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Abstract. Optimal approximation of closed curves differs from the case of open 
curve in the sense that the location of the starting point must also be 
determined. Straightforward exhaustive search would take N times more time 
than the corresponding algorithm for open curve. We propose to approximate 
a cyclically extended contour of double size, and to select the best possible 
starting point by analyzing the state space. This takes only twice of the time 
required by the algorithm for open curve. 

1    Introduction 

Approximation of polygonal curves aims at finding a sub set of the original vertices 
so that a given objective function is minimized. The problem can be formulated in 
two ways:  

a) min-� problem: Given an N-vertex polygonal curve P, approximate it by 
another polygonal curve Q with a given number of segments M so that the 
approximation error is minimized. 

b) min-# problem: Given an N-vertex polygonal curve P, approximate it by 
another polygonal curve Q with minimum number of segments so that the 
error does not exceed a given maximum tolerance �. 

The problem can be solved by dynamic programming (DP) approach [3,5-7,9,14,16], 
by A*-search [11], or by algorithms developed for the shortest path problem in 
digraph [1,2,4,10,15]. The time complexity of these algorithms varies from O(N2) to 
O(N3). 

In the case of closed contours, we have to find optimal allocation of all 
approximation vertices including the starting point. A straightforward solution is to 
try all vertices as starting points, and to choose the one with minimal error [9]. The 
complexity of the straightforward algorithm for N-vertex contour is N times that of 
the algorithm for open curve: between O(N3) and O(N4). In [1] it was shown that the 
min-# problem for closed curve can be solved in S(N) time, where S(N) is the time for 
solving the all-pairs shortest path problem for graph of N vertices. 

There also exist a number of heuristic approaches for selecting the starting point 
[5,10,11,14-16]. Sato [14] chooses the farthest point from the center of gravity as 
a starting point. The worst case complexity of the algorithm is O(N3). In the case of 
the error metrics L1, Ray and Ray [11] proposed an algorithm to extend the cycle 
beyond the current starting point until to the first approximation vertex to revise the 



choice of the starting point. Pikaz and Dinstein [10] considered min-# problem with 
city-block error metrics, and proposed an algorithm based on the shortest path 
problem for open and closed curves.  

Zhu and Seneviratne [16] considered the approximation problem with L
�
 metrics, 

and proposed an O(N2) time algorithm for open curves. An iterative procedure for 
optimizing the choice of the starting point was also suggested for the case of closed 
curve. Horng and Li [5] proposed a two-step method to select the starting point: at the 
first step, optimal approximation with any starting point is performed. At the second 
step, the approximation is performed again using the most distant vertex as the new 
starting point. Schroeder and Laurent [15] perform preliminary approximation until 
the first approximation vertex is reached, and use this vertex as a new starting point 
for the next iteration. 

To sum up, the proposed heuristic approaches for closed curves are sub-optimal 
whereas the optimal choice of the starting point is time consuming. Thus, the problem 
still remains unsolved. Several of the heuristic approaches perform preliminary 
approximation by using one of the approximation vertices as a new starting point for 
the final approximation [5,11,14,15,16]. After the first run, however, the search starts 
from scratch and loses the information of the previous run.  

We propose to approximate with dynamic programming algorithm the double-
size curve obtained from the closed contour in wrapped manner. Then the state space 
of the solution is analyzed for selecting the best possible starting point.  The proposed 
approach is illustrated in Fig 1. Approximation with DP algorithm for open curve 
with the vertex 1 as the starting point is shown left. The corresponding solution for 
double-size curve is shown right. Optimal starting point and the corresponding 
approximation of the original contour can now be found by analyzing the 
approximation of the double-size curve. In the example, we obtain the solution as the 
segments 2-3-4-5. 

The rest of the paper is organized as follows. In Section 2, we give problem 
formulation, recall the dynamic programming approach of [9] for approximation of 
open curves, and then present the new algorithm for the optimization of the starting 
point. We extend the approach also to the iterative reduced search recently presented 
in [6,7]. We then briefly consider the approach in the case of min-# problem. 
Experimental results and discussion are given in Section 3, and conclusions are drawn 
in Section 4.  
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Figure 1: Illustration of the approach for open curve problem (left), and for the  
closed curve problem (right). The numbers indicate the approximation points. 



2. Algorithm for closed contours 

Let us define an closed N-vertex polygonal curve P in 2-dimensional space as the 
ordered set of vertices P = { p1, p2, …, pN;  pN= p1} = {(x1, y1), (x2, y2), …,(xN, yN); and 
(xN, yN) = (x1, y1) }. The problem is stated as follows: approximate the closed 
polygonal curve (contour) P by another closed polygonal curve Q with a given 
number of linear segments M so that total approximation error E(P, M) is minimized. 
The output polygonal curve Q consists of (M+1) vertices: Q = {q1, …, qM+1; M+1=q1}, 
where the set of vertices {q1, …, qM+1} a subset of vertices of P.  

