
UNIVERSITY OF JOENSUU

COMPUTER SCIENCE AND STATISTICS

DISSERTATIONS 23

Niko Myller

Collaborative Software Visualization for

Learning: Theory and Applications

Academic dissertation

To be presented, with the permission of the Faculty of Science

of the University of Joensuu, for public criticism at SciFest au-

ditorium Space in Joensuu arena, Mehtimäenaukio 2, Joensuu,

on April 17th 2009, at 12 noon.

UNIVERSITY OF JOENSUU

2009

Supervisors Professor Erkki Sutinen
Department of Computer Science and Statistics
University of Joensuu
Joensuu, FINLAND

Associate Professor Mordechai Ben-Ari
Department of Science Teaching
Weizmann Institute of Science
Rehovot, ISRAEL

Reviewers Professor Jari Lavonen
Department of Applied Sciences of Education
University of Helsinki
Helsinki, FINLAND

Associate Professor Michael E. Caspersen
Department of Computer Science
University of Aarhus
Aarhus, DENMARK

Opponent Associate Professor Christopher D. Hundhausen
School of Electrical Engineering and Computer Science
Washington State University
Pullman, WA, USA

ISBN 978-952-219-233-2 (printed)

ISBN 978-952-219-234-9 (PDF)

ISSN 1796-8100 (printed)

ISSN 1796-8119 (PDF)

Computing Reviews (1998) Classification: K.3.2, H.5.1, I.6.8

Joensuun yliopistopaino

Joensuu 2009

Collaborative Software Visualization for Learning: Theory and

Applications

Niko Myller

Department of Computer Science and Statistics

University of Joensuu

P.O.Box 111, FIN-80101 Joensuu, FINLAND

niko.myller@cs.joensuu.fi

University of Joensuu, Computer Science, Dissertations 23

Joensuu, 2009, 183 pages

ISBN 978-952-219-233-2 (printed), 978-952-219-234-9 (PDF)

ISSN 1796-8100 (printed), 1796-8119 (PDF)

Abstract

A
s collaborative learning in general, and pair programming in particular, has

become widely adopted in computer science education, so has the use of

pedagogical visualization tools for facilitating collaboration. This introduces

new challenges to the visualization tools, and thus, research and theory to support

the development of collaborative visualization tools is needed. Currently, there is

little theory on collaborative learning with visualizations, and few studies on their

effect on each other.

In the research reported in this thesis, the collaborative use of software visualiza-

tions has been studied. The research is based on empirical studies of students who

are learning programming or data structures and algorithms. The focus of the stud-

ies has been on both the collaborative learning process and the learning outcomes.

The engagement taxonomy of visualizations has been extended in order to classify

finer variations of the engagement resulting from the use of the visualization tools.

The empirical studies have been carried out to analyze the collaborative learning

process and outcomes in three different institutions and they have utilized three

different visualization tools, namely Jeliot 3, TRAKLA2, and BlueJ. The hypothe-

ses that were formed during the research are that the increase in the engagement

level between the learners and the visualization tool results into more collaboration

iii

and better collaboration process (i.e., students interact more with each other and

concentrate on the learning activities) and this, in turn, is hypothesized to increase

the learning results of the students.

The studies were carried out in introductory programming, and data structures

and algorithms courses. Students were working in pairs or small groups and their

learning processes were recorded by using video cameras, screen capturing and au-

dio recording. This material was analyzed using a video analysis where samples

of the videos were categorized by the used engagement level, activities and discus-

sion contents. The learning results were tested by using pre- and post-tests with

between-subject design comparing different engagement levels and the quantitative

results were analysed by using statistical methods. The studies have confirmed the

hypotheses and the results are similar regardless of the tool or the institution.

Based on these results, I have created new ways to increase the engagement of

the students during the viewing of visualization by creating automatic prediction

question generation to Jeliot 3 program visualization tool. Furthermore, I have

combined a collaborative authoring tool called Woven Stories with Jeliot 3 in order

to form a new tool called JeCo, Jeliot Collaboratively.

In summary, the work reported in the thesis extends the existing theory with

Extended Engagement Taxonomy and the hypotheses related to its applicability to

collaborative use of visualizations, empirically confirms the hypotheses. By applying

the theory, existing visualization tool is extended in order to support collaborative

learning with visualizations in face-to-face and distance learning settings.

Keywords: Software visualization, Program visualizations, Algorith visualization,
Novice programmers, Data structures, Algorithms, Collaborative learning,
Computer-supported collaborative learning

iv

Acknowledgements

During my doctoral research, I have been able to meet several people from all

over the world, who have one way or the other influenced my thoughts and this

research. I can only mention here a few and thus I also want to thank all the rest

who I do not mention by name.

I consider myself lucky for being supervised by Professor Erkki Sutinen and

Professor Mordechai “Moti” Ben-Ari from Weizmann Institute of Science. I have

had the pleasure to have many long discussions with Erkki about the thesis and life

in general. Those discussions have given me new ideas and hope in the struggle to

get the thesis done. I hope these discussions have been a learning experience for

both of us. Erkki has also aided me to become invited to other universities and

thus given me an opportunity to experience the world from different points of view.

Moti has been an invaluable source of help in the design of my research and in the

analysis and reporting of the results. He has also encouraged me to go on while I

have been hesitating. I am thankful to Moti that he hosted me at the Weizmann

Institute of Science in the beginning of my doctoral studies. During this visit, we

were able to lay the ground work for my doctoral research.

I am very happy that I have been able to work on Jeliot 3 with Andrés Moreno

and Roman Bednarik as well as Ronit Ben-Bassat Levy from Weizmann Institute of

Science. It has been a long but interesting journey from the autumn 2002 when we

started to work on Jeliot 3 with Andrés. Andrés and Roman have given me helpful

feedback on my research and supported me also outside the work as well as been my

co-authors in several publications. Ronit is a tireless fan of Jeliot 3 and her use of

and research on Jeliot has inspired me to work on Jeliot and research its use

Ari Korhonen and Mikko-Jussi Laakso have been my research collaborators at

Helsinki University of Technology and University of Turku, respectively. With Ari

and Mikko, we have carried out studies that are reported in several publications in

this thesis. I am glad that Ari and Mikko were open to the idea of joint collaboration

between researchers from three universities and that we could run experiments on

v

their courses.

I thank Jussi Nuutinen for being my co-author in a paper presented in this

thesis. Jussi has also brought joy into my working days at the university with the

short gaming sessions.

It has been also a pleasure to work with Tuomo Kakkonen on automated essay

grading and information retrieval. Although this research has not been directly

related to my thesis, it has enabled me to see outside the box and look at my

research from new perspectives.

I would like to thank Professor Jari Lavonen from the Department of Applied Sci-

ences of Education at the University of Helsinki and Professor Michael E. Caspersen

from the Department of Computer Science at the University of Aarhus for being

my pre-examiners and giving valuable comments and guidance for this and future

research. I am honored and excited to be able to have Professor Christopher D.

Hundhausen from the School of Electrical Engineering and Computer Science at

Washington State University as my opponent.

I am grateful to the East Finland Graduate School in Computer Science and En-

gineering (ECSE) and Centre for International Mobility (CIMO) for their financial

support. I am also thankful to the Department of Computer Science and Statistics

at the University of Joensuu for all the resources, material and immaterial, that I

have been able to use or received during my research and studies, and all the col-

leagues that have been helping me along the way. Parts of this research have been

conducted while I have been a visiting researcher at Massey University (Palmerston

North, New Zealand) hosted by Professor Kinshuk and a visiting lecturer at Iringa

University College of Tumaini University (Iringa, Tanzania).

My thanks also go to the instructors and students of all the courses, from which

I have been able to collect materials for my research, at the University of Joensuu,

University of Turku and Helsinki University of Technology.

My parents and family have given me all the ingredients for a good and happy

life and values that I can be proud of. They have been guiding me and giving me

support on those moments when I have been in doubt if I ever get to the finish line

with my thesis. I extend these thanks also to my whole extended family who have

been supporting me throughout this journey.

Last but foremost, I thank my significant other, Sini, without whom I would be

incomplete and would not have been able to finish this work. Thank you for putting

up with me, even though I spent sometimes days and nights with the thesis and not

with you. I am grateful that I can share my life and research with you, and that

you are willing to take risks like going to live in Tanzania with me.

Espoo, April 2009

- Niko Myller

vi

List of Original Publications

P1. Myller, N., Bednarik, R., Ben-Ari, M., and Sutinen, E. (2009). Extending the

engagement taxonomy: software visualization and collaborative learning. The

ACM Transactions on Computing Education, 9(1), Article 7.

P2. Myller, N., Laakso, M., and Korhonen, A. (2007). Analyzing engagement

taxonomy in collaborative algorithm visualization. In Hughes, J., Peiris, D. R.,

and Tymann, P. T., editors, Proceedings of the 12th annual SIGCSE conference

on Innovation and technology in computer science education (ITiCSE ’07),

pages 251–255, New York, NY, USA. ACM Press.

P3. Laakso, M.-J., Myller, N., and Korhonen, A. (2009). Comparing learning

performance of students using algorithm visualizations collaboratively on dif-

ferent engagement levels. Accepted for publication in Journal of Educational

Technology & Society.

P4. Korhonen, A., Laakso, M.-J., and Myller, N. (2009). How does algorithm

visualization affect collaboration? Video Analysis of Engagement and Discus-

sions. In Proceedings of the 5th International Conference on Web Information

Systems and Technologies (WEBIST), pages 479–488.

P5. Myller, N. (2007). Automatic generation of prediction questions during pro-

gram visualization. Electronic Notes in Theoretical Computer Science, 178:43–

49. (Proceedings of the Fourth Program Visualization Workshop).

P6. Myller, N. and Nuutinen, J. (2006). JeCo: Combining program visualization

and story weaving. Informatics in Education, 5(2):195–206.

vii

Contents

1 Introduction 1

1.1 Research Questions . 3

1.2 Methodology . 5

1.3 Contexts of the Research . 7

1.4 Organization of the Thesis . 8

2 Literature Review 9

2.1 Software Visualization . 9

2.2 Computer-Supported Collaborative Learning 21

3 Overview on the Publications 29

3.1 Summary of the Publications . 29

3.2 Contributions of the Author . 33

4 Summary of the Results 35

4.1 Extended Engagement Taxonomy . 35

4.2 Analysis of Collaborative Learning with Software Visualizations . . . 37

4.3 Applications . 44

5 Discussion 47

5.1 Implications of the Results . 47

5.2 Concluding remarks . 49

5.3 Future Perspectives . 49

References 51

Original Publications 63

viii

Chapter 1

Introduction

“There is nothing to do with computers that merits a Ph.D.”

– Max Newman (a.k.a. Maxwell Neumann)

D
uring the last few decades, several algorithm and program visualization

(or in general software visualization (SV)) tools and techniques have been

developed (e.g., Baecker, 1981, Roman et al., 1992, Boroni et al., 1996,

Lahtinen et al., 1998, Pierson and Rodger, 1998, Crescenzi et al., 2000, Naps et al.,

2000, Rößling and Freisleben, 2002, Sutinen et al., 2003, Kölling et al., 2003, Ben-

Bassat Levy et al., 2003, Korhonen et al., 2004, Moreno et al., 2004a, Hundhausen

and Brown, 2007a). However, the research in this area was for a long time con-

cerned with the effects of the medium and technology, i.e., computer screen and

animation, and how they should be produced and configured in order to enhance

learning (Naps, 2005). The evaluations of the tools from this period received mixed

results both supporting and rejecting the use of software visualizations for learning

(Hundhausen et al., 2002) and it has been difficult to develop a theoretical ba-

sis for the reasons why a visualization tool or its use in education is successful or

fails. Hundhausen et al. (2002) proceeded into this direction in their meta-study

and found that one of the key features leading to successful learning results is the

involvement or engagement in which students are committed during learning with

the visualization (e.g., watching vs. interacting). This observation was based on

the analysis of previous studies, which showed that those studies that compared

different levels of student engagement during a visualization were much more likely

to find a difference in learning outcomes in favor of the visualization tool. This work

led to the development of Engagement Taxonomy (ET) (Naps et al., 2002), which

describes different forms of engagement. It rests on the idea that higher engagement

between a learner and a visualization results in better learning results. Based on

1

the studies analyzed by Hundhausen et al. (2002) and Naps et al. (2002) and more

recent studies (e.g., Naps and Grissom, 2002, Grissom et al., 2003, Urquiza-Fuentes

and Velázquez-Iturbide, 2007), there seems to a consensus that the engagement that

a visualization promotes is a fairly reliable indicator of its educational effectiveness.

However, most of the studies testing the educational effectiveness of visualizations

have been performed on individual learners and there is only little evidence that the

same or similar results apply when students are learning in collaboration with the

visualizations (Hundhausen, 2002, Hübscher-Younger and Narayanan, 2003, Hund-

hausen and Brown, 2008). The analysis of the collaborative learning with visu-

alizations seems to be a logical next step in the progress of the research into the

educational effectiveness of algorithm and program visualizations as also illustrated

in Figure 1.1.

Research on
medium and technology

effects

Research on
individual learners
with visualizations

Research on
collaborating learners

with visualization
- -

Figure 1.1: The progress of research on algorithm and program visualization.

As examples of the third phase of the research on software visualizations’ edu-

cational effectiveness, Hundhausen (2002) and Hübscher-Younger and Narayanan

(2003) have claimed that when communication and collaboration are accompa-

nied with visualizations, students’ learning of algorithms is enhanced. According

to Hundhausen (2002), bi-directional communication between instructor and stu-

dents supported by relevant visualizations helps students to learn algorithms because

they get relevant feedback from their peers and instructors. Hübscher-Younger and

Narayanan (2003) have shown that the construction, sharing and discussion of the

students’ representations of a certain algorithm aid students learn the algorithm

better. However, very few studies exist that explicitly mention ET in the context of

collaborative use of visualizations for learning (Hundhausen and Brown, 2008) and

thus, there seems to be a missing link between ET and collaborative learning with

visualizations.

When looking at the current situation from another perspective, the students are

still struggling with and dropping out from their programming courses (McCracken

et al., 2001, Robins et al., 2003, Lister et al., 2004, McGettrick et al., 2005, Bennedsen

and Caspersen, 2007) and especially in the distance education courses on program-

2

ming (Meisalo et al., 2003). The same seems to apply also to the data structures

and algorithms courses (Korhonen et al., 2002, Milne and Rowe, 2002, Jain et al.,

2006). Therefore, programming education has become one of the most active fields

of research in the field of Computer Science Education (CSE). One solution that has

been shown to help in these situations is the use of collaborative learning (Phillip

et al., 1995, Wills et al., 1999, Chinn et al., 2007, Valdivia and Nussbaum, 2007, Beck

and Chizhik, 2008, Teague and Roe, 2008) and pair programming (Nosek, 1998, Mc-

Dowell et al., 2003, Nagappan et al., 2003, Williams et al., 2000). This also means

that the visualization tools are used more often during collaborative learning or pair

programming and this creates new demands on the visualization tools (Suthers and

Hundhausen, 2003a, Bryant et al., 2005). However, theories or empirical results on

how visualizations affect collaborative learning of programming or data structures

and algorithms are rare.

A consequence of the shift from an individual learner using a visualization to col-

laborating learners using visualizations is that the learning process becomes more

complex and more important, because the collaborating members need to consider

also each other and make sure they have similar understanding in order to suc-

ceed. Visualization tools can also affect many aspects of the collaboration, for

instance, resolution of misunderstandings or misconceptions (Roschelle, 1996), and

it can serve as an external representation for the collaborating partners (Suthers

and Hundhausen, 2003a). Moreover, Suthers and Hundhausen (2003a) have studied

the effects of different kinds of visualizations and found that the structure and form

of a visualization has an effect on what aspects of the information are discussed.

Thus, there is a need not only to study the learning outcomes of a collaborative

learning with visualizations but also the collaborative learning process leading to

those results.

In this thesis, the issues related to the use of SV tools in collaborative learning

are studied. I am especially interested in how the visualizations, particulary soft-

ware visualizations, affect not only the collaborative learning process but also its

outcomes. I build on the work from the research related to software visualizations

and computer-supported collaborative learning (CSCL), and extend the existing

theories and tools to support the teaching and learning of programming and data

structures and algorithms.

1.1 Research Questions

The research reported in this thesis analyzes the effects of SV on the collaborative

learning process and its outcomes in the context of introductory computer science

education, especially in learning of programming and data structures and algorithms.

3

The motivation to study how to support collaborative learning in this context with

visualizations is twofold. Firstly, previous research has shown that sharing and

discussing algorithm representations have increased the students’ learning outcomes,

but research that analyzes the effects of visualizations on the learning process is

also needed. Secondly, collaborative learning has been found to be a good way to

motivate and support students’ learning of introductory computer science, but there

is very little empirically based knowledge that helps to understand this process and

only a few tools to support it. Therefore, the first research question RQ1 aims

to study the effects of the SV tools on the collaborative learning process and the

learning results.

RQ1: How do software visualization tools affect the collaborative learn-
ing process and its outcomes in the context of programming, and data
structures and algorithms?

As this question is quite broad and difficult to answer as such, it has been refined

and narrowed to make it answerable based on the previous literature and in empirical

studies. Thus, RQ1 was divided into three narrower questions RQ1.1, RQ1.2 and

RQ1.3 based on the previous literature and the experience gathered during the

research process.

RQ1.1: Which qualities of the software visualization tools have been
reported to affect collaborative learning?

RQ1.2: How are the SV tools used in the collaborative learning?

RQ1.3: How does the level of engagement between the learners and the
visualization affect the collaboration process and its outcomes?

The aim is to analyze and answer RQ1.1 based on the review of previous lit-

erature. RQ1.2 is targeted to further analyze the use of SV tools in collaborative

learning based on empirical data that has been collected when students were learn-

ing collaboratively with SV tools. RQ1.3 was formed based on the literature review

that analyzed the educational effectiveness of visualizations and their collaborative

use, and the empirical evidence obtained during this research so it can be seen as

one of the answers to RQ1.1. Answers to these questions will produce new knowl-

edge on the use of visualizations in learning and especially in collaborative learning.

This can then be used to inform the design and development of new SV tools or

extension of existing SV tools in order to support the collaborative learning with

visualizations. Thus, the second research question RQ2 is constructive in nature

and targets the extension of existing SV tools so that the findings from the research

results obtained in the study of RQ1.1, RQ1.2 and RQ1.3 can be utilized.

4

RQ2: How can the existing SV tools be extended in order to better sup-
port collaborative learning of introductory computer science?

This question was also split into two smaller questions in order to design and de-

velop tools for face-to-face and distance learning situations as formulated in RQ2.1

and RQ2.2. The context for the further development of the existing SV tools is

the program visualization tool Jeliot 3 (Moreno et al., 2004a,b) which I have been

designing and developing (Myller, 2004).

RQ2.1: How can the existing SV tools be extended in order to have
better support for collaborative learning of introductory computer science
in a face-to-face learning situation?

RQ2.2: How can the existing SV tools be extended in order to have
better support for collaborative learning of introductory computer science
in a distance learning situation?

In summary, the research aims at the development and empirical validation of a

theory on aspects of the visualization affecting the collaborative learning process and

its outcomes, and applying that knowledge to the further development of existing SV

tools. Table 1.1 shows the research questions and the sections and the publications

in this thesis that answer those research questions.

Research Question Section in Thesis Publications

RQ1.1 2.1.2, 2.2 (P1, P3)
RQ1.2 4.2.1 (P1, P3, P4)
RQ1.3 4.1, 4.2 (P1, P2, P3, P4)
RQ2.1 4.3 (P5)
RQ2.2 4.3 (P6)

Table 1.1: Research questions and the sections and publications answering them.

1.2 Methodology

As the research in this thesis is interdisciplinary, methods from multiple fields have

been used. The use of multiple methods (or mixed methods (Johnson and On-

wuegbuzie, 2004)) is becoming more common in the fields of CSE and educational

technology research (Lister, 2005, Fincher and Petre, 2004). On the one hand, I

have applied methods from behavioral or social sciences such as experiments and

causal-comparative or observational studies as the quantitative methods (Gall et al.,

5

2006, McGuigan, 1996). On the other hand, I have used the analysis of observations

from videos similarly to the interaction analysis approach proposed by Jordan and

Henderson (1995) and to the verbal data analysis described by Chi (1997). Finally,

I constructed new tools and techniques that can be seen as constructive research

(Lukka, 2003) or artifacts-building (Järvinen, 2004a,b).

From a methodological point of view, my research questions also indicate that I

should use multiple methods in order to answer them (Järvinen, 2004b). In order to

answer RQ1.1, a literature review has been carried out to collect the previous re-

search results in the fields of software visualization research and computer-supported

collaborative learning, and to understand what aspects of the visualizations have

been identified as affecting collaboration. The video material from the empirical

studies has also been used to analyze what aspects of the visualizations affected the

collaborative learning process (cf. RQ1.1) and how the visualizations were used (cf.

RQ1.2) as reported in (P1, P3, P4).

