
2  Vectorization

2.1  Introduction 

2.1.1  Problem formulation

Vectorization (raster-to-vector conversion) consists of analyzing a raster image to
convert its pixels representation to a vector representation The basic assumption is
that such a vector representation is more suitable for further interpretation of the
image; this typically holds for a scanned graphical documents (maps, schemes,
drawings). The topic was in focus for the last 30 years, for more details see the
books [3, 39, 130, 131, 184, 267], PhD Dissertations [123, 158, 177, 252, 271, 310],
surveys [129, 128, 287, 266] and publications [2, 183, 219, 253-255]. 

The procedure of raster-to-vector conversion can be divided into three main
stages: pre-processing, processing, and post-processing (see Fig. 2.1.1). 

Figure 2.1.1. Three stages of raster-to-vector conversion.

2.1.2  Preprocessing 

The purpose of the stage is to prepare the input raster image for processing
(vectorization) at the next stage. Grayscale image should be binarized, grayscale or



binary image can be filtered for noise reduction, and color image has to be
represented by monochrome layers (see Fig. 2.1.2). The type of pre-processing
algorithm is defined by the type and quality of the input image. 

Figure 2.1.2: Illustration of raster image binarization: a) input halftone image; b) binary
image after thresholding of the input image.

We developed locally adaptive thresholding algorithm for binarization of large
images [P1]. We also studied problem of noise filtration of binary noise in
application to compression [P2].

2.1.3  Processing (vectorization) 

Conversion of the raster binary image to vector form is performed at this stage.
Output data of the stage is vector presentation of the input binary image. There are
six basic approaches for vectorization of binary image:

1) Thinning-based methods [123]; 

2) Contour-based methods [109];

3) Graph-structure based methods [164, 177]; 

4) Sparse pixel tracking methods [47, 66]; 

5) RLE-based methods [168, 191, 200];

6) Orthogonal zig-zag method [36, 65]. 

Every method has advantages and drawbacks. The skeleton-based methods have
good results, but tend to be very sensitive to noise. Contour-based methods are more
noise-tolerant but they rely on heuristic and complex matching schemes. Correct
choice of method is defined by data type (maps, drawings, schemes), and practical
goals. For example, for 2-dimensional object vectorization the contour-based
methods are more relevant, but for elongated objects the thinning-based approach
seems to be reasonable. 



We use vectorization method based on thinning algorithm [P1, P3]. The
procedure consists of three steps (see Fig. 2.1.3): 

1) Binary image skeletonization by Distance Transform based thinning; 

2) Tracking of skeletal branches to get chain coded digitized curves;

3) Primary vectorization of the digitized curves. 

The primary vectorization can be performed with zero or non-zero
approximation error. In the first case the chain code data are converted into
segments of digital line in O(N) time [12]. The primary vectorization can be
performed with polygonal approximation with error tolerance defined by width of
the curve [P5].

2.1.4  Postprocessing 

The main goal of this stage is vector data analysis and interpretation. The purposes
of this step are following: a) removing noise from the vector model; b) object
recognition; c) recovering entities from vector data (object vectorization). 

Usually the algorithms for vector data interpretation are based on domain
knowledge [1, 271, 152, 252-255]. The main purpose of the developed system [P1]
was to reduce the number of manual operations required for inputting the graphic
data into a computer, leaving the editing of the resulting vector representation for an
operator. To reduce processing time for large images the obtained vector data were
presented as AVL-tree. The employed model ensures a fast and simple access to the
vector data for further analysis. The analysis of vector data includes the following
procedures: gaps filling, vectors classification, false branches elimination, right
corners rectification [P1] and vector data simplification by polygonal approximation
[P5, P6].

a)



b)

c)

Figure 2.1.3. Illustration of primary vectorization of elevation map (fragment): a) raster
image; b) skeleton of the raster image; c) primary approximation of the skeleton with error
tolerance ε=0.99. Vectors are labeled with dots.

