3 Polygonal approximation

3.1 Introduction
3.1.1 Problem formulation

The general problem of approximation a given two-dimensional piecewise linear
curve by another coarser one is of fundamental importance in computer graphics,

vectorization tasks, vector map processing (see Figs. 3.1.3-3.1.7).

An open N-vertex polygonal curve P in 2-dimensional space is represented as the
ordered set of vertices P={py, ..., py}={(x1, Y1), ..., (xn» ¥v)}. The output coarser
curve Q consists of (M+1) vertices: O={q, ..., qu+1}, Where the set of vertices g, 1s
a subset of P and M<N. The end points of Q are the end points of P: ¢, =py,
qum+1 = py- The approximation linear segment (g, g,+1) of QO for curve segment
{ps, ..., p;} of P is defined by the end points p; and p;: ¢, = p; and g,,+; = p;. Thus,

(qma qm+l) = (pia pj)

As it was stated in [147, 119] there are two types of optimization problems
connected with polygonal approximation problems:

Min-g problem: Given a polygonal curve P, approximate it by another polygonal
curve O with a given number of line segments M so that the approximation error
E(P) is minimized.

Min-# problem: Given a polygonal curve P, approximate it by another polygonal
curve Q with the minimum number of segments M so that the approximation

error E(P) does not exceed a given maximum tolerance «.

3.1.2 Error measures

An approximation curve must satisfy some error criterion, which is specified
appropriately for each application. In practice, the most of practical error measures

in use are based on distance between vertices of the input curve and the
approximation linear segments.

Figure 3.1.1: Distance d; from the point py to the linear segment (p;, p;).

The distance di(i,j) from curve vertex p,=(x;, ;) to the corresponding
approximation linear segments (p;, p;) 1s defined as follows (see Fig. 3.1.1):

—a..x, —b. .
d(k;i,j)=|y" %% by | (3.1.1)

2
1/1+ai,j

where the coefficients a;; and b;; are defined from the parameters of the linear
segment (p;, p;):

a;; :(yj_yi)/(xj_xi) (3.1.2)

bi,j =V, —a; X,

The additive error measure L, for curve segment {p;, p;} is defined by the sum of
distances d(k; i, j) for all vertices in the segment as follows:
& . (3.1.3)
e,(i,))= >.d" (ki)
k=i+1
For L, the approximation error is defiend as the maximum deviation of input curves
from approximation linear segment:

e, (i, /) = max{d(k:i. j)} (3.1.4)

Approximation error E,(P) of the input curve P by Q with additive error measure L,
(where p<o0) is defined as the sum of approximation errors for all segments:
& (3.1.5)
Ep(P) = Zep(l7j)
m=1
For error measure L., the approximation error for the curve P is defined as the
maximum of distances for all segments:

A(P) = lr<na§M{ew (i, j)} (3.1.6)

The error measure L, (integral square error, or ISE) is perhaps among the most
widely used criteria for approximation min-& problem. The error e)(p;, p;) with
measure L, can be calculated in O(1) time using stored arrays of coordinates
cumulatives.

Figure 3.1.2. Error criteria with measure L..: the parallel-strip (or infinite beam) criterion
(left), and the segment distance (or tolerance zone) criterion (right).

In most cases the error measure L., is used in algorithms for min-# problem for
practical reasons. In [119] different error criteria with measure L, are given,
including the most popular parallel-strip (or infinite beam) criterion [269], that is
maximum distance between the line connecting p; and p; and the points of the curve
segment {p;, ..., p;} (see Fig. 3.1.2, left). The segment distance (or tolerance zone)
criterion is defined as maximum distance between the line segment (p;, p;) and the
points of the curve segment {p,, ..., p;} (see Fig. 3.1.2, right). In some algorithms,
other error measures are in use for min-# problem: integral square error L, [233,
243], and local integral square error (LISE) [52], or more complicated objective
functions [212]. However, using error measure L, for min-# problem is not efficient
in practice, especially in the case of multiple objects, because of its additive nature.

Since optimal algorithms are computationally expensive to be used (usually
between O(N?) and O(N’)), faster sub-optimal algorithms have been developed,
often running in linear time. In order to evaluate the quality of sub-optimal
algorithms, Rosin [224] introduced two measures. Fidelity (F) measures how well
the suboptimal polygon fits the curve relative to the optimal polygon in terms of the
approximation error. Efficiency measures how compact the suboptimal polygonal
presentation of the curve is. They are defined as follows:

Fidelity=Cm100
E

. Mmin
Efficiency=——x100
M

where M is the number of segments for an algorithm under question, M, is the
number of segments for min-# solution, E is approximation error for an
approximation algorithm, and E,;, is the approximation error of the optimal solution
for the min-¢ problem.

3.1.3 Motivation

Important problems such as polygonal approximation have been explored very
intensively for the last 30 years. The min-# and min-¢ problems can be solved as an
optimization task by dynamic programming or methods based on graph theory.
Moreover, many heuristic algorithms have proposed. Optimal algorithms of
complexity O(N*)-O(N’) are very slow, whereas faster heuristic algorithms lack of
optimality. Thus, development of efficient (fast and optimal or near-optimal)
algorithms for large input data is still an open problem.

Introducing into practice more efficient algorithms for min-# problem we can
reduce storage demands or transmission time for the same tolerance level. With
more efficient algorithms for min-¢ problem, we can reduce approximation error for
the same amount of stored or transmitted data. Taking into account that nowadays
polygonal approximation in vectorization, map service, CAD and GIS applications,
the efficient solution of this problem is still of great practical importance (see
Figs. 3.1.3-3.1.7).

At first we provide a short survey of heuristic algorithms for min-# and min-¢
approximation problems in Section 3.2. Then we explore optimal algorithms for
min-g¢ problems in Section 3.3. To bridge the gap between slow optimal and fast
heuristic non-optimal algorithms we introduce paradigms of bounding corridor and
iterated reduced search [P4]. Then we study optimal algorithms for min-# problem
and present algorithm with joint using of different error measures based on the
reduced search [P5]. Furthermore, we consider min-e and min-# problems for the
case of closed contours and provide cyclical DP algorithm with analysis of the state
space [P6]. Finally, we extend the proposed iterative reduced search approach to the

case of min-¢ problem for multiple objects [P7].

N v .
Tie pEE
<1:|Z %.ﬂ -

yd

0l

Figure 3.1.3: Min-# approximation of digitized curves (skeletons) for raster-to-vector
conversion: input raster binary image (left); vector image for error tolerance €=1.5 (right).

Vectors are labeled by dots.

7
5 .‘- -

S
Al
53"3?‘";5"5& oy
e
Sk <A Py

Figure 3.1.4: Min-# approximation of digitized curves: segmentation data (left); result of

approximation for error tolerance €=1.5 (right).

Figure 3.1.5: Min-¢ approximation of multiple-object vector data: vector map of “Europe”;
365 objects with 160,000 vertices (left); fragment of the vector map after 20:1 data
reduction (right).

Figure 3.1.6. Min-¢ approximation of closed 2900-vertex contour “Australia” by M=18
linear segments.

Figure 3.1.7: Min-¢ approximation of 5000-vertex digitized path in 3-D space by M=100
linear segments.

3.2 Heuristic algorithms
3.2.1 Survey of solutions

For the last 30 years many heuristic algorithms have been considered for
approximation of polygonal curves. We can account about dozen of different
heuristic approaches to the problem, and the number of algorithms exceeded one
hundred items. In some extent, the existence of big amount and variety of the
heuristic approximation algorithms can be explained by the variety of tasks, curves
types, and error measures in use. But more likely the real reason for existence of
numerous approximation methods is low fidelity and/or efficiency of the proposed
heuristic algorithms [224, 225], which leaves room for improvement.