When it was identified that engagement between the learners and the visual-

ization potentially have an effect on the learning process and results, it was tested

using quantitative methods. However, as pointed out by Lister (2005) and (Ben-

Bassat Levy et al., 2003),results obtained using qualitative methods can be used

to describe the quantitative results. Therefore, research question RQ1.3 has been

investigated by using both quantitative and qualitative methods, but the emphasis

has been on quantitative methods.

As a quantitative method, I have been using observational studies and exper-

iments with a single-factor, between-subjects design with pre- and post-tests; the

engagement level as the between-subject factor with normally two levels (McGuigan,

1996, Gall et al., 2006). This kind of design is common and has been used in CSE

and educational technology research (e.g., Grissom et al., 2003, Sajaniemi and Kuit-

tinen, 2005, Hundhausen and Brown, 2008). Furthermore, to analyze the impact of

engagement on the learning process, I have used causal-comparative studies where

the engagement was the observed independent variable (Gall et al., 2006). This

is a less common mode of study and has the limitation that it cannot be used for

statistical inference, but only to show correlations between measured dependent and

observed independent variables. The quantitative data of the learning performance

of the students was obtained from pre- and post-tests, and categorized episodes of

video data were used in the analyses concerning the collaborative learning process.

In the categorizations of the video materials and their analysis, I have used ap-

proaches similar to those used by Lavonen et al. (2002), Suthers and Hundhausen

(2003a), Suthers et al. (2003b), and Hundhausen and Brown (2008). In the ob-

servational studies and video analyses, the classification schemes of the students or

episodes were defined beforehand. They were based on previous research and previ-

ously used categorizations (e.g., Hundhausen and Brown, 2008), and adapted to the

6

needs of the subsequent analyses. The reliability of the resulting categorizations of

the episodes was also checked using two raters and appropriate statistical tests of

the inter-rater reliability (Landis and Koch, 1977). The category counts were then

used in the quantitative analysis. However, not all of the materials were statistically

analyzed, but only used to describe the frequencies and occurrences of events and

discussion contents qualitatively.

Table 1.2 summarizes the relations between research questions and methods as

well as their appearance in the sections of this thesis and in the original publications.

Research Methods Sections Publications

Question

RQ1.1 Literature review, 2 (P1, P3)
Qualitative analysis 4.2.1 (P1, P3)

RQ1.2 Literature review, 2 (P1, P3, P4)
Qualitative analyses 4.2.1 (P1, P3, P4)

RQ1.3 Literature review, 2.1.2, 2.2.2, 2.2.3 (P1)
Constructive research, 4.1 (P1, P4)
Experimentation, 4.2.2 (P2, P3)
Observational studies 4.2.1 (P1, P3, P4)
Qualitative analyses 4.2.1 (P1, P3, P4)

RQ2.1 Constructive research 4.3 (P5)

RQ2.2 Constructive research 4.3 (P6)

Table 1.2: The relationship between methods and research questions, and in which
publications and sections they were used and described.

1.3 Contexts of the Research

Currently, when the world is more connected than ever, no research happens in isola-

tion, but in a context that affects the methods that are used as well as the attitudes

towards the research, even though most of this research has been quantitative in

nature.

The research reported in this thesis has been carried out at three Finnish univer-

sities, the University of Joensuu, the University of Turku, and Helsinki University

of Technology, by using three different SV tools: Jeliot 3, BlueJ, and TRAKLA2.

Furthermore, parts of the analysis and development work reported in the thesis have

been done while I was a visiting researcher or lecturer at three other universities,

Weizmann Institute of Science in Israel, Massey University in New Zealand and Tu-

maini University in Tanzania. Thus, there have been multiple contexts and research

7

groups that have been involved and have affected the studies and their results, but

this should make the research results more reliable because similar kinds of results

have been obtained in several contexts using three different SV tools and by working

with several research groups and researchers.

From another point of view, I have been developing the program visualization

tool Jeliot 3 for several years, and used it in teaching programming in face-to-face

and online education; in addition, I have observed other teachers and students using

it in various contexts. This has obviously had an effect on my ideas on how the

visualization tools should be used in teaching and learning of computer science, as

well as what aspects of the visualization I regard as useful or educationally effective.

However, as a researcher I have tried to be in many ways both sensitive and open

to new ideas and guided by the empirical data that I have analyzed and studied.

1.4 Organization of the Thesis

The thesis consists of seven Chapters and six publications, organized as follows. In

Chapter 1, I motivate this work and explain the background that led to the research

questions investigated in my research. I also describe the methodology that has been

used to answer the research questions. In addition, the contexts of the research and

the organization of the thesis are explained. In Chapter 2, I define the key terms

that are used in this thesis and review the relevant literature that has guided the

research work and is related to the reported studies. Chapter 3 summarizes the

publications that are attached to this thesis and explains my contributions to those

publications. Chapter 4 sums up the results that have been obtained during this

research. The implications of the results are discussed in Chapter 5 as well as a the

concluding remarks are given. The chapter concludes the introduction and summary

part with future perspectives. The introduction and summary part of the thesis is

followed by the six publications published in international peer-reviewed conferences

and journals: (P1)–(P6).

8

Chapter 2

Literature Review

“A scientific truth does not triumph by convincing its opponents and making them see

the light, but rather because its opponents eventually die and a new generation grows

up that is familiar with it.”

– Max Planck

I
n order to put my work into context, I will review literature related to this

research. The literature review highlights those articles and studies that have

influenced my own research or are related and relevant to the research questions

and results of the studies reported in the thesis. Furthermore, I define the terminol-

ogy used in this thesis based on the definitions in the literature and on my own use

of the terms.

2.1 Software Visualization

Price et al. (1993) define software visualization (SV) as a combination of all the visu-

alizations tools, technologies and techniques that have been made to help or to teach

the process of software engineering (e.g., designing, comprehending or debugging a

program). One of the reasons to build visualizations is to manage the complexity

and emphasize those underlying relationships that might not be evident otherwise.

SV uses different visual means such as, typography, graphics, and animation to-

gether with human-computer interaction to allow the construction, understanding

and learning of computer software. This definition leaves the field very open and

interdisciplinary, and thus, several subfields have emerged. In this thesis, software

visualizations from three subfields, namely, program visualization, algorithm visual-

ization and visual algorithm simulation, are used and studied. Although algorithm

and program visualization are sometimes used interchangeably in the literature, they

9

are as different as a program and an algorithm, i.e., a program is an actual imple-

mentation of an algorithm or algorithms. In this thesis, SV is also used to mean all

the subfields that are covered in this thesis, namely program and algorithm visual-

ization, and visual algorithm simulation.

Program visualization (PV) can be described as depicting the source code or

the state of a program or its execution with the visual means. On the one hand,

syntax highlighting can be regarded as one of the simplest forms of PV. On the

other hand, the view in a program debugger or an animation of the execution of a

program are more complex PVs. Nevertheless, PV is always linked to the underlying

implementation of a program that the PV is illustrating. Due to this linkage and

the lower abstraction level, PVs are often easier to generate (semi-)automatically

compared to algorithm visualizations, which increases the ease with which they

can be used, but it makes them sometimes difficult to understand, because the

visualizations often show low level details and it is hard to automatically select the

important parts of the program that should be visualized and what can be left out.

Algorithm visualization (AV) can be seen as illustrations or animations of data

structures and their operations according to a certain algorithm. For instance, an

algorithm animation could depict all the states of a data structure, as well as the

transitions between those states during the execution of the algorithm. AVs are often

abstractions of the underlying data structures and algorithm (or their implementa-

tion), so that only the essential parts for understanding are shown. This makes the

automatic generation of AVs difficult but increases their understandability, because

the visualization concentrates only on the necessary parts and shows them on higher

abstraction level.

Visual algorithm simulation (VAS) (Korhonen, 2003) is a special case of AV

in which the execution path of an algorithm is searched when the data structures,

their initial and terminating states, and the permitted intermediate states are given.

Thus, the simulation refers to the exploration of the possible execution paths and

finding of the path that matches the given algorithm in the given settings. For

example, the search for the correct order to visit nodes in a weighted directed graph

with a depth-first search algorithm (which selects the next visited node by taking

the lowest-weighted edge to an unvisited node when the starting node is given by

using a visualization of the graph) can be seen as an visual algorithm simulation.

2.1.1 Visualization Tools Used in This Research

During my research, I have studied the effects of visualizations by using three differ-

ent SV tools, namely Jeliot 3, BlueJ and TRAKLA2. One of the reasons for using

multiple tools was to increase the credibility to the results by showing that the re-

sults are tool independent. In this section, I introduce the tools that were used

10

as research instruments, explain their background and describe empirical studies

carried out on the use of the tools.

Jeliot 3

Jeliot 3 (Moreno et al., 2004a,b) is a PV tool that is targeted especially to novice

learners of Java programming. The development and research on Jeliot (Ben-Ari

et al., 2002) has produced three previous versions, called Eliot (Lahtinen et al., 1998),

Jeliot I (Sutinen et al., 2003), and Jeliot 2000 (Ben-Bassat Levy et al., 2003). Jeliot 3

is a generalization of its predecessor Jeliot 2000; the Java language coverage of

Jeliot 2000 was extended by replacing the hand-made Java interpreter in Jeliot 2000

with a full-fledged Java interpreter, DynamicJava (Hillion, 2002). Most of the user

interface and visualization components were maintained from Jeliot 2000 and only

extended to visualize the newly supported Java language features (Myller, 2004).

DynamicJava and the visualization engine were connected to each other by using

a program trace description language, MCode, which is language independent and

designed for this purpose (Moreno, 2005).

The main features of Jeliot 3 are the automatic and complete visualization of Java

programs within a novice-oriented user interface. Automatic visualization means

that a user can write a Java program without any Jeliot 3 specific code and animate

the program’s execution with Jeliot 3 with just two mouse clicks. Complete means

that Jeliot 3 visualizes all aspects of the program execution from expression eval-

uation to object allocation. The animation in Jeliot 3 can be seen as a high level

abstraction of the behavior of the Java Virtual Machine during program execution.

The user interface of Jeliot 3 can be seen in Figure 2.1. The user interface is

divided into four areas: the code editor (1), the control panel (2), the visualizations

(3), and the output area (4). The code editor contains the source code of the

program that is currently being edited or visualized. The control panel is used

to control the visualizations, whether it is playing, stepping, pausing or rewinding

the animation. The visualizations area currently contains two different kinds of

visualizations, namely the theater and the call tree. In addition, there is a history

view, which shows the previous states of the animation in the theater as a series of

snapshot images. The theater is the main visualization in Jeliot 3 and it shows all

aspects of the program execution. The theater can be further divided into four areas:

method area, expression evaluation area, constant and static area, and instance and

array area. The method area shows the method frames that are currently active in

the execution stack and the local variables stored in each of the method frames. All

the expression evaluation takes place in the expression evaluation area. The constant

and static area contains the static class variables as well as constant box from which

the literal constants appear. The instance and array area is like the heap in the Java

11

virtual machine and it stores all the instances that are currently referenced by the

program. The output area shows the output of the current program.

Figure 2.1: The user interface of Jeliot 3.

Jeliot 3 was designed for two different purposes. Firstly, it is a tool for the

teacher to explain the meaning and behavior of different language constructs and

to do what-if-type analyses in the classroom together with the students. Secondly,

Jeliot 3 can be used by the students for independent study, including development

and testing of their course assignments. As Jeliot 3 is designed in a modular way

to be extensible, and it is published as an open-source project under GPL, several

projects have used Jeliot 3 as a visualization component or developed new kinds of

visualization tools based on Jeliot 3 (Bednarik et al., 2006c).

The development of different versions of Jeliot has been research-oriented and

every version of Jeliot has been evaluated in empirical experiments. The results of

those experiments have then guided the design of the next version of Jeliot. The first

version of the Jeliot family, Eliot, was developed in order to simplify the development

of algorithm visualizations. The studies done by Sutinen et al. (1997) and Markkanen

et al. (1998) on the use of Eliot in a classroom indicated that the visualization tool

can increase the motivation of the students and the quality of the program code and

its documentation. This showed that the concept of program visualization in the

way it was done in Eliot was feasible and worth further study. However, due to the

12

restrictions of the execution environment of Eliot (it could be run only on certain

Unix machines), it was replaced with Jeliot I, which was implemented in Java and

could be run in an Internet browser.

The observation studies done to analyze the usage of Jeliot I by Lattu et al.

(2000) and Lattu et al. (2003) described the different utilizations of the visualiza-

tion tool during programming courses. They found five different use cases of Jeliot:

supporting the presentation of new concepts, explaining an example program to stu-

dents, tutoring the students during independent work, completion of programming

exercises and independent study outside of the classroom. It was also found that

true novices had difficulties in using and understanding Jeliot I because the visu-

alization was coarse so that it showed only the changes in the variables, but the

control flow of a program was difficult to understand. Furthermore, the large num-

ber of options that enabled the flexible semi-automatic generation of the animation

was overwhelming. Thus, it was decided that in Jeliot 2000 the animation genera-

tion was to be fully automatic and complete, showing the full control and data flow,

and that the user interface was to be oriented to the novices.

In a classroom experiment, Ben-Bassat Levy et al. (2003) evaluated the use of

Jeliot 2000 in the teaching and learning of programming. The results showed that

Jeliot 2000 especially helped mediocre students to perform better and to acquire a

mental model as well as vocabulary that enabled them to explain situations that

they had not experienced before. However, the language coverage of Jeliot 2000 was

very limited as it did not cover object-oriented features of Java language and so

these were included into Jeliot 3.

Kannusmäki et al. (2004) collected students’ opinions on the use of Jeliot 3 during

a web-based distance education course on programming. The data was collected

through open-ended questions, which students answered every two weeks during the

course. In the analysis, students were classified into three categories, i.e., strong,

mediocre and weak, according to their performance in the course. Based on the

comments, it was found that in this context the weak students benefited most from

the visualizations and the strong students thought that they did not need this kind of

tool anymore. This has led to the idea of developing adaptive program visualization

capabilities into Jeliot (Moreno et al., 2007a). The idea is that students and teachers

could either manually select which parts of the visualization they are interested in,

or Jeliot could create a user model on the topics that the student has already learned

and adapt the visualization according to the model.

Another study using qualitative methods to describe the use of Jeliot 3 is that

of Moreno and Joy (2007). Students’ use of Jeliot 3 was evaluated in the context

of a programming course and its laboratory sessions. The progress of six students

was followed and analyzed through interviews. In the data analysis, it was found

that students used the tool in two modes: as a learning aid and as a debugger.

13

Students explained that the use of Jeliot 3 was especially beneficial when studying

the concepts related to objects and arrays. However, most of the students could not

explain the process of object creation in the interviews. They used it also to debug

the programming assignments, as well as the programming project. However, they

noted that viewing the visualization should be optional.

A series of studies that tracked the eye-movements of Jeliot 3 users has been

performed (Bednarik et al., 2006a,b, 2005a,b). In these studies, the usage of Jeliot 3

during a program comprehension and debugging was analyzed. It was found that

Jeliot 3 was used and visually attended differently depending on the programming

experience of the user. Furthermore, the influence of the attended areas in the

visualization on program comprehension was analyzed and some weak correlations

were found. These studies have resulted in the design of a revised user interface and

visualization in Jeliot, but it has not yet been implemented.

Another research direction of Jeliot 3 is the creation and use of conflictive an-

imation (Moreno et al., 2007b). The conflictive animations can contain errors and

the students need to spot these errors from the visualization and report them. This

can help the learning of programming concepts in two ways. Firstly, this kind of

game-like mode of visualization can engage students to view and interact with the

visualization, and, secondly, students can test and train their understanding of the

various concepts of programming.

The effects of visualization in Jeliot 3 on the learning process have also been

researched, although not in a collaborative environment. In a classroom study,

Ebel and Ben-Ari (2006) showed that program visualization of Jeliot 3 increases the

attention of students to the material being taught and minimizes the unattentive

behavior.

Jeliot 3 was used in the empirical study reported in (P1) together with BlueJ

(see Section 2.1.1). The use of these tools together was made possible with the

integration between Jeliot 3 and BlueJ (Myller et al., 2007a). In addition to this,

the description of why and how an automatic prediction-type question generation

was added to Jeliot 3 is given in (P5), and the integration of Jeliot 3 and Woven

Stories, a collaborative authoring tool, is described in (P6).

BlueJ

BlueJ (Kölling et al., 2003) is a novice-oriented integrated development environment

(IDE) for Java. BlueJ is especially designed for teaching and learning of object-

oriented programming. Its main view, which is shown in Figure 2.2, contains the

class diagram (upper part) and the object bench (lower part). The class diagram is

an abstract view of the structure of a program and it shows the classes and their

relationships. It is possible to interact with the classes in the diagram through pop-

14

up menus to execute the main method or to create an object on the object bench.

The object bench allows the user to interact with the objects by calling methods

on the object or by inspecting the values of the fields in the object. In this way,

it is possible to create complex behavior of the objects without writing a line of

code. BlueJ also provides a source code editor, a unit testing facility (Patterson

et al., 2003) and support for distributed group work (Fisker et al., 2008). These

features have made BlueJ one of the most widely used teaching and learning tools

in programming courses.

Figure 2.2: The user interface of BlueJ.

BlueJ provides extension interfaces that allow the development of plug-in com-

ponents. There have been several extensions developed for BlueJ for different pur-

poses, for example, support for design patterns (Paterson et al., 2006, Paterson and

Haddow, 2007), user compilation behavior monitoring (Jadud, 2006), program vi-

sualization with Jeliot 3 (Myller et al., 2007a), and class- and object-relationship

understanding (Paterson and Haddow, 2007).

The educational use of BlueJ has been researched by Haaster and Hagan (2004),

and Ragonis and Ben-Ari (2005a,b). Haaster and Hagan (2004) designed and carried

15

out a survey on students opinions on the usability, the support for the programming

paradigm, and the support for teaching and learning of BlueJ in an introductory

course on programming. It was found that students were happy to use BlueJ and

had only a few technical problems with it. They were also using various features

of BlueJ and expected that those would have had a positive impact on their course

performance. However, there is no clear evidence that the use of BlueJ actually

resulted into better learning results. The study by Ragonis and Ben-Ari (2005a,b)

identifies students’ conceptions of object-oriented programming concepts. The study

is not mainly concerned with BlueJ, but it was carried out in a classroom where

BlueJ was used and some of the conceptions were related to the use of BlueJ. For

example, students had difficulty understand the data and control flow of a program

as these are not made salient in BlueJ. Students also struggled to develop programs

that used a main method as it was not needed in BlueJ. The overall success of the

students was still positive and some of that can be attributed to the use of BlueJ.

Xinogalos et al. (2007) has also reported an increase in learning results when BlueJ

has been used for a long period of time.

BlueJ was used as a programming environment for learning by the students in

the study that was reported in (P1).

TRAKLA2

A visual algorithm simulation exercise environment, TRAKLA2 (Korhonen et al.,

2004, Malmi et al., 2004), is based on the algorithm visualization and simulation

framework Matrix (Korhonen et al., 2004). The key features of the environment

are the direct manipulation of the data structure visualizations and the automatic

assessment of the algorithm simulations. Furthermore, each student is provided

with individual input data for the algorithm in order to avoid copying and to allow

practicing of the algorithm simulation with different input data. This also allows

multiple resubmission of the algorithm simulations exercises as there is no possibility

for using a trial-and-error method to solve the exercise.

The user interface, which is illustrated in Figure 2.3, is built on the concept of

direct manipulation that is implemented through dragging and dropping of visual

components of the data structures. For instance, a user can drag tree nodes or array

cells from one data structure to another or within a data structure (e.g., swap of

elements in an array) and the algorithm simulation requires that these operations

are done in a correct order according to an algorithm. A normal sequence of an

algorithm simulation exercise begins when a user is given an input, an initial state

of the data structure and the algorithm to simulate. The input can be, for example,

an array of random keys that should be inserted into an empty binary search tree,

or it could be a graph from which the minimum spanning tree should be found

16

using Prim’s algorithm. In Figure 2.3, the input is an array of keys and its binary

tree representation and the algorithm is build-heap because the tree does not satisfy

the heap property. The user is supposed to simulate the exercise by dragging and

dropping the visual components in the order that simulates the given algorithm on

the given data structures. If the user makes any mistakes or does not remember the

previous steps of the simulation, s/he can go back to previous stages by pressing the

backward arrow and s/he can then return to the latest state pressing the button with

the forward arrow. When the user thinks that the algorithm on the data structures

is simulated correctly, s/he can press the submit button and s/he receives instant

feedback on the exercise. The response is automatically compared to the correct

sequence of steps and the number of correct steps from all steps is shown to the

user. Then, the user can view the model answer that is a step-by-step sequence of

the correct steps of the algorithm simulation. After viewing the model answer, or

submitting the exercise, the user needs to reset the exercise with new input data

before s/he can submit again.

Figure 2.3: Example of the TRAKLA2 algorithm simulation exercise on the build-
heap algorithm.

Korhonen et al. (2002) studied the use of algorithm simulation exercises in a

course on data structures and algorithms. They analyzed how the learning results

differed if the exercises were done in classroom or on the web. The study used

17

three groups of students who solved either algorithm simulation exercises on the

web, algorithm simulation exercises in a classroom with a human tutor or algorithm

design exercises in a classroom with a human tutor. The results showed that the

course results were similar when students performed same exercises on the web as

in the classroom. The students who were solving algorithm design exercises in the

classroom performed better than the other two groups, but this was to be expected

because those exercises were more demanding. However, this group also had the

highest drop-out rate, which could indicate that only the better students could

succeed with the more difficult exercises.

