, we get different

score distributions. Again, we get a new error trade-off curve by sweeping the

threshold over the real line. Each point at each curve corresponds to a certain

(C,Θ) pair, and the error values FRR(C,Θ), FAR(C, Θ) for this pair are known.

The optimization task can be formulated as finding the pair (C,Θ) for which an

objective function depending on FRR and FAR is minimized.

3.2 Detection Cost Function

Decreased FAR implies increased FRR, and vice versa. In most applications,

either one of the error types can be considered more costly than the other one.

Following the detection cost function (DCF) defined by NIST [30], we define the

optimization problem as finding (C,Θ) for which the weighted sum of errors is
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xy-plane.

minimized:

min
(C,Θ)

{
γ · FRR(C, Θ) + (1− γ) · FAR(C, Θ)

}
, (17)

where 0 < γ < 1 is a design parameter controlling the tradeoff between the errors.

An illustration of the cost function is shown in Fig. 4.

Since the cohort sets Ci do not depend on each other, the cost function can

be written as a sum of cost functions over different speakers:

min
(C,Θ)

N∑

i=1

{
γ · FR(Ci, Θ) + (1− γ) · FA(Ci,Θ)

}
(18)

We can separate C and Θ by defining the optimal threshold Θ∗(C) for a given C
as

Θ∗(C) = arg min
Θ

N∑

i=1

{
γ · FR(Ci, Θ) + (1− γ) · FA(Ci,Θ)

}
, (19)

which can be found by linear search by sweeping Θ over the genuine and impostor

score distributions. The optimization problem becomes

min
C

N∑

i=1

{
γ · FR

(
Ci,Θ∗(C)

)
+ (1− γ) · FA

(
Ci, Θ∗(C)

)}
. (20)
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Figure 5: Basic data structures in the GA-based cohort optimization.

3.3 Genetic Algorithm for Minimizing DCF

Brute force optimization requires evaluating an exponential number of cohort

sets and is out of question. We use a genetic algorithm (GA) [31] to minimize

DCF. We maintain a separate population for each speaker, see Fig. 5 for the data

structures. Individuals are integer vectors of dimensionality M (cohort size). The

jth individual for speaker i is denoted as Cj
i .

Pseudocode for the GA is given in Algorithm 1. Initialization is done by

selecting M disjoint random integers as the individuals. New candidates are

generated using crossover and mutation operators, which doubles the sizes of

the cohort populations. Next, we compute the normalized match scores using a

labeled tuning set Z.

Since computation of the fitness values DCF(Cj
i , Θ) requires the common

threshold, we must pool together all genuine and impostor trial scores over all

speakers and cohorts. In practise, we use histograms for reducing the number op-

12



Algorithm 1 Outline of the GA-based cohort optimization.
P ← InitializePopulations() ;

for g = 1, 2, . . . ,NumGenerations do

Pcand ← GenerateNewCandidates(P) ;

(G,I) ← ComputeNormalizedScores(R,P ∪ Pcand,Z);
Θopt ← ComputeOptimalThreshold(G,I,CFA, CFR) ;

F ← ComputeDCFValues(G,I,Θopt) ;

(P,F) ← SelectSurvivors(P ∪ Pcand,F) ;

end for

return (P,Θopt) ;

erating points before pooling. As a result, we have the genuine and impostor trial

score distributions (G, I). Using these, we find the optimal threshold as (19). After

the threshold Θ∗(C) is found, the fitness values are calculated as DCF(Cj
i , Θ).

New candidates are generated by pairing the vectors randomly and performing

crossover. The parents and the offspring are pooled, and for the pooled popula-

tion, every vector is mutated with a probability Pm. Crossover is implemented

by duplicating the parent vectors into the offspring vectors and swapping their

elements with probability Pc. In mutation, we replace a randomly selected index

by a random number.

For selection, we sort the vectors according to their fitness (DCF) values.

The best individual (smallest DCF) is always selected to the next generation.

For the remaining ones, we compare successive pairs, and select the better one.

The worst individual dies out.

4 Experiments

4.1 Corpus, Feature Extraction, and Modeling

For the experiments, we use the male subset of NIST 1999 Speaker Recognition

Evaluation corpus [32]. Both the “a” and “b” files are used for training the 64

component diagonal covariance GMMs, whereas the 1-speaker male test segments

are used as the tuning set Z for the cohorts.