Let us briefly consider the following approaches proposed for solving
approximation problems. Some of the presented methods can be used for solving
both problems, but some of the algorithms are designed for min-# or min-¢ problem
only. With algorithm for one of the problems (min-# or min-e¢) we can get solution
for alternative problem in O(logN) steps of binary search [37].

a) Sequential tracing approach

The algorithms [249, 216, 290, 250, 147, 94, 121, 284, 218, 54, 12, 213, 143, 316]
use a linear scan to evaluate error conditions, if the conditions are not satisfied a new
segment search is started. The main problem of the methods is that the nodes
sometimes do not correspond to the corners of the curve because a new vector is
defined only when the criterion is violated.

b) Split method

The most widely used high-quality approximation algorithm is a heuristic method
called the Douglas-Peucker algorithm [71]. It has been independently invented by
many people [207, 72, 24, 21]. The iterative procedure repeatedly splits the curve
into smaller and smaller curves until the maximum of the perpendicular distances of
the points on the curve from the line segment is smaller than the error tolerance e.
The complexity of the method is O(N?) in the worst case, and O(NlogN) on average.
The algorithm works in any dimension since it only depends on computing the

distance between points and lines. The main disadvantage of this approach is the
dependency on the starting point. It also suffers from stressing outliers, see more
critics in [279, 280]. Modified version of Douglas-Peucker algorithm was proposed
[104, 105] complexity of O(N logN) in the worst case, based on construction of
convex hull of 2D point set. Later the result has been improved to O(N logN) [106].
Unfortunately, the faster algorithm is not general, as it only works with simple 2-D
planar curves, and not in higher dimensions.

¢) Merge method

A common idea in some algorithms such as Sequential Tracing, Split, Dominant
point detection, is to choose curve points to be vertices of the polygonal
approximation. It can be done in opposite direction by choosing, at each stage, a
curve point that will not be a vertex [157, 78, 294, 33, 281, 146, 198, 112, 150]. A
reasonable choice is a point of which elimination will cause minimal increase in the
approximation error. The procedure is halted when the desired number of linear
segments M, or approximation error, is reached. Result is independent on the starting
point. The complexity of the algorithm by Pikaz and Dinstein [198] is O(N logN).

d) Split-and-Merge method

According to the technique, lines are fitted to an initial segmentation of the
boundary and the least squares is computed. The procedure then iteratively splits a
line if the error is too large and merges two points if the error is too small [192, 10,
294, 189, 103, 215, 300]. This combines the split and merge methods with the same
algorithm.

¢) Dominant point detection

Attneave [18] indicates that most shape information is contained in the corners (high
curvature points), which are able to characterize the contour. To approximate curves
using straight lines, high curvature points are the best place at which to break the
lines. A large number of heuristic algorithms have been designed on the basis of the
idea [220, 223, 86, 59, 236, 35, 9, 284, 17, 79, 263, 62, 10, 76, 299, 210, 211, 237,
296, 14, 319, 56, 115, 89, 120, 234, 235, 251, 23, 173, 293, 162].

f) Relaxation labeling

According to the approach, the left and right slopes and curvature value is measured
at every point of the input digital curve. Each point on the curve is associated with
an attribute list containing slopes and curvature at the point. The attributes will
determine the initial probability of the point p; being a ‘side, and probability of

being an ‘angle’. The relaxation process will change the probabilities. As the
relaxation process is iterated, certain points became more certain that they are
‘angles’, while other points became more certain that they are ‘side’. Finally, the
probabilities converge to some values [60, 61, 227, 166].

g) K-means method

Phillips and Rosenfeld [196] proposed k-means based clustering method to partition
the contours into subsets of points such that each subset can be fitted by a straight
line. They started with an initial partition and then evaluate the principal axis. In
[304] three algorithms have been proposed based on Phillips and Rosenfeld
approach for min-¢ problem with two error measures (L, and L,). A simpler line
fitting method was used instead of the principal axis approach.

i) Genetic (evolutional) algorithms

Genetic algorithms [305-307, 116, 215, 63, 259, 270, 108, 312] are based on
stochastic search, which simulates the biological model of evolution [93]. A
population is set of chromosomes and an initial one is randomly generated. During
each generation, the fitness (approximation error) of each chromosome is evaluated,
and chromosomes are selected for reproduction based on their fitness values.
Selection operator reproduces some chromosomes with smaller approximation error
and eliminates chromosomes with bad approximation. The selected solutions the
undergo reproduction under action of the crossover and mutation operations.

j) Ant colony optimization method

Ant Colony Optimization (ACO) is an optimization paradigm that mimics the
exploration strategy of a colony of ants [67]: ants can construct the shortest path
from their colony to the feeding source and back using pheromone trails. An ant
leaves some quantities of pheromone on the ground and marks the path by a trail of
this substances. The next ant choose path depending on the amount of pheromone on
it and leaves its own pheromone. Vallone [277] considered min-¢ problem with
maximum perimeter of polygon as an optimization criteria. Yin [308] considered
min-# problem with error metrics L,, including approximation of closed contours.

k) Tabu search

Tabu search, developed by Glover [91], is one of the meta-heuristic methods that
can be used to solve combinatorial optimization problems. It is different from the
local search in the sense that tabu search allows moves to a new solution, which
makes the objective function worse in hope that it will achieve a better solution in a
longer term [Yin’00, Zhang-Guo’01].

1) Vertex adjustment method

The main idea of the vertex adjustment method is to improve preliminary result by a
local search [44, 132, 153, 49, 311, 110, 173]. The local search can be applied to
vertices successively (vertex-by-vertex) [132, 49], or simultaneously to all vertices
using optimization technique [44, 153, 110]. Solution of the optimization task can be
found by Viterbi algorithm for the shortest path in a graph [153] or by dynamic
programming [44, 110, 173].

In [153], the adjustment of approximation points is performed by Viterbi
algorithm for the shortest path in graph. The search is performed among 4-neigbours
of the initial approximation points. This technique, however, can be extended to the
case where approximation points belong the input curve only.

Chen et al. [44] studied min-¢ problem for approximation by circular arcs and
line segments they introduced modification to the dynamic programming algorithm
for the problem in question. To reduce processing time, they search all possible
combinations of the points that are within a given range with respect to an initial set
of detected break points, instead of performing complete enumeration. The initial set
of break points, {u;, i=1, 2, ..., N}, is the solution obtained with heuristic algorithm
for dominant (break) point detection [44]. The possible sets of solutions are
generated by varying each u; within a range of (u; 4, u;,), where A=3. Although this
method has been proposed for approximation by circular arcs and lines, the approach
can be applied in the case of piecewise linear approximation as well.

In [153] the adjustment of approximation points is performed by Viterbi
algorithm for the shortest path in graph. The search is performed among 4-neigbours
of the initial approximation points. However this technique can be extended to the
case when approximation points belong to the input curve only.

Neumann and Teisseron [173] and Horng [110] used the same approach as Chen
et al. [44] to reduce the processing time of dynamic programming algorithm. They
performed search of the optimal location of approximation vertices within given
range around the current position. Neumann and Teisseron defined the window
where the dominant point can be located. Horng defined the window size as 1/3 of
the number of the vertices in the curve segment between two correspondent

dominant points In both cases, the set of the initial approximation points
{q1, .., qu+1} 1s defined by algorithms for the dominant points detection.

3.2.2 Summary

The presented heuristic approaches can be divided into two classes from optimality
point of view:

1) Classical algorithms, namely sequential algorithms, split, merge, split-and-
merge, dominant points detection, relaxation labeling;

2) Optimization algorithms: K-means, tabu search, genetic algorithms, ant
colony optimization methods, and vertex adjustment methods.

The classical algorithms are mostly based on heuristic methods or approaches.
The fidelity of these algorithms is usually low [224] because the global optimization
error is not subject to control during the process of the approximation. Some
heuristic algorithms can be used as part of optimal algorithms. For example, the
cone-intersection method was used in graph theory based algorithms to reduce the
complexity of the graph construction procedure. Sallotti [230, 231] applied heuristic
(Split) algorithm of Pavlidis [190] to estimate upper bound for approximation error
to reduce A*-search in graph.

In optimization algorithms the approximation problem is considered as
optimization task where the global approximation error is the main criterion to be
controlled. The search of solution that provides minimal approximation error can be
performed by stochastic optimization methods (as genetic algorithms and ant colony
method) or by local optimization methods (as tabu search and vertex adjustment
methods). The initial solution for starting the search can be obtained with some
heuristic algorithm for approximation, or any random approximation can be used.
Then the initial approximation (or approximations) is improved to find minimum of
the global approximation error. Algorithms of this class can provide near-optimal or
sometimes optimal results, but the global optimality cannot be guaranteed even in
the case of iterative approaches.

3.3 Optimal algorithms for min-¢ problem

The min-¢ problem is formulated as follows: given polygonal curve P, approximate
it by another polygonal curve QO with a given number of segments the minimum
number of segments M so that the approximation error is minimal.

