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ABSTRACT 
 
We propose a fast near-optimal algorithm for solving the 
problem of min-# polygonal approximation of digitized 
curves. The algorithm consists of two steps. It first finds 
a reference approximation with minimum number of 
segments for a given error tolerance by using L

�
 error 

metrics. It then improves the quality of the approximation 
by a reduced-search dynamic programming with additive 
L2 error measure. The algorithm is tailored for high-
quality vectorization of digitized curves. 
 
Keywords: vectorization, polygonal approximation, min-# 
problem, shortest path, dynamic programming 
 
1. INTRODUCTION 
 
We consider the problem of polygonal approximation of 
open digitized curves for high-quality vectorization tasks. 
The task is defined as optimal polygonal approximation of 
N vertices with the minimum number of linear segments 
M that satisfies a given error tolerance. It is known as the 
min-# problem. 

The problem is closely related to the min-� 
problem, which aims at minimizing the approximation 
error for a given number of segments M. This problem 
can be solved by graph theory methods as proposed in 
O(N2logN) time [1]. The problem can also be solved by 
dynamic programming algorithm in O(N2 M) time as 
proposed in [2]. Salotti has improved this approach by 
a method that works in O(N2) time [3]. Schuster and 
Katsagellos [4] have proposed another optimal algorithm 
with the time complexity of O(N2) based on the Lagrange 
multiplier method. 

All the above algorithms are optimal but they 
have quadratic or cubic time complexity, which makes 
them impractical for large number of vertices N. In 
a recent paper [5], we have introduced fast near-optimal 
algorithm for the min-� problem that has time complexity 
remarkably less than O(N2). 

Several algorithms for the min-# problem also 
exist. Graph theory method has been proposed in [6], and 
the complexity of this algorithm was then reduced to 
O(N2) in [1,4,7]. The dynamic programming approach 
also can be used to solve the problem, but complexity of 
the algorithm is O(N3) [2, 8]. 

A fast near-optimal algorithm was proposed for 
the min-# problem in [9]. The algorithm provides solution 
with minimum number of segments M for a given error 
tolerance dT: d � dT.. The approximation error d is defined 
as the maximum Euclidean distance from the vertices to 
the approximating segments, and it is the so-called L

�
 

error metrics. The algorithm has been tailored especially 
to polygons with low number of segments, which is 
suitable as shape signatures in image retrieval from 
multimedia databases. 

Technically, the algorithm in [9] can also be used 
for polygonal approximation in the vectorization tasks. 
However, the error metrics L

�
 is inferior to L2 if we are 

dealing with approximation with low error tolerance for 
high-quality vectorization task. The L2 error metrics 
(corresponding to the means squared error E) has also 
been considered in [9] but only as local distortion 
measure, and not as global cost function for the whole 
curve. 

Thus, it is expected that the additive error 
metrics L2 provides better results for the same number of 
approximating segments M in the vectorization 
application, but the error measure E can hardly be used as 
the error tolerance measure in the min-# problem because 
of its additive characteristic. 

To solve this dilemma, we propose to use the L
�
 

metrics as the input control parameter dT, and the additive 
error measure E with metrics L2 as the cost function in the 
optimization. In polygonal approximation of the lines in 
engineering drawings, maps, schemes, etc., the distortion 
tolerance dT can be set up to half of the line width [10], or 
to 1-2 pixels for polygonal approximation of region 
borders in segmentation tasks. 

In this work, we generalize the near-optimal 
algorithm solving the min-� problem [5] to solve the 
min-# problem, too. We formulate the min-# problem in 
two forms: strong and weak. The strong form means that 
the optimal solution with error metrics L2 has to satisfy 
the constraint of the maximum distortion: d � dT.. The 
weak form means that we are looking for an optimal 
solution that takes no account of the strong constraint on 
the distortion; it merely aims at finding solution for which 
d � dT. 
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2. ALGORITHM IN THE WEAK FORM 
 
Let us define an open N-vertex polygonal curve in 2-D 
space as the ordered set of P1,N = {pk: k = 1,…,N}. The 
approximating (M+1)-vertex polygonal curve is defined 
as Q1,M+1={qk: qk�P, k = 1,…, M+1). The proposed 
algorithm consists of two steps: 

Step 1: Minimize the number of segments M for 
a given constraint: d1 � dT. 
Step 2: Optimize the reference solution with 
metrics L2 

At the first step, we find a reference approximation with 
minimum number of segments M for a given error 
tolerance dT using the algorithm proposed in [9] 
(algorithm A1). At the second step, we improve the 
quality of the reference approximation using a fast near-
optimal algorithm with the cost function E (algorithm 
A2). The algorithm A2 is based on the reduced-search 
dynamic programming approach as proposed in [5]. 
 