In the current implementation, we use a simple MFCC front end without
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Table 1: Summary of the corpus.
Language English
Speakers 207
Speech type Conversational
Quality Telephone
Sampling rate 8.0 kHz
Quantization 8-bit µ-law
Training speech (avg.) 119.0 sec.
Evaluation speech (avg.) 30.4 sec.

channel normalization, so we decided to restrict the experiments to matched

telephone lines case. There are 230 male speakers in total, and from these 207

fulfill the matched telephone line case.

The UBM is trained by using all the two-speaker detection task files from the

same corpus, including both males and females. From this, speaker-depended

GMMs are derived by adapting the mean vectors using the MAP procedure [5].

MFCC features are computed from Hamming-windowed and pre-emphasized 30

ms frame with 10 ms overlap. We retain the 12 lowest MFCC coefficinets (ex-

cluding c0) from the log-compressed 27-channel filterbank outputs using DCT.

Throughout the experiments, we consider three operating points correspond-

ing to the following application scenario:

• Secure scenario (low FAR)

• 50-50 scenario (low EER)

• User-convenient (low FRR)

For the secure scenario, we require false acceptance rate to be at most 3 %, and

compare the obtained FRRs for different approaches. Similarly, for the user-

convenient scenario, we require the FRR to be at most 3 % and compare the

obtained FARs.
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Figure 6: The effect of the normalization formula and cohort size (randomly

selected cohorts, averaged DET curves for 100 repetitions).

4.2 Normalization Formula

First, we study the behavior of the normalization formulae (8)-(10), with the

focus on their robustness. For this, we select the cohort models randomly and
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Table 2: Standard deviations of errors using random cohort (100 repetitions).
Secure 50-50 User convenient

FRR @ FAR = 3 % EER FAR @ FRR = 3 %
Cohort size 5 10 20 5 10 20 5 10 20
Geometric mean 3.9 3.1 2.9 1.0 0.8 0.8 9.1 8.8 8.7
Arithmetic mean 3.8 2.4 1.7 0.9 0.6 0.7 9.6 8.2 8.3
Maximum 3.6 3.0 4.6 1.8 1.0 0.6 10.0 9.9 9.3

repeat the procedure 100 times. In this way, we get an idea about the average

performance and variance. The average detection error tradeoff (DET) curves [33]

for the three normalization methods are shown in Fig. 6 for different cohort sizes.

For comparative purposes, we also show the baseline (no score normalization) and

the case where all speakers are included in the cohort. Table 2 shows the standard

deviations for the three application scenarios and cohort sizes M = 5, 10, 20.

We observe that increasing the cohort size improves accuracy for all methods,

except for cohort size M = 1, for which the baseline gives similar or better

results. However, the performance increases rapidly with increasing cohort size

in both “secure” and “user-convenient” ends of the curve for all three methods.

Increased cohort size reduces also variance, which is due to the fact that larger

cohorts include more and more tge same models as the models are selected among

the targets.

Regarding the three methods, the ordering is consistent: geometric mean

performs the worst and maximum the best on average. However, the variance

of the arithmetic mean is smallest, and thus it is expected to be most robust.

Because of larger variance, we expect that the geometric mean and maximum

methods require more careful selection of the cohort.

Geometric mean and maximum operators are in a sense opposites to each

other. Geometric mean gives high nontarget score if the test data yields high like-

lihood for all cohort models (“AND” operator). In contrast, maximum method

indicates high nontarget score if there is a single cohort model that has high like-

lihood (“OR” operator). The arithmetic mean is in between the two extremes,

and all the three formulae are special cases of generalized mean [34].

Even though performance increases with the cohort size, it must be remem-
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Figure 7: Examples of DET curves obtained by GA (arithmetic mean, cohort

size M = 5).

bered that large cohort size implies a large number of likelihood calculations

and it becomes computationally unfeasible. For this reason, we are interested in

smaller cohort sizes.