2.1.5  Proposed improvements

The purpose of the study is realization of raster-to-vector conversion system. Special
attention was paid to development of efficient algorithms for processing of large size
images. We have concentrated on the following low-level processing algorithms: 

a) Binarization of large images [P1];

b) Thinning of large images [P3];

c) Binary noise filtration [P2];

d) Analysis of vector data [P1];

e) Polygonal approximation of curves [P4-P7].



In Sections 2.2-2.4, we consider some problems of all stages of raster-to-vector-
conversion: binarization, thinning and binary noise filtering. Correspondent
problems of polygonal approximation will be discussed in details in the Section 3.



2.2  Binarization of large images

2.2.1  Problem formulation

The input gray-scale image has to be binarized before the skeletonization stage. The
purpose of the binarization procedure is to segment the image into background and
object pixels (see Fig.2.2.1). The quality of the skeleton depends on the quality of
the input binary image. 

Figure 2.2.1. The input greyscale image (top); result of binarization with locally adaptive
threshold (bottom).

The binarization of greyscale image can be performed by thresholding with
some threshold T. If pixel value p(x, y) is less than the threshold T, the pixel belongs
to background, and thresholded pixel value will be ‘0’, otherwise the pixel belongs
to an object and value ‘1’ will be assigned to the pixel. 

In global thresholding, the same threshold value is applied to every pixel of the
input image. In practice, because of non-uniformity of the background in the input
image, the thresholding with global threshold provides poor result. In this case, local
thresholding with threshold adjusted to the local properties of the image should be
applied to obtain more reliable binary image (see Fig. 2.2.1). For this purpose, the
input is divided into a rectangular blocks, and each of them is processed with
adaptive threshold defined by the statistical properties of the block (see Fig. 2.2.2). 



There is a lot of algorithms for threshold calculation based on different
approaches [288, 185, 229, 74, 262, 154, 90, 186, 272, 273, 124, 3]. We have used
Otsu’s algorithm [185], which is based on clustering of gray-level histogram by
maximization of between-class variance. The method has shown good results for the
test images in use. 

Figure 2.2.2. An example of input image thresholding: 60×60 block of greyscale image
(left); result of binarization with threshold T=147 calculated by Otsu’s method (center);
histogram of the block (right). Threshold is shown by dashed line.

2.2.2 Locally adaptive binarization 

Calculation of the locally adaptive threshold is based on information collected in a
window surrounding the pixel to be processed [174, 28, 75, 239, 240]. 

In our study we considered the case of binarization of scanned maps and
drawings under assumptions that quality is satisfactory and illumination over the
image is smooth (quasi-linear linear) (see Fig. 2.2.1). The main attention was paid to
development of algorithm for binarization of large size images. The term “large size
image” means that the size of the image exceeds size of available computer memory. 

To achieve this goal, we, first apply locally adaptive thresholding technique, and
then perform the binarization of large image in file-to-file manner without keeping
the whole image in memory. The input image is sequentially loaded and processed
in stripe-by-stripe way so that partition of the image for loading and processing does
not depend on the partition of the image for the analysis. 

The developed algorithm consists of two steps: a) collecting and analysis of the
histogram data, b) thresholding the image. 

a) Collecting and analysis of the histogram data



The input image is processed fragment-by-fragment to collect histogram for the
blocks. Histograms are collected for all blocks. If block contains objects, threshold is
calculated for the block, otherwise the block is treated as empty. To improve the
balance between object and background pixels in histogram we eliminate pixel from
consideration when Laplacian L(x, y) is below a certain threshold [289]. In this way,
most of the background points will be excluded from histogram, while most of the
object points will be kept in the histogram (see Figs. 2.2.3 and 2.2.4). Of course,
mostly the noisy background points do contribution to the modified histogram.
Nevertheless, usually these points belong to the background, so they can be treated
as quite representative pixels for threshold calculation. 

Analysis of the block histogram is performed to classify the block either as
empty or non-empty. If block contains both background and object pixels, the
histogram is expected to be wider than those of the blocks with background pixels
only. So, if histogram width of a block is smaller than threshold WH, the block is
treated as empty without any object points. For empty blocks we get a preliminary
threshold T0(i, j) from the nearest non-empty neighbours. If some non-empty block
was classified as empty, it will be provided with threshold value from the nearest
non-empty blocks. For non-empty fragments we calculate the preliminary threshold
T0(i, j) by Otsu’s method [185] from the block histogram. 