2.1. Finding reference solution 
We use the algorithm in [9] for generating the initial 
(reference) solution. It is based on the algorithm for 
finding single-source shortest path in directed acyclic 
graph (DAG) [4,7]. 

The algorithm A1 is represented in Fig. 1. The 
R(j) gives the minimum number of segments in the 
polygon Q0,j  connecting the start vertex p0 and the current 
vertex pj. The local distortion d(i,j) is maximum 
Euclidean distance for the approximating segment (pi,pj).  

To reduce the processing time, Schroeder and 
Laurent suggested to stop the further search when the 
current local distortion d(i,j) is twice larger than the given 
error tolerance dT. The B is an array of the parent vertices. 
The obtained solution defines the number of segments M 
and a reference solution. 
 
 

Initialization 
R(0) = 0 
 
Recursion 
FOR j = 1  TO  N  DO 
    R(j)= � 
 FOR i = j-i 0  DO 
       IF(d(i,j) > 2 dT) 
           BREAK 
       ENDIF 
       IF(d(i,j) < dT) AND (R(i) + 1 < R(j)) 
          R(j) = R(i) + 1, B(j) = i 
        ENDIF 
    END 
END 

Figure 1: Algorithm A1 [9] for the shortest path in the 
directed acyclic graph. 
 
 

2.2. Optimize the reference solution 
Let us define discrete state space �, where every point 
(n,m) in the space represents the sub-problem of 
approximating part of the input polygonal curve P1,n by m 
segments. Any output polygonal curve Q can be 
represented as a path in the state space � from the initial 
state (1,0) to the goal state (N,M). We also define E(n, m) 
as the cost function of the optimal approximation for the 
state (n,m). 

The solution obtained at the first step defines 
a reference path G = {(G(m),m): m = 0,…,M} in the state 
space �. A bounding corridor is then constructed along 
the reference path G in the space (see Fig.3) that defines 
a bounded state space �C. The left {L(m)} and right 
{R(m)} bounds of the corridor are defined as follows: 
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where B1 = �W/2�,  and B2 = W – B1.  The offsets {�m(n)} 
of the bounding corridor are defined relative to the bottom 
boundary of the state space � (see Fig.3): 
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Dynamic programming is performed inside the bounding 
corridor for solving the minimum cost function E(n, m) 
using the recursive expression.  

 

Initialization: 
E(1,0) = 0 
  
Recursion: 
FOR m = 1  TO  M  DO 
  FOR n = L(m)  TO  R(m)  DO 
          Cmin =  � 
       FOR  j= L(m�1) TO R(m�1) DO 
               C = E(j, (m�1) mod 2) + e2(j, n) 
               IF(C < Cmin)  
                   Cmin = C,     jmin = j 
               ENDIF 
          END 
          E(n, m mod 2)    = Cmin 
      A(n, m � �m(n)) = jmin 
     END 
END 
E = E(N,M) 

 
Backtracking to find the optimal path H(m): 
H(M)= N 
FOR m = M TO 1 DO 
 H(m�1) = A(H(m), m � �m(H(m))) 
END 

Figure 2: Algorithm A2 [5] for the reduced-search dynamic 
programming. 

 



 
 

  
Figure 3. Left: The scheme of the bounding corridor for the problem size of N=16 and M = 6. The reference path G is marked 
with dark gray circles. The corridor width is W = 4, and the left (L) and right (R) bounds are marked with gray dots. Right: 
Scheme of the modified bounding corridor for the problem size of N=16. The corridor width is W = 4. The four final states are 
marked with circles, and the possible values of M are from 5 to 8. 
 
 

The optimization algorithm A2 can be iterated 
using the output solution as a new starting point for next 
iteration. We can regulate the trade-off between quality 
and run time by changing the corridor width W, and the 
number of iterations. One iteration of the algorithm A2 is 
described in Fig. 2.  