Table 3: Verification thresholds optimized by GA (log likelihood ratio domain).
Secure 50-50 User convenient
γ = 0.1 γ = 0.5 γ = 0.9

Cohort size 5 10 20 5 10 20 5 10 20
Geometric mean 1.37 1.39 1.4 0.89 0.95 0.97 0.27 0.37 0.42
Arithmetic mean 1.09 1.11 1.11 0.73 0.75 0.77 0.12 0.19 0.21
Maximum 0.56 0.41 0.27 0.25 0.00 0.00 -0.35 -0.50 -0.64
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Table 4: Results for geometric mean normalization.
Secure 50-50 User-convenient

FRR @ FAR = 3 % EER FAR @ FRR = 3 %
Baseline 69.4 20.2 56.1
UBM 17.2 8.4 45.8
Cohort size 5 10 20 5 10 20 5 10 20
Random 38.6 29.6 24.3 12.1 10.5 9.7 45.9 43.2 43.5
CI 20.8 16.7 14.8 9.7 8.1 7.7 41.6 31.6 39.5
MSC 20.7 16.6 14.5 9.2 8.3 7.9 42.6 36.6 35.5
MSCF 34.7 32.1 27.2 12.1 11.0 10.3 49.3 52.7 50.3
UCN 60.9 55.4 47.8 17.6 15.8 14.6 52.7 50.2 44.7
GA reference 3.7 2.6 4.3 3.1 2.8 3.1 13.4 5.0 19.1

Table 5: Results for arithmetic mean normalization.
Secure 50-50 User-convenient

FRR @ FAR = 3 % EER FAR @ FRR = 3 %
Baseline 69.4 20.2 56.1
UBM 17.2 8.4 45.8
Cohort size 5 10 20 5 10 20 5 10 20
Random 27.3 18.5 14.8 10.1 8.9 8.3 44.2 41.9 40.6
CI 17.5 13.6 11.3 8.8 7.8 7.4 40.8 36.4 40.1
MSC 15.1 11.4 10.2 8.1 7.9 7.2 41.1 35.4 32.8
MSCF 18.4 13.2 11.1 9.2 8.0 7.9 43.2 48.2 49.3
UCN 56.1 48.8 39.5 15.9 14.3 12.7 51.1 49.0 48.7
GA reference 3.9 2.6 4.0 3.1 2.7 4.0 12.0 2.7 30.2

4.3 Selection Algorithms

Next, we compare the following heuristic approaches:

Random Random cohort
CI Closest impostors selected using (12)
MSC Maximally spread close [3]
MSCF Maximally spread close + far [3]
UCN Unconstrained cohort normalization [8]

Genetic algorithm is optimized for the test data, and its purpose is to provide

a lower bound to the error rates reachable by MFCC/GMM combination. It
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Table 6: Results for maximum normalization.
Secure 50-50 User-convenient

FRR @ FAR = 3 % EER FAR @ FRR = 3 %
Baseline 69.4 20.2 56.1
UBM 17.2 8.4 45.8
Cohort size 5 10 20 5 10 20 5 10 20
Random 24.7 18.4 19.9 10.9 9.0 7.9 44.9 43.3 44.1
CI 13.9 11.7 10.4 9.2 8.3 7.7 42.8 40.8 49.4
MSC 13.8 11.8 10.8 8.9 8.6 7.9 40.5 51.5 49.5
MSCF 19.4 14.1 11.7 9.9 8.8 8.6 42.2 50.5 58.4
UCN 50.4 39.6 29.0 14.5 14.0 11.3 51.2 46.4 48.0
GA reference 2.8 2.0 3.6 2.9 2.2 3.6 2.9 5.3 24.8

presents an “oracle selection” scheme - the oracle knows exactly what the targets

are going to say during verification trial and selects the optimal cohorts for future.

GA finds a single operating point from the error tradeoff curve and is subop-

timal in the other regions, see Fig. 7. Examples of thresholds optimized found by

GA are listed in Table 3. It can be observed that the threshold increases when

moving towards secure applications, which is expected.

The “corner” points in Fig. 7 are the minimum cost function operating points.

We set γ = 0.1, γ = 0.5, and γ = 0.9 for the secure, 50-50, and the user-

convenient scenarios, respectively. After preliminary experimentation, we fixed

the GA parameters as follows: population size 100, the number of generations

500, mutation probability 0.01, and crossover probability 0.5.