Laakso et al. (2005) carried out a multi-perspective study on the utilization of

TRAKLA2 in data structures and algorithms education. The study showed that the

students’ attitudes towards web-based learning became more positive when they used

TRAKLA2, and they indicated that the most preferable learning settings include

assignments that are done in the web-based environment as well as assignments that

are done in a classroom. The overall course exam results also increased compared

to the previous years when TRAKLA2 was not used.

In order to understand students misconceptions better, Seppälä et al. (2006) an-

alyzed students’ answers to the algorithm simulation exercises related to the binary

heap data structure. They identified several misconceptions in the student sub-

missions for the build-heap algorithm and classified them into different categories.

Based on this categorization, automatic guidance can be provided for the students

whose submission contained a misconception. Although the heap data structure was

used in the studies reported in (P2, P3, P4), this feature was not used in them.

In the studies that are reported in (P2), (P3) and (P4), the TRAKLA2 al-

gorithm simulation exercises related to the binary heaps were used. The exercises

were inserted into the web-based learning materials which students used to learn the

concepts related to binary heaps. The algorithm simulation exercise of build-heap

algorithm is shown in the Figure 2.3

2.1.2 Educational Effectiveness of Software Visualizations

A large number of studies testing the educational effectiveness of software visual-

ization have been carried out with mixed results (Hundhausen et al., 2002). Until

recently, the reasons why results have been inconclusive have been unclear. How-

ever, the work of Hundhausen et al. (2002) has shed new light on the matter and this

has resulted in the development of the Engagement Taxonomy (ET) (Naps et al.,

2002). ET describes different forms of engagement that can be promoted by a visu-

alization tool and it provides testable hypotheses about how the engagement level

of a visualization affects the learning outcomes. The central idea of the taxonomy

is that a higher-level engagement between a learner and the visualization results in

18

better learning outcomes. The ET consists of six levels of engagement and they are

described in Table 2.1.

Table 2.1: The engagement taxonomy, shown also in (P1).

Level Description

No viewing There is no visualization to be viewed

Viewing The visualization is only looked at without any other form
of engagement

Responding Learners are presented with questions related to the visu-
alization

Changing Modification of the visualization is allowed, for example,
by varying the input data set

Constructing Learners are expected to create their own visualization of
a program or an algorithm

Presenting Learners present visualizations to others for feedback and
discussion

The engagement level no viewing means that there is no visualization in which to

engage. However, there might be something else such as textual learning materials

to look at. Based on the previous results, passive viewing of a visualization does

not seem to increase the learning results when compared with the no viewing level

(Hundhausen et al., 2002, Naps et al., 2002, Naps, 2005). The visualization should

always be accompanied with an activating component which makes the use of the

visualization meaningful and engaging, such as responding, changing, constructing

or presenting a visualization. In light of current research, the taxonomy forms a

three-level hierarchy: no engagement, passive engagement, and active engagement

(Naps, 2005). However, the differences in learning results between the levels of active

engagement are still an open question, although there have been some attempts to

compare them (Lauer, 2008b).

The hypotheses related to the engagement taxonomy are also in line with research

in educational psychology and multimedia learning (Mayer, 2001), where it has been

found that interactivity in multimedia has a positive effect on learning outcomes

(Evans and Gibbons, 2007, Mayer and Chandler, 2001, Moreno and Mayer, 2000).

This effect was found especially on transfer questions that tested the ability to

understand the learned materials.

Since its introduction, the ET has been used to guide the design and implemen-

tation of SV tools, and recent studies have validated its applicability with varying

visualization tools (Urquiza-Fuentes and Velázquez-Iturbide, 2007, Grissom et al.,

2003, Naps and Grissom, 2002). Nevertheless, there are still studies that have gotten

19

mixed results (e.g., Lauer, 2006, Jarc et al., 2000, Rhodes et al., 2006), but these re-

sults are normally explainable by confounding factors. This shows that there is still

a need for methodological work in order to find ways to control all the confounding

factors in studies.

There are several findings, which make it questionable if visualizations on the

responding level result in better learning results compared to visualizations on the

viewing level (Jarc et al., 2000, Grissom et al., 2003, Lauer, 2006, Rhodes et al., 2006,

Lauer, 2008b); this needs to be resolved by further experimentation and analysis of

the body of research concerning the comparison of viewing and responding. However,

studies have shown that the differences in the learning results when comparing the no

viewing and responding levels have been statistically significant (Byrne et al., 1999,

Grissom et al., 2003). This indicates that the ET and the hypotheses it provides

should be still improved and developed in order to describe all the variations of

engagement and their effects.

Based on an analysis of the recent results, Lauer (2008b) has proposed modifica-

tions to the ET. He suggested splitting of the viewing level into two levels based on

the terminology used in (P1, P3): viewing and controlled viewing (his original terms

were passive viewing and active viewing in Lauer (2008a)). Controlled viewing can

be defined as viewing during which users are able to pause the visualization and step

the visualization backwards and forward at their own pace. Another modification

is the splitting of the constructing level into three separate levels: simulating, hand-

constructing and code-based constructing. Simulating refers to visualization similar

to the visual algorithm simulation exercises in TRAKLA2. Hand-constructing refers

to creation of a visualization without coding the algorithm or program but using

ready-made visual components to create a visualization. Code-based constructing

refers to the creation of a visualization by coding it or at least starting the process

from the code. These modifications are partially similar to the modifications and ad-

ditions proposed in (P1), but they were developed independently and from different

perspectives. However, the publications (P1, P3), as well as our mutual communi-

cation (Lauer and Myller, 2008), have partially influenced the work of Lauer (2008b)

as noted in his paper. The relationship of the different extensions of the ET to each

other and to the original ET will be further discussed in Sections 4.1 and 5.1.

There are two notable issues regarding the research that has been performed on

the educational effectiveness of the SV tools. Firstly, most of these studies have con-

centrated on the effects of the visualizations on learning outcomes. Secondly, most

of these studies have studied the individual learners. There are a few exceptions to

these claims (e.g., Hundhausen and Brown, 2008, Hübscher-Younger and Narayanan,

2003, Jehng and Chan, 1998), and they will be discussed in Section 2.2.3. In the

research reported in this thesis, we have extended the scope of this kind of research

in order to investigate the impact of the engagement with visualization tools on the

20

learning process in (P1, P4). Furthermore, this has been done in the settings of

collaborative learning with SV tools (P1, P2, P3, P4).

Another important point, which is often overlooked in the development of the

software visualization tools for learning as well as in the studies that test their edu-

cational effectiveness, is that the visualization displays are complex, and therefore,

students need time to learn how to read and understand them (Petre, 1995). Fur-

thermore, visualizations contain information that is often encoded into the locations

and layout of the visual elements (i.e., secondary notation (Petre, 1995, Petre and

Green, 1993)), which can make the interpretation even more difficult. Therefore,

it is necessary that students become familiar with the visualization tools provided

for them; otherwise one cannot be sure what caused the effects, or if the potential

effects did not materialize because students could not understand the visualization

in order to receive its maximal benefits. In the studies reported in (P1, P2, P3,

P4), students had been using the visualization tools before and were already familiar

with them.

2.2 Computer-Supported Collaborative Learning

Computer-Supported Collaborative Learning (CSCL) is a field of study concerned

with the process of learning with computers in a group of mutually engaged peers.

The field emerged about two decades ago (Scardamalia et al., 1989, Roschelle, 1992,

Dillenbourg and Self, 1992, Lehtinen et al., 1999) as a new inter-disciplinary study

overlapping cooperative learning (Slavin, 1995) and computer-supported coopera-

tive/collaborative work (Grudin, 1994). From theoretical point of view, CSCL is

grounded on the works of Mead (1977), Vygotsky (1978), Piaget (1980), Slavin

(1995) on social constructivism, distributed cognition and cooperative learning. For

an overview of the development of the CSCL see the review by Lehtinen et al. (1999).

2.2.1 Successful Computer-Supported Collaboration and Collabo-

rative Learning Process

It is difficult to define what a successful collaboration process consists of (Mattessich

et al., 2004). When the computer and learning are introduced to the process the

definition becomes even harder. However, when studying how the collaboration is

affected by the visualizations, there is a need at least to define those parts of the

collaboration that could be affected by the visualization and whether the effects are

positive or not.

An attempt to define what a successful computer-supported collaboration is can

be found in the research of Meier et al. (2007). Based on an extensive review of

21

the literature and on empirical data analysis, they synthesized a two-layer model

with five aspects and nine dimensions that could be regarded as components of a

successful computer-supported collaboration process. These components are shown

in Table 2.2).

Aspect Dimension

Communication 1) Sustaining mutual understanding
Communication 2) Dialogue management
Joint information processing 3) Information pooling
Joint information processing 4) Reaching consensus
Coordination 5) Task division
Coordination 6) Time management
Coordination 7) Technical coordination
Interpersonal relationship 8) Reciprocal interaction
Motivation 9) Individual task orientation

Table 2.2: Aspects and dimensions of a successful collaboration process (Meier et al.,
2007), shown in (P1).

These dimensions and aspects were used in a rating scheme of successful collab-

oration, and their validity and reliability was evaluated with empirical data (Meier

et al., 2007). It was found that there exists a positive correlation between the cor-

rectness and quality of the final results of the collaboration and the ratings on the

dimensions describing the collaboration process (Spada et al., 2005, Meier et al.,

2007). This confirms the validity of the scheme. However, the inter-rater reliabili-

ties of the ratings were not high and this causes doubt on the usage of the scheme.

Nevertheless, the dimensions and aspects can be regarded as indicative of the qual-

ities of successful collaboration, but they are hard to detect and agree on when the

collaboration is analyzed.

The importance of discussion and their contents in collaborative learning with

computers have been studied by Teasley (1997). In the studies, Teasley (1997)

found that the amount of discussion is positively correlated with successful col-

laboration. In particular, discussions that contain transactive reasoning are even

stronger indicators. Transactive reasoning is discussion about one’s own thinking

process or discussion about one’s understanding of the partners’ thinking processes

(Berkowitz and Gibbs, 1983). Transactive reasoning can be further classified into

several independent categories as presented in Table 2.3. When collaboratively learn-

ing programming or data structures and algorithms with visualizations, transactive

reasoning could be, for instance:

• discussion about how the visualization was understood by the different group

22

members;

• discussion about the visual components of a data structure and their relation

to the concepts of the data structure;

• predictions of the next steps of the visualization with justification;

• explanation why the particular line of source code contains an error and how

the student found the error.

Table 2.3: Transactive reasoning categories adapted from Berkowitz and Gibbs
(1983) and Teasley (1997), and used in the data analysis in (P1).

Category Description

Prediction A participant tries to predict what will happen next and
justifies the prediction.

Feedback Request A participant ensures that others understand or agree with
his/her position

Paraphrase A participant paraphrases a discourse of another student in
order to demonstrate that s/he understands it.

Justification A participant justifies his/her position or reasoning.

Juxtaposition A participant explains the differences between the positions
or reasoning of other students and his/her own.

Completion A participant completes another student’s reasoning, for ex-
ample, by filling out an unfinished sentence.

Clarification A participant explains his/her reasoning in order to ensure
that others understand it.

Refinement A participant elaborates or qualifies his/her position in order
to defend it against criticism.

Extension A participant elaborates on a previous discourse.

Criticism A participant criticizes the reasoning or position of another
student and explains the reason for the criticism.

Integration A participant combines different views into one common
statement.

Successful collaboration and collaborative learning require at least: interaction

as indicated by dimensions 1, 2, 4 and 8 from Meier et al. (2007) as well as the

research done by Teasley (1997), coordination as shown by dimensions 3, 5, 6 and

7 from Meier et al. (2007), and motivation as demonstrated by dimension 9 from

Meier et al. (2007). There exists evidence in the literature that visualizations can

23

affect the motivation of the students. For example, Ebel and Ben-Ari (2006) demon-

strated positive affective effects of program visualizations (i.e., increased attention)

and there is also anecdotal evidence in the literature about the increased motivation

of students when visualizations are used (Naps et al., 2002, Naps and Grissom, 2002,

Grissom et al., 2003, Urquiza-Fuentes and Velázquez-Iturbide, 2007). In addition,

coordination of the collaboration or collaborative learning have been shown to be

supported by augmenting visualizations (Janssen et al., 2007). In the studies re-

ported in this thesis, the rating scheme developed by Meier et al. (2007) was not

used as such, but the studies concentrated on the communication and interaction

and how the use of a visualization tool affects them (P1, P4). The transactive

reasoning categories were used in the study reported in (P1).

2.2.2 Research on the Use of Visualizations in Collaborative Learn-

ing

There have been a number of studies concerning CSCL with a learning tool and

its educational effectiveness (Lehtinen et al., 1999); however, there are only a few

studies analyzing the use and impact of a visualization in collaborative learning.

One of the earliest ones is the research of Roschelle (1996). In his thesis work, he

developed a software tool for studying Newtonian mechanics called the Envisioning

Machine (EM) and studied its use in collaborative learning. In the EM, students can

directly manipulate velocity and acceleration vectors in a simple diagram showing

the movements of a ball. The goal is to adjust the initial speed so that the ball

flies according to the given trajectory. The study was concerned with the learning

process and outcomes of pairs of students when they were learning with the tool.

When analyzing the learning process, Roschelle recognized that learning tools used

in collaboration should be designed to support communication even at the expense

of epistemic fidelity or correctness in the eyes of an expert, as long as the essential

information is available. Roschelle (1996) gives a number of guidelines in order to

achieve this goal and the final one is: “one should design activities which actively

engage students in doing and encounter [sic] meaningful experiential feedback as a

consequence of their actions” (p. 14). Scaife and Rogers (1996) have recognized the

same issue when proposing that the analysis of the interaction between the external

presentation and users is a key research area.

Another long term research initiative is that of Suthers et al. (1997) on a col-

laborative inquiry learning tool, Belvédère. They have studied different aspects of

CSCL and one of them is a hypothesis about representational guidance (Suthers,

1999). Representational guidance refers to the differences between the layout and

form of the representations and how they make some information more visible and

24

hide some other information, so that they either are discussed extensively or not at

all.

In a controlled experiment, Suthers and Hundhausen (2003a) compared the rep-

resentational guidance effects of three different representations, matrices, graphs

and text, in face-to-face collaborative inquiry. Students’ collaboration processes and

learning results were analyzed when they were collecting data, forming hypotheses

and investigating their evidential relations by using the tool with one of the repre-

sentations, in order to understand the cause and effect of the given situation. In

the analysis, Suthers and Hundhausen (2003a) found differences in the discussions

that students had during the collaboration process and these differences could be at-

tributed to the qualities of the representation that was used. For example, students

who used matrices to record the data and hypotheses, as well as their evidential

relations, discussed more about whether or not there exists an evidential relation

between a data point and a hypothesis compared to the other two groups. This was

predicted from theory of representational guidance because the matrix made all the

possible relationships between data and hypotheses more visible compared to the

other two representations.

They have expanded this research to on-line collaboration and found that the

learning situation affected the discussions related to the representations (Suthers

et al., 2003b). However, the collaboration-process differences did not materialize

into significant differences in the learning outcomes measured by post-tests in either

of the experiments. This could be due, at least partially, to the restricted laboratory

environment where the experiments were carried out.

Communicative Dimensions (CD) (Hundhausen, 2005) is a framework for ana-

lyzing visualizations as media for communicating and sharing knowledge and ideas

between users. CD was inspired by the Cognitive Dimensions framework, which de-

scribes the interaction possibilities and barriers of software tools from the perspective

of the user (Green and Petre, 1996). CD describes the aspects of visualization en-

vironments that have an effect on communication between its users by using six

dimensions: programming salience, provisionality, story content, modifiability, con-

trollability, referencability. Programming salience measures the amount of low-level

“programming” that is needed in order to produce a visualization. The rationale is

that if a large amount of work goes into the fine tuning of the lower level details

of the visualization, the lower level details will be the main focus of the discussion

rather than the overall picture provided by the visualization. A visualization has

low provisionality if it looks like a final product, which does not leave any room for

discussion or critique, but explains it all. High provisionality means that a visual-

ization is easier to approach and talk about because it is not looking so finished and

polished, and leaves room for further discussions and refinements. Visualization with

story contents uses narrative elements to explain or highlight domain concepts. This

25

may help users discuss the subject matter in story-specific terms, especially if users

are novices and lack the domain-specific terminology. However, if the metaphor or

story that is used is unsuitable to that particular situation, it may hinder the com-

munication. Thus, this dimension’s benefits are controversial and depend on the

context and use case. High modifiability of a visualization enhances communication,

because users can easily test and analyze different options by dynamically modify-

ing the visualization. For instance, this supports “what-if” type of analyses during

a presentation or a lecture. Controllability expresses how easy it is to control the

execution of a visualization. For example, a visualization with high controllability

allows the user to jump into any step of the visualization whereas low controllability

means that the visualization can only be played forward or not controlled at all. Ref-

erencability describes the ease of referring to the visualization by either pointing or

otherwise annotating its components. The CD dimension provisionality has a direct

link to the epistemic fidelity in the work of Roschelle (1996) so that low epistemic

fidelity most probably results in high provisionality and vice versa. In addition, the

modifiability, controllability and referencability seem to have indirect links to the

work of Roschelle (1996). All these dimensions are features of a visualization or

its interaction support and can either hinder or foster the communication between

users, and therefore, affect the collaboration process.

The works of Hundhausen (2005), Suthers and Hundhausen (2003a), Scaife and

Rogers (1996) and Roschelle (1996) show that visualization and the kinds of interac-

tions it promotes with the learners affect the process of collaborative learning, and

these effects and their causes should be further studied as they have an effect on the

learning outcomes as well.

2.2.3 Research on the Use of Software Visualization in Collabora-

tive Learning

As discussed earlier in Section 2.1.2, a large number of SV tools has been devel-

oped and their educational effectiveness have been studied in empirical evaluations.

However, it is still unclear how these tools can and should be used in collaboration

and what the effects of the visualizations are when used in collaborative learning.

Nevertheless, there have been few tools and studies that have attempted to describe

and analyze these situations.

Jehng and Chan (1998) reported on a distributed visual learning environment

to support collaborative learning of programming in LISP-LOGO. In the evaluation

of the tool it was found that the collaborating students outperformed individual

learners in program generation tasks and it did not matter if the collaborating

students were co-located or not. However, all groups performed equally well in

26

program evaluation and completion tasks. This indicates that collaborative learning

with visualizations can be more beneficial compared to individual learning, but the

benefits seem to materialize when the tasks are more demanding and challenging.

Lavonen et al. (2002) and Lavonen et al. (2003) have studied the collaborative

use of an icon-oriented visual programming environment, Empirica Control (EC), in

teaching and learning of technology and programming in elementary school. They

found that students are able to easily master the use of the tool and basic concepts

in programming (Lavonen et al., 2003). Furthermore, it was found that when stu-

dents were working with EC, they were truly collaborating. For instance, in 62% of

the analyzed episodes the students were discussing and working together towards a

common goal (Lavonen et al., 2002).

Hundhausen (2002) studied the use of AV tools in algorithm visualization con-

struction and presentation in a data structures and algorithm course. The ethno-

graphic field study indicated that the construction and presentation of the visualiza-

tions help students to learn if the visualizations can be easily constructed and those

activities concentrate and engage the students in relevant interactions between the

instructor and the peers. If the construction of the visualization requires much work

that is not relevant from the point of view of the learning goals, the benefits of

the use of visualizations are lost (cf. Hundhausen, 2005). Similar results were also

obtained by Hübscher-Younger and Narayanan (2003), who developed a web-based

system that allowed students to publish their own algorithm representations (text,

pictures, animations, multimedia) and discuss them on the web. The results of the

study showed that the active students who created and shared their visualization

and commented on others achieved higher grades than the passive students who only

viewed and commented on the visualizations made by other students.

One of the only studies that has combined the engagement taxonomy and collab-

orative learning is the work of Hundhausen and Brown (2008). Based on previous

research (Hundhausen et al., 2002, Hundhausen, 2002) on the use of algorithm vi-

sualization systems in the learning of data structures and algorithms, Hundhausen

and Brown (2007a) have developed a tool called ALVIS, which allows the the con-

struction and interactive presentation of “low fidelity” algorithm visualizations. In

the study, Hundhausen and Brown (2008) compared ALVIS to a text editor as a tool

for writing programs, and then compared the use of ALVIS as a visualization con-

struction and presentation tool to simple art supplies. Students worked in pairs and

were asked to write an algorithm in the SALSA programming language supported

by ALVIS, and then to construct a visualization of the same algorithm, and present

it to the instructor and the other students. Based on an interaction analysis of the

videotaped materials, it was found that the pairs who engaged in viewing and con-

structing by using the ALVIS environment concentrated more on the solution, spent

less time unproductively, and needed less help from the teaching assistant compared

27

to the pairs of students who used a text editor and engaged into no viewing and

constructing with art supplies. Moreover, students using ALVIS developed better

code than pairs who used only a text editor. Although one of the explaining factors

could be that the text editor group did not have the same kind of tools to execute

and test their programs, this is still an indication that engagement levels can have

an effect on the collaboration process and its outcomes.