The L2-optimal approximation of contour P is the set of vertices {q1, …, qM+1} of 
Q that minimizes the cost function E(P, M): 
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Error of the approximation of curve segment {pi, ..., pj} with the corresponding linear 
segment (qm, qm+1) is defined here as the sum of squared Euclidean distances from 
each vertex of {pi,  …, pj} to the linear segment (qm, qm+1); here qm=pi and qm+1=pj. To 
solve the optimization task we first recall the full search optimal dynamic 
programming algorithm of Perez and Vidal [9]. 
 

2.1 Dynamic programming approach 

Let us define a discrete 2-dimensional state space �={(n, m): n = 1, …, N;  
m= 0, …, M}. Every point (n, m) in the state space � represents the sub-problem of 
approximating of an n-vertex polygonal curve {p1, p2, …, pn} by m line segments. 
The complete problem is represented by the goal state (N, M). 

An output polygonal curve Q can be represented as a path H(m) in the state space 
� from the start state (1,0) to the goal state (N, M). In the state space, we can also 
define a function D(n, m) as the cost function value of the optimal approximation for 
the n-vertex curve by m linear segments.  

For solving the min-� problem under question we have to find the optimal path 
from the start state (1,0) to the goal state (N, M). The optimization problem can be 
solved by the dynamic programming algorithm [9] with the following recursive 
expressions for states (n, m)��:  
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Here A(n, m) is the parent state that provides the minimum value for the cost function 
D(n, m). The time complexity of the algorithm is O(MN2).  
 

2.2 Solution for closed contours 

We next extend the full-search dynamic programming approach on the case of closed 
contours. The main idea is to perform approximation of the wrapped input closed 



contour cyclically and make analysis of the state space to select a starting point that 
provides minimal approximation error. The proposed algorithm consists of four steps: 
Step 1: Create a double-size closed curve P2 of size (2N-1) from vertices of the 
N-vertex input closed contour P1: P2 = {p1, p2, …, pN-1, p1, p2, …, pN}. 
Step 2: Construct bounded state space �2 for the contour P2 (see Fig. 2). The 
configuration of �2 is explained by the fact that this is a state space for the double-
size cyclically wrapped curve P, not those for arbitrary curve of size 2N-1.  
Step 3: Perform search in the bounded state space �2 with dynamic programming 
algorithm.  
Step 4: Make analysis of optimal paths H(m) for all goal states (ng, mg) in �2, where 
N�ng�2N-1 and M�mg�2M. 

Let us restore the optimal path H(m) for some goal state (ng, mg), and check all 
pairs of states ((H(m), m), (H(m-M), m-M)) on the path H(m), where m=M, …, mg. We 
call two states (H(m), m) and (H(m-M), m-M) on the path H(m) conjugate, if H(m)-
H(m-M)=N-1. Sub-path of the path H(m) from a state (H(m-M), m-M) to the conjugate 
one (H(m), m) corresponds to approximation of the closed curve P of size N with M 
linear segments for starting point n=H(m-M). Approximation error for the sub-path is 
defined as the difference of the cost function values of the conjugate states: 
E(m)=D(H(m), m)�D(H(m-M), m-M). To find the optimal starting point nopt we have 
to find two conjugate states, which provide minimum of the approximation error E(m) 
for all goal states (ng, mg) in �2, where N�ng�2N-1 and M�mg�2M:  
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As we know, in DP algorithm for approximation of open curve a solution is 
constructed under the condition qM+1=pN. Propagating DP search in state space �2 
beyond the end point of P, we remove the restriction qM+1=pN and do the 
approximation vertex qM+1 “free”. Then we analyze solutions of all relevant sub-tasks 
with the free vertex qM+1 to find the best location for the starting point. 

 

 
Fig. 2: Illustration of the state space �2 for double-size contour P2. The optimal 
path H(m) for a goal state (ng, mg,) is marked by dots. Two conjugate states in the 
path are emphasized.  



Due to the special configuration of the state space �2 processing time T2 for curve P2 
is only twice bigger than that of the curve P1 in the state space �1: T2�2T1.  

It is noted that the optimality of the solution cannot be guaranteed in general, it is 
nevertheless expected that the proposed approach can provide better solution than the 
other heuristic algorithm for the selection of the starting point. In principle, we could 
continue the search in the state space �k constructed for the k-size curve Pk, where 
k=3,4,…, but experiments show that the further search would provides negligible 
improvement of the solution (if any) in comparison to the search in the space �2. 

 
2.3 Reduced-search for closed contours  

The complexity of the full-search approximation algorithm is O(MN2). To solve the 
approximation tasks for big N in practice, we introduced an iterative reduced-search 
algorithm for the case of open curves [6,7]. With this algorithm, we can get optimal 
(or near optimal) solution in O(N)..O(N2) time.  

Instead of the full search in state space, only a small but relevant part of the state 
space is processed in a bounding corridor along the current solution. We can use the 
iterative nature of this algorithm and apply heuristic approach as mentioned in the 
introduction: select a new starting point among the approximation vertices after every 
iteration. In this way, with every run of the reduced search we improve the location of 
all non-start points; selecting a new start point after the run, we improve location of 
the starting point. The method provides very good results but the result is not always 
optimal. To improve the efficiency of the heuristic approach we apply the algorithm 
of Section 2.2 and analyse the state space �2 for double-size curve P2.  