The results for the three normalization methods are given in Tables 4-6. The

results for baseline (no score normalization) and the UBM [5] are also shown as

a reference. Several observations can be made. Firstly, arithmetic mean and

maximum are more accurate than geometric mean. Secondly, comparing the

heuristic methods, CI, MSC and MSCF are similar in performance, whereas UCN

is worse. Thirdly, comparing the cohort and UBM approaches, UBM outperforms

random cohort, MSCF and UCN in most cases, whereas CI and MSC outperform

UBM.

Some interesting observations can be made regarding the application scenario

and UBM versus cohort approaches. In the 50-50 case, the differences are small
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between the methods. However, in the secure and user-convenient scenario, the

cohort approach clearly outperforms UBM. In the secure end, UBM reaches an

FRR of 17.2 %, whereas the best heuristic cohort selection method reaches 10.2

% (MSC with arithmetic mean, cohort size 20). In the user-convenient end,

UBM reaches a FAR of 45.8 %, whereas the best heuristic cohort method reaches

31.6 % (CI with geometric mean, cohort size 10). These observations stress the

importance of comparing methods using not only on the EER operating point

which is an arbitrary choice.

The reference performance given by GA shows that there is much room to

improve cohort selection algorithms. In particular, all the studied methods are

poor at the user-convenient end. The GA suggests that it would be possible to

reach a FAR of 2.7 % at FRR = 3.0 % if the cohorts were selected optimally.

The best heuristic reaches as poor as 31.6 % FAR, an order of magnitude worse

than GA suggests. Notice however that for GA, increased cohort size reduces the

performance, which is contradictory to the results for the heuristic methods. A

possible explanation for this is that the parameter space is larger for increased

cohort size and GA might not have converged yet. We did not make further

attempts in optimizing the number of generations as the simulations take rather

long time.

4.4 Analysis of Selected Cohorts

Next, we analyze the cohort sets selected by the genetic algorithm, with the hope

to gain understanding on the selection procedure. The GA was optimized for the

test data, and now we are interested to see if optimal selection could be predicted

from the training conditions only. We use the distance (12) for analyzing the

model proximities. We also experimented with the similarity measure (11), and

the results were similar.

The distribution of means and standard deviations of the distances from the

target to his cohort models are shown in Fig. 8 for the arithmetic mean method

and cohort size M = 20. The CI, MSC and MSCF are also shown for compari-

son. We make the following observations. Regarding the distribution of means,

the models selected using CI and MSC are closer to target models than for other
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methods as expected. The models selected using MSCF are further away, and the

GA selected models in between. The order of the standard deviations is the same,

and holds for all the three application scenarios. These observations suggest that

the optimal cohort should contain not “too close” or “too far” models but some-

thing in between. Similarly, the optimal cohort should not be too concentrated

or too spread but something in between.
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Figure 8: Distributions of mean and standard deviation of cohort model distances

from the target.

Table 7: Number of cases (%) where speaker belongs to his own cohort
Secure 50-50 User convenient
γ = 0.1 γ = 0.5 γ = 0.9

Cohort size 5 10 20 5 10 20 5 10 20
Geometric mean 11.0 20.0 24.0 25.0 38.0 46.0 86.0 74.0 74.0
Arithmetic mean 19.0 33.0 48.0 49.0 66.0 76.0 93.0 95.0 95.0
Maximum 0.00 0.00 0.48 0.00 99.0 99.5 95.0 95.0 97.0

According to Fig. 8, in user-convenient scenario, the cohort models should

be selected closer to the target than in the secure scenario. Table 7 gives further

evidence of this by showing the the number of cases, in which speaker belongs to

his own cohort. We observe that in the user-convenient scenario, speaker belongs

to his own cohort in 74 % - 97 % of the cases, and the number decreases when
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moving towards the secure end.

This result might seem counterintuitive at the first glance. In a user-

convenient application, it is important that the correct speaker is not rejected;

thus, it seems logical to assume that competing models should not be located

“too close” to the target. However, by including close models to the cohort, the

denominator of the LR will be accurately presented when a genuine speaker is

present (likelihood of X for both target and cohorts is accurately computed). In

the extreme case of cohort size M = 1 and speaker in his own cohort, LR for a

genuine speaker will be always close to 1 and the threshold is set easily around

this value by GA (see Table 3).