In practice, with two iterations for corridor width 
of W = 6-8 we can achieve 99-100% level of optimality. 
With the proper selection of the corridor width and 
number of iterations we can achieve the 100% level of 
optimality with high confidence [5]. 
 
2.3. Complexity of the algorithm 
The processing time T1 of the algorithm A1 for the error 
metrics L

�
 can be roughly estimated as T1 = O(N2/M). In 

the case under consideration, polygonal approximation for 
precise vectorization, it means that the time complexity of 
the algorithm A1 ranges from O(N) to O(N2) depending 
on the given error tolerance: smaller error tolerances 
would result in larger number of segments M and, thus, 
smaller time complexity. The space complexity of A1 is 
O(N). 

The processing time T2 of the reduced-search 
algorithm A2 is proportional to N2W2/M per iteration. 
Thus, the time complexity of the algorithm A2 ranges 
from O(N) to O(N2), too. This is also the time complexity 
of the whole algorithm (A1+A2). The exact time 
complexity depends on the given error tolerance, and on 
the parameter W (corridor width). 

In the implementation, we use ring buffer of size 
2�N to store the values of E(n,m). For the parent states A, 
we do not store the values in the absolute locations (n, m) 
but the relative locations (n,m��m(n)) defined by the 
offsets of the corridor boundary. In this way, we need an 
array of size W�N that covers the reduced state space �C 
exactly Thus, the algorithm A2 needs space for W�N 
locations in the state space, and the corresponding 
memory requirements is O(N). 

 

 
3. ALGORITHM IN THE STRONG FORM 
 
Solution for the weak form with fixed M can be found 
with the two steps of the represented algorithm. As for 
solution for the strong form, the situation is more 
complicated. We have to find a new number of segments 
M, which assure the constraint of the distortion measure 
d� dT. It can be done in the following iterative way using 
bisection algorithm. 

We first find a reference solution for the 
distortion tolerance dT with the algorithm A1. We then 
optimize the reference solution with algorithm A2 and 
define the distortion d2 of the optimized solution. If the 
distortion d2 is greater than a given error tolerance dT, we 
set a smaller error tolerance d*

T (for example dT/2). In this 
way, we define error tolerance range [d*

T, dT] and apply 
algorithms A1 and A2 for the error tolerance d*

T. We then 
repeat bisection of the tolerance range and the Steps 1 and 
2 until proper solution is found. If the distortion d2 is non-
increasing function of the segments number M, the 
algorithm will converge. 

For the optimal solutions the previous condition 
is usually fulfilled. To speed-up the convergence and to 
reduce the number of iterations we can use the search 
redundancy of the dynamic programming method. For 
this purpose we modified the bounding corridor to 
provide us with solutions for W final states (see Fig. 3). In 
this case, we have to use ring buffer of size W�N to store 
the values of E(n,m) in the modified corridor. After every 
step of the optimization algorithm A2, we check the 
distortion of W optimal solutions with m = M�B2, …, 
M+B1�1, and check whether we should continue the 
process, or if the final solution was already found. The 
number of iterations depends on the given error tolerance 
dT, and on the corridor width W. The iterative process 
converges faster for larger error tolerance values than for 
smaller ones. 

After that we can apply additional steps of the 
algorithm A2 to achieve nearly optimal result. 



Figure 4. Left: approximation after the 1st iteration for a sample 5004-vertex  (from [3]) with M=100 segments. Right: 
The bounding corridor in the state space with the width W=10.

  
Figure 5: Left: Fragment of the 5004-vertices test shape (from [3]) after approximation with algorithm A1 for the error 
tolerance dT=2 pixels, the number of segments M = 281, the approximation error E1 = 4830. Right: Fragment of the 
5004-vertices test shape after optimization of the reference solution with algorithm A2, the corridor width W=8, 
distortion d=2.55 pixels, number of segments M = 281, the approximation error E2 = 2480. 

 
 
4. RESULTS AND DISCUSSION 
 
We concentrate here on the analysis of the algorithms A1 
and A2 in the weak and strong forms. There are two 
questions to be answered: (a) do we gain from the use of 
the optimization algorithm A2, and (b) could we use the 
algorithm A2 in weak form instead of the strong one for 
polygonal approximation without increasing the number 
of segments in the vectorization task. 
 