3.3.1. Early history of the subject

The early history of min-¢ problem was begun from the problem of L,-optimal
approximation for continuous one-variable function. In 1961 Stone [257] considered
piecewise-linear curve fitting as a formal optimization problem. The objective was
to minimize the squared approximation error subject to a constraint on the number of
linear segments. Bellman followed with a solution [27] based on his principle of
optimality [26]. Later Gluss [92] expanded upon Bellman’s work. Lawson [151]
used dynamic programming (DP) to establish the existence of a balanced error
property. Cox discussed a similar approach in his paper [57]. Cantoni [34]
determined the optimal polygon of a known nonlinear function by minimizing the
weighted integral square errors. The works performed by Bellman, Gluss, Stone,
Cantoni and Cox hold only for a 1-D signal whose analytic forms are known.
Nevertheless, it inspired other researchers to use the dynamic programming
approach for optimal approximation of digital curves [194, 44].

3.3.2 Dynamic programming algorithm for min-g problem

In 1994 Perez and Vidal published the first optimal algorithm for min-¢ problem for
digital curves [194]. The proposed algorithm was based on dynamic programming
method for solving optimization task. The authors extended DP approach for
approximation of 1D continuous functions [27, 92] to the case of digital 1-D
waveforms and 2-D planar curves. They wrote that the approach can be extended on
the case of 3-D space as well with corresponding approximation error function. To
illustrate their method Perez and Vidal presented solutions for error measures L;
and L,. The complexity of optimal algorithm with error measure L; is O(NM), but
complexity of the algorithm for error L,-norm was reduced to O(NM?) by using the
incremental scheme for computation of approximation error. Authors also
considered approximation of closed contours and pointed out that at most (N-M)

runs of the basic algorithms are necessary to find globally optimal solution. They
also mentioned cyclical DP as a possible way for solving approximation problem for
closed contours.

In 1996, Chen et al. [44] studied min-¢ problem with measures L, and L, for
approximation of 2-D planar curves by circular arcs and line segments they
proposed algorithm, which was also inspired by DP method of Bellman [27, 92] for
1-D continuous functions.

Dahl and Realfsen [58] presented min-¢ problem as searching of shortest path in
a directed acyclic graph containing at most M arcs. Regrettably, they restricted
consideration by the case M>N/2 only. Moreover, the DP search of the
approximation error minimum is limited to three neighbouring vertices only.
Generally speaking, it makes the algorithm sub-optimal. Anyway, for the case under
consideration (large number of segments relatively the number of vertices) the
vertex adjustment-based approach can provide results that are quite close to the
optimal approximation.

Heckbert and Garland published a survey in 1997 [101], and they wrote about
optimal approximation of digital 1-D digital waveform f{x) with minimum error:
“the Ly-optimal approximation to a function f{x) can be found in O(MN’) time, worst
case, using dynamic programming”, but they did not provide any details of the
algorithm or references.

Haugland et al. [97, 98, 100] represented optimal algorithm for min-& problem
for 1-D waveforms (ECG) with error measure L,. In contrast to Perez-Vidal
algorithm, the proposed solution was based on algorithm for resource-constrained
shortest path in graph, introduced by Saigal [228] and later corrected by Rosseel
[226]. Nevertheless, from computational point of view the suggested DP-based
algorithm for cardinality constrained shortest path (CCSP) is equivalent to Perez-
Vidal algorithm for 1-D signals. The CCSP approximation algorithm was used for
lossy compression of ECG signals with a given compression ratio [180, 178, 181].
Furthermore, the CCSP algorithm was extended to the case of planar curves [182,
178]. This DP algorithm is also equivalent to solution originally given by Perez and
Vidal [194] for 2-D planar curves.

Tseng et al. [274] presented DP algorithm for optimal approximation with a
given error tolerance (min-# problem). Three error measures were used, including
Ly, L, and a length cost function. The essence of the algorithm is the same as that of
Perez and Vidal. The only difference is the stop rule: in Perez-Vidal algorithm the
DP search in the state space is continued until a given number M of segments is

reached, in the algorithm of Tseng et al. the search is performed until the current

approximation error is less than a given error tolerance €.

Mori et al. [171] proposed DP algorithm for optimal approximation of curves by
linear segments, circular arcs and splines. The approach is the same as that of Perez
and Vidal. The DP approach of Perez and Vidal was used for approximation of input
curve using circular arcs [193], circular arcs and line segments [111]. In [52] the
Perez-Vidal algorithm was extended to the case of polygonal approximation in 3-D
space with local integral square error (LISE) measure.

The main contribution to the reduction of the complexity of Perez-Vidal
algorithm has been done by Salotti [230, 231]. The main idea behind the algorithm
is to stop the search as soon as possible using heuristic functions to estimate the cost
function. The algorithm has been implemented in two versions: A*-search [230,
231] and dynamic programming [232]. At first, the rough approximation with
Pavlidis algorithm [190] is performed to find approximation error to be used further
as upper bound for approximation error y. Then A* or DP search is performed. If the
estimated cost function for the current vertex is bigger than the upper bound vy, the
next vertices located further along the curve P are not examined as possible
candidates as approximation points of Q. Salotti offered two methods for estimation
of the remaining cost function from the current vertex to the goal vertex. The use of
heuristics in the algorithms makes it difficult to estimate the complexity.
Experiments provided with test shapes have shown that the complexity of the
algorithm is close to O(NV?).

The paper of Perez-Vidal [194] is the key publication for min-¢ problem for
digital curves because it was the first publication where the optimal algorithm for the
problem has been proposed. Moreover, it was the first paper, which contained deep
analysis of all the questions concerning the min-¢ problem. In more recent
publications [97, 98, 100, 182, 177, 274, 171] the algorithm of Perez and Vidal has
been rediscovered.

Min-g problem for concave/convex curves

Chan and Chin [37] proposed L.-optimal solution for min-¢ problem for the convex
curves of complexity O(N?) with algorithm, based on the search of the shortest path
in directed graph. They offered to take advantage of the convexity of the input curve
P to construct the graph G(P) on the vertices of the P in O(N?) time, and to find the
min-¢ approximation with an additional O(MN) time.

Aggarwal et al. used matrix search algorithm for cost functions with Monge
property to solve optimization tasks: min-¢ problem for the closed convex/concave
curves with maximum area or perimeter cost function [7] and finding a minimum-
weight k-link path in graphs [8]. For monotonic cost function with Monge property
the optimization problem can be solved by DP algorithm with matrix search in
O(MN) time [7, 297, 298]. Thus, in the case of convex/concave curves, the min-¢
problem with L, error metrics can be solved with matrix search algorithm in O(MN)
time [7]. Regrettably, in most cases the realistic digital curves are not globally
concave or convex. Probably, this approach can be applied for locally
concave/convex smooth curves. This is subject for the future consideration.

3.3.3 Full search dynamic programming algorithm

For error measure L, the error of the approximation of segment {p,, ..., p;} by the
line segment (g,,, ¢,.+1) of Q is defined as the sum of squared Euclidean distances
from each vertex of {p, ..., p;} to the corresponding line segment (g,, g.+1) (see
Eq. 3.1.3). The approximation error E£,(P) of the curve P by the curve Q is the sum
of the errors of approximating each segment {p,, ..., p;} of P by the corresponding
line segment (g, g..+1) of O. The optimal approximation of curve P is then the set of
vertices {q», ..., ¢y} of O that minimizes the approximation error E,(P):

u (3.3.1)
E2 (P) = I{I(}HE 262 (quQm+l) .
m m=1

o[

1 j n N

Figure 3.3.1: Scheme of computation of the cost function D(n, m) in the state space Q by
dynamic programming algorithm of Perez and Vidal.

// Initialization

D(1,0) <0

FOR n=2TO N DO
D(n,0) <0

END

// Minimum search

FOR m=1TO M DO
FORn=mTO N DO
dmin <— O
FOR j=m-1TO n-1 DO
d < D(j, m—1) + ¢%(i,j)
IF(d < dmin)
dmin < da
jmin A J
ENDIF
END
D(n: m) <~ dmin
A0, 1) < juin
END
END

/I Backtracking for the solution H(m)
H(M)=N
FORm=M TO 1DO
H(m-1) = A(H(m), m))
END
E>(P) « D(N,M)

Figure 3.3.2: General scheme of full search dynamic programming algorithm of Perez and
Vidal.