By excluding the target from his cohort in the secure scenario, the score for

a genuine speaker will be in general larger, which has the effect of shifting the

genuine distribution right. On the other hand, (casual) impostor data is far

away from the target model in general, and it does not matter if the target is

included in the denominator or not - the impostor data will far away from the

target model and not be affected by it much. Thus, the impostor distribution

will be relatively unchanged regardless of whether target is or is not included in

the cohort. Because the genuine distribution shifts up, the distributions will be

better separated.

In conclusion, the effect of including target in his own cohort in a user-

convenient application makes the genuine distribution centered around LR = 1,

and setting of threshold is easier. In the secure application, leaving the speaker

out from the cohort has the effect of shifting genuine distribution right while

retaining impostor distribution relatively unchanged.

5 Discussion and Conclusions

We have presented a step towards non-heuristic cohort selection based on min-
imizing a detection cost function. We find the following observations the most
interesting ones:

1. UBM and cohort approaches perform similar in 50-50 and user-convenient
scenario, whereas cohort is clearly better in the secure scenario.

2. There is lots of room for studying score normalization, especially in the
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user-convenient end of the DET curve. The results of GA suggest that
the MFCC features can reach both low FAR and FRR if the cohorts are
well-selected.

The experiments suggest the following design rules for the cohort normalization
approach:

1. Randomly selected cohort is better than no cohort. In this case, the cohort
size should be as large as possible.

2. In general, larger cohort is better because it reduces the variance of the
nontarget scores.

3. Arithmetic mean normalization is most robust and consistent over different
selection methods, and we recommend to use it by default.

4. Maximum normalization has the best potential according to the GA refer-
ence, but the difference with the arithmetic mean is not large.

5. Of the heuristic methods compared, CI and MSC are both good choices.

6. In a user-convenient and 50-50 applications, it is advantageous to include
nearby models into the cohort. In particular, the speaker’s own model.

From a practical point of view, we must ask how useful the cohort normalization is

in real applications. Sometimes cohort approach is criticized for its computational

complexity and memory requirements, which is true if cohort size is large or the

cohort models are selected from an external population. However, the results of

GA suggest that good cohorts can be selected among the other registrants; in this

case, we need to store only the lookup tables for the cohort indices in addition

to the models. The results also suggest that small error rates could be reached

if we knew how to select the cohorts; the methodology in this study presents an

“oracle selection” scheme where the oracle knows exactly what the targets are

going to utter during verification trial and selects good cohorts.

We have used GA here merely as an analysis tool. However, it might be used

also as a practical cohort selection method. We believe in its potential, because

it jointly optimizes the cohort sets and the verification threshold; usually these

two are designed independent from each other, although FAR and FRR errors

depend on both of them.

23



To apply GA as a practical cohort selection method, there are two princi-

pal issues that need to be studied. Firstly, as seen from Fig. 7, the algorithm

optimizes a single point on the tradeoff curve. However, from the system adminis-

trator’s perspective, it would be good to have the whole tradeoff curve optimized,

from which the desired optimal threshold can be selected. For this, the objective

function should be modified to minimize the total area under the DET curve for

example. The second challenge relates to computational complexity: the simula-

tions made in this study were time- and memory-consuming.

Finally, we wish to emphasize that the optimization was carried out entirely

in the score space by having fixed acoustic features and models. The result of the

optimization is a set of indices that merely tells against which models the features

are to be matched during the verification process. Similar optimization can be

carried out for any biometric authentication problem, in which severe mismatches

are expected between training and testing.
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[11] T. Kinnunen, E. Karpov, and P. Fränti. Efficient online cohort selection
method for speaker verification. In Proc. Int. Conf. on Spoken Language
Processing (ICSLP 2004), volume 3, pages 2401–2402, Jeju Island, Korea,
2004.

[12] P. Rose. Forensic Speaker Identification. Taylor & Francis, London, 2002.

[13] D.A. Reynolds and R.C. Rose. Robust text-independent speaker identifica-
tion using gaussian mixture speaker models. IEEE Trans. on Speech and
Audio Processing, 3:72–83, 1995.