A few other visualization tools have been developed in order to support collab-

orative learning of programming and data structures and algorithms. An example

of this kind of a tool is VorteX (Ratcliffe and Thomas, 2004, Ridgway et al., 2003).

It supports the design of programs through modifiable object diagrams that are

shared by a group of students who are collaboratively solving program design and

programming assignments. Another example is that of Mendes et al. (2005) who

have developed a collaborative learning environment for learning programming and

data structures and algorithms.

28

Chapter 3

Overview on the Publications

D
uring this research, I have studied the collaborative use of software visual-

izations. The research is based on empirical studies of students, who are

learning programming or data structures and algorithms. This research has

been reported in papers (P1, P2, P3, P4). These studies have utilized Jeliot 3,

TRAKLA2, and BlueJ as the visualization tools during the learning and they have

been performed at three different universities. In addition to this, I have developed

better engagement capabilities into Jeliot 3 in the form of automatic question gen-

eration as reported in paper (P5) as well as integrated Jeliot 3 into a collaborative

authoring tool Woven Stories to create a new tool called JeCo (Jeliot Collabora-

tively) as reported in paper (P6).

3.1 Summary of the Publications

In the first paper (P1), the research context for the whole thesis has been laid. Based

on the analysis of previous literature, we propose to study collaborative learning

with software visualizations, and in the scope of the paper, program visualization in

particular. The paper contains three main results:

• a hypothesis how the engagement level between the learners and a visualization

affects the collaborative learning process;

• an extension of the engagement taxonomy into the Extended Engagement

Taxonomy (EET) to describe engagement in a finer level of granularity, and

the use of the EET in the analysis of the collaborative learning process with

visualizations;

29

• a partial empirical confirmation of the hypothesis in a study in which stu-

dents were using program visualization tools, Jeliot 3 and BlueJ, during the

collaborative learning of programming.

Based on previous results in empirical studies, the following hypothesis was

formed: increasing the level of engagement between learners and the visualization

tool results in a higher positive impact of the visualization on the collaboration pro-

cess. The empirical study was carried out in the autumn of 2005 at the University

of Joensuu in an introductory programming course. During the course students

were solving programming exercises in small groups and using BlueJ and Jeliot 3

as the programming and program visualization tools. The students’ learning pro-

cesses were recorded using a video camera and a sample of the video materials was

analyzed. To analyze the students’ level of engagement with the visualization tools,

the engagement taxonomy was extended in order to capture finer variations in the

engagement.

A sample of the video material was classified according to four different cate-

gorizations: the engagement level of the visualization, students’ activities, discus-

sion contents, and transactive reasoning. The results showed that the engagement

level and the students activities were correlated. For example, a higher level of

engagement was positively correlated with more discussion and less silence. The

distributions of the discussion contents were also qualitatively different depending

on the level of engagement, i.e., when students were interacting with the visual-

ization on a higher level of engagement their discussion contents were on a higher

level of abstraction. Students seemed to concentrate more on lower level details,

e.g., the program source code, when they were on lower levels of engagement. There

were no statistically significant differences found regarding the transactive reasoning,

however, higher levels of engagement had larger proportions of transactive reason-

ing. Furthermore, the reliability of the classifications in the discussion contents and

transactive reasoning could not be guaranteed. Nevertheless, the results showed

that the EET could be used to analyze the collaborative learning process and the

levels of engagement were correlated positively with the collaborative activities of

the students.

The second paper (P2) describes an empirical experiment that tested the hy-

pothesis that the engagement level promoted by the algorithm visualization tool

affects the learning results when students are collaboratively learning the concepts

related to the binary heap. The experiment was carried out in a data structures and

algorithms course at the University of Turku. The design of the experiment was a

between-subjects design with one factor—the engagement level of the visualization—

and the learning results were measured with pre- and post-tests. Between the tests

students were learning the concepts of binary heap in pairs. The treatment group

30

was using web-based material that consisted of text, static figures and visual algo-

rithm simulation exercises from TRAKLA2 on the EET level changing. They could

also view the model answers to the exercises. The control group had the same web-

based material, but the visual algorithm simulation exercises were replaced by the

model answer visualizations of the same VAS exercises. These visualizations were

on the EET level controlled viewing. In addition to this, both groups had to answer

an exercise sheet in which the exercises were related to the different aspects of the

binary heap which the students were supposed to learn. The time for learning was

controlled and it was expected that most of the students would be able to study the

learning materials during the given time. The results of the experiment showed that

although there was a difference in the learning outcomes of the students in favor

of the treatment group, it was not statistically significant. Further analysis showed

that students without any prior knowledge about the binary heap benefited more

from the treatment based on the effect size (Cohen, 1977). Some methodological

issues related to the pre- and post-tests were also determined in the analysis. In

particular, the post-test should be made more challenging because the students had

learned the basic topics well during the collaborative learning session.

The third paper (P3) reports on a replication of the study reported in (P2) at

another university, Helsinki University of Technology. Compared to the previous

study, the methodology was enhanced by changing the learning materials and the

pre- and post-tests. Furthermore, the study reports on a post-hoc video analysis

that revealed that, contrary to our instructions, some pairs in the treatment group

never used the algorithm simulation exercises, but merely watched the model answer

animations. On the one hand, this can be considered as a flaw of our study that

we should have been able to control. On the other hand, this video analysis allowed

us to detect this behavior and reclassify the students according to their real behav-

ior changing the study setting from experimental to observational, as we partially

lost the randomization of the students into the groups. Nevertheless, based on the

post-hoc analysis of the background variables (pre-test score, programming course

grades, and CS and Math credits studied so far) the groups were still equal on their

previous knowledge and abilities related to the topic. Actually, they became even

more equal, because after the randomization there was a significant difference in

the programming course grades in favor of the treatment group, but this differences

disappeared after the re-grouping. Furthermore, this reorganization of the students

into treatment and control groups allowed us to obtain a statistically significant

difference between the learning results of the new control and treatment groups.

The paper also contains information on how frequently the different EET levels

were used during the learning process. It was found that the treatment group

used visualizations more than the control group (as was expected) and the use of

visualizations was on higher levels of engagement.

31

The fourth paper (P4) applies the methodology introduced in (P1) to analyze

the video and audio material collected during the experiment reported in (P3). The

rationale for this analysis was that this would allow us to explain the differences

in the learning results between the groups and to demonstrate that the findings

reported in (P1) are independent of the tool. In the video analysis, a sample of

the screen and audio recordings from the period of time during which students were

collaboratively learning about the heap data structure were analyzed. The level of

engagement, the current activity and the discussion contents were recorded for each

episode. The results indicated that the amount of discussion increased when the level

of engagement increased. Furthermore, the discussion contents were more balanced

across different topics on the higher levels of engagement. This is in line with the

research reported in (P1) and also gives an explanation for the results in (P3),

i.e., when students are learning with visualizations on higher level of engagement,

they interact more with each other and more interaction has been shown to enhance

learning results (Teasley, 1997).

In the fifth paper (P5), the rationale and development of an automatic pre-

diction-type question generation to Jeliot 3 is discussed. The development of this

feature in Jeliot 3 is based on the engagement taxonomy and previous results that

show that the level responding enhances learning results compared to passive levels

of engagement. Working at the responding level should facilitate the collaborative

learning, because it prompts for conversation about the answers to each question and

thus promotes meaningful conversations related to the topic that is being learned.

Furthermore, it provides meaningful pauses to the visualization during which stu-

dents can discuss what has happened in the visualization. From the implementation

point of view, the architecture of Jeliot 3 and how it enabled the automatic gen-

eration of the prediction-type questions was discussed: the MCode program-trace

description language could be preprocessed in order to produce prediction-type ques-

tions automatically. The work also built on the work of Rößling and Häussge (2004),

using the question display and recording library they had developed. The paper also

explains that the automatic questions could be used for automatic assessment and

user modeling.

The sixth paper (P6)1 introduced a new tool called Jeliot Collaboratively (JeCo),

which combines Jeliot 3 with Woven Stories, a collaborative story authoring envi-

ronment, in order to allow users to collaboratively create programs and visualize

them on-line. The motivation to create a new tool was to support distributed and

collaborative programming, as well as learning to program in distance education. As

it has been shown in previous research, pair programming and collaborative learning

1There is a mistake on the last page of the article: the first biography is Jussi Nuutinen’s and

the second one Niko Myller’s, unlike printed.

32

can help students in the learning of programming and we expect that these effects

are even stronger on distance education. However, because it is hard to maintain

a common context for discussions in on-line collaboration, the visualizations can

aid in the creation of a suitable context for collaboration and collaborative learning

(Suthers et al., 2007b, 2008, 2003b). This environment can also be used to study the

distributed collaborative learning of programming with visualizations by collecting

the log data of the tool’s usage (Suthers et al., 2007a, 2003b).

The reasons to select Jeliot 3 and Woven Stories to be integrated were discussed.

Firstly, Jeliot 3 and it predecessors have been found educationally effective espe-

cially in introductory programming. Secondly, the novices need simpler tools to

collaborate than integrated development environments for programming or version

control and configuration management systems. Thirdly, both of these tools are

open-source, which enables the integration of the systems in a meaningful way. The

paper introduces the integrated tools and the means to combine. The features of

the resulting software, JeCo, are explained and several future development areas are

identified.

3.2 Contributions of the Author

The use of several visualization tools and studying their effects on collaborative

learning in multiple contexts required that the work reported in this thesis be done in

several institutions and in collaboration with several research groups and researchers.

The research leading to the publication of (P1) was carried out at the University of

Joensuu. I was the main author of the article and conducted the empirical study and

its analysis. I received help for the practical arrangements of the study from Andrés

Moreno. Roman Bednarik helped in conducting the study and was the second rater

in order to test the inter-rater reliabilities. All the authors contributed to the study

design and the interpretations of the results as well as to the writing process. Part

of the video analysis was carried out while I was a visiting lecturer at Tumaini

University, in Iringa, Tanzania.

The publications (P2, P3, P4) were a joint effort between me, Mikko-Jussi

Laakso from the University of Turku and Ari Korhonen from the Helsinki University

of Technology. The original idea for this series of studies was mine, and I proposed

most of the methodology used in these studies. However, all authors contributed

to the final design of the experiments. The experiments and data gathering were

carried out together at the University of Turku (P2) and at the Helsinki University

of Technology (P3, P4) and the analysis of the results and reporting was done in

collaboration.

In paper (P5), the development and writing was done by me. The development

33

work was partially done while I was a visiting researcher at Massey University in

Palmerston North, New Zealand, hosted by Professor Kinshuk.

The development work reported in (P6) was done by me, but I received valuable

help from Jussi Nuutinen, who also contributed to writing the paper, especially in

parts that were related to the Woven Stories.

34

Chapter 4

Summary of the Results

“The most exciting phrase to hear in science, the one that heralds new discoveries, is

not ‘Eureka!’ but ‘That’s funny...’”

– Isaac Asimov

In this chapter, the main results of the original publications (P1)–(P6) are sum-

marized and compared with the results obtained in literature. The results of

this thesis are three-fold: theoretical and methodological, empirical and practical.

The extension of the engagement taxonomy and its hypotheses as well as its use in

analysis of collaborative learning with visualizations is discussed in Section 4.1. Sec-

tion 4.2 explains the empirical studies of collaborative learning with visualizations.

The applications of the theory and the results of the empirical studies are described

in Section 4.3.

4.1 Extended Engagement Taxonomy

Our motivation to extend the engagement taxonomy and the hypotheses attached

to it was to be able to describe the finer variations of the engagement when students

are collaboratively learning with software visualization tools. In addition to this, we

wanted to study how the engagement levels promoted by the visualization tool might

affect the collaboration process and its outcomes. This led to the development of

extended engagement taxonomy (EET) that is shown in Table 4.1 and the hypothe-

ses which state that an increase in the engagement level between the collaborating

learners and the visualization tool results in better collaboration process with more

discussion and sharing (P1, P4), and improves the learning results of the students

who are learning collaboratively with visualizations (P2, P3).

35

From a methodological point of view, EET was used to classify episodes in a

collaborative learning process based on the engagement level promoted by the SV

tool during each episode (P1, P3, P4). This was done to analyze the relationship

between the activities and the discussion contents of the students on varying lev-

els of engagement and to find support for the hypotheses. This can be seen as a

methodological contribution of this research.

The engagement taxonomy was introduced by Naps et al. (2002) and since then,

research has been carried out to test the hypotheses it provided (Urquiza-Fuentes

and Velázquez-Iturbide, 2007, Lauer, 2006, Rhodes et al., 2006, Grissom et al., 2003,

Naps and Grissom, 2002). By analyzing the new research results, Lauer (2008b,a)

has also proposed modifications and addition to the engagement taxonomy, which are

similar to the modifications and additions proposed in the EET. These modification

are summarized and compared to the EET below.

• Splitting the level of viewing into two: active viewing and passive viewing

(Lauer, 2008a). These levels are similar to viewing and controlled viewing in

the EET, respectively. This is also recognized by Lauer (2008b).

• Splitting the level of constructing into simulating, hand-constructing and code-

based constructing. The levels of hand-constructing and code-based construct-

ing are comparable to the levels of constructing and modifying in the EET,

respectively. The level of simulating is missing from EET.

• The proposal of Lauer (2008b) is missing comparable levels for entering input

and reviewing.

The work by Lauer (2008b,a) gives an empirical validation to some of the pro-

posed extensions in the EET. I was unaware of the research of Lauer (2008b,a), and

vice versa, until we met in the poster presentation of Lauer (2008a). Therefore, the

research of the both of us should be regarded as complimentary and verifying the

work that we have done independently.

In retrospect, the engagement level of simulating as proposed by Lauer (2008b)

would have been more suitable for the visual algorithm simulation exercises of

TRAKLA2 compared to the level changing that was used in the papers. The level

simulating should be used when reporting future research; however, in this thesis

the EET level changing is used in order to maintain clarity and consistency.

36

Table 4.1: The extended engagement taxonomy. The levels marked with (*) are from
the original engagement taxonomy although definitions of the viewing and changing
levels have been modified (P1).

Engagement level Description

No viewing (*) There is no visualization to be viewed, but only material
in textual format. For example, the students are reviewing
the source code without modifying it or they are looking
at the learning materials.

Viewing (*) The visualization is viewed with no interaction. For ex-
ample, the students are looking at the visualization or the
program output or a static image.

Controlled viewing The visualization is viewed and the students control the
visualization, for example by selecting objects to inspect
or by changing the speed of the animation. This has
been deemed important, for instance by Rößling and Naps
(2002).

Entering input The user enters input to a program or parameters to a
method before or during their execution.

Responding (*) The visualization is accompanied by questions that are re-
lated to the contents of the visualization.

Changing (*) The visualization and its components are provided, but
the changing of the visualization is allowed, for instance,
by direct manipulation.

Modifying There is a possibility to change the visualization before it
is viewed, for example, by changing the source code of a
program to be visualized or a data structure that is being
used.

Constructing (*) The visualization is created by the student from compo-
nents such as text and geometric shapes.

Presenting (*) Visualizations are presented and explained to others for
feedback and discussion.

Reviewing Visualizations are viewed for the purpose of providing com-
ments, suggestions and feedback on the visualization itself
or on the program or algorithm.

4.2 Analysis of Collaborative Learning with Software

Visualizations

The results related to the analysis of collaborative learning with software visualiza-

tions can be divided into two parts. The findings about the collaborative learning

37

process with SV tools are discussed in Section 4.2.1. In Section 4.2.2, the effects of

collaborative learning with SV tools on learning outcomes are reviewed and further

analyzed.

4.2.1 Collaborative Learning Process with Software Visualizations

The theoretical framework related to the study of the collaborative learning process

with software visualization has been explained in (P1, P4). It presents the hypoth-

esis that the engagement level of a visualization has an effect on the collaborative

learning process, i.e., the higher the engagement, the more interaction there is be-

tween the learners. This hypothesis has been tested with empirical studies reported

in (P1, P4). These studies have shown that the level of engagement promoted by

the visualization and the students’ activities are correlated and that this holds with

three different SV tools. This can be seen when comparing the results from the

studies reported in (P1, P4) and summarized in Figure 4.1. The only data point

that does not fit into this model is the EET level no viewing when students are

collaborative learning with Jeliot 3. This can be at least partially explained by the

fact that the animations in Jeliot 3 are so intensive that students might not have free

cognitive resources in order to discuss the issues related to the animations because

they need to concentrate on following the animation, i.e., they were overly engaged.

Therefore, the discussion that was related to the animations (i.e., concerning the

levels viewing and entering input) often happened after the visualization had fin-

ished, i.e., when the EET level was no viewing. However, this discrepancy should be

further analyzed in future studies. One way to solve this issue would be to stop the

animation in Jeliot 3 in key locations and ask a question related to the animation,

as will be discussed in Section 4.3.

Tables 4.2 and 4.3 summarize how the different engagement levels are used during

the learning process. This offers another view in order to understand how the

visualization tools are used in collaboration and how they affected it. Based on the

results in Table 4.2, the primary mode of using Jeliot is viewing the visualization

it provides and when added to entering input level (which also takes place during

the playing of the animation), the animation is active over 85% of the time that

Jeliot 3 is used. In contrast, the distribution of the time on different EET levels is

more balanced between no viewing, viewing and entering input when BlueJ is used.

Furthermore, BlueJ supports higher levels of engagement than Jeliot 3, although

they were used quite rarely by the students. The level no viewing in both of these

tools refers either to the situation where the students are looking at the source code

or to the situation where they are viewing learning materials during the use of the

tool.

The use of the TRAKLA2 algorithm animations (i.e., model answers) on the EET

38

Figure 4.1: The proportions of discussions from all activities on the different EET
levels when learning with different visualization tools from (Myller et al., 2009,
Korhonen et al., 2009).

Table 4.2: The distribution of time between EET levels when using either Jeliot 3
or BlueJ as reported in (P1).

No View. Cont. Enter. Chang. Mod. Const.

view. view. input

Jeliot 3 11.8% 69.5% 3.4% 15.4% N/A N/A N/A
BlueJ 33.1% 26.2% 6.3% 29.8% 0.6% 1.7% 2.5%

level controlled viewing and the exercises on the EET level changing are described

in Table 4.3. The EET levels no viewing and viewing refer to the learning materials

and to the static images in the learning materials, respectively. The Table shows

that the treatment group used the visualizations for a longer time compared to the

control group. The treatment group was using 12% of their time to solve the visual

algorithm simulation exercises, which were not available to the control group. In

addition to this, the treatment group used the model answer visualizations for 5% of

their time and the control group for 13%. For the control group these were the only

dynamic visualizations available. The static visualizations were used for the same

amount of time and the textual information was used less by the treatment group.

The discussion contents during the collaboration were qualitatively described

in (P1, P4). The key findings were that the distribution of the discussion topics

seemed to be different between the levels of engagement. Firstly, the abstraction

level of the discussions seemed to vary; for instance, when students were learning

with the lowest engagement level, the discussion was about the low level details of a

39

Table 4.3: The distribution of time between EET levels when using different versions
of TRAKLA2 environment as reported in (P3).

No Viewing Controlled Changing

viewing viewing

TRAKLA2 Animations 48.1% 38.1% 13.8% N/A
TRAKLA2 Exercises 43.2% 38.3% 5.9% 12.6%

program or algorithm and when students were on the higher levels of engagement,

they discussed more often topics that are on higher level of abstraction. In between,

the students discussed topics in a more balanced way. In (P1), the amount of trans-

active reasoning was also analyzed and no statistically significant differences were

found, although the higher levels of engagement contained more transactive rea-

soning. However, we were unable to achieve high enough inter-rater reliabilities for

the discussion contents and transactive reasoning categories in the research reported

in (P1), and thus, the results are questionable and should be further evaluated in

future research.

Lavonen et al. (2002) have studied elementary school students’ behavior during

collaborative programming and problem solving when they were using the visual

programming environment Empirica Control. The methodology and findings from

that study are in many ways similar to the studies reported in this thesis (P1, P4).

The methodology used to classify the episodes on the video materials was similar in

all studies. Lavonen et al. (2002) categorized the task type of each episode as well as

the type and nature of the interaction during the episode. Although they did not use

the engagement level, but rather the task type, as a measure to classify the episodes,

those task types can be at least partially reclassified to the different EET levels

retrospectively. There were six main task types: problem identification, formulation

and specification, recognizing and finding facts and resources, planning, generating

and evaluating ideas, constructing, testing and debugging (i.e., evaluating). When

analyzing those tasks from the perspective of the EET, the visual construction of a

program can be positioned on the EET level constructing, the planning is at least

partially on the levels of modifying and viewing, and the testing and debugging is

probably alternating between the EET levels viewing, entering input and modifying.

The other task types, i.e., generating and evaluating ideas, problem identification,

formulation and specification, and recognizing and finding facts and resources, are

operating on the EET levels no viewing and viewing. The results of the study

show that the largest proportions of the reciprocal interactions between students

were observed when the students were generating and evaluating ideas, testing and

debugging, planning, and constructing the program visually using icons, in that

order. Furthermore, the overall count of the interactions in the generating and

40

evaluating ideas was small (2.2%) compared to the other task types with the highest

amount of interaction. Therefore, it can be said that those task types that were

operating on higher levels of engagement contained more mutual interaction between

the students, which is in line with the findings reported in (P1, P4).