The optimization problem can be solved by the dynamic programming algorithm as
proposed by Perez and Vidal [194] with the following recursive expressions (see
Fig. 3.3.1):

D(n,m) = min {D(j,m—l)Jrez(pj,pn)}, m=1,.,M; (3.3.2)

m—1<j<n
A(n, m) = arg min {D(j,m - 1)+ ez(pj,pn)}, n=m,..,N.

m-1<j<n
Here A(n, m) is the parent state that provides the minimum value for the cost
function D(n, m) at the state (n,m) of the state space Q (see Fig.3.3.1).
Approximation vertices g,, and g, of O are vertices p; and p; of the correspondent
line segment. The general scheme of the full search Perez and Vidal’s algorithm is
presented on Fig. 3.3.2.

3.3.4 Time and space complexity of Perez-Vidal algorithm

As it was mentioned above, time complexity of L,-optimal Perez-Vidal algorithm is
O(MN?). Let us consider problem of approximation in a trivial case with M=N-2.
Perez and Vidal proposed the algorithm for approximation of digitized curves,
where normally M << N, but generally speaking, in GIS applications (vector map

data reduction) any number of approximation segments can be given, including
M=N.

m 1T m r‘lT{n} .)f
10 ,_l | 11 10 [i
s Lm R s L) R R
0—|l-| 0—|-| ft—e
|_|!.. I]
o — o '
1 10 20 50 n 1 10 Lem 20 30 n

Figure 3.3.3: The original state space Q in algorithm Perez and Vidal’s algorithm (left); the
modified single-goal state space Q for min-¢ problem in the proposed algorithm [P4]
(right).

In fact, to obtain approximation with N-2 line segments we have to eliminate
only one vertex from the input curve P (for example, with one step of Merge
algorithm of Pikaz and Dinstein [198]). So, the best solution can be found in linear
time by checking approximation error for every vertex as the eliminated one. On the
other hand, complexity of the optimal algorithm for M= N-2 is given as O((N-
2)N*)= O(N’) time. The reason for the high complexity of the algorithm is the
redundancy of the search: in the case under consideration we are constructing all
solutions for m=1, 2, .., M-2, although in fact we need to know solution for single
goal state Q(N, M-2).

To solve the paradox, we proposed in [P4] a modification of the state space. The
state space has to be bounded to eliminate states that are not necessary for the
construction of the goal state (see Fig. 3.3.3, right). The complexity of the dynamic
programming algorithm with the modified state space is O(M(N-M)?). As we can
see, the time complexity of the modified DP algorithm for the trivial case in question
1s O(N), as it should be (see Fig. 3.3.4).

In same cases, the input curve can be approximated with zero error by less
number linear segments as a given M. In algorithm of Perez and Vidal such situation
can be detected and the computation can be stopped even if the current number of
segments m is less than M. In full search algorithm in modified state space
algorithm, to be sure that a given number corresponds non-zero approximation error,
we can check it with a simple procedure in O(N) time by elimination of those points,
whose absence does not affect on the total approximation error. If the found number
M.in 1s bigger than a given number of linear segments M we can find approximation
solution for this M, otherwise we can approximate the input curve by smaller
number of segments M,,;, with zero approximation error.

N 1 Ny
Figure 3.3.4: State space Q for the case N = M-2: in Perez-Vidal algorithm (left), and in the
proposed algorithm [P4] (right).

3.3.5 Using the preliminary computed error values

Haugland et al. [97, 98, 100] and Horng and Li in [111] offered to calculate
approximation errors for all pairs of vertices in advance and store it in a 2-D array of
NxN size. The reasons of this technique were different: Haugland et al. treat the
min-g problem as the search of the cardinality constrained shortest path in graph and
all the weights in graph should be known prior the computations. The purpose of
Horng and Li was to reduce processing time by performing all computations only
one time and to use the stored values later.

The last idea seems to be reasonable, because it really permits to avoid
recalculation of the values and reduce processing time. In practice, however, this
method in the form suggested by Horng and Li works for relatively small N only
because of high space-complexity of the method. Let us consider the following
example of DP approximation: the 5004-vertex test shape #3 [231] is to be
approximated by 50 linear segments. With algorithm of Perez and Vidal the
approximation can be computed in 710 s [231]. According to the mentioned above
approaches [97, 98, 111] the error values have to be stored in 2-D array of NxN size;
it gives 200 Mb for the N=5000. Moreover, for approximation of closed contours
Horng and Lee proposed to use 2-D array of 2Nx2N size that means allocation of
800 Mb in the case under question. When RAM size is limiting resource, demands
for allocation of 200 Mb (or even 800 Mb) can be a problematic way to reduce
processing time.

Thus, for small N the precalculation method [97, 98, 111] does work, but only in
the case when the processing time is small even without using the technique. For
large N, however, the precalculation method cannot work efficiently because of high
space complexity O(N?).

In [P4], we have proposed modification of DP algorithm of Perez and Vidal with
precalculation by total cost of O(MN) space instead of O(N?) as in [97, 98, 111].
Actually this space complexity is the same as that of the original algorithm, namely

O(MN).

Let us consider memory demands of the original Perez-Vidal algorithm in
details. According to the scheme represented in the algorithm, the DP calculations
are performed sequentially for all m starting from 1 to M. To support the calculation
we need 2-D array of MxN size to store parent states A(m, n) for the optimal sub-
paths. For storing the cost function D(m, n) it is enough to store 2-D table of 2xN
size. This is because we need to know only the previous row to calculate the current
one. We also need 2-D table of 5xN size for five arrays of cumulatives of

coordinates to calculate approximation error on-fly. The total space complexity of
Perez-Vidal algorithm is O(MN).

According to the approach of Horng and Li [111] with storing of precalculated
errors we need an additional 2D array of N xN size for the errors, which increases
the total space complexity to O(N?). In addition, in [97, 98, 111] for the cost function
D(m, n) instead of 2xN array was used 2-D array of MxN size.

Table 3.3.1. Space demands for DP algorithms for min-& problem with precalculation.

Full search " Full search [P4] Reduced search [P4]
Cost function D O(MN) O(MN) O(WN)
Parent states 4 O(MN) O(MN) O(WN)
Cumulatives O(N) O(N) O(N)
Errors €*(pi,p)) O(N*) OoWw) OoWw)
Total space O(N?) O(MN) O(WN)

D197, 98, 111]

Now let us change the order of processing from row-by-row to column-by-
column. We will fill the state space with solutions of sub-problem column-by-
column, at first for n=2, then for n=3, until we reach the last vertex n=N. For every
current vertex n, we have to find solutions of the sub-problems for all allowable
values of m in the state space. For this computational scheme we need 2-D array for
A(m, n) of size MxN and five arrays of cumulatives of coordinates as in the original
algorithm. Now we need 2-D array of size MxN for the cost function D(m, n), not

2xN as in the previous case. For the processing of the current vertex, we need

approximation errors for linear segments from the current vertex to the vertices
already passed. We do not need anymore the approximation errors from all vertices
to all ones for processing the current state. For this purpose it is enough 1-D array of
size 1xN. To support the storing pre-calculated cost function values, we have to use
O(MN) memory for the cost function D(m, n).

Comparing space demands for two DP algorithms with full search (see
Table 3.3.1), we can use precalculation method at the cost of O(MN) additional
memory instead of O(N?) as suggested in [97, 98, 111]. For the considered above
example of approximation of 5000-vertex curve by M=50 segments with the
proposed scheme in [P4] we need additionally about 1 Mb, that is only 1% of
amount we must allocate with the approach of Horng and Li.

3.3.6 Summary

Perez and Vidal have proposed optimal DP-based algorithm which can solve the
min-g¢ problem with L, error metrics in O(MN”) time. We introduced two
improvements to the core algorithm, including modification of the state space to
reduce complexity of the algorithm to O(M(N-M)?), and a scheme for the reducing
processing time by storing of pre-calculated approximation errors. In the case of
min-¢ approximation of locally concave/convex smooth curves, it is worth further
studies, if we can apply the matrix search algorithm to reduce processing time.

3.4 Iterative reduced search

3.4.1 Optimality versus time performance

Heuristic algorithms are fast, but they cannot provide optimal solution. Optimal
algorithms of complexity O(N*)-O(N°) are too slow to be used for large input. As it
was already noticed by Heckbert and Garland who wrote [101]: “Optimal
simplification typically has quadratic or cubic cost, making it impractical for large
inputs”. Zhang and Guo [312] also wrote that, in practice, the vertices number of a
curve which DP or other exact optimal methods can tackle is about a 100 points.
They have not provided information concerning processing time for test shapes they
used. Nevertheless, the note is symptomatic: time complexity of optimal algorithms
is high. Understanding that fact, the authors of optimal methods have also proposed
a number of approaches to reduce processing time at the cost of optimality.