We calculate threshold T1(i, j) for blocks as average of the preliminary thresholds
T0(i, j) of their eight neighbours. If some empty block was erroneously classified as
non-empty one with wrong preliminary threshold, this operation can correct the final
threshold for the block. Taking into consideration that histogram of background
pixels is relatively narrow, even a small shift down of the threshold gives correct
thresholding of the block. 



Figure 2.2.3. Thresholding of a block with a small object: block of the input greyscale
image (left); result of binarization (center) with threshold T0=132 calculated from histogram
of the block (right). Threshold in histogram is labeled by dashed line.  

Figure 2.2.4. Thresholding of block with a small object: the masked block of the input
greyscale image, defined for Laplacian threshold L1=25 (left); result of binarization (center)
with threshold T1=104 calculated from histogram of the masked block (right). The masked
pixels are shown as white. Threshold in histogram is shown by dashed line. 

b) Image thresholding 

The input image is thresholded using the calculated 2D array of thresholds T1(i, j)
for blocks. The local threshold TL(x, y) for point (x, y) is computed as bilinear
approximation of thresholds T1(i, j) for four neighbouring blocks (see Fig. 2.2.5). 



Figure 2.2.5: Scheme of four neighbouring blocks for computation of the local threshold
TL(x, y) with bilinear interpolation.

2.2.3  Summary

The designed scheme for locally adaptive binarization of large grayscale images has
been tested with grayscale images acquired by scanner of projective type. The
provided tests have shown high efficiency of the algorithm for grayscale images
with quasi-linear non-uniformity of background illumination. 



2.3  Thinning algorithm for large binary images

The skeleton of a binary object is a shape descriptor, which can be regarded as a
convenient alternative of the elongated object itself [195]. Thinning a binary image
down to its skeleton allows one to transform the image into a line drawing, which
still contains the relevant information (see Fig. 2.3.1). For many applications such
transformation is very useful, because it reduces drastically the amount of data to be
handled, and simplifies computation procedures required for description and
classification purposes. 

Figure 2.3.1: The input binary image (left) and the thinned image (right).

The skeletonization (thinning) process can be seen as an isotropic retraction of
the original object, down to its unit width subset. This subset is placed in the medial
region of the object, has the same topology, and allows the evaluation of the spatial
dimensions as well as orientation of the object. The skeleton can be obtained by
thinning of the binary object in two ways: 

a) Algorithm based on morphological thinning that preserve homotopy
(iterative peeling);

b) Algorithm based on Distance Transform (DT) that preserve reversibility.

2.3.1  Iterative peeling algorithms 

The skeleton of an image is built by iteratively peeling off the boundary pixels until
only no erasable pixels remain in the image [13, 160, 161, 163, 201]. Number of



runs for this method is equal to half-width of the object. The iterative thinning
algorithms can be further divided into two categories: sequential and parallel. 

We have to distinguish difference between parallel or sequential algorithm and
parallel or sequential realization of the algorithm. The terms “sequential realization”
or “parallel realization” are related to practical implementation of thinning algorithm
with sequential or parallel machines, whereas the terms “sequential algorithm” or
“parallel algorithm” specify the main principle of raster data processing. 

Sequential algorithms examine contour points for deletion by either a) raster
scanning, or b) contour following algorithms. In sequential algorithm result of
processing for the current pixel depends on the results for already processed points
in the current point neighbourhood. Usually the thinning is performed by sequential
scanning with window of 3×3 size [13], or larger [203]. 

In parallel thinning algorithms result for the current pixel is performed
independently on the current states of the neigbouring points and depend only on
results for the previous iteration of thinning applied to the whole image [256, 314,
127, 266, 295, 42, 315]. Parallel algorithms for preserving the connectivity of
skeleton use either larger neighbourhood than 3×3 or use more than one pass over
the image [314, 261, 42, 95, 96].