The results reported in this section as well as in the papers (P1, P4) are com-

parable to the results of Hundhausen and Brown (2008), who showed that those

students who were using an algorithm visualization tool on higher engagement lev-

els were spending less time unproductively and concentrating more on the solution

(cf. silent vs. discussing). Furthermore, those students needed less help from their

teacher. In the paper (P1), it was shown that the students were discussing with the

instructor most often when the engagement was on the level of no viewing.

4.2.2 Learning Outcomes of the Collaborative Learning with Soft-

ware Visualizations

The learning results of the students who have been learning collaboratively with vi-

sualizations are reported in (P2, P3). One of the hypotheses related to the EET is

that the students who collaboratively learn with visualizations on a higher engage-

ment level achieve better learning outcomes compared to the students who learn

with visualizations on a lower engagement level.

The experiment reported in (P2) analyzed this hypothesis. The pre-test re-

sults and post-hoc background variable analysis showed that the treatment and the

control group were equal. The post-test results from the experiment reported in

(P2) are shown in Table 4.4. The results show that the treatment group was con-

sistently better in the questions of the post-test. However, based on the analysis

of the post-test results and the learning gains, i.e., the average of the differences

between the students’ results of the pre- and post-tests, there were no statistically

significant differences found in the learning results. To further analyze the bene-

fits of the visualizations in the collaborative learning, students were divided into

two groups based on their pre-test results: students with previous knowledge and

students without previous knowledge of the concepts related to the binary heaps.

The subsequent analysis showed that, although the differences were not statistically

significant, the effect size (Cohen, 1977) of the group without previous knowledge

was medium indicating that a statistically significant difference could be found with

the larger sample. Furthermore, there were issues related to the learning materials

and questions used in the pre- and post-tests that could have affected the results;

therefore, the study was replicated and the replication was reported in (P3).

In the study presented in (P3), the collaborative learning outcomes were also

analyzed by using pre- and post-tests. It was originally designed as an experiment,

41

Table 4.4: The post-test results from the experiment reported in (P2). Note that
the results on questions 7 and 8 were not reported in (P2), because the comparison
was limited to the questions that were the same in pre- and post-test.

Control Treatment

Question 1 2.6 (1.9) 2.8 (1.8)
Question 2 3.2 (1.6) 3.3 (1.4)
Question 3 3.8 (0.9) 4.0 (0.0)
Question 4 2.3 (1.3) 2.8 (0.9)
Question 5 2.5 (1.6) 2.9 (1.4)
Question 6 3.6 (1.1) 3.7 (1.0)
Question 7 3.5 (1.2) 3.3 (1.3)
Question 8 3.1 (1.5) 2.1 (1.9)

Total 24.5 (6.6) 24.9 (5.2)

but in a post-hoc video analysis it was found that some students were not behaving

as expected, i.e., some student pairs were not using the visual algorithm simula-

tion exercises at all, but only viewed the corresponding model answer visualization.

Therefore, we needed to classify the students according to their behavior, making

the study observational rather than an experiment. The results from the groups

determined based on the observations are shown in Table 4.5. The treatment group

was consistently better than the control group in 11 questions of the post-test. Fur-

thermore, it was found that the differences in the total and the pair-averaged total

were statistically significant using the one-tailed t-test. This supports the hypothesis

that higher engagement level positively affect the learning results.

In retrospect, the overall results from both experiments can also be analyzed

with a binomial test similar to the analyses proposed by Bednarik and Randolph

(2008). However, we need to make a few assumptions: each of the questions is

equally important and independent of the other questions, and the questions from

the two separate experiments are comparable and aggregable.

Firstly, we count the number of questions in which the treatment group is better

than, or at least equal to, the control group from all the questions in the post-

tests. For the experiment reported in (P2), this proportion is 6 questions out of 8

questions in the post-test, and for the study reported in (P3), it is 10 questions out

of 13 questions in the post-test. When these statistics are combined, we get that in

16 questions out of 21 questions in the post-tests the treatment group outperformed

the control group.

F (x, n, p) = Pr(X ≥ x) =
n

∑

i=x

(

n

i

)

pi(1 − p)n−i (4.1)

42

Table 4.5: Post-test results from the observational study reported in (P3).

Control Treatment

Question 1 2.46 (1.61) 2.33 (1.80)
Question 2 1.78 (1.23) 2.19 (1.29)
Question 3 3.76 (0.89) 4.00 (0.00)
Question 4 2.32 (1.42) 2.33 (1.59)
Question 5 2.62 (1.47) 3.38 (0.92)
Question 6 3.82 (0.80) 4.00 (0.00)

Subtotal 16.76 (4.49) 18.24 (3.56)

Question 7 3.96 (0.20) 3.43 (1.29)
Question 8 3.44 (1.13) 3.76 (0.89)
Question 9 2.36 (0.85) 2.67 (0.91)
Question 10 2.20 (1.29) 2.62 (1.40)
Question 11 0.54 (1.31) 1.10 (1.70)
Question 12 0.92 (1.64) 1.24 (1.84)
Question 13 0.28 (0.67) 0.29 (0.46)

Total 30.46 (6.54) 33.33 (6.71)

Pair Averaged Total 30.42 (4.55) 33.45 (4.34)

The null hypothesis for the binomial test is that the treatment did not produce

any learning effects, i.e., it is equally likely for either group to perform better in the

post-test. We can now compute the p-value for getting higher points than the other

group in 16 questions when there are a total of 21 questions and the probability to get

higher points in the question is equal between the control and treatment groups (i.e.,

50% probability). This can be calculated by using the formula in Equation 4.1. The

result of the binomial test (F (16, 21, 0.5) = 0.013, two-tailed p < 0.05) indicates that

we can reject the null hypothesis and claim that the treatments had a statistically

significant positive effect on the learning results of the students compared to the

control group when measured by the questions in the post-tests.

This gives further support to the hypothesis that the level of engagement pro-

moted by a visualization has a positive effect on the learning results when student

are learning collaboratively with visualizations. The effect is that the learning out-

comes are better when the visualization is used on higher level of engagement during

the learning process compared to the control group.

These findings are in line with the results of Hundhausen and Brown (2008) who

showed that when student pairs were working on implementing an algorithm using

either a text editor working on EET level no viewing or an algorithm visualization

tool ALVIS working on EET levels viewing and constructing, the latter group created

better code than the former. The results reported in this section also are also in line

43

with the original research framework of ET developed by Naps et al. (2002).

4.3 Applications

The results of the empirical study (P1) pointed out that the program animations

in Jeliot 3 should be enhanced with techniques that would raise the engagement

level of the visualization and allow meaningful pauses in the animation in order to

support discussion. As an attempt to solve this issue, (P5) described how automatic

prediction-type question generation has been added to Jeliot 3 and how it could be

used. Figure 4.2 shows an example of a multiple-choice question, which has been

generated automatically.

Figure 4.2: The automatically generated prediction-type questions are raised during
the program visualization.

The automatic question generation can be used for multiple purposes. For in-

stance, it can support the individual and collaborative learning with visualizations

or it can be used as a quiz or test for students after they have learned a certain

concept. Furthermore, it can be connected to a user-model facility as described

by Moreno et al. (2007a) and update the user model based on the answers of the

student, in order to allow adaption of the visualization. Currently, the educational

effectiveness of the automatic prediction-type question generation in Jeliot 3 has

44

not been studied and this should be performed in order to understand how question

generation affects learning.

In order to support the collaborative use of Jeliot 3 in distance education, Jeliot 3

was combined with a collaborative authoring tool called Woven Stories, which sup-

ports both synchronous and asynchronous modes of communication and sharing in

on-line collaborative authoring. (P6) describes JeCo (Jeliot Collaboratively), a tool

integrating Jeliot 3 and Woven Stories, and how it can enhance on-line collaborative

learning in programming. Figure 4.3 illustrates the user interface of JeCo. One can

add a new node (i.e., text or program code) to the graph of related messages or

sections, and connect it to the previous nodes by using edges. If the node contains

program source code, a sign “Jeliot available” is shown below the title of the node.

By right-clicking the node, the user can select to copy the source code into Jeliot and

play the animation of the program execution in Jeliot 3. Furthermore, the contents

of the node are shown on the right-hand side in a content frame and below it there is

a chat window. The nodes can be edited by the owner of the node and the contents

can consist of rich text and program source code.

The visualization of the discussions and collaboration shows the different mes-

sages and their relationships with each other as a graph. The visualization is similar

to the graph representation used by Suthers et al. (2007b, 2008) in the context of

on-line collaborative inquiry. They have shown that the graph representation, which

supports both task completion as well as communication, is better for focusing the

discussions on the task-related issues. This also affected the learning results when

compared to the threaded discussions, which are accompanied with a graph repre-

sentation that was only supposed to be used to complete the task. In JeCo, the

45

representation graph is mainly a communications channel, which shows the struc-

ture of past collaborations and messages, and their relations. JeCo also provides a

chat facility which can be used during synchronous collaborative learning. This tool

can be used to support collaborative learning of programming with visualization

in distance education. Furthermore, it provides an interesting research tool in this

context as it saves all the interactions into a log file and database so that this data

is available to a researcher.

46

Chapter 5

Discussion

“What is a scientist after all? It is a curious man looking through a keyhole, the

keyhole of nature, trying to know what’s going on.”

– Jacques Yves Cousteau

I
n this thesis, various aspects of the collaborative learning of programming and

algorithms and data structures with software visualizations have been studied.

The key findings are the extension of the engagement taxonomy and its uti-

lization in the analysis of collaborative learning with software visualization. It was

found that the engagement promoted by the visualization has a positive effect on

the collaborative learning process of students as well as its learning outcomes, and

the engagement seems to be related even to the discussion contents, but this should

be further analyzed in the future research. Based on these results, extensions to the

existing program visualization tool Jeliot 3 were designed and implemented. The

implications of the studies and results to the teaching and research practices are

discussed in Section 5.1. The concluding remarks are given in Section 5.2 and the

introduction and summary part of this thesis will end with a discussion on future

perspectives in Section 5.3.

5.1 Implications of the Results

A general implication of the research is that the use of visualization in learning

programming or data structures and algorithms is beneficial, when students learn

with visualizations that support active forms of engagement. This use seems to have

an effect not only on the learning outcomes but also on the collaborative learning

process. This should inform the teaching of these subjects, in the sense that SV

tools can and should be used during collaborative learning or pair programming.

47

Furthermore, SV tools that operate on higher levels of engagement should be favored,

as well as the tools which support multiple levels of engagement.

SV tool developers can use these results since they emphasize the need for dif-

ferent kinds of interaction and engagement possibilities in visualizations in order

to support collaboration. The extended engagement taxonomy provides new direc-

tions for possible engagements, and tools that support these various levels should

be developed in order to evaluate the effects of those levels on learning.

There are two methodological issues that should be noted by researchers of SV

tools in future studies. Firstly, the learning processes should be studied in combi-

nation of the learning outcomes. As can be seen from the results, there are several

things that can be learned from this kind of analysis, for example, the description

of the learning process gives meaning to the differences in the learning outcomes.

Secondly, although the use of software for capturing computer screens and audio

recording is not new, we have used these tools for another purpose: to monitor that

students are behaving as they are expected to. In the research reported in (P3), it

was found that the students who were supposed to learn with the visual algorithm

simulation exercises never used them but only viewed the model answer animations.

This was only detected during the post-hoc video analysis, and then video analysis

was used to divide the students into groups based on their behavior. Therefore, it

is recommended that every study analyzing the use or the educational effectiveness

of SVs should use screen capturing in order to detect misbehavior or possible con-

founding factors. This also casts some doubt on previous results in the field, i.e.,

how we can be sure that the inconclusive results of the previous research were not

partially due to the same issue?

There are some limitations to the validity of the results reported in this thesis.

The analysis of the effects of engagements did not utilize all the engagement levels

or all the different tools, so there is a possibility that the effects attributed to the

engagement levels in general were due to those particular engagement levels or to

the tools that were analyzed. However, I tried to eliminate these possibilities by

utilizing multiple tools and by carrying out the studies in several contexts. The

constructive research in the further development of Jeliot that was performed as

part of the thesis has not been evaluated in the empirical studies. Although it was

guided by the empirical studies that have been carried out during the research, the

implementations have not yet been tested for educational effectivity. Therefore, the

claims that those tools are educationally effective are based on the previous research

and literature and not empirical data.

48

5.2 Concluding remarks

Research on the use of software visualization tools during collaborative learning is

multi-disciplinary, and theories and methods from several fields of study need to

be applied. In this work, I have applied methodology and theories from behavioral

and educational sciences, as well as from computer science education research and

research on computer-supported collaborative learning. From a practical point of

view, I have studied students who have been learning introductory computer science.

I have also used three different SV tools in the studies and performed them at three

universities. This has given a rich context for this research that would not have been

possible to achieve by using a single tool at one university.

Although there are claims that visualization tools are used too little outside the

university where the tool is developed and that there are several forms of resistance

to the adoption of these tools (Naps et al., 2002, Ben-Bassat Levy and Ben-Ari,

2007), this kind of research collaboration should make it easier to adopt new tools

at multiple universities. Furthermore, research is need to inform the instructors

of the possible benefits of the visualization tools, especially now, when we start to

understand how and why the visualizations affect the learning outcomes.

From a point of view of the Jeliot 3, this research could be seen as action research

designed to enhance the educational effects of Jeliot. Although Jeliot 3 was used

in one of the studies, other tools BlueJ and TRAKLA2 were studied. The findings

from research on the other SV tools can then be taken back to enhance and develop

Jeliot 3 and this mutual feedback of research and development should continued.

5.3 Future Perspectives

The research reported in this thesis has also pointed to or resulted in several new

research directions that could be pursued in the future.

As identified in Section 4.1, the extended engagement taxonomy (P1) and the

additions proposed by Lauer (2008b) should be unified and further analyzed. Fur-

thermore, it would be meaningful to make the taxonomy easily extensible and possi-

bly even to divide it into multiple dimensions. Moreover, it should be analyzed how

the communicative dimensions by Hundhausen (2005) are related to the engagement

levels and what their role is in supporting communications and collaboration.

The methodology that was used in (P1) to analyze categories of transactive rea-

soning and discussion contents should be refined and further analyses of collaborative

learning processes with visualizations should be carried out. This would enable us

to analyze the correlation or causal relationships between the engagement levels and

the transactive reasoning and discussion contents on various levels of engagement. It

49

would also be interesting to analyze which aspects of the visualization might affect

the discussion contents and what representational guidance is involved.

As discussed in (P1), it would be meaningful to study the long-term effects

of the collaborative use of visualizations in programming and data structures and

algorithms learning by carrying out a longitudinal study and comparing the amount

of discussions and their contents over several weeks. Currently, there would even be

available materials to carry out this kind of study.

The tools and techniques that were developed during this research should be

evaluated. The educational effectiveness of the automatic prediction-type question

generation should be tested in an empirical study in both individual and collabora-

tive learning situations. Furthermore, the use of JeCo should be investigated and a

methodology, similar to that used by Suthers et al. (2008), could be used to carry

out the study and the analysis.

It would be interesting to develop and evaluate completely new interaction capa-

bilities in Jeliot 3. For example, visual program simulation support could be added

to Jeliot in order to promoted the EET level changing or simulating. This could be

also an interesting combination of the research and development carried out by the

two research groups who developed TRAKLA2 and Jeliot 3, because the former has

knowledge of visual algorithm simulation and the latter of program visualization.

50

References

Baecker, R. (1981). Sorting out Sorting. Videotape, 30 minutes, presented at ACM
SIGGRAPH ’81 and excerpted in ACM SIGGRAPH Video Review #7.

Beck, L. L. and Chizhik, A. W. (2008). An experimental study of cooperative learn-
ing in CS1. In SIGCSE ’08: Proceedings of the 39th SIGCSE technical symposium
on Computer science education, pages 205–209, New York, NY, USA. ACM.

Bednarik, R., Moreno, A., and Myller, N. (2006c). Various Utilizations of an Open-
Source Program Visualization Tool, Jeliot 3. Informatics in Education, 5(2):267–
276.

Bednarik, R., Myller, N., Sutinen, E., and Tukiainen, M. (2005a). Applying Eye-
Movement Tracking to Program Visualization. In Proceedings of 2005 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05),
pages 302–304, Dallas, Texas, USA. IEEE press.

Bednarik, R., Myller, N., Sutinen, E., and Tukiainen, M. (2005b). Effects of Expe-
rience on Gaze Behaviour during Program Animation. In Proceedings of the 17th
Annual Psychology of Programming Interest Group Workshop (PPIG’05), pages
49–61.

Bednarik, R., Myller, N., Sutinen, E., and Tukiainen, M. (2006a). Analyzing Indi-
vidual Differences in Program Comprehension. Technology, Instruction, Cognition
and Learning, 3(3):205–232.

Bednarik, R., Myller, N., Sutinen, E., and Tukiainen, M. (2006b). Program Visu-
alisation: Comparing Eye-tracking Patterns with Comprehension Summaries and
Performance. In Proceedings of the 18th Annual Workshop of the Psychology of
Programming Interest Group (PPIG’06), pages 68–82.

Bednarik, R. and Randolph, J. (2008). Studying Cognitive Processes in Program
Comprehension: Levels of Analysis of Sparse Eye-tracking Data. In Hammoud,
R. I., editor, Passive Eye Monitoring: Algorithms, Applications and Experiments,
pages 372–386. Springer.

Ben-Ari, M., Myller, N., Sutinen, E., and Tarhio, J. (2002). Perspectives on Pro-
gram Animation with Jeliot. In Diehl, S., editor, Software Visualization, Lecture
Notes in Computer Science, Volume 2269, pages 31–45, Berlin. Springer-Verlag.
(SpringerLink publication).

51

Ben-Bassat Levy, R. and Ben-Ari, M. (2007). We work so hard and they don’t use
it: Acceptance of software tools by teachers. SIGCSE Bulletin, 39(3):246–250.

Ben-Bassat Levy, R., Ben-Ari, M., and Uronen, P. A. (2003). The Jeliot 2000
program animation system. Computers & Education, 40(1):15–21.

Bennedsen, J. and Caspersen, M. E. (2007). Failure rates in introductory program-
ming. SIGCSE Bulletin, 39(2):32–36.

Berkowitz, M. W. and Gibbs, J. C. (1983). Measuring the development of features
in moral discussion. Merill-Palmer Quarterly, 29:399–410.

Boroni, C. M., Eneboe, T. J., Goosey, F. W., Ross, J. A., and Ross, R. J.
(1996). Dancing with DynaLab: Endearing the Science of Computing to Stu-
dents. SIGCSE Bulletin, 28(1):135–139.

Bryant, S., Romero, P., and du Boulay, B. (2005). Pair programming and the re-
appropriation of individual tools for collaborative programming. In Pendergast,
M., Schmidt, K., Mark, G., and Ackerman, M., editors, Proceedings of the 2005
International ACM SIGGROUP Conference on Supporting Group Work, GROUP
2005, pages 332–333. ACM Press.

Byrne, M., Catrambone, R., and Stasko, J. (1999). Evaluating animations as student
aids in learning computer algorithms. Computers & Education, 33(4):253–278.

Chi, M. T. H. (1997). Quatifying qualitative analyses of verbal data: A practical
guide. The Journal of The Learning Sciences, 6:271–315.

Chinn, D., Martin, K., and Spencer, C. (2007). Treisman workshops and student
performance in cs. In Proceedings of the 28th SIGCSE Technical Symposium on
Computer Science Education, pages 203–207.

Cohen, J. (1977). Statistical power analysis for the behavioral sciences. Academic
Press, New York.

Crescenzi, P., Demetrescu, C., Finocchi, I., and Petreschi, R. (2000). Reversible
execution and visualization of programs with LEONARDO. Journal of Visual
Languages and Computing, 11(2):125–150.

Dillenbourg, P. and Self, J. (1992). A computational approach to socially distributed
cognition. European Journal of Psychology of Education, 7(4):352–373.

Ebel, G. and Ben-Ari, M. (2006). Affective effects of program visualization. In Second
International Computing Education Research Workshop, pages 1–5, Canterbury,
UK. ACM Press.

Evans, C. and Gibbons, N. J. (2007). The interactivity effect in multimedia learning.
Computers & Education, 49(4):1147–1160.

Fincher, S. and Petre, M. (2004). Computer Science Education Research. Routledge.

Fisker, K., McCall, D., Kölling, M., and Quig, B. (2008). Group work support
for the bluej ide. In ITiCSE ’08: Proceedings of the 13th annual conference on
Innovation and technology in computer science education, pages 163–168, New
York, NY, USA. ACM.

52

Gall, M. D., Gall, J. P., and Borg, W. R. (2006). Educational Research: An Intro-
duction. Allyn & Bacon, 8th edition.

Green, T. R. G. and Petre, M. (1996). Usability analysis of visual programming
environments: A ‘cognitive dimensions’ framework. Journal of Visual Languages
and Computing, 7:131–174.