4.1. Efficiency of the algorithm in weak form 
Let us compare the properties of the reference solution 
obtained by the algorithm A1, the result of the algorithm 
A2, and the optimal solution. The data for the 5004-
vertices test shape are represented in Table 1. The run 
times have been obtained using Pentium II, 266 MHz 
processor. 

Using the error metrics L
�
 for the optimization 

changes the characteristics of the approximation error 
distribution along the digitized curve. In the reference 
solution we can observe the appearance of long slits 
between linear segments and the digitized curve (see 
Fig.5). It can be explained that the width of the slits is 
smaller than the error tolerance. 

The additive cost function E controls the global 
approximation error for the whole curve. Approximation 
error E2 of the optimized solution is therefore twice as 
small as that of the reference solution. The approximating 
segments usually lie closer to the vertices of the curve 
with only a few exceptions. The maximum local distortion 
(d2) of the solution A2 can be greater than the maximum 
local distortion (d1) of the reference solution A1. 
However, this is the case only for a few vertices, about 
1-2% of the total number of the vertices. 



Table 1. Number of segments M, distortions (d1 and d2), mean squared errors (E1 and E2) 
and processing time (T1 and T2) of the algorithms A1 and A2 for the test shape (N = 5004). 

 
dT (pixels): 0.5 1.0 1.5 2.0 2.5 3.0 
M: 932 508 344 281 234 199 
d1 (pixels): 0.50 1.00 1.50 2.00 2.50 3.00 
d2 (pixels): 0.80 1.80 2.50 2.60 3.74 5.00 
E1: 259 1158 2631 4832 7387 10685 
E2: 204 674 1473 2477 3838 5763 
T1 (s): 0.11 0.22 0.33 0.50 0.65 0.87 
T2, (s): 0.77 1.32 1.87 2.30 2.75 3.30 
Total time: 0.88 1.54 2.20 2.80 3.40 4.17 

 
 
4.2. Weak vs. Strong 
The optimized solution for the problem in the strong form 
for the test shape can be achieved in 3-5 iterations, 
depending on the given error tolerance. Moreover, in the 
case of low error tolerance values, the solution for the 
strong form will have larger number of approximating 
segments: about 50% more than in the solution of the 
weak form. 

Actually, in applied tasks such as vectorization, 
we usually define a space scale of the noise and treat it as 
characteristic value (d � dT), not as a strong constraint 
d � dT. Therefore, we do not need to spent processing time 
to additional iterations of optimization to satisfy the 
strong condition d2 � dT. In practice, we can use the 
solution with less number of segments that satisfies the 
weaker condition  d2 �  dT. 
 
5. CONCLUSIONS 
 
We have developed a fast near-optimal algorithm for the 
min-# problem of polygonal approximation for digitized 
curves. To combine the practicality of the metrics L

�
 and 

the high quality of the error metrics L2, we proposed to 
use the distortion measure with metrics L

�
 as input 

control parameter dT in polygonal approximation, and the 
additive error measure E with metrics L2 as cost function 
for the optimization. 

The min-# problem was considered in strong and 
weak forms. In the strong form, the solution with error 
metrics L2 has to satisfy the constraint on the maximum 
distortion d � dT. The solution in the weak form takes no 
account of the constraint on the error tolerance of 
individual line segments but merely controls the algorithm 
by aiming at solution with d � dT. 

For the problem in the weak form, we proposed 
two-step algorithm: at the first step we find a reference 
approximation with minimum number of segments M for 
a given error tolerance dT with error measure L

�
, and at 

the second step we improve the quality of the reference 
approximation using a fast near-optimal algorithm with 
the error metrics L2. 

Complexity of the algorithms varies between 
O(N) and O(N2) depending on the error tolerance. The 

algorithm has the space complexity proportional to (NW). 
For the problem in strong form, we constructed 

an iterative algorithm based on the two-step algorithm. To 
speed-up the convergence and to reduce the number of 
iterations, we introduced a modified bounding corridor of 
width W for reduced-search dynamic programming with 
controlled search redundancy that provides solutions for 
W final states. 

The results showed that in practical application it 
is reasonable to use the algorithm in weak form for fast 
near-optimal approximation of digitized curves in applied 
tasks. 
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