Sequential and parallel realization of the peeling algorithm

If image file is larger than available memory resources of the ordinary single-
processor machine, the image has to be divided into overlapped fragments of smaller
size and loaded for processing in fragment-by-fragment fashion. Size of the
fragments is defined by size of available memory resource. 

Skeletonization of large images with the iterative algorithm can be a time-
consuming procedure. To reduce processing time for solving practical tasks, parallel
multiprocessor systems or a special hardware are used. The parallel version of the
iterative peeling algorithm for skeletonization is included into so called Cowichan
problem set [291, 292] as benchmark task for parallel programming systems. 

To be processed on distributed-memory multi-processor machines [19, 20, 50,
51, 99, 107, 163, 170, 202, 204, 276, 301-303] image is divided into overlapped
rectangular fragments (blocks). The fragments are distributed among the processors.
After every run the processors exchange data on the border of the fragments (one
line). Number of runs is defined by maximum width of the objects in the image. It
affects in big number of time-consuming data exchange operations between
processors. Exist a number of massively-parallel realizations of the peeling



algorithms with O(N)−O(N2) processing elements, here N is size of the image [167,
217, 313, 318]. 

2.3.2  Distance-transform based methods 

The alternative method is to first calculate the Distance Transform (DT) of the
binary image. Distance Transform is defined for an object point as a distance from
the pixel to the nearest background point [29, 30, 195, 221, 222]. At first Distance
Transform is performed then skeletal points are detected on the DT using some rules
[15, 16, 39, 31, 32, 175, 195, 205, 206, 221, 222, 248, 260, 268]. Choice of the
distance metrics depends on the task to be solved: Euclidean, octagonal, chessboard,
city-block, weighted chamfer. In our application we use chessboard distance
measure for Distance Transform, because it provides undistorted skeleton of
rectangular objects (see Fig. 2.3.2).

Figure 2.3.2: Illustration of skeletons for different distance metrics: a) the test rectangular
shape with lines of width 9; skeleton for b) chessboard, c) Euclidean, and d) city-block
distance metrics. 

Distance transform can be completed in two raster scans through the whole
image a 2×3 window for chessboard and city block DT or bigger one, for example, a
3×5 window for 5-7-11 distance mask [Borgefors’86]. The first scan is carried out in
a top-left to bottom-right direction. During this scan for every pixel in an object the
distance form the top and left object boundary is determined. The second scan in a
vice versa direction determines the distance from every pixel in the object to the
bottom and right boundaries in a similar way. Detection of skeletal points is
performed by means of two subsequent scans through the whole image by a 3×3
window in the same fashion as for the distance transform. One additional scan is
required to reduce two-pixels width skeleton to the unit-width one and to convert a
distance-labeled skeleton into width-labeled one. Thus the image skeletonization can
be accomplished in a sequence of five raster scans through the image. Every
subsequent scan of DT and skeletal point detection is carried out in the direction
opposite to the previous one and requires the complete result from the previous scan. 



Realization of the DT-based algorithm

As we can see, the thinning procedure with DT-based algorithm can be
performed in a fixed number of runs regardless the objects size, but the algorithm
demands sequential processing of the image. There are a number of realizations for
massively-parallel machines, but they demand special hardware with O(N)−O(N2)
processing elements [241, 38, 125, 87, 88, 155, 46]. 

The main problem for realization of DT-based thinning algorithm is processing
of large images. Tombre et al. wrote in [266]: “However, it is difficult to compute
the distance transform without storing the whole image in memory”. Although DT-
based algorithm is faster than peeling procedure, the algorithm was not widely used
in practical applications for processing large images in ordinary single-processor
machines and in parallel multiprocessor systems. 

2.3.3  Fast implementation of the thinning algorithm

The number of different skeletonization algorithms exceeds at least 300 items, for
more details see the comprehensive surveys [3, 148, 149]. In our research, we have
concentrated on efficient implementation of the existed thinning algorithms rather
than on developing new methods for the thinning. The main goal of our studies was
the development of efficient implementation of DT-based skeletonization algorithm,
which is suitable in practice for processing of large input with ordinary single-
processor or parallel multiprocessor machines. The classical DT-based thinning
algorithm of Arcelli and Sanniti di Baja [15] with chessboard distance metrics has
been selected for realization, but the approach can be used for any other DT-based
algorithm with different distance metrics. 