 
Fig. 3: Illustration of the bounding corridor in the state space �2 with the corridor 
width of W=3. The reference path is marked by circles, and the state (N, M) by 
symbol ‘�’. The optimal path H(m) from (0,1) to goal state (ng, mg) is marked by dots 
and lines. Two sample conjugate states in the path H(m) are emphasized. 

 
Approximation for the closed contours can be obtained with the following algorithm: 

a) M�20: perform approximation of the double-size curve P2 with a single 
iteration of the reduced search, and analysis of the state space �2;  



b) M>20: perform approximation of the curve P with iterative reduced search in 
�1, and by selecting a new starting point after every iteration until no further 
improvement is registered. Then perform approximation of the double-size curve 
P2 with analysis of the state space �2. If processing time is limited, we can 
perform only two iterations of the reduced search.  

 
2.4 Solution for min-# problem  

To solve the min-# problem for closed curves, we have to find approximation of the 
closed contour P by another closed contour Q with minimal number of line segments 
with an approximation error within given error tolerance level: d(P)��. The 
approximation error d(P) with measure L

�
 is given as the maximum Euclidean 

distance from the vertices of P to the approximation linear segments. 
To solve the min-# problem a digraph is constructed on the vertices of the input 

contour P. In the digraph, a pair of vertices pi and pj are connected with an edge if the 
approximation error of the curve segment between the vertices is less than a given 
error tolerance: d(pi,pj)<�. The optimal solution is then a given by solving the shortest 
path in the digraph. This can be solved by using DP algorithm for the shortest path 
problem in the digraph [3,8,15].  

To find the optimal approximation for closed contour we shall follow the 
approach introduced in this paper: perform approximation of the wrapped double-size 
closed contour P2 and then analyze the state space. In the case of min-# problem, the 
analysis of the space is reduced to the analysis of the solutions for the relevant sub-
problems: we have to found that part of the approximation polygonal curve Q2, which 
have the same start and end points. 

Let us define M1=	M2/2
, where M2 is the number of segments of Q2 found with 
the approximation algorithm. The number of approximation segments M for the input 
curve P is supposed to be equal to M1 or M1-1. To find the optimal starting point nopt 
we have to check the first M1 vertices qk of Q2, where k=0, .., M. If the approximation 
vertices qk+M or qk+M-1 correspond to the same vertex pn of the input contour P as the 
vertex qk, the vertex pn is the optimal starting point. If the pair is not found, we have 
to use the current starting point.  

3. Results and discussion 

Results of experiments for 3500-vertex test shape “France” are shown in Fig.4 and 5. 
The optimality of the obtained solutions for min-� problem is defined by fidelity (F) 
and for min-# problem by efficiency (Eff) parameters [12]. The experiments for the 
shape “France” and other test shapes have shown that for the min-� problem with 
relatively small values of M (e.g. M�20) the optimal starting point can usually be 
found by the reduced search algorithm and the analysis of the state space �2. For big 
values of M, the iterative reduced search in the state space �1 can be used along with 
the reduced search, and the analysis in the state space �2.   

For comparison, min-� approximation of the test shape “France” by the method of 
Horng  [5] with two iterations of the full search DP algorithm [9] takes about 100 s 



with fidelity F=89..100%. The proposed algorithm, on the other hand, obtains the 
optimal result in 10 s. The min-# approximation of the test shape  “France” was 
performed by a modified version of Schroeder and Laurent algorithm [13]: L2 and L

�
 

are used jointly [8] instead of using only L
�
. 

 
 

  
 

Fig. 4: Results of the min-� approximation of the shape “France” with 14 line 
segments using random starting point (100 repeats): a) by two iterations of the 
reduced search algorithm (W=5) for the open curves [6,7]. The quality of the result 
varies from F=88..100%, and the processing time is T=8.0 s, on average. b) by the 
proposed algorithm for the closed contours (W=5) with the results of F=100%, and 
T=10.4 s. 
 

  
Fig. 5: Result of the min-# approximation of shape “France” with tolerance level 
�=0.75 using 50 random starting points: a) by two iterations of the algorithm for 
the open curves [15]: Eff=99.5%, T=88 s; b) by the proposed algorithm for the 
closed contours: M=8, Eff=100%, T=91 s.  



4. Conclusions  

We have introduced a new approach for min-� and min-# approximation of closed 
contours based on dynamic programming method for open curves. It performs 
approximation of the cyclically wrapped doubled-size contour and then makes 
analysis of the state space to select the best starting point. The processing time is 
double of that of the approximation of the corresponding open curve. The time 
complexity of the algorithms is defined by the complexity of approximation 
algorithms for open curves in use. For solving the min-� problem the suggested 
method can be used with iterative reduced search algorithm introduced earlier with 
the time complexity between O(N) and O(N2). In most cases, it does provide optimal 
solution although the question of optimality remains an open question. 
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