Grissom, S., McNally, M., and Naps, T. L. (2003). Algorithm visualization in CS
education: comparing levels of student engagement. In Proceedings of the First
ACM Symposium on Software Visualization, pages 87–94.

Grudin, J. (1994). Computer-supported cooperative work: history and focus. Com-
puter, 27(5):19–26.

Haaster, K. V. and Hagan, D. (2004). Teaching and learning with BlueJ: An evalu-
ation of a pedagogical tool. In Proceedings of Informing Science + IT Education
Conference (InSITE 2004), pages 455–470, California, USA. Informing Science
Institute.

Hillion, S. (2002). DynamicJava. WWW-page. http://sourceforge.net/

projects/djava/ (Accessed 2009-04-01).

Hübscher-Younger, T. and Narayanan, N. H. (2003). Constructive and collaborative
learning of algorithms. SIGCSE Bulletin, 35(1):6–10.

Hundhausen, C. D. (2002). Integrating Algorithm Visualization Technology into an
Undergraduate Algorithms Course: Ethnographic Studies of a Social Construc-
tivist Approach. Computers & Education, 39(3):237–260.

Hundhausen, C. D. (2005). Using end-user visualization environments to mediate
conversations: A ‘Communicative Dimensions’ framework. Journal of Visual Lan-
guages and Computing, 16(3):153–185.

Hundhausen, C. D. and Brown, J. L. (2007a). What You See Is What You Code:
A ‘live’ algorithm development and visualization environment for novice learners.
Journal of Visual Languages and Computing, 18(1):22–47.

Hundhausen, C. D. and Brown, J. L. (2008). Designing, visualizing, and discussing
algorithms within a CS 1 studio experience: An empirical study. Computers &
Education, 50(1):301–326.

Hundhausen, C. D., Douglas, S. A., and Stasko, J. T. (2002). A meta-study of
algorithm visualization effectiveness. Journal of Visual Languages and Computing,
13(3):259–290.

Jadud, M. C. (2006). Methods and tools for exploring novice compilation behaviour.
In ICER ’06: Proceedings of the second international workshop on Computing
education research, pages 73–84, New York, NY, USA. ACM.

Jain, J., II, J. H. C., Hendrix, T. D., and Barowski, L. A. (2006). Experimental eval-
uation of animated-verifying object viewers for java. In SoftVis ’06: Proceedings
of the 2006 ACM symposium on Software visualization, pages 27–36, New York,
NY, USA. ACM.

Janssen, J., Erkens, G., Kanselaar, G., and Jaspers, J. (2007). Visualization of

53

participation: Does it contribute to successful computer-supported collaborative
learning? Computers & Educucation, 49(4):1037–1065.

Jarc, D., Feldman, M., and Heller, R. (2000). Assessing the benefits of interactive
prediction using web-based algorithm animation courseware. In Proceedings of
the 31st SIGCSE Technical Symposium on Computer Science Education, pages
377–381, Austin, Texas, USA.

Järvinen, P. (2004a). On research methods. Opinpajan kirja, Tampere.

Järvinen, P. (2004b). Research questions guiding selection of an appropriate research
method. Technical Report D-2004-5, Department of Computer Science, University
of Tampere.

Jehng, J.-C. J. and Chan, T.-W. (1998). Designing computer support for collab-
orative visual learning in the domain of computer programming. Computers in
Human Behavior, 14(3):429–448.

Johnson, R. B. and Onwuegbuzie, A. J. (2004). Mixed methods research: A research
paradigm whose time has come. Educational Researcher, 33(7):14–26.

Jordan, B. and Henderson, A. (1995). Interaction analysis: Foundations and prac-
tice. The Journal of the Learning Sciences, 4(1):39–103.

Kannusmäki, O., Moreno, A., Myller, N., and Sutinen, E. (2004). What a Novice
Wants: Students Using Program Visualization in Distance Programming Course.
In Korhonen, A., editor, Proceedings of the Third Program Visualization Work-
shop (PVW 2004), Research Report CS-RR-407, pages 126–133, Warwick, UK.
Department of Computer Science, University of Warwick.

Kölling, M., Quig, B., Patterson, A., and Rosenberg, J. (2003). The BlueJ system
and its pedagogy. Computer Science Education, 13(4):249–268.

Korhonen, A. (2003). Visual Algorithm Simulation. PhD thesis, Helsinki University
of Technology. (Tech Rep. No. TKO-A40/03).

Korhonen, A., Laakso, M.-J., and Myller, N. (2009). How does algorithm visu-
alization affect collaboration? Video Analysis of Engagement and Discussions.
Accepted to the 5th International Conference on Web Information Systems and
Technologies (WEBIST).

Korhonen, A., Malmi, L., Myllyselkä, P., and Scheinin, P. (2002). Does it make a
difference if students exercise on the web or in the classroom? SIGCSE Bulletin,
34(3):121–124.

Korhonen, A., Malmi, L., Silvasti, P., Karavirta, V., Lönnberg, J., Nikander, J.,
St̊alnacke, K., and Ihantola, P. (2004). Matrix — a framework for interactive soft-
ware visualization. Research Report TKO-B 154/04, Laboratory of Information
Processing Science, Department of Computer Science and Engineering, Helsinki
University of Technology.

Laakso, M.-J., Myller, N., and Korhonen, A. (2009). Comparing learning perfor-
mance of students using algorithm visualizations collaboratively on different en-
gagement levels. Accepted for publication in Journal of Educational Technology

54

& Society.

Laakso, M.-J., Salakoski, T., Grandell, L., Qiu, X., Korhonen, A., and Malmi, L.
(2005). Multi-perspective study of novice learners adopting the visual algorithm
simulation exercise system trakla2. Informatics in Education, 4(1):49–68.

Lahtinen, S.-P., Sutinen, E., and Tarhio, J. (1998). Automated Animation of Algo-
rithms with Eliot. Journal of Visual Languages and Computing, 9(3):337–349.

Landis, J. R. and Koch, G. G. (1977). The measurement of observer agreement for
categorical data. Biometrics, 33:159–174.

Lattu, M., Meisalo, V., and Tarhio, J. (2003). A visualization tool as a demonstration
aid. Computers & Education, 41(2):133–148.

Lattu, M., Tarhio, J., and Meisalo, V. (2000). How a Visualization Tool Can Be
Used - Evaluating a Tool in a Research & Development Project. In 12th Workshop
of the Psychology of Programming Interest Group, pages 19–32, Corenza, Italy.
http://www.ppig.org/papers/12th-lattu.pdf (Accessed 2009-04-01).

Lauer, T. (2006). Learner interaction with algorithm visualizations: viewing vs.
changing vs. constructing. In ITICSE ’06: Proceedings of the 11th annual SIGCSE
conference on Innovation and technology in computer science education, pages
202–206, New York, NY, USA. ACM.

Lauer, T. (2008a). Reevaluating and refining the engagement taxonomy. In ITiCSE
’08: Proceedings of the 13th annual conference on Innovation and technology in
computer science education, pages 355–355, New York, NY, USA. ACM.

Lauer, T. (2008b). When does algorithm visualization improve algorithm learn-
ing? — reviewing and refining an evaluation framework. In Cortesi, A. and
Luccio, F., editors, Proceedings of ACM-IFIP Informatics Education Europe
III, pages 198–208. http://www.dsi.unive.it/IEEIII/atti/PROCEEDINGS_

IEEIII08.pdf (Accessed 2009-04-01).

Lauer, T. and Myller, N. (2008). Personal communication. discussions and emails.

Lavonen, J., Meisalo, V., and Lattu, M. (2002). Collaborative problem solving in a
control technology learning environment, a pilot study. International Journal of
Technology and Design Education, 12(2):139–160.

Lavonen, J., Meisalo, V., Lattu, M., and Sutinen, E. (2003). Concretising the
programming task: a case study in a secondary school. Computers and Education,
40(2):115–135.

Lehtinen, E., Hakkarainen, K., Lipponen, L., Rahikainen, M., and Muukkonen, H.
(1999). Computer supported collaborative learning: A review. The J.H.G.I. Gies-
bers Reports on Education 10, Department of Educational Sciences, University
on Nijmegen. http://www.kas.utu.fi/papers/clnet/clnetreport.html (Ac-
cessed 2009-04-01).

Lister, R. (2005). Mixed methods: positivists are from mars, constructivists are
from venus. SIGCSE Bulletin, 37(4):18–19.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., Mc-

55

Cartney, R., Moström, J. E., Sanders, K., Seppälä, O., Simon, B., and Thomas,
L. (2004). A multi-national study of reading and tracing skills in novice program-
mers. SIGCSE Bulletin, 36(4):119–150.

Lukka, K. (2003). The constructive research approach. In Ojala, L. and Hilmola,
O.-P., editors, Case study research in logistics. Publications of the Turku School
of Economics and Business Administration, Series B 1, pages 83–101.

Malmi, L., Karavirta, V., Korhonen, A., Nikander, J., Seppälä, O., and Silvasti, P.
(2004). Visual algorithm simulation exercise system with automatic assessment:
Trakla2. Informatics in Education, 3(2):267–288.

Markkanen, J., Saariluoma, P., Sutinen, E., and Tarhio, J. (1998). Visualization and
imagery in teaching programming. In Domingue, J. and Mulholland, P., editors,
10th Annual Meeting of the Psychology of Programming Interest Group, pages
70–73, Knowledge Media Institute, Open University, Milton Keynes, UK.

Mattessich, P. W., Murray-Close, M., and Monsey, B. R. (2004). Collaboration:
What Makes It Work. Fieldstone Alliance, 2nd edition.

Mayer, R. E. (2001). Multimedia Learning. Cambridge University Press, Cambridge,
UK.

Mayer, R. E. and Chandler, P. (2001). When Learning is Just a Click Away: Does
Simple User Interaction Foster Deeper Understanding of Multimedia Messages?
Journal of Educational Psychology, 93(2):390–397.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Ben-David Ko-
likant, Y., Laxer, C., Thomas, L., Utting, I., and Wilusz, T. (2001). A multi-
national, multi-institutional study of assessment of programming skills of first-year
cs students. SIGCSE Bulletin, 33(4):125–180.

McDowell, C., Werner, L., Bullock, H. E., and Fernald, J. (2003). The impact of pair
programming on student performance, perception and persistence. In Proceedings
of the 25th International Conference on Software Engineering, pages 602–607.
IEEE Computer Society.

McGettrick, A., Boyle, R., Ibbett, R., Lloyd, J., Lovegrove, G., and Mander, K.
(2005). Grand challenges in computing: Education–a summary. The Computer
Journal, 48(1):42–48.

McGuigan, F. J. (1996). Experimental Psychology Methods of Research. Prentice
Hall, 7th edition.

Mead, G. (1977). On social psychology. Selected papers. The University of Chicago
Press, Chicago. A. Strauss (Ed.).

Meier, A., Spada, H., and Rummel, N. (2007). A rating scheme for assessing the
quality of computer-supported collaboration processes. International Journal of
Computer-Supported Collaborative Learning, 2(1):63–86.

Meisalo, V., Sutinen, E., and Torvinen, S. (2003). Choosing Appropriate Meth-
ods for Evaluating and Improving the Learning Process in Distance Programming
Courses. In Proceedings of the 33rd ASEE/IEEE Frontiers in Education Confer-

56

ence (FIE2003), pages T2B–11–16, Boulder, CO, USA.

Mendes, A. J., Gomes, A., Esteves, M., Marcelino, M. J., Bravo, C., and Redondo,
M. A. (2005). Using simulation and collaboration in cs1 and cs2. SIGCSE Bulletin,
37(3):193–197.

Milne, I. and Rowe, G. (2002). Difficulties in learning and teaching programming–
views of students and tutors. Education and Information Technologies, 7(1):55–66.

Moreno, A. (2005). The Design and Implementation of Intermediate Codes for Soft-
ware Visualization. Master’s thesis, Department of Computer Science, University
of Joensuu, Joensuu, Finland.

Moreno, A., Bednarik, R., and Yudelson, M. (2007a). How to Adapt the Visual-
ization of Programs? In Brusilovsky, P., Grigoriadou, M., and Papanikolaou, K.,
editors, Proceedings of Workshop on Personalisation in E-Learning Environments
at Individual and Group Level, 11th International Conference on User Modeling,
pages 65–70.

Moreno, A. and Joy, M. S. (2007). Jeliot 3 in a demanding educational setting.
Electronic Notes in Theoretical Computer Science, 178:51–59.

Moreno, A., Myller, N., Ben-Ari, M., and Sutinen, E. (2004b). Program Anima-
tion in Jeliot 3. In Proceedings of the 9th Annual Conference on Innovation and
Technology in Computer Science Education (ITiCSE 2004), page 265, Leeds, UK.
ACM SIGCSE.

Moreno, A., Myller, N., Sutinen, E., and Ben-Ari, M. (2004a). Visualizing Programs
with Jeliot 3. In Proceedings of the International Working Conference on Advanced
Visual Interfaces (AVI ’04), pages 373–376, Gallipoli (Lecce), Italy.

Moreno, A., Sutinen, E., Bednarik, R., and Myller, N. (2007b). Conflictive ani-
mations as engaging learning tools. In Lister, R. and Simon, editors, Seventh
Baltic Sea Conference on Computing Education Research (Koli Calling 2007),
pages 203–206.

Moreno, R. and Mayer, R. E. (2000). Engaging students in active learning: The
case for personalized multimedia messages. Journal of Educational Psychology,
92(4):724–733.

Myller, N. (2004). Fundamental Design Issues of Jeliot 3. Master’s thesis, Depart-
ment of Computer Science, University of Joensuu, Joensuu, Finland.

Myller, N. (2007). Automatic generation of prediction questions during program
visualization. Electronic Notes in Theoretical Computer Science, 178:43–49. (Pro-
ceedings of the Fourth Program Visualization Workshop).

Myller, N., Bednarik, R., Ben-Ari, M., and Sutinen, E. (2009). Extending the en-
gagement taxonomy: Software visualization and collaborative learning. Accepted
for publication in ACM Transactions on Computing Education (formerly The
ACM Journal on Educational Resources in Computing).

Myller, N., Bednarik, R., and Moreno, A. (2007a). Integrating Dynamic Program
Visualization into BlueJ: the Jeliot 3 Extension. In Proceedings of the 7th IEEE

57

International Conference on Advanced Learning Technologies (ICALT’07), pages
505–506.

Myller, N., Laakso, M., and Korhonen, A. (2007b). Analyzing engagement taxonomy
in collaborative algorithm visualization. In Hughes, J., Peiris, D. R., and Tymann,
P. T., editors, Proceedings of the 12th annual SIGCSE conference on Innovation
and technology in computer science education (ITiCSE ’07), pages 251–255, New
York, NY, USA. ACM Press.

Myller, N. and Nuutinen, J. (2006). JeCo: Combining program visualization and
story weaving. Informatics in Education, 5(2):195–206.

Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K., Miller, C., and Balik,
S. (2003). Improving the CS 1 experience with pair programming. In Proceedings
of the 34th SIGCSE technical symposium on Computer science education, pages
359–362. ACM Press.

Naps, T. L. (2005). JHAVÉ – Addressing the need to support algorithm visualization
with tools for active engagement. IEEE Computer Graphics and Applications,
25(5):49–55.

Naps, T. L., Eagan, J. R., and Norton, L. L. (2000). JHAVÉ – An Environment to
Actively Engage Students in Web-based Algorithm Visualizations. In Proceedings
of the thirty-first SIGCSE technical symposium on Computer Science Education,
pages 109–113, New York, NY, USA. ACM Press.

Naps, T. L. and Grissom, S. (2002). The effective use of quicksort visualizations in
the classroom. Journal of Computing Sciences in Colleges, 18(1):88–96.

Naps, T. L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen,
C., Korhonen, A., Malmi, L., McNally, M., Rodger, S., and Velázquez-Iturbide,
J. Á. (2002). Exploring the Role of Visualization and Engagement in Computer
Science Education. In Working Group Reports from ITiCSE on Innovation and
Technology in Computer Science Education, pages 131–152, New York, NY, USA.
ACM Press.

Nosek, J. T. (1998). The case for collaborative programming. Communication of
the ACM, 41(3):105–108.

Paterson, J. H. and Haddow, J. (2007). From classes to code: supporting the
transition from design to implementation. In ITiCSE ’07: Proceedings of the 12th
annual SIGCSE conference on Innovation and technology in computer science
education, pages 362–362, New York, NY, USA. ACM.

Paterson, J. H., Haddow, J., and Nairn, M. (2006). A design patterns extension for
the bluej ide. In ITICSE ’06: Proceedings of the 11th annual SIGCSE conference
on Innovation and technology in computer science education, pages 280–284, New
York, NY, USA. ACM.

Patterson, A., Kölling, M., and Rosenberg, J. (2003). Introducing unit testing with
bluej. In ITiCSE ’03: Proceedings of the 8th annual conference on Innovation
and technology in computer science education, pages 11–15, New York, NY, USA.

58

ACM.

Petre, M. (1995). Why Looking Isn’t Always Seeing: Readership Skills and Graphical
Programming. Communication of the ACM, 38(6):55–70.

Petre, M. and Green, T. R. G. (1993). Learning to Read Graphics: Some Evidence
that ’Seeing’ an Information Display Is an Acquired Skill. Journal of Visual
Languages and Computing, 4(1):55–70.

Phillip, R., Roy, R., and Sharon, A. (1995). Collaborative learning for computer
science students. Journal of Computers in Mathematics and Science Teaching,
14(3):377–389.

Piaget, J. (1980). The Constructivist approach. Foundation Archives Jean Piaget,
Geneva.

Pierson, W. C. and Rodger, S. H. (1998). Web-based animation of data structures
using JAWAA. SIGCSE Bulletin, 30(1):267–271.

Price, B. A., Baecker, R. M., and Small, I. S. (1993). A Principled Taxonomy of
Software Visualization. Journal of Visual Languages & Computing, 4(3):211–266.

Ragonis, N. and Ben-Ari, M. (2005a). A long-term investigation of the comprehen-
sion of oop concepts by novices. Computer Science Education, 15(3):203–221.

Ragonis, N. and Ben-Ari, M. (2005b). On understanding the statics and dynamics
of object-oriented programs. SIGCSE Bulletin, 37(1):226–230.

Ratcliffe, M. B. and Thomas, L. A. (2004). Understanding our students: Incorpo-
rating the results of several experiments into a student learning environment. In
16th Workshop of the Psychology of Programming Interest Group, pages 10–20.

Rhodes, P., Kraemer, E., and Reed, B. (2006). The importance of interactive ques-
tioning techniques in the comprehension of algorithm animations. In Proceedings
of the ACM Symposium on Software Visualization (SOFTVIS 2006), pages 183–
184, Brighton, UK.

Ridgway, M., Ratcliffe, M., and Ellis, W. (2003). Vortex — enhancing the peda-
gogy in software development education. Proceedings of the American Society for
Information Science and Technology, 40(1):542.

Robins, A., Rountree, J., and Rountree, N. (2003). Learning and teaching program-
ming: A review and discussion. Computer Science Education, 13(2):137–172.

Roman, G.-C., Cox, K. C., Wilcox, D., and Plun, J. Y. (1992). Pavane: a System
for Declarative Visualization of Concurrent Computations. Journal of Visual
Languages and Computing, 3(2):161–193.

Roschelle, J. (1992). Learning by collaborating: Convergent conceptual change. The
Journal of the Learning Sciences, 2(3):235–276.

Roschelle, J. (1996). Designing for cognitive communication: Epistemic fidelity
or mediating collaborative inquiry. In Day, D. L. and Kovacs, D. K., editors,
Computers, Communication & Mental Models, pages 13–25. Taylor & Francis,
London.

59

Rößling, G. and Freisleben, B. (2002). Animal: A system for supporting multi-
ple roles in algorithm animation. Journal of Visual Languages and Computing,
13(3):341–354.

Rößling, G. and Häussge, G. (2004). Towards tool-independent interaction sup-
port. In Korhonen, A., editor, Proceedings of the Third International Program
Visualization Workshop, pages 110–117, Warwick, England.

Rößling, G. and Naps, T. L. (2002). A testbed for pedagogical requirements in algo-
rithm visualizations. In Proceedings of the Innovation and Technology in Computer
Science Education (ITiCSE’02), pages 96–100. ACM Press.

Sajaniemi, J. and Kuittinen, M. (2005). An experiment on using roles of variables in
teaching introductory programming. Computer Science Education, 15(1):59–82.

Scaife, M. and Rogers, Y. (1996). External cognition: how do graphical representa-
tions work? International Journal of Human-Computer Studies, 45(2):185–213.

Scardamalia, M., Bereiter, C., McLean, R., Swallow, J., and Woodruff, M. (1989).
Computer supported intentional learning enviroments. Journal of Educational
Computing research, 5(1):51–68.

Seppälä, O., Malmi, L., and Korhonen, A. (2006). Observations on student miscon-
ceptions — a case study of the build-heap algorithm. Computer Science Education,
16(3):241–255.

Slavin, R. (1995). Cooperative learning: Theory research and practice. Ally & Bacon,
Boston, MA.