At first, we developed realization of the skeletonization algorithm for sequential
computers as a part of raster-to-vector conversion system [P1, P2]. Later we
extended the approach on the case of parallel multiprocessor systems [P3]. 

In the case of image skeletonization with ordinary single-processor machine the
image file is being read and processed by overlapped blocks (see Fig. 2.3.3). The
loaded current image block is processed in both directions several times according
the skeletonization algorithm in use. When the total processing of the current block
is completed, size δ of the overlapping is defined by the maximum value Dmax of
Distance Transform in the last row: δ = Dmax/2. 



Figure 2.3.3: Scheme of overlapped blocks loading. Size δk of the overlapped zones
depends on thickness of objects at the blocks border and calculated from the distance
transform at the last row in the current block. 

The main idea of the proposed approach is as follows: a) all the necessary
processing operations are performed within one block, and b) size of overlapping is
controlled with DT value to insure the correctness of the procedure. With this
method image of any size can be processed with only one reading of the image file
with minimum overlapping of blocks. 

This approach can be used for processing large images on two-processor
computers with shared memory. In this case processing of every block is performed
simultaneously by the two processors as in [80], but the control of loading is
performed as in [P3].

For realization of the proposed skeletonization algorithm for parallel processing
system we selected distributed-memory Multiple Instructions Multiple Data
(MIMD) model of parallelization [140, 142, P3]. The selected model is more
practical than massively-parallel machine, which demands special hardware with
O(N)−O(N2) processing elements [38, 46, 81, 87, 88, 125, 156, 241]. 

According the computational scheme for parallel processing the image is divided
into blocks, which are distributed among the processors (see Fig.2.3.4). After the
first run the processors exchange data on the border (one line). After the second run
with the correspondent data exchange, an additional short run is performed. The
depth of the third run δ is defined by maximum difference of values of the distance
transform on the border DB(x) and in the received image row (or column) DR(x) from
the neighbouring processor: δ=max{0, (DB(x)−DR(x)/2}, where 1≤x≤size. The
approach allows getting result of skeletonization after fixed number of runs
regardless maximum line width with minimum number of additional operations in
comparison with the case when the whole image is available. 



→

Figure 2.3.4: Scheme of input image partition into rectangular blocks among processors:
input binary image (left), twenty image blocks for 4×5 processor mesh grid (right).

Vossepoel et al. [282] proposed the analogous approach for DT-based thinning
algorithm of large images. But according to their approach depth of the third
(additional) run was fixed: δ=100 pixels. In the case of processing with parallel
system, which is considered in the paper [282], the difference between two
approaches is not crucial, because the total processing time depends on the depth of
the last run about linearly. For the ordinary single-processor machine the
dependence of the processing time on the size of overlapped zone is nonlinear:
T~H/(H−Σδk), where H is the image height and δk is overlapped zone size for kth
block. That is why in this case the processing time is more sensitive to the size of
overlapped zones, especially for very wide input images. With the proposed method
[P3] with control of overlapping size we can reduce time-cost of thinning algorithm
to the minimum. For example, if the maximal width of lines on blocks borders does
not exceed 20, the size of overlapped zone will be about 10 pixels, that it much less
than 100 pixels as in the approach [282]. 

Another method, which has been applied to reduce processing time, was using of
look-up tables for DT-based skeletonization. During scanning procedure 9-bit index
Ik for the current point is computed recursively from the index Ik-1 for the previous
point using three new pixels that just appeared in the 3×3 window. To avoid
redundant computation of the index for background points, using of the recursive
scheme starts with beginning of object pixels run. 

2.3.4  Summary

The developed efficient realization of the skeletonization algorithm for large images
has allowed us to drastically reduce processing time for raster-to-vector conversion
system [P1]. As it was mentioned in [P2], where the vectorization procedure was



used as part of binary image compression scheme, processing time for vectorization
takes only 10% of the total processing time. 