Perez and Vidal [194] in their concluding remarks have mentioned two possible
techniques for obtaining controlled reduction in computational cost. The one is
beam search, which essentially consists of discarding those branches that lead to an
error greater than a certain margin at any given stage. The other method is to apply
adjustment window that limits the maximum and minimum number of points
assigned to any given edge.

Haugland et al. [97] motivates the development of optimal algorithms that the
optimal algorithms can serve as a powerful tool when analyzing possible heuristic
algorithms. He proposes the following approaches for further studies: a) divide the
samples into K parts and perform processing on each of these; the execution time is
reduced by about K*; b) start with the path involving the first and last vertices only,
and augment it gradually by one vertex until an M-vertex path is achieved; c) start
with an arbitrary path with M segments and change the vertices on the path
successively so that the path length is gradually reduced. Haugland et al. developed
algorithm for approximation of ECG signals. In the case of quasi-periodical ECG
signals, this approach is quite satisfactory, but in the case of arbitrary planar (or
space) curve it can cause significant lost of quality.

Mori et al. [171] presented algorithm for optimal approximation of curves by
linear segments, arcs and splines proposed 5:1 decimation of curve vertices to

reduce processing time. Schroeder and Laurent [243] proposed following two-step
scheme for min-# problem: reduce the number of vertices using the approximation
algorithm with bigger value of error tolerance pe, where p>1, and apply the

approximation algorithm to the obtained curve with a given error tolerance €.

Salotti [230, 231] used preliminary approximation of the input to get upper limit
for the approximation error to be used further in the process of the state space
exploration. He also introduced two heuristic functions for cost function estimation
to reduce the search. His A*-search algorithm is optimal but the complexity is still
O(N?) even in the best case.

3.4.2 Paradigm of bounding corridor

Optimal algorithms are slow, whereas heuristic algorithms are fast but they lack the
optimality. There have been attempts to improve the quality of heuristic algorithms
by using local search or stochastic optimization techniques (see vertex-adjustment
methods), but these methods cannot guarantee optimality or high fidelity. On the
other hand, there have been attempts to reduce the processing time of DP algorithms
by cost of optimality.

Polygonal approximation which is very close to the optimal one, is quite enough
in most practical applications, because the real accuracy of output polygonal
approximation is defined by the following factors: a) fidelity of the approximation
algorithm, and b) accuracy of input vertex data (digitized curves, vector map). The
quest for 100% fidelity is justified from mathematical point of view, but this demand
can be released in practical applications if we take into consideration all technical
details of the application and the time cost of the optimal result.

In P4, we try to bridge the gap between the optimal and heuristic algorithms by
introducing a new paradigm of bounding corridor in the state space. Instead of time-
consuming search in the full state space (see Fig. 3.4.1), we offer to perform the
search only in the most relevant part of it, bounded by a corridor (see Fig. 3.4.2).

m LT B

10
5 L{m) I R(m)
r
od -
1 10 M 30 n

Figure 3.4.1: Illustration of the modified single-goal state space Q for a sample problem
size of N=35, M=13. The start and goal states are marked with the gray squares.

10 e
L e B(n) W=3
5 (m) EL T Rm) {n)
e r
N
1 10 20 30 n

Figure 3.4.2: Illustration of the bounding corridor of width W=3 in the state space . The

reference path H is marked by the gray circles; the single-goal state space Q is marked by
the dashed line.

®]

10 ®
[]
@
S puuncuss]
L{m) .~ B(n) w=3
S ; st R(M)
@
S8k
e
1 10 20 30 n

Figure 3.4.3: Illustration of the multiple-goal bounding corridor of width W=3 in the state
space Q2. The reference path H is marked by the gray circles; the multiple-goal state space Q2
is marked by the dashed line.

The corridor of fixed width W in the state space is constructed along a reference
path, which can be obtained by any fast heuristic algorithm.

In contrast to constraints on approximation error [230, 231], we use geometrical
constraints on search area in the state space to control the breadth of the search.
Width of the corridor W at some approximation point defines the range of possible
numbers of approximation segments for the point. At the same time, location of the
approximation points is optimized too. In the mentioned algorithms with local
adjustment of approximation points the number of segments assigned to curve part
from the first vertex to approximation point is the same, only the location of the
approximation point can be changed within a narrow range.

The optimization algorithms [44, 153, 173, 110] can be formally considered as a
special case of the search in narrow non-continuous corridor. On the other hand, the
reduced search algorithm with reference approximation can be treated as
optimization of the preliminary (reference) solution. The main difference of the
reduced search algorithm from the vertex adjustment method is not only quantitative
(wider range of the search), but it is qualitative one too. The introduced paradigm of
bounding corridor allows us to solve a number of approximation problems, which
cannot be solved by mentioned above vertex adjustment and search reduction
methods because of the following reasons.

a) The proposed reduced search algorithm can be iterated using the output
solution as a new reference path in the next iteration. The number of iterations can
be given in advance, or adaptively varied depending on the development of the
approximation error. With the iterative reduce search we can achieve practically
optimal solution in O(N)=O(N*) time [P4]. With vertex adjustment method we
cannot improve obtained solution by additional iterations.

b) The presented single-goal bounding corridor can be extended to the case of
multiple-goal corridor (see Fig. 3.4.3). With the search in the multiple-goal
bounding corridor a family of solutions can be obtained, that is defined by the
corridor width W. This kind of corridor have been further used for solving the
multiple object min-¢ problem [P7].

¢) In the case of min-¢ problem for closed contours, the corresponding analysis
of solutions in the bounding corridor can be performed to find the sub-path with
conjugate states that provides minimum of cost function (approximation error). This
sub-path gives optimal approximation solution to the closed contour, including
optimal selection of the starting point [P6].

Approximation of locally concave/convex curves

In the section 3.3.2 it was mentioned that matrix search algorithm might be applied
to reduce processing time for approximation of locally concave/convex curves. This

idea fits perfectly to the reduced search approach. Performing search in the bounding
corridor we involve some part of the curve into the computation. If this part is
concave (or convex) the search for the minimum, could be speed-up with matrix
search algorithm [7, 8, 297, 298]. Information obtained at the first run of reduced
search about the location of concave/convex parts could be used in subsequent
iterations. Joint using of matrix search algorithm and iterative reduced search
approach for locally concave/convex curves to reduce processing time is a topic for
future studies.

3.3.3 Summary

Aiming to bridge the gap between slow optimal and fast heuristic algorithms for
min-g problem we introduced paradigm of bounding corridor and iterative reduced
search approach. We can control trade-off between optimality and time performance
with parameters of the proposed algorithm. The time complexity of the algorithm is
between O(N) and O(N®), that corresponds the complexity of fast heuristic
algorithms. The processing rate with the proposed algorithm can be roughly
estimated as 10°~10* vertices per second depending on relative number of segments,
solution fidelity, curve smoothness, and processor performance. On the other hand,
with the proposed algorithm we can achieve optimal or near-optimal result, using a
proper strategy.

Later we will use the iterative reduced search for the development of efficient
algorithms in polygonal approximation field, namely, min-# problem for open
curves, min-¢ and min-# approximation of closed contours, and min-¢ approximation
of multiple objects.

3.5 Optimal algorithms for min-# problem

The min-# problem is formulated as follows: a given polygonal curve P,
approximate it by another polygonal curve Q with the minimum number of segments
M so that the approximation error does not exceed a given maximum tolerance €.
The min-# problem is motivated by necessity to obtain approximation with least
number of segments that maintans a certain level of accuracy. The problem arises in
practical task of vectorization, vector data reduction, and vector map simplification.

3.5.1 Survey of solutions

Probably, one of the the first optimal algorithms for min-# problem for error
criterion L, has been proposed by Papakonstantinou in 1985 [187]. The min-#
problem under uniform L, measure (in fact, with infinite beam criterion) was
formulated as optimization task and was solved by dynamic programming (DP)
method. To reduce DP search, the longest line segment is defined by cone-
intersection method of Sklansky and Gonzalez [250].

One year later Dunham [73] published min-# algorithm that uses DP approach
for optimal approximation with least number of segments for error measure L... He
used modified scan-along algorithm of [290] and [250] with cone intersection to
reduce DP search. The complexity of the algorithm is O(N°) in the worst case.