Spada, H., Meier, A., Rummel, N., and Hauser, S. (2005). A new method to assess
the quality of collaborative process in cscl. In Koschmann, T., Suthers, D., and
Chan, T. W., editors, Computer Supported Collaborative Learning 2005: The Next
10 Years!, pages 622–631, Mahwah, NJ. Lawrence Erlbaum.

Suthers, D., Dwyer, N., Medina, R., and Vatrapu, R. (2007a). A framework for
eclectic analysis of collaborative interaction. In Chinn, C., Erkens, G., and Pun-
tambekar, S., editors, The Computer Supported Collaborative Learning (CSCL)
Conference 2007, pages 694–703, New Brunswick. International Society of the
Learning Sciences.

Suthers, D., Toth, E., and Weiner, A. (1997). An integrated approach to imple-
menting collaborative inquiry in the classroom. In Proceedings of the 2nd Inter-
national Conference on Computer Supported Collaborative Learning (CSCL’97),
pages 272–279, Toronto.

Suthers, D., Vatrapu, R., Medina, R., Joseph, S., and Dwyer, N. (2007b). Con-
ceptual representations enhance knowledge construction in asynchronous collab-
oration. In Chinn, C., Erkens, G., and Puntambekar, S., editors, The Computer
Supported Collaborative Learning (CSCL) Conference 2007, pages 704–713, New
Brunswick. International Society of the Learning Sciences.

Suthers, D., Vatrapu, R., Medina, R., Joseph, S., and Dwyer, N. (2008). Be-
yond threaded discussion: Representational guidance in asynchronous collabo-

60

rative learning environments. Computers & Education, 50(4):1103–1127.

Suthers, D. D. (1999). The effects of representational bias on collaborative inquiry. In
Proceedings of the 8th International Conference on Human-Computer Interaction:
Ergonomics and User Interfaces - Volume I, pages 362–366, Hillsdale, NJ, USA.
Lawrence Erlbaum Associates Inc.

Suthers, D. D. and Hundhausen, C. D. (2003a). An experimental study of the effects
of representational guidance on collaborative learning processes. Journal of the
Learning Sciences, 12(2):183–219.

Suthers, D. D., Hundhausen, C. D., and Girardeau, L. E. (2003b). Comparing the
roles of representations in face-to-face and online computer supported collabora-
tive learning. Computers & education, 41(4):335–351.

Sutinen, E., Tarhio, J., Lahtinen, S.-P., Tuovinen, A.-P., Rautama, E., and Meisalo,
V. (1997). Eliot – an Algorithm Animation Environment. Report A-1997-4,
Department of Computer Science, University of Helsinki, Helsinki, Finland. http:
//www.cs.helsinki.fi/TR/A-1997/4/A-1997-4.ps.gz (Accessed 2009-04-01).

Sutinen, E., Tarhio, J., and Teräsvirta, T. (2003). Easy Algorithm Animation on
the Web. Multimedia Tools and Applications, 19(2):179–184.

Teague, D. and Roe, P. (2008). Collaborative learning: towards a solution for
novice programmers. In ACE ’08: Proceedings of the tenth conference on Aus-
tralasian computing education, pages 147–153, Darlinghurst, Australia, Australia.
Australian Computer Society, Inc.

Teasley, S. (1997). Talking about reasoning: How important is the peer in peer
collaboration. In Resnick, L., Säljö, R., Pontecorvo, C., and Burge, B., editors,
Discourse, Tools and Reasoning: Essays on Situated Cognition, pages 361–384.
Springer, New York.

Urquiza-Fuentes, J. and Velázquez-Iturbide, J. Á. (2007). An Evaluation of the
Effortless Approach to Build Algorithm Animations with WinHIPE. Electronic
Notes in Theoretical Computer Science, 178:3–13. (Proceedings of the Fourth
Program Visualization Workshop).

Valdivia, R. and Nussbaum, M. (2007). Face-to-face collaborative learning in com-
puter science classes. International Journal of Engineering Education, 23:434–
440(7).

Vygotsky, L. (1978). Mind in Society: The Development of Higher Psychological
Processes. Harvard University Press, Cambridge, MA.

Williams, L., Kessler, R. R., Cunningham, W., and Jeffries, R. (2000). Strengthening
the case for pair programming. IEEE Software, 17(4):19–25.

Wills, C., Deremer, D., McCauley, R., and Null, L. (1999). Studying the use of
peer learning in the introductory computer science curriculum. Computer Science
Education, 9:71–88.

Xinogalos, S., Satratzemi, M., and Dagdilelis, V. (2007). Teaching java with bluej:
a two-year experience. In ITiCSE ’07: Proceedings of the 12th annual SIGCSE

61

conference on Innovation and technology in computer science education, pages
345–345, New York, NY, USA. ACM.

62

Original Publications

63

P1.

Myller, N., Bednarik, R., Ben-Ari, M., and Sutinen, E. (2009). Extending the engagement
taxonomy: software visualization and collaborative learning. ACM Transactions on Computing
Education, 9(1), Article 7.

Reprinted with permission, Copyright 2009 ACM

1

Extending the Engagement Taxonomy:
Software Visualization and
Collaborative Learning

NIKO MYLLER, ROMAN BEDNARIK, and ERKKI SUTINEN
University of Joensuu
and
MORDECHAI BEN-ARI
Weizmann Institute of Science

As collaborative learning in general, and pair programming in particular, has become widely
adopted in computer science education, so has the use of pedagogical visualization tools for facil-
itating collaboration. However, there is little theory on collaborative learning with visualization,
and few studies on their effect on each other. We build on the concept of the engagement taxonomy

and extend it to classify finer variations in the engagement that result from the use of a visual-
ization tool. We analyze the applicability of the taxonomy to the description of the differences in
the collaboration process when visualization is used. Our hypothesis is that increasing the level
of engagement between learners and the visualization tool results in a higher positive impact of
the visualization on the collaboration process. This article describes an empirical investigation
designed to test the hypothesis. The results provide support for our extended engagement
taxonomy and hypothesis by showing that the collaborative activities of the students and the
engagement levels are correlated.

Categories and Subject Descriptors: K.3.2 [Computer Science Education]: Computer & Infor-
mation Science Education—Computer Science Education

General Terms: Algorithms, Experimentation, Human Factors

Additional Key Words and Phrases: Program visualization, collaborative learning, engagement
taxonomy

The research of N. Myller and R. Bednarik has been funded by the East Finland Graduate School
in Computer Science and Engineering (ECSE). A part of this paper was written while N. Myller
was a visiting lecturer at the Tumaini University, Iringa University College, Iringa, Tanzania
under the 5ARTS+ project funded by CIMO.
Authors’ addresses: N. Myller, R. Bednarik, and E. Sutinen, Department of Computer
Science and Statistics, University of Joensuu, P.O. Box 111, FI-80101 Joensuu, Finland; email:
nmyller@cs.joensuu.fi; M. Ben-Ari, Department of Science Teaching, Weizmann Institute of
Science, Rehovot 76100, Israel.
Permission to make digital/hard copy of all or part of this material without fee for personal or
classroom use provided that the copies are not made or distributed for profit or commercial advan-
tage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice
is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post
on servers, or to redistribute to lists requires prior specific permission and/or a fee. Permissions
may be requested from the Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY
10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2009 ACM 1531-4278/2009/03-ART7 $5.00 DOI: 10.1145/1513593.1513600.

http://doi.acm.org/10.1145/1513593.1513600.

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

7: 2 · N. Myller et al.

ACM Reference Format:

Myller, N., Bednarik, R., Sutinen, E., and Ben-Ari, M. 2009. Extending the engagement taxonomy:
Software visualization and collaborative learning. ACM Trans. Comput. Educ. 9, 1, Article 7
(March 2009), 27 pages. DOI = 10.1145/1513593.1513600.
http://doi.acm.org/10.1145/1513593.1513600.

1. INTRODUCTION

When algorithm visualization (AV) and program visualization (PV)1 were first
introduced more than two decades ago, they seemed to be a silver bullet that
could solve difficult problems related to the teaching and learning of program-
ming, data structures and algorithms. However, the mixed results of empiri-
cal evaluations have made the benefits of visualization tools as teaching and
learning aids questionable [Hundhausen et al. 2002]. Therefore, researchers
have begun to seek explanations for the mixed results in order to discover the
conditions under which visualization tools can actually achieve improvements
in learning.

In a meta-analysis of the research on AV, Hundhausen et al. [2002] con-
cluded that the activities performed by students and their engagement seem
to be more important than the subject content or the graphic elements of the
visualization. The findings led to the analysis of different engagement lev-
els between the user and the visualization tool, resulting in the engagement

taxonomy (ET) described by Naps et al. [2002]. The main assumption of the
taxonomy is that the level of engagement between the user and the visualiza-
tion affects the learning of the individual student. Since its introduction, the
ET has guided the research and development of SV tools, and several studies
have utilized the framework [Grissom et al. 2003; Naps and Grissom 2002].

Collaborative learning and pair programming have become accepted
and popular methods in computer science education [Hundhausen and
Brown 2008; McDowell et al. 2006; Simon et al. 2004; Nagappan et al. 2003;
Hundhausen 2002; Williams et al. 2000]; as the use of visualization tools
increases [Naps et al. 2002], they appear more and more often in situations of
collaborative learning. This combination introduces new challenges and pos-
sibilities that are different from the ones related to individual learning with
visualization. On the one hand, successful collaboration requires the commu-
nication of knowledge and new ideas between group members, as well as the
coordination of joint work, but it is not clear how visualization affects these
issues [Suthers and Hundhausen 2003]. On the other hand, visualization tools
themselves can create a context for collaboration by providing a shared exter-
nal representation that can initiate negotiations of meanings; they can also
become a reference point for explaining ideas or resolving misunderstandings.
The mutual influence of visualization and collaboration on each other is likely
to be relevant for their joint analysis through means such as the engagement

1We will use software visualization (SV) to refer to both of these subfields.

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

Extending the Engagement Taxonomy · 7: 3

taxonomy; therefore, it is unlikely that the ET for collaborative learning will
be same as it is for individual learning.

Visualization tools that are used during collaboration can be divided
into two categories: information visualization such as concept maps or SV tools
that visualize programs or data structures, and augmenting visualization such
as social and group awareness software. Augmenting visualization tools are
known to enhance the process and the outcomes of the collaboration [Janssen
et al. 2007]. In this article, we concentrate on information visualization,
particularly on SV, because the effects of its content and form on collabora-
tion have not been investigated in depth. There are few theories of collab-
orative learning that apply to information visualizations and few tools that
support the collaborative learning [Suthers and Hundhausen 2003; Suthers
et al. 2003]. Thus, users have little guidance from the research literature as to
how to adjust the use of a tool meant for an individual to the different needs of
collaborative settings [Bryant et al. 2005].

In this paper, we first review literature related to the collaborative use of
visualization tools (Section 2). We then extend the engagement taxonomy with
1) new levels to an extended engagement taxonomy (EET) that identifies finer
levels of distinctions in the engagement in both individual and collaborative
learning (Section 3.1) and 2) a hypothesis that takes into account aspects of
collaborative learning process (Section 3.2).

Our hypothesis is that the higher the level of engagement between learners
and the visualization tool, the higher is the positive impact of the visualization
on the collaboration process. To test this hypothesis, we present an empirical
study, in which we investigated the activities of groups of students at differ-
ent engagement levels as supported by two visualization tools (Section 4). In
the study, we analyzed the interactions between students, and between the
students and a visualization. Section 5 presents the results and provides ev-
idence for our hypothesis. In the final section, we discuss the implications of
our findings on the future research and development of collaborative learning
with software visualization.

2. RELATED WORK

This section is an integrated survey of the relevant previous work on visual-
ization, collaborative learning and the engagement taxonomy.

2.1 Software Visualization and the Engagement Taxonomy

In an attempt to describe the mixed results of previous research on SV in
education, the engagement taxonomy was introduced by Naps et al. [2002]. Its
purpose is to describe the different forms of engagement that a visualization
tool can promote, and to provide testable hypotheses about the use of visual-
izations in the teaching and learning of computer science. The central idea
of the taxonomy is that higher-level engagement between learner and the vi-
sualization results in better learning outcomes. The ET consists six levels of
engagement between the user and the visualization (see Table I).

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

7: 4 · N. Myller et al.

Table I. The Engagement Taxonomy

No viewing There is no visualization to be viewed.
Viewing The visualization is only looked at without any other form of engagement.

Responding Learners are presented with questions related to the visualization.
Changing Modification of the visualization is allowed, for example, by varying the input

data set.
Constructing Learners are expected to create their own visualization of a program or

an algorithm.
Presenting Learners present visualizations to others for feedback and discussion.

When there is no visualization to look at, the engagement is, of course, at
its lowest level. Passive viewing of a visualization seems to improve learning
outcomes very little, if at all, even when compared with the no viewing level
[Hundhausen et al. 2002; Naps et al. 2002; Naps 2005]. One can conclude
that there should be an active component in the learning process in order
to enhance learning with visualization. That is, the viewing of a visualiza-
tion should be combined with activities at the higher levels of engagement:
responding, changing, constructing or presenting. To our knowledge, there
are few empirical comparisons between these forms of active engagement on
learning outcomes [Naps et al. 2002; Naps 2005]. In light of current research,
the taxonomy forms a three-level hierarchy: no engagement, passive engage-
ment, and active engagement [Naps 2005].

The ET has been used in the development of AV tools, and studies have
validated its applicability [Grissom et al. 2003; Naps and Grissom 2002; Myller
et al. 2007b].

Other studies—although not using the ET—have shown that visualizations
enhance learning; for example, Ben-Bassat Levy et al. [2003] found that
students who actively used the Jeliot program animation system improved
their learning results compared with a control group that did not use Jeliot.
Also relevant is the research in educational psychology and multimedia learn-
ing, which has found a positive effect of the interactivity in multimedia on
learning outcomes [Evans and Gibbons 2007]. These studies have concentrated
on changes in the learning outcomes when visualization is used. In this article,
we extend the scope of such research in order to investigate the impact of the
engagement with visualization tools on the learning process.

The effects of visualization on the learning process have been also re-
searched, although not in a collaborative environment. For example, Ebel and
Ben-Ari [2006] showed that program visualization increases the attention of
students to the material being taught. We believe that this could also hold in a
collaborative environment: as students’ attention increases, they will be able
to concentrate better on the collaborative activities, but it should be tested in
the future experiments.

2.2 Use of Visualizations in Collaborative Learning

The work of Roschelle [1996] is considered seminal for the whole field of
computer-supported collaborative learning (CSCL). Roschelle developed the

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

Extending the Engagement Taxonomy · 7: 5

envisioning machine, a software tool for studying mechanics that students use
to manipulate simple diagrams related to velocity and acceleration. He inves-
tigated how pairs of students used the tool, and he analyzed the learning out-
comes as well as the processes that led to those outcomes. He recognized that
learning tools for collaboration should be designed to support communication,
rather than merely to present the underlying model as accurately as possible.
Roschelle [1996] gives a number of guidelines in order to achieve this goal;
the final one is “one should design activities which actively engage students in
doing and encounter [sic] meaningful experiential feedback as a consequence
of their actions” (p. 14). The analysis of the interaction between the external
presentation and users was also identified as a key research area by Scaife
and Rogers [1996]. The work of Roschelle [1996] and Scaife and Rogers [1996]
reflects the idea that the engagement with visualizations affects collaborative
learning, and we build on this in the article.

Suthers and Hundhausen [2003] compared the effects of different represen-
tations (matrices, graphs, text) when students collect and analyze data, form
hypotheses and investigate their evidential relations, both in a face-to-face and
in a distance context [Suthers et al. 2003]. They found that there were differ-
ences in the guidance that different representations give to the collaboration,
especially to discussions, and that the different learning situations (face-to-
face or distance) affect the usage of the representations [Suthers et al. 2003].
However, they did not find differences in the performance of the students, but
only in the way the students used and discussed the representations. It could
be argued that the differences in the study process should have an effect on
students’ learning only in a long run, and therefore were not detectable in the
laboratory setting.

The research described in this section shows that visualization and the
kinds of interactions it drives have an effect on the collaboration process and
could affect the collaboration outcomes.

2.3 Research on Software Visualization in Collaborative Learning

Although a plethora of software visualization tools have been developed and
empirical studies carried out, there have been only a few tools and studies
relating to the collaborative use of SV.

Myller et al. [2007b] studied learning outcomes after students had collab-
oratively learned about the concept of binary heap with the help of either
animation (ET level: viewing) or algorithm simulation (ET level: changing).
Although they did not find statistically significant differences in the per-
formance between the groups, the groups that used algorithm simulations
performed consistently better in a post-test, compared with the groups that
viewed just the animations. In a replication of the study, a statistically signifi-
cant difference was found in favor of the algorithm simulation group, a finding
that supports the applicability of ET in the context of collaborative learning
with visualization [Laakso et al. 2008].

Hundhausen [2002] studied the collaborative aspects of AV construction and
presentation, and concluded—as did Roschelle [1996]—that the fidelity of the

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

7: 6 · N. Myller et al.

visualization can be compromised in favor of meaningful interactions between
students. This led into the development of ALVIS, a visualization tool that
supports construction and presentation of AVs [Hundhausen and Brown 2007].
In an experiment, they compared ALVIS as a tool to writing programs for
algorithms to a text editor, and then the use of ALVIS for visualization con-
struction and presentation to simple art supplies [Hundhausen and Brown
2008, 2005]. Students worked in pairs and were asked to write an algorithm
in the SALSA language supported by ALVIS, construct a visualization of that
algorithm, and present it to the instructor and the other students. It was found
that pairs of students who used ALVIS (EET level: viewing, constructing)
concentrated more on the solution, spent less time unproductively, and needed
less help from the teaching assistant; in addition, they developed better code
than pairs of students who used a text editor (EET level: no viewing).

Hübscher-Younger and Narayanan [2003] developed a Web-based system
that allowed students to publish their own algorithm representations (text,
pictures, animations, multimedia) and discuss them on the Web. They con-
cluded that students who actively participated in this activity achieved higher
grades than the passive students who might have only viewed and commented
the other students’ presentations.

Jehng and Chan [1998] designed and evaluated a distributed visual learn-
ing environment for LISP-LOGO that supported collaborative learning. The
results showed that students who learned collaboratively, either face-to-face or
at a distance, outperformed individual learners in program generation tasks,
but that all groups performed equally well in program evaluation and comple-
tion tasks. This shows that while collaborative visual learning can be more
beneficial compared to individual learning, the improvement can depend on
the specific learning task.

Hundhausen [2005] proposed the communicative dimensions (CD) frame-
work as a theory on the use of visualizations as communication tools.2 CD
describes the aspects of visualization environments that have an effect on
communication between its users in six dimensions: programming salience,
provisionality, story content, modifiability, controllability, referencability.
While the CD framework is concerned solely with the properties of a visual-
ization tool, the ET framework concerns itself with the interaction between
users and visualizations. We think it is very important to understand this in-
teraction and its different levels in order to make tools that support successful
collaboration.

2.4 Successful Collaboration Processes

The notion of a successful collaboration process is controversial and not easy
to define.

Meier et al. [2007] used a combination of top-down and bottom-up
approaches in order to form a description of a successful collaboration. They
carried out a comprehensive review of literature, focusing on the aspects of

2CD was inspired by the Cognitive Dimensions framework for analyzing individual user interac-
tion with software tools [Green and Petre 1996].

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

Extending the Engagement Taxonomy · 7: 7

Table II. Aspects and Dimensions of a Successful Collaboration Process [Meier et al. 2007]

Aspect Dimension

Communication 1) Sustaining mutual understanding
Communication 2) Dialogue management
Joint information processing 3) Information pooling
Joint information processing 4) Reaching consensus
Coordination 5) Task division
Coordination 6) Time management
Coordination 7) Technical coordination
Interpersonal relationship 8) Reciprocal interaction
Motivation 9) Individual task orientation

a successful collaboration (top-down). In addition, they used a data-driven
approach to create dimensions from empirical data under each aspect
(bottom-up) [Spada et al. 2005]. The study identified five aspects and under
them nine dimensions that describe various perspectives of a successful
collaboration (see Table II). Furthermore, Meier et al. [2007] used these di-
mensions in a rating scheme, which they validated with empirical data. The
results showed that the high scores on the dimensions of the collaboration
process correlate strongly with good results of the collaboration.

The problem with their rating scheme is the difficulty of achieving high
inter-rater reliabilities in the ratings. However, this does not mean that the
dimensions and aspects of the successful collaboration are not reasonable, and
do not reflect the qualities of a successful collaboration. It just means that it is
difficult to judge how they appear in the collaboration process.

Teasley [1997] investigated the importance of discussions during collabora-
tion and showed that the amount of discussion is an important part of success-
ful collaboration. However, the amount of transactive reasoning in discussions
seems to be an even stronger factor for successful collaboration. Transactive
reasoning means talking about one’s own thinking process (i.e., reasoning) or
one’s understanding of the partners’ thinking processes [Berkowitz and Gibbs
1983]. In our context, this would mean, for example, that a student talks
about what different components of the visualizations mean to him/her or what
will happen next in the visualization. Teasley [1997] also showed that a part-
ner is not necessary for transactive reasoning to happen, although the likeli-
hood for it to happen increases when a partner with similar knowledge level is
available.