2.4  Vectorization-based binary noise filtering 

Scanned binarized images have a noise which can appear because of low quality of
originals, paper defects, non-optimal threshold setting of binarization process, and
non-uniform illumination. In the case of binary images, the noise appears as content-
dependent, distorting the contours of objects, and as salt-and-pepper additive noise
(randomly scattered noise pixels). The noise level may be low enough not to
significantly detract from the quality, but it introduce unnecessary details that
decrease the analysis or compression of the binary image, and distort the vector
presentation of the binary image. 

Normally the size of noise patterns is less than those of binary objects (lines,
strokes, symbols). Also the objects details are more structured than the noise
patterns. Therefore, noise pixels in the noise patterns are less correlated with
neighbours than pixels of the objects. This correlation is used in most algorithms for
binary image enhancement and noise reduction. 

2.4.1  Survey of solutions

Several approaches for binary noise filtering have been considered by analyzing the
local pixel neighbourhood defined by a filtering template. These filters use a set of
rules to accept or reject the pixel, such as predefined masks or a quantitative
description of the local neighbouring area. 

Recent research in mathematical morphology has shown that morphological
filtering can be used as an efficient tool for pattern restoration in an environment
with a lot of additive noise [69, 70, 102, 159, 242]. 

Jin et al. [126] proposed a new class of morphological operators for binary
images, it is the domain operators. The basic idea is taken from ranked-order filters,
but generalized with the incorporation of the fuzzy index function in weight
representation. Chinnasarn et al. [48] utilized mathematical morphology approach to
modify kFill algorithm of O’Gorman [184]. With the proposed heuristic rules for
image filtering in 3×3 and 4×4 window, they reduced the number of iterations to a
single-pass scan over the image.



Several methods have been considered for image processing by analyzing the
local pixel neighborhood defined by a filtering template. Techniques have been
proposed based on the analysis of context information [199, 208, 317].

Wahl [283] introduced algorithm which operates within 5×5 window. The
objective of the processing is to eliminate noise utilizing four heuristic rules. Model-
based approach for binary noise filtering have also been used [242]. This approach
assumes a specific probabilistic models that describe the behaviour of both signal
and noise patterns, which are elementary geometrical primitives from which the
signal and noise images are constructed. 

The algorithm of Nikiel [176] is based on the calculation of fractal dimension of
binary image in 8×8 sliding window. The filtering is performed in two steps: (1)
extraction and estimation of the fractal dimension, and (2) classification and actual
filtering (noise suppression and solid refinement). 

Ping et al. [199] proposed two algorithms for binary images filtering. The first
algorithm called Modified Directional Morphological Filter (MDMF) is introduced
with dual properties for eliminating document salt-and-pepper noise and for
remedying eroded character stroke distortion. For eliminating larger noise, another
algorithm called Image Geometric Structure Filter (IGSF) is proposed based on the
geometric stroke information of characters. 

Randolph and Smith [208] used a binary angular filter banks for directional
decomposition to enhance fax documents. The filter banks provide representations
that delineate the directional components in the text letters enabling edges and
contours to be smoothed appropriately. 

For the small window size of 3×3, there are 512 unique table entries for binary
image processing, which by itself is quote manageable. With the bigger filtering
window more global information is taken into account, but straightforward using of
larger windows demands more memory resources: 5.0×1014 unique entries in
analysis tables for 7×7 window, which is making the table management
impractical [208]. Following a clustered mapping approach [145] based on PNN
algorithm, an efficient tree structured mapping function can be constructed that
allows all entries to be mapped to a set of weights. 

Ageenko and Fränti [5] proposed two context-based filtering methods, namely
Simple Context Filters and Gain-Loss Filters for the enhancement of document
images. They used the 10- and 20-pixel causal templates from JBIG to collect
statistics during the analyzing phase. Then, in the filtering phase all rare pixels in
low entropy contexts are flipped.  



In [317] morphological degradation model was proposed for binary images.
According the model, the probability of a pixel flipping from foreground to
background, or vice-versa, is an exponential function of its distance from the nearest
boundary point. Based on the model they offered restoration algorithm, which
includes two stages: a training stage to define parameters of the model, and a
restoration stage. The training stage includes joint analysis of degraded and the
correspondent ideal image by computing the conditional distribution between the
noise pattern pairs. 