About the same time Imai and Iri [117-119] present a unified approach for the
problem by formulating it in terms of graph theory. At first, a directed acyclic graph
G(P) = (V, E;) 1s constructed (see Fig. 3.5.1, left). Nodes V are vertices of the curve
P=1{p ...,py} and edges E. are the approximation line segments E.= {(p; p)):
1<i<j<N | D(p;, pj) < €}. Two nodes p; and p; of G,(P) are connected with an edge
(pi, p)), 1ff the correspondent approximation error (maximum deviation) D(p;, p;) is at
most the prescribed error tolerance €: D(p;, p;) <.

Figure 3.5.1: Graph G¢(P) constructed on digitized curve P for error tolerance £=10 (left);
min-# approximation solution for e=10 as the shortest path in the graph G(P) (right).

Solving min-# problem consists of finding the shortest path from p, to py in
digraph G¢(P) (see Fig. 3.5.1, right). Since the graph is acyclic, this path can be
found in time proportional to the number of edges [64, 55]. The brute-force method
of constructing G,(P) is to check for each pair of vertices p; and p; whether the error
D(p;, p;) 1s within error tolerance €. There are O(N?) pairs of vertices and checking
the error, corresponding to a pair, takes O(N) time. This brute-force method for the
graph G,(P) construction takes O(NV°), while finding the shortest path in G takes no
more than O(N?) time. Thus, the bottlenck in the computation of min-#
approximation is the construction of the graph G,(P). The main efforts of researchers
have concentrated on the problem of how to reduce complexity of the graph
construction.

Melkman and O’Rourke [165] studied the 2-D min-# and min-¢ problems. Their
version of Imai-Iri’s algorithms takes O(N*logN) for min-# problem, and O(N*log*N)
for min-g problem. Space complexity is O(N?) in both cases. Thus, the graph
construction was reduced from O(N’) to O(N’logN). They proposed cone-
intersection algorithm to reduce the complexity of the graph constuction. This
algorithm is analog of that of Sklansky and Gonzalez [250].

Chan and Chin [37] reduced the time complexity to O(N?) for min-# problem,
and O(N’logN) for min-g problem using the parallel-strip criterion They improved
complexity of constructing graph G to O(N?). They have also shown that for closed
polygonal curve the min-# problem can be solved in S(N) time, where S(N) denotes
the time complexity for solving all-pairs shortest path problem of G.(P). They also
presented algorithm of linear time complexity for min-# problem for the convex
curves (see Table 3.5.1).

Table 3.5.1: Summary of the time complexities of the polygonal algorithms of Chan and
Chin [37].

Shape type General Convex
Open Closed Open Closed
Min-# problem O(N?) S(V) O(N) O(N?)
Min-¢ problem O(N*logN) S(N)logN O(N?) O(N?)

Based on the infinite beam criterion, Toussaint [269] solved the min-# problem
in O(N*logN) time and O(NV?) space. Imai and Iri gave an O(N’log”N) time and O(N?)
space for the min-¢ problem. Eu and Toussaint [77] published another algorithm for
min-# problem under the infinite beam criterion that was claimed to take O(N?)
time, and O(N?logN)) for min-¢ problem. The space complexity is O(N?). Eu and
Toussaint [77] also used the infinte beam criterion based on L; and L, distance
metrics. Using L, distance metric, the min-# problem can be solved in O(N°) time,
and min-¢ problem in O(N’logN)) time.

Ray and Ray [212] determined least number of segments with the minimum
possible error by maximizing an objective function comprised of the length of line
segments and the sum of absolute errors between the line segments and the digital
curve (L, error measure).

Pikaz and Dinstein [197] found min-# approximation of the polygonal curve
where the city-block metric is used to measure distance between the approximation
and the input curve. For the city-block the distance the complexity of the algorithm
is O(N).

Chen and Daescu [40, 41] presented a number of efficient algorithms for the 2-D
min-# and min-¢ problems in the same time bounds as [37, 77], but using only O(N)
space in comparison with O(N?). Also they applied the technique to a special case of

the 3-D min-# and min-€ problems.

Zhu and Seneviratne [320] have shown that cone-intersection algorithm [250]
has the problem that some peaks will disappear from the curve when the cone angle
is the only evaluation factor and introduced modification to Sklansky and Gonzalez
method. Based on the modified algorithm for they proposed new version of the
algorithm for min-# problem.

Katsaggelos et al. [132] used polygonal approximation for lossy encoding with
minimum rate and given distortion bounds. Actually, Katsaggelos et al. solved more
general problem, than just a min-# one. In this case, the techniques based on
geometrical computations, cannot be used. Because of the brute-force method
applied for construction of the graph G,(P), time complexity of their algorithm is

O(N?).

Hosur and Ma [114] following the approach of Katsaggelos et al. for min-#
problem proposed cone intersection method for reducing the graph construction
time, which actually has been introduced early in [250] and have already been used
in other algorithms for min-# problem [187, 73].

Recently Agarwal et al. [6] proposed min-# algorithm for Hausdorff and Frechet

error measure of O(N**™

) time complexity, where 6>0. Barequet et al. [22]
presented agorithms for approximating polygonal curves in 3D and higher

dimensional spaces under the tolerance zone criterion.

Table 3.5.2: Summary of min-# and min-¢ results from [22].

3 dimensions d>4 dimensions
Metric min-# min-¢ min-# min-¢
L, O(N’logN) | O(N*log’N) | O(N* L2 Dpolylogh) O(N"polylogN)*
L& L, | ON%) O(N*logN) | O(N?) O(N*logN)

“For d=4 only.

With DP algorithm of Perez and Vidal the min-# problem for measure L, can be
solved in O(N?) time (see also [274]). Salloti proposed fast optimal algorithm for the
problem based on the A*-search algorithm, and he introduced for min-¢ problem
with L, measure [230, 231]. Using the heuristic error estimations to stop the search,
he reduced complexity of Perez-Vidal algorithm from O(N?) to O(N?) time.

3.5.2 Problem of multiple solutions

As we can see, the error measure L, 1s widely used in heuristic and optimal
algorithms for min-# problem. The error measure L,, is preferred to other measures
for obvious reasons. But careful study of these min-# algorithms based on the error
measure L,, shows that all the algorithms suffer from an essential drawback, namely
visible distortion of approximation curve (see Fig. 3.5.2, left)

-

Figure 3.5.2: Examples of min-# approximation of 59-vertex test shape for error tolerance
e=2 with L, error metrics: by algorithm based on the shortest path in digraph (left); by the
proposed method [PS] with L, optimization (right). Vertices of the input curve are labeled
with dots; the approximation points are labeled with circles.

Firstly, the drawback was noted by Papakonstantinou [188] who has been
studying problem of data reduction of ECG signals by polygonal approximation
with minimum number of line segments for measure L.,. As it was mentioned above,
he wrote, that so called optimal solution is not unique. Actually, the number of the
equivalent optimal solutions (having the same minimal number of line segments)
can be extremely large (see Fig. 3.5.3). The reason of the effect is as follows: with
the error measure L, we can control only the maximum deviation, but not the
deviations for all the vertices of the approximated curve. Formally, the solutions
satisfy the constraint on maximum deviation, but the solutions have visible shape
distortion.

To overcome the problem, Papakonstantinou proposed how to select the best one
among the formally optimal solutions, with the minimal integral square error. In
other word, he proposed to use error measures L,, and L, jointly to obtain solution,
which satisfies the condition on maximum deviation D(P)<¢ and provides
minimum to the approximation error E(P) with measure L,. The complexity of the
modified min-# algorithm is defined by the complexity of the base algorithm but the
processing time is bigger because of L,-optimization. The proposed method provides
good results. It is easy to understand why the effect has been discovered by studying
approximation of ECG signals. For smooth curves the distortion effect is small,
whereas for curves with sharp corners, such as ECG signals, the effect is clearly
visible.

Figure 3.5.3: The test 2900-vertex shape Australia”: all shortest paths in the graph G¢(P)

for a given error tolerance e=1.

Haugland et al. [97, 179] attacked the problem by joint use of measures L, and
L, from another side. They solved problem of ECG data reduction with a given data
compression ratio by algorithm for min-¢ problem with measure L,. Proximity of the
approximation curve to the input one is measured by the sum of squared errors, but
the deviation (error value) for every individual vertex is beyond the control of the
algorithm. To overcome the problem, they proposed modified version of the base
DP algorithm for min-¢ problem, introducing additional check if the local deviation
less than the tolerance level. To reduce the processing time for the computation of
the L., approximation error, a fast algorithm based on convex hull construction has
been used.