[14] X. Huang, A. Acero, and H.-W. Hon. Spoken Language Processing: a Guide
to Theory, Algorithm, and System Development. Prentice-Hall, New Jersey,
2001.

[15] S. Furui. Cepstral analysis technique for automatic speaker verification.
IEEE Transactions on Acoustics, Speech and Signal Processing, 29(2):254–
272, 1981.

[16] F.K. Soong and A.E. Rosenberg. On the use of instantaneous and transi-
tional spectral information in speaker recognition. IEEE Trans. on Acoustics,
Speech and Signal Processing, 36(6):871–879, 1988.

[17] R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley Interscience,
New York, second edition, 2000.

[18] A. Higgins, L. Bahler, and J. Porter. Speaker verification using randomized
phrase prompting. Digital Signal Processing, 1:89–106, 1991.

25



[19] D.A. Reynolds. Comparison of background normalization methods for text-
independent speaker verification. In Proc. 5th European Conference on
Speech Communication and Technology (Eurospeech 1997), volume 2, pages
963–966, Rhodes,Greece, 1997.

[20] D. Tran and M. Wagner. Fuzzy C-means clustering-based speaker verifica-
tion. In Proc. Advances in Soft Computing (AFSS 2002), pages 318–324,
Calcutta, India, February 2002.

[21] P. Sivakumaran, J. Fortuna, and A.M. Ariyaeeinia. Score normalization
applied to open-set, text-independent speaker identification. In Proc. 8th
European Conference on Speech Communication and Technology (Eurospeech
2003), pages 2669–2672, Geneva, Switzerland, 2003.

[22] L.F. Lamel and J.L. Gauvain. Speaker verification over the telephone. Speech
Communication, 31:141–154, 2000.

[23] D. Tran and M. Wagner. Noise clustering-based speaker verification. In
Proc. Advances in Soft Computing (AFSS 2002), pages 325–331, Calcutta,
India, February 2002.

[24] K.P. Markov and S. Nakagawa. Text-independent speaker recognition using
non-linear frame likelihood transformation. Speech Communication, 24:193–
209, 1998.

[25] R.A. Finan, A.T. Sapeluk, and R.I. Damper. Impostor cohort selection
for score normalization in speaker verification. Pattern Recognition Letters,
18:881–888, 1997.

[26] N. Mirghafori and L. Heck. An adaptive speaker verification system with
speaker dependent a priori decision thresholds. In Proc. Int. Conf. on Spoken
Language Processing (ICSLP 2002), pages 589–592, Denver, Colorado, USA,
2002.

[27] T. Pham and M. Wagner. Fuzzy-integration based normalization for speaker
verification. In Proc. Int. Conf. on Spoken Language Processing (ICSLP
1998), pages 3273–3276, Sydney, Australia, 1998.

[28] S. Furui. Recent advances in speaker recognition. Pattern Recognition Let-
ters, 18(9):859–872, 1997.

[29] T. Isobe and J. Takahashi. A new cohort normalization using local acoustic
information for speaker verification. In Proc. Int. Conf. on Acoustics, Speech,
and Signal Processing (ICASSP 1999), volume 2, pages 841–844, Phoenix,
Arizona, USA, 1999.

26



[30] M. Przybocki and A. Martin. NIST speaker recognition evaluation chroni-
cles. In Proc. Speaker Odyssey: the Speaker Recognition Workshop (Odyssey
2004), pages 15–22, Toledo, Spain, 2004.

[31] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Pro-
grams. Springer Verlag, Berlin, 3rd revised and extended edition edition,
1996.

[32] A. Martin and M. Przybocki. The NIST 1999 speaker recognition evaluation
- an overview. Digital Signal Processing, 10:1–18, 2000.

[33] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki.
The DET curve in assessment of detection task performance. In Proc. 5th
European Conference on Speech Communication and Technology (Eurospeech
1997), pages 1895–1898, Rhodes,Greece, 1997.

[34] L.I.Kuncheva. Fuzzy Classifier Design. Physica Verlag, Heidelberg, 2000.

27



 



Dissertations at the Department of Computer Science

Rask, Raimo. Automating Estimation of Software Size during the Re-
quirements Specification Phase - Application of Albrecth’s Function Point
Analysis Within Structured Methods. Joensuun yliopiston luonnontieteel-
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