Fränti et al. [84, 85] used Hough Transform (HT) for extracting vector features
from binary image. A feature image is reconstructed from the extracted linear
segments and it is utilized in the filtering phase. The filtering is based on noise
removal procedure using the original and feature images. The noise-filtering
algorithm was used to improve quality of context-based compression algorithm. The
drawback of this approach is that the HT-based feature extraction phase dominates
the processing time in the compression phase and makes it an order of magnitude
slower than JBIG compression procedure. In practice it means that the feature
extraction phase for 6 test binary images of total size 4 Mb takes about two hours
with Pentium-200 machine. For comparison, the processing time for the
compression phase is 1.5 min only.

2.4.2  Feature-based filtering 

Usually, the noise filtration procedure is a part of the pre-processing stage of
vectorization. We propose to use raster-to-vector conversion of input binary image
for noise removal [P2]. We use the vector presentation to collect information about
pattern structure at the neighbourhood of the pixel to be filtered. With this
information we can smooth the borders of linear elements preserving details of other
objects. The proposed approach is suitable for images that consist mostly of
elongated linear objects (maps, drawings, schemes). 

The main goal of this study is to improve the quality of binary image
compression by noise filtering. The filtering reduces irregularities in the image
caused by noise, and in this way, makes the image more compressible without
degrading the image quality. The process of noise filtration consists of two stages:
extracting of line features, and feature-based filtering. 

In the first stage, global information is gathered from the image by extracting
line features with vectorizing algorithm we introduced in publication P1. According
to the vectorizing algorithm in use, the input binary image is skeletonized and then
vectorized. The reference raster image is restored from the vector presentation by



simple vector-to-raster conversion. In the second stage, the original image is
processed for removing noise along the borders of extracted linear elements utilizing
the original and the reference raster images. 

Table 2.4.1: JBIG compression results [Ageenko’00] for images by feature-based filtering
using Hough transform (HT) and the raster-to-vector conversion (RVC). The compression
improvement is measured in comparison with the unfiltered image.

Input

Image 

Original 

Raster image

 (bytes)

Without 

Filtering

(bytes)

HT-based

Filtering

(bytes)

RVC-based 

filtering

(bytes)

Bolt

Power

Plan

317,038

512,199

484,561

12,966

17,609

5,098

10,537

16,271

4,319

10,210

14,581

3,978

TOTAL: 1,313,798 35,673 30,127 28,769

Improvement: -- 0.0% 12.7% 19.4%

The filtering is applied as part of a context-based image compression procedure.
The compression remains near-lossless as only isolated pixels are eliminated.
Experiments with test images show that from the compression point of view, the
feature-based filtering with vectorization is twice as effective as traditional median
filter, or a combination of three morphological filters: opening, closing and annular
filter [102]. Comparison to other filtering algorithm that uses Hough Transform for
vector feature extraction [84, 85], shown compression improvement of 19.2% for
vectorization-based algorithm, and 12.7% against in comparison the HT-based
approach (see Table 2.4.1). 

Now let us consider question of time performance of this approach. Raster-to-
vector conversion is time-consuming process involving a lot of image processing
and image analysis procedures. Processing time for large images is important issue
in practical applications. In our case, due to fast implementation of algorithms we
developed for the raster-to-vector conversion [P1, P3] the burden of the
vectorization phase on the total processing time was reduced to 10%. In fact, the
vectorization phase is up to 3-4 times faster than the JBIG compression procedure.
In practice, the developed raster-to-vector conversion takes less 1% of the
processing time for the HT-based algorithm [84, 85]. The compression ratio for the
test binary images is also better for the vectorization-based method than for the HT-
based approach.



2.4.3  Summary

The feature-based filtering technique removes additive noise form the original
binary image and in this way, produces a better compression performance. Due to
the developed of efficient methods for raster-to-vector conversion of large images
the vectorization-based method outperforms Hough Transform based algorithm by
quality as well by time performance. 