Authors formulated a new version of min-& problem using two conditions: a) the
number of segments should be less than a given value: M<M,, and b) the maximum
deviation should be below the tolerance level: D(P)<e. As we can see, the conditions
are contradictious: if the given number of segments M, is too small, the constraint on
maximum deviation cannot be satisfied with any number of segments. The problem
can be solved with constraint on the maximum error, or on the number of segments,
but not on both of them.

Pikaz and Dinstein in [197] solved min-# problem as the shortest path on digraph
with city-block distance metrics. The obtained polygonal approximation is minimal
with respect to the number of vertices under a given maximal error. As in the
mentioned above case, there might be several different polygonal approximations
with the same minimal number of vertices. Pikaz and Dinstein offered to select
solution that is optimal according to the criterion of minimal maximal distance

between the approximation and the original curve. Although the proposed method
allows reducing the maximum deviation, the local deviations (smaller than tolerance
level) are still out of control.

3.5.3 Selection of the best solution with reduced search

In [PS] we apply the iterative reduced search for solving the min-# problem. At first,
the initial solution approximation for a given error tolerance ¢ is obtained with any
algorithm for min-# problem, then a bounding corridor is constructed along the

reference path, and finally the solution is searched in the bounding corridor (see
Figs. 3.5.2, right, and 3.5.4, right).

Experiments have shown, that although the integral squared error E(P) is
reduced after L,-optimization, the maximum deviation D(P) can be bigger than a
given tolerance level in a few outliers. The problem can be solved by additional
iterations with reduced search to increase the number of linear segments M. Another
solution is to perform L,-optimization with L, constraints on the approximation
error by cost of higher time complexity because of L, approximation error
calculation.

Figure 3.5.4: The min-# approximation for € = 10: the solution as one of the shortest path in
graph G(P): processing time: D;(P)=1, E;=629, T,=4.5s (left); this solution after
processing with reduced search DP algorithm: E>,=298, maximum distance D,(P)=1.08;
additional processing time 7,=0.5 s (right). The number of vertices N = 2900.

In high quality vectorization tasks, the increase of the maximum deviation is
about 10% and takes place for outliers only. In our opinion, in practical applications,
the given constraint of maximum deviation € can be treated in non-strong way. In
other words, to reduce processing time we can use the iterative reduced search to
optimize location of vertices. The obtained approximation points satisfies the given
constraint on the deviation, excluding may be a few outliers.

3.5.4 Summary

We have proposed to use iterative reduced search approach to improve the quality of
min-# approximation solutions obtained. The initial min-# solution can be found
with any algorithm with L, error measure. Then we optimize location of the
approximation vertices with L, error measure using iterative reduced search. The
proposed algorithm is tailored for high-quality vectorization of digitized curves.

3.6 Approximation of closed contours

3.6.1 Problem formulation

A closed N-vertex polygonal curve P in 2-dimensional space is represented as the
ordered set of vertices P={py, ..., pv | py=p1}, when the last vertex is equal to the
first one. The approximation curve (@ consists of (M+1) vertices:
0={q1, ---» qu+1 | qu+1 = q1}, where the set of vertices ¢, is a subset of P. In the case
of closed contours, we have to find optimal allocation of all approximation vertices
including the starting point (see Fig. 3.6.1).

o\

Figure 3.6.1. Examples of min-¢ approximation of the closed contour #1 by M=5 linear
segments: with non-optimal starting point (left); with the optimal starting point (right). The
starting points are marked with arrow.

3.6.2 Survey of solutions

Imai and Iri [119] wrote that the closed curve min-# (resp. min-g) problem can be
solved by solving the N ordinary open curve min-# (resp. min-g¢) problems. If
complexity of algorithm for open curve min-# problem is O(N*), the complexity for
closed contour approximation is O(N°) time. Perez and Vidal [194] also wrote that
the complexity of the straightforward min-¢ algorithm for closed contour is (N-M)
times that of the algorithm for open curve. Taking into account the complexity of
modified full-search DP algorithm [194, P4] for closed contours min-¢ problem it
gives time complexity of O(M(N-M)?).

It was shown in [37] that the min-# problem for closed curve can be solved in
S(N) time, where S(N) is the time for solving the all-pairs shortest path problem for a
graph of N vertices.

There also exist a number of heuristic approaches for selecting the starting point.
Sato [238] chooses the farthest point from the center of gravity as a starting point.
Ray and Ray [212] in their formulation of the approximation problem specify
neither the error nor number of line segments as cost function, but a ratio of the local
L; error measure to the length of the segments. For the case of the closed contours
they proposed to extend the sequential search beyond the current starting point until
to the first approximation vertex to revise the choice of the starting point.

Pikaz and Dinstein [197] considered min-# problem with city-block error
metrics, and proposed an algorithm based on the shortest path problem, including
the search of optimal starting point by an algorithm of complexity O(N?). Zhu and
Seneviratne [320] considered the approximation problem with L, metrics, and
proposed an O(N?) time algorithm for open curves. An iterative procedure for
optimizing the choice of the starting point was also suggested for the case of closed
curve. Schroeder and Laurent [243] in near-optimal algorithm for min-# problem
perform preliminary approximation until the first approximation vertex is reached,
and use this vertex as a new starting point for the second iteration.

Horng and Li [111] proposed a two-step method to select the starting point: at
the first step, optimal approximation with any starting point is performed. At the
second step, the approximation is performed again using the | M/2 |-th vertex as the
new starting point.

To sum up, the proposed heuristic approaches for closed curves are sub-optimal
whereas the optimal choice of the starting point is time consuming. Thus, the
problem has not been solved satisfactory. One of the heuristic approaches is to
perform preliminary approximation using one of the approximation vertices as a new
starting point for final approximation [212, 197, 320, 111]. With this approach for
starting point selection it is possible to obtain good results but, in general, the
optimality of solution cannot be guaranteed (see Fig. 3.6.2).

Figure 3.6.2: Results of min-¢ approximation of 417-vertex closed contour # 2 by M=10
linear segments for all the possible initial starting points: by heuristic method [111] (left);
by the proposed method for optimal staring point allocation [P6] (right).

3.6.3 Analysis of state space for min-¢ problem

In the mentioned heuristic algorithms after the first iteration, however, the search
starts from scratch and loses the information of the previous run. The idea of the
approach we proposed in [P6] is to extend dynamic programming search in special
state space beyond the last vertex of contour in cyclic way until the last point will be
reached again. Solutions for sub-tasks in the state space are analyzed to find the best
possible starting point.

We call two states on the sub-path in state space conjugate if the sub-path with
the states corresponds to approximation of the input contour with the same start and
end points. Approximation error for the sub-path is defined as the difference of the
cost function values of the conjugate states. To find the optimal starting point we
have to find two conjugate states, which provide minimum of the approximation
error E(m) for sub-path defined for all goal states in the state space (see Fig. 3.6.3).
As we know, in DP algorithm for open curve solutions are constructed under the
condition ¢, 1=py. Propagating DP search in state space cyclically beyond the end
point of P, we remove the restriction and make the approximation vertex g, “free”.
Then we analyze solutions of all relevant sub-tasks with the free vertex g, to find
the best location for the starting point. If the original starting point gives the optimal
solution, the correspondent path to goal state (N,M) is limited by conjugate states.

2I5 SID 3I5 4ID 45
Figure 3.6.3: State space (), for the closed contour #1. Optimal sub-path in the space Q, for
the conjugate states with minimum cost function is emphasized with thick line and circles.
Approximation with the optimal starting point that corresponds the sub-path is on Fig. 3.6.1,
right.

Generally speaking, global optimality of the found starting point cannot be
guaranteed. Moreover, the sub-path with conjugate states may be does not exist in
the state space (2,. Sometimes it happens in the case of coarse approximation when
the number of vertices is big (N ~ 1000) and the number of vertices is relatively
small (M < 10). We can extend DP search cyclically to the next runs along the curve
in attempt to find better solution in the state space (), where £>3. Anyway, the state
space contains solution for the original starting point which can be use.

3.6.4 Min-# approximation of closed contours

To solve the min-# problem for closed curves, we have to find approximation of the
closed contour P by another closed contour Q with minimal number of line
segments with an approximation error within given error tolerance level: D(P)<e.
The approximation error D(P) with measure L., is given as the maximum Euclidean
distance from the vertices of P to the approximation linear segments.

To solve the min-# problem a digraph is constructed on the vertices of the input
contour P. In the digraph, a pair of vertices p; and p; are connected with an edge if
the approximation error of the curve segment between the vertices is less than a
given error tolerance: d(p;,p;)<e. The optimal solution is then a given by solving the
shortest path in the digraph. This can be solved by using DP algorithm for the
shortest path problem in the digraph.

Figure 3.6.4. Result of min-# approximation of double-size curve P, for error tolerance
€=25 (left). Min-# approximation of the input closed contour #2 with optimal starting point
obtained by analysis of DP solutions for P, (right). Starting points are marked with arrow.

To find the optimal approximation for closed contour we shall follow the
approach introduced in [P6]: perform approximation of the wrapped double-size
closed contour P, and then analyze the state space. In the case of min-# problem, the
analysis of the space is reduced to the analysis of the solutions for the relevant sub-
problems: we have to found the part of the approximation polygonal curve Q,,
which have the same start and end points (see Fig. 3.6.4). As in the previous case,
the initial approximation of the input curve can be extended cyclically to find better
solution. Even if such a solution with less number of segments is not found, the
obtained solution for the original starting point anyway can be used.

3.6.5 Summary

We have introduced a new approach for min-¢ and min-# approximation of closed
contours based on dynamic programming method for open curves. It performs
approximation of the cyclically extended double-size contour and then makes
analysis of the state space to select the best starting point. The processing time is
double of that of the approximation of the corresponding open curve. The time
complexity of the algorithms is defined by the complexity of approximation
algorithms for open curves in use. For solving the min-¢ problem the suggested
method can be used along with iterative reduced search algorithm with time
complexity between O(N) and O(N?).

3.7 Multiple-object polygonal approximation

3.7.1 Problem formulation

The problem of polygonal approximation of a single curve can be extended to the
case of multiple curves (see Fig. 3.7.1) as follows:

Multiple object min-# problem: Given K polygonal curves Py, P,, ..., P,
approximate it by set of K another polygonal curves O, O, ..., Ox with the
minimum total number of segments M so that the approximation error does not

exceed a given maximum tolerance €.

Multiple object min-¢ problem: Given K polygonal curves Py, P, ..., Py,
approximate it by set of K another polygonal curves Q;, O,, ..., Ox with a given
total number of segments M so that the total approximation error is minimized.

Figure 3.7.1: Example of multiple-object vector map: “Elevation map” [NLS], the total
number of vertices N=38924, the number of objects K=569.

Solution for the multiple-object min-# problem depends on the error measure in
use. In the case of L, error measure, the problem reduces to the single-object min-#
problem as the optimization can be solved for every object independently [244]. In

the case of additive error measures (L;, L,, etc.), on the other hand, the problem is
not trivial. Fortunately, in practical applications we mostly have to deal with error
measure L,, because the use of additive error measures (L; or L) is not practical in
the case of min-# problem.

The case of min-¢ approximation of multiple objects (with any error measure) is
more complicated. The optimal approximation cannot be obtained by solving the
approximation of each individual objects separately because the given total number
of approximation segments should be optimally distributed among all objects. For
example, uniform allocation of the segments can assign too many segments to the
less complicated objects and, respectively, lacking the segments for more
complicated objects. This situation is illustrated in Fig. 3.7.2.

Figure 3.7.2: Example of multiple object approximation with uniform allocation of the
segments numbers (M=NM/N); Mp=3%9 and M =6 (left), and with optimal allocation of
the segments number (right), Mp=3x%4 and M =21. The number of points in the objects are
Np =3x121 (“Diamond”), and N. = 82 (“Leaf™).

The multiple-object min-€ problem can be formulated as the following
optimization task for the total approximation error E(P,, ..., Pk, K) for K objects
{P1, ..., Pg}:

MA
E(P,..., P.,M) = min min i Z (qkm,qknm) subject to :iMk <M,
M} {9,y 1 o

m=1 k=1

where ez(qk,m, Grm+1) 1S approximation error with measure L, of curve segment
{ps, ..., p;} of P, by the correspondent line segment (gyu, gimi1) Of Ok M 1s a given
total number of segments and A, is the number of segments in object P,.

3.7.2 Survey of solutions

Shuster and Katsaggelos considered problem of lossy encoding of object boundaries
in rate-distortion sense [244]. The digitized contour is approximated by polygon O,
which leads to the smallest distortion for a given rate (number of bits). Actually, the
case when the rate is proportional to the number of line segments corresponds to the
multiple-object min-¢ problem. Schuster and Katsaggelos [244] considered two
different classes of distortion measures: L, and L,. For the first class (measure L.,),
they used scheme based on the shortest path algorithm for a weighted directed
acyclic graph. For the second class (measure L,) they proposed two algorithms.

The first algorithm is based on the Lagrangian multipliers method, which uses
the DP algorithm for the shortest path in a directed acyclic graph. The time
complexity of the Lagrangian approach for a fixed multiplier A is the same as for the
base shortest path algorithm. The shortest path algorithm is invoked several times by
the bisection algorithm to find the optimal A~ and, hence, the time complexity is a
function of the number of required iterations. Thus, the complexity of the first
algorithm is O(NV* log N) because it is defined by the complexity of the shortest path
algorithm and the number of bisection iterations. Since the Lagrangian multiplier
method can only find solutions on the convex hull of the operational rate-distortion
functions, they also proposed a tree-pruning based algorithm. This method is a one
pass variant algorithm with the complexity of O(N?), but the efficiency of the
pruning scheme cannot be guaranteed in general.

Algorithms with the complexity of higher than O(N*) can be used for relatively
small input. This can be suitable for the encoding of object contours for MPEG-4
standard [132] but it can be too slow in the case of large vector maps.

3.7.3 Reduced search algorithm

In the P7, the min-e problem of optimal approximation of multiple-object vector
data was considered. We have introduced two algorithms for solving the problem
based on dynamic programming: full search and iterative reduced search. Full search
algorithm of complexity O(N?) has been introduced to represent the DP approach for
joint optimization the number of segments and the approximation of the individual
objects. At first, the rate-distortion functions are computed for all the objects as
minimal approximation error for all possible number of segments. Then problem of
optimal allocation of constrained resource is solved by DP algorithm. Finally the
optimal approximation for every object is calculated for the found optimal
distribution of segment numbers.

N

Figure 3.7.3: Illustration of the multiple-goal state space €Y for full search DP algorithm
(sample problem of N;=34 and M;=12) (left), and the multiple-goal bounding corridor of
width W=3 in the state space for reduced search DP algorithm (sample problem of N,=34
and M;=12) (right). The reference path H(m) in the corridor is marked with dark gray
circles, and the goal states with gray squares.

Because the time and space complexity of the full search algorithm is high, the
iterative reduced search approach was generalized to the problem under
consideration. We follow the main idea of the reduced search by reducing the search
space by a given preliminary solution for the approximation, and then perform the
search in the reduced space iteratively (see Fig. 3.7.3). Main difference to the full
search is that a smaller search area is needed, which makes the algorithm faster. The
iterative reduced search algorithm has time complexity of O(N)-O(N?). This is
significantly smaller than the O(N°) of the full search, or the O(N*log(N)) of [244].
The reduced search approach is also applicable for very large data sets with
reasonable memory requirements. Although the optimality of the algorithm cannot
be guaranteed in general, the experiments indicate that the method is capable of
finding the optimal solution even in the case of very large data sets (see Fig. 3.7.4).
The algorithm can also be tuned for obtaining very fast sub-optimal solutions by
reducing the number of iterations and corridor width.

Figure 3.7.4: Approximation results for test data “Elevation map”: solution (fragment) for
straightforward approach, Douglas-Peucker approximation with uniform allocation of the
segments numbers: Ej= 892158, Tp=1.7s (left); final result (fragment) of optimal
approximation with optimal number of segments after 20 iterations; E)= 124093,
T50 =22 s (right). The vector data reduction ratio is 5:1 (N=38924, M=7784). Processing
time for full search algorithm is 157 s.

3.7.4 Summary

We have introduced two algorithms for solving the problem based on dynamic
programming: full search and iterative reduced search. The algorithms optimize the
number of segments and the approximation of the individual objects jointly.
Experimental results indicate that the proposed algorithm reaches the optimal
solution in all cases tested even though the optimality cannot be guaranteed in
general. The iterative reduced search algorithm has time complexity of O(N)-O(N?)
depending on the given the data reduction ratio.