We can summarize these results as showing that successful collaboration re-
quires interaction (dimensions: 1, 2, 4, 8 and Teasley’s research), coordination
(dimensions: 3, 5, 6, 7) and motivation (dimension: 9).

As discussed in the previous section, Ebel and Ben-Ari [2006] have shown
that program visualizations have positive affective effects (i.e., lengthened
attention) and anecdotal evidence exists that animation increases students’
motivation [Naps et al. 2002]. In addition, Janssen et al. [2007] have showed
that augmenting visualizations support the coordination of the collaboration.
In this article, we will study how visualization tools affect the interactions in
collaboration.

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

7: 8 · N. Myller et al.

Table III. The Extended Engagement Taxonomy

No viewing (*) There is no visualization to be viewed but only material in textual
format. For example, the students are reviewing the source code

without modifying it or they are looking at the learning materials.
Viewing (*) The visualization is viewed with no interaction. For example, the

students are looking at the visualization or the program output.
Controlled viewing The visualization is viewed and the students control the visualization,

for example by selecting objects to inspect or by changing the speed
of the animation. This has been deemed important, for instance by
Rößling and Naps [2002].

Entering input The student enters input to a program or parameters to a method
before or during their execution.

Responding (*) The visualization is accompanied by questions which are related to
its content.

Changing (*) Changing of the visualization is allowed during the visualization, for
instance, by direct manipulation.

Modifying Modification of the visualization is carried out before it is viewed,
for example, by changing source code or an input set.

Constructing (*) The visualization is created interactively by the student by construction
from components such as text and geometric shapes.

Presenting (*) Visualizations are presented and explained to others for feedback
and discussion.

Reviewing Visualizations are viewed for the purpose of providing comments,
suggestions and feedback on the visualization itself or on the program
or algorithm.

3. EXTENDING THE ENGAGEMENT TAXONOMY

3.1 Engagement Levels

The categories of the ET are primarily based on work in AV research, and thus
reflect the types of engagement support that are found in AV tools. However,
other types of engagement are supported in PV tools, and we find it necessary
to extend the ET framework in order to capture these differences. Whereas in
AV the interaction of the student with the software is more or less restricted
to modifications of the visualization itself to the extent allowed by the tool,
in PV the opportunities for engagement include both interactive input and,
more importantly, the ability to modify the source code that is the basis for
the visualization. Consider the software tools we used (see below): In Jeliot,
dynamic animations are generated automatically whenever the source code is
changed, and BlueJ is based upon interactive calls of methods of a Java class
that are regenerated immediately upon modification of a program.

These considerations guided the development of our extended engagement

taxonomy (EET) shown in Table III. The levels marked with (*) belong to the
original ET, although some definitions were slightly modified. Note, in partic-
ular, that changing in the ET has been divided into two categories, changing

and modifying. We have added new categories: controlled viewing, entering

input, and reviewing. Reviewing is different from presenting in that there is
not a specific presenter of the visualization; this category (based on a proposal
of Oechsle and Morth [2007]) was added for completeness, although it did not
occur in our experimental data.

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

Extending the Engagement Taxonomy · 7: 9

3.2 Linking Engagement to Collaboration Process

Currently, the ET and EET can be used to generate testable hypotheses only
about learning outcomes in individual learning. Based on the evidence from
Hundhausen and Brown [2008], Myller et al. [2007b] and Laakso et al. [2008],
the learning outcome predictions hold also in collaborative learning with
visualization. Although the learning results are important, the process lead-
ing to them needs to be studied as well, especially in collaborative learning,
because in that context, visualization can affect both inter- and intrapersonal
learning.

Our goal is to describe how the engagement level affects the (collaborative)
learning process. We propose a hypothesis that extends the applicability of
EET to collaborative learning with visualizations, with a special emphasis on
the collaboration process: the higher the level of engagement between the col-
laborators and the visualization, the higher the increase in communication and
collaboration during the collaborative learning process. This hypothesis builds
on the work of Roschelle [1996], Naps et al. [2002], Suthers and Hundhausen
[2003], and Hundhausen [2005] as discussed in Section 2, by explicating the
connection between engagement and collaboration.

Although there is no previous research that investigated the same hy-
pothesis, there is indirect supporting evidence that was obtained in ano-
ther study. In the experiment described in Hundhausen and Brown [2008]
(see Section 2.3), the collaborative use of visualization at the higher engage-
ment level enhanced the learning process, because pairs of students working
with ALVIS held more discussions with each other and less with the teaching
assistant (i.e., they needed less help from outside the group), they worked more
on the solution, and they had fewer unproductive periods. This provides initial
support for our hypothesis by showing in what ways the higher engagement
level might enhance collaboration. In order to further evaluate the validity and
applicability of the hypothesis, we carried out an empirical study that tests it
explicitly.

4. RESEARCH METHODOLOGY

4.1 The Research Setting

In order to verify the hypothesis, we carried out a causal-comparative
study in order to understand how the use of visualization tools at different
levels of engagement and the collaboration process are correlated. The causal-

comparative method [Gall et al. 2006] was selected because in the study we
are observing both the dependent and independent variables, and could not
control the independent variable, because we wanted to maintain the high eco-
logical validity. This method is used when the independent variable cannot
be controlled (e.g., independent variable is gender or in our case the observed
engagement level of the visualization). A causal-comparative study cannot
prove causality, but it can show that correlation between the dependent and in-
dependent variables exists. Because our hypothesis is about finding a positive

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

7: 10 · N. Myller et al.

correlation between the engagement levels and students collaborative
activities, this is a reasonable methodology to be used in the study.

The study was carried out in an introductory programming course at the
University of Joensuu during the autumn of 2005. The course contained
40 hours of lectures (two-hour lectures twice a week for ten weeks), and two-
hour recitation sessions every week, where students presented their solutions
to the assignments. Every week students took part in a compulsory two-hour
computer laboratory session, where they solved exercises with the help of an
instructor. Three of the sessions each week were taught by one instructor (I1)
and two sessions by another (I2). One of the instructors was the course lec-
turer. Neither the lecturer nor the other instructor knew the purpose of the
study and were not associated with it in any way.

We investigated the use of the BlueJ [Kölling et al. 2003], an educational
development environment, and Jeliot 3 [Moreno et al. 2004], a program an-
imation tool, on different levels of engagement during those laboratory ses-
sions. We were not trying to compare the tools, but rather to analyze how the
differing levels of engagement promoted by the tools affected the collaboration.

Initially, we planned to use a between-subject design, and, therefore, one
of the sessions of each instructor was randomly selected to belong to a control
condition using only BlueJ, while the other three sessions formed the treat-
ment groups using both Jeliot 3 and BlueJ. We needed to abandon this design
because a large number of students dropped the course a few weeks before
the final exam; as a result, the groups became biased and we could not make
a proper comparison of the learning processes and learning outcomes. Thus,
we decided to use the the level of engagement as the independent variable—
regardless of which tool was being used—and the original division into treat-
ment and control groups became superfluous. We used data only from the
treatment groups in order to get data when both Jeliot 3 and BlueJ were used
by the same groups.

In order to control for the differences between the two instructors, we
analyzed only those groups that were taught by a single instructor (i.e., I1). To
control for a learning effect (where the behavior of the students would change
as they became more familiar with the tools), we analyzed data from a single
week near the beginning of the course.

4.2 Participants

There were a total of five sessions of 20 students each participating in the com-
pulsory laboratory sessions weekly. The total number of the students who gave
their consent to participate in the research was 89. Those who did not agree to
participate in the study worked in small groups where no data collection was
carried out.

The programming course was primarily taught to first year computer
science majors. However, a significant proportion (about 60%) of the students
taking the course were students majoring in other subjects who studied com-
puter science as a minor. Additionally, there were major students from previ-
ous years who had not yet passed the course. Since the current study is not a

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

Extending the Engagement Taxonomy · 7: 11

controlled experiment, randomization is not necessary. We excluded two stu-
dents who had very extensive programming experience. Otherwise, a post-hoc
analysis showed that the remaining students had similar background knowl-
edge and relatively little previous experience in programming.

Because we only analyzed sessions taught by instructor (I1) and excluded
the original control session, we, altogether, analyzed data from two sessions,
otherwise, ten groups of 3–4 students each, a total of 39 students.

4.3 Materials

During the laboratory sessions students were presented with exercises related
to the topics of the course. There were no mini-lectures in the beginning of the
session, but the exercises were related to the lectures that were given during
the same or previous week to the whole course. The teacher handed out the
exercises at the beginning of the session and circled around to help out the
students. Only if the instructor spotted that several groups had the same mis-
conception or were stuck on the same issue, the teacher went to the front of the
class and announced the issue to all the groups and briefly explained it. When
the students thought that they were ready with an exercise, they summoned
the teacher to check it.

The exercises varied from program construction and modification to debug-
ging. For example, students were given a program code and told what it was
supposed to do and they needed to check if the program did what was expected
and if it did not, they needed to correct the program. In another exercise, the
students were given a skeleton of a program and asked to fill in the missing
parts or to create an accompanying class that enabled the program to work
as expected. The exercises that were solved in groups were purposefully more
difficult than the ones solved individually, because pilot studies indicated that
if one of the students could solve the exercise independently, there was neither
collaboration nor communication between the students.

4.4 Visualization Tools

Students used both BlueJ and Jeliot during the laboratory sessions. Both tools
have proved to be effective in improving the learning of elementary computer
science and programming [Ben-Bassat Levy et al. 2003; Haaster and Hagan
2004; Ragonis and Ben-Ari 2005].

The user interface of Jeliot 3 is illustrated in Figure 1. The source code
editor is in the left-hand pane, while the right-hand pane is used to display
the visualization. VCR-like buttons to control the visualization are located in
the lower left corner. Fully dynamic animation of the data and control flow
of the program is displayed, including method calls, object construction, and
expression evaluation. The animation is created automatically from the source
code, so that the student needs only to learn to use the control buttons for the
visualization.

Figure 2 shows the user interface of BlueJ. The class diagram is shown in
the middle of the window. The student can interactively instantiate an object of
a class by right-clicking on the class and selecting the constructor from a popup

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

7: 12 · N. Myller et al.

Fig. 1. User interface of Jeliot 3.

menu. The objects are then shown at the bottom of the screen as red icons,
and the methods of an object can be interactively invoked by right-clicking and
selecting the method from a pop-up menu. Parameters of constructors and
method calls are also entered interactively.

In the experiment, Jeliot was used as a BlueJ plugin [Myller et al. 2007a]
that performs code synchronization between the tools. This allowed students
to freely switch between the two tools.

BlueJ and Jeliot were both introduced in the laboratory session of the first
week. Students used them individually during the first session so that they
were familiar with the tools before the tools were used collaboratively.

4.5 Procedure

There were a total of ten laboratory sessions for each class; during four of
them—the 2nd, 4th, 6th, and 8th—students worked in small groups. The
students were randomly assigned (by a computer program) to small groups
of three or four students, and the membership in the groups was unchanged
throughout the course. Due to the high drop-out rate in the course, the number
of students in some groups became too low and the groups needed to be merged
in the second half of the course. Thus, the materials from the week eight are
not comparable to the materials of the other weeks because the groups are not
the same.

The learning process in the groups was filmed with video cameras, one for
each small group. The filming was done by the first author who was not associ-

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

Extending the Engagement Taxonomy · 7: 13

Fig. 2. User interface of BlueJ.

ated with the course. The camera was positioned so that students’ movements,
facial expressions, and the screen could be recorded. Although minimally
invasive, this setting posed some problems in the recordings, because students
moved during the lesson and the video cameras could not be always adjusted
so that all students’ faces were recorded.

Because BlueJ was the primary tool of the course both during the lectures
and during the laboratory sessions, the instructor was advised to encourage
the students to use Jeliot so that both tools would be used evenly. Since the
instructor used both tools as necessary in different exercises, the students were
exposed to both tools and could autonomously make decisions when to use each
of the tools.

4.6 Data Analysis

To analyze how visualization affected the students’ learning processes, we
repeatedly viewed those parts of the video materials that contained episodes
relating to the execution of a program using one of the tools. These episodes

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

7: 14 · N. Myller et al.

were characterized by extensive use of the visualization capabilities of the
tools. Because of the large amount of video-taped material (1.5 hours per small
group per week), we randomly sampled 30 two-minute-long episodes. A similar
number of episodes were sampled from each group, as were a similar number
of episodes using each of the tools. As mentioned above, the analysis was re-
stricted to the sessions of the second week.

In the analysis of the data, we classified each five-second segment of the
video according to several classification schemes in order to analyze the level
of engagement, and the behavior and the discussions of the students. We used
the extended engagement taxonomy (EET) as the independent variable to cap-
ture the changes in the level of engagement during an episode in which collab-
orative learning took place. The EET levels were presented in Table III. Each
segment was classified as belonging to a single EET level; in the case where
several engagement levels were applicable, the segment was classified at the
level that lasted the longest time, or if the times were the same, at the level
that was higher in the EET.

The dependent variables were aspects of the students’ behavior and dis-
cussions; we classified the activities (Section 4.6.1), the discussion contents
(Section 4.6.2) and transactive reasoning (Section 4.6.3). The differences found
in these classifications were analyzed using the statistical tests Cohen’s κ and
χ

2 test of independence. To adhere to the limitation of χ
2 test the categories of

data with counts less than ten were excluded from the analysis.

4.6.1 Activities. We adopted and modified the activity categories of Hund-
hausen and Brown [2008] to classify the five-second clips of the episodes (see
Table IV). We were interested in episodes, during which the students in the
group discussed aspects of the exercise (the program, the Java language, or
the visualization), and we categorized these episodes according to the activi-
ties that accompany the conversation. We removed some of the categories (such
as executing code and working on solution) that were irrelevant for the analy-
sis since we chose to analyze episodes where students were, in fact, carrying
out these activities. In addition, we added new categories related to differ-
ent types of conversing (i.e., conversing with gesturing and conversing with
drawing), and changed the priorities of the categories in order to prioritize dis-
cussions. Thus, if any kind of discussion happened, it was then assigned to one
of the discussion categories. More specialized discussions were given a higher
priority. We wanted to distinguish between discussions within the group and
discussions with the teacher, so conversing to the instructor had higher prior-
ity so it could be distinguished from other types of discussions that happened
within the group.

Each five-second period of the video was assigned to a single category based
on the activities of the groups. Because the members of a group might perform
several activities simultaneously, the priorities given for each category were
used to resolve the ambiguities. An episode was assigned the category with
the highest priority (lower numbers mean higher priority). Furthermore, we
assigned the number of participants for each activity in order to determine if
certain EET levels increase or reduce the participation of students.

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

Extending the Engagement Taxonomy · 7: 15

Table IV. Activity Categories

Priority Category Description

1 1 Conversing to an instructor The students discuss the exercise with the
instructor.

2 2 Conversing with gesturing The students perform gestures such as
pointing at the screen when discussing the
exercise.

3 3 Conversing with drawing The students discuss the exercise with the
help of drawing.

4 4 Conversing The students discuss the exercise (without any
of the above activities).

5 5 Listening to an instructor The students are listening to the instructor
who is talking with the group or announcing
something to the whole class.

5 6 Looking at or searching for Self-explanatory.
course materials, Internet
resources or example.

5 7 Reviewing the exercise The students are looking at the online
or hard-copy description of the problem.

5 8 Reviewing error messages The students are reviewing error messages
produced by the environment.

6 9 Silent work The students are working silently; for example,
looking at the visualization or entering input
without comment.

8 10 Other No observable activity or the activity is
off-task.

9 -1 Indeterminable The event cannot be categorized, for example,
because of a technical problem in the recording.

4.6.2 Discussion Contents. We wished to investigate the actual content of
the students’ discussions in order to determine if the engagement level had
any impact on the contents. If an activity was classified as (i) any type of
conversing, (ii) other but it contained talking, or (iii) undetermined but it con-
tained talking, it was further classified into one of ten discussion content cate-
gories (see Table V). The categories were exclusive, and the decision to classify
an event into a category was based upon the discussions during the five-second
period. If several categories were applicable, we used the category with the
highest priority, and if there were several with the same priority then the one
that happened first was chosen. The categories in Table V were adapted from
Hundhausen and Brown [2008]. As that study dealt with work at the algo-
rithmic level, we changed the relevant content categories so that they refer
to programs instead of algorithms. Furthermore, we removed categories that
were related to the ALVIS animation system that we did not use, and we added
a category, programming concepts.

4.6.3 Transactive Reasoning. Since transactive reasoning has been found
to have a positive impact on learning outcomes [Teasley 1997], we measured
the amount of transactive reasoning in order to see if it can help determine
how visualization affects the collaboration process.

If an activity was classified as any type of conversing, as other but it con-
tained talking, or as undetermined but it contained talking, it was further clas-

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

7: 16 · N. Myller et al.

Table V. Discussion Content Categories

Priority Category Description

1 1 Program The content relates to the program code:
“This line contains a while-loop.”

1 2 Program behavior The content relates to the program’s behavior:
“Now it repeats 10 times.”

1 3 Programming concepts The content relates to programming concepts
in general not directly related to the current
program: “What does double mean?”

1 4 Tool The content relates to the tools currently being
used tool: “How can I display the value of
a variable?”

1 5 Error detection The content relates to programming errors
and their detection: “I spotted an error!”

1 6 Error correction The content relates to the correction of an error:
“If we change the value of this variable, that will
solve the problem.”

1 7 Visualization The content relates to understanding the visualization
itself: “How is this box related to the program?”

2 8 On-topic (other) The content relates to the current task but cannot
be placed into one of the previous categories.

2 9 Off-topic Self-explanatory.
3 10 Indeterminable The content cannot be categorized, for example,

because of a technical problem in the recording.
0 -1 Not applicable There is no content in this activity; for example,

there is no talking in the segment.

sified into one of twelve transactive reasoning categories (see Table VI). These
categories were exclusive. The decision to classify an event was based on the
discussions and activities during a five-second block of the video. If several
categories were applicable, we used the category with the highest priority, and
if there were several categories with the same priority then the one that hap-
pened first was chosen. The categories in Table VI were adapted from Teasley
[1997] and Berkowitz and Gibbs [1983]. We added the prediction category used
by Teasley [1997] to the categories of Berkowitz and Gibbs [1983].

5. RESULTS

5.1 Inter-Rater Reliability

In order to test the reliability of the classification schemes used in the study,
a set of ten episodes (a total of 240 five-second blocks) were classified by two
raters, the first author, who classified all the video material used in the study,
and the second author, who classified only the set of ten episodes.

In a pilot, both raters analyzed three other episodes in order to reach agree-
ment on how to classify the observed behavior. The classification schemes and
the coding manual were updated as a result of the discussions leading to con-
sensus between the raters.

The inter-rater reliabilities are presented in Table VII. All Cohen’s κ values
indicated that it is very unlikely (p < 0.001) that this level of agreement is
achieved by chance. Furthermore, the EET and Activities classification has a

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

Extending the Engagement Taxonomy · 7: 17

Table VI. Transactive Reasoning Categories

Priority Category Description

1 0 Prediction A student tries to predict what will happen
next and justifies the prediction.

1 1 Feedback Request A student ensures that others understand or
agree with his/her position

1 2 Paraphrase A student paraphrases a discourse of another
student in order to demonstrate that he/she
understands it.

1 3 Justification A student justifies his/her position or
reasoning.

1 4 Juxtaposition A student explains the differences between the
positions or reasoning of other students and
his/her own.

1 5 Completion A student completes another student’s reasoning,
for example, by filling out an unfinished sentence.

1 6 Clarification A student explains his/her reasoning in
order to ensure that others understand it.

1 7 Refinement A student elaborates or qualifies his/her position
in order to to defend against criticism.

1 8 Extension A student elaborates on a previous discourse.
1 9 Criticism A student criticizes the reasoning or position of

another student and explains the reason for
the criticism.

1 10 Integration A student combines different views into one
common statement.

2 11 No transactive reasoning The discussion contains no transactive
reasoning.

0 -1 Not applicable This categorization is not applicable; for example,
there is no talking in the segment.

Table VII. Inter-rater Reliabilities. * p < 0.001

Classification Agreement Cohen’s κ

Scheme Percentage

EET 76.3% (0.66 *)
Activities 76.3% (0.68 *)
Number of Participants 58.3% (0.42 *)

substantial agreement and the Number of Participants has moderate agree-
ment based on classification of Cohen’s κ-measures given by Landis and Koch
[1977].

For the two other categorizations (Discussion Contents and Transactive
Reasoning) inter-rater reliabilities were low. We believe that this was due to
several factors: 1) subtle cues of the discussion contents or transactive reason-
ing (e.g., only one word could indicate if students discussed about program, its
behavior or programming concept) which might have been misinterpreted by
the raters, and 2) noise in the natural environment (i.e., classroom with sev-
eral groups) made it sometimes difficult to interpret exactly what the group
was discussing. We still include in the article results of the discussion con-
tents and transactive reasoning. Although they cannot be used as definitive
evidence supporting our hypothesis, the results do indicate that these catego-
rizations are consistent with the previous categorizations.

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

7: 18 · N. Myller et al.

Table VIII. The Distribution of Activities on Different EET Levels

Conversing Conversing Conversing Listen Review Review Silent Count
w/I w/G t/I Ex EM

No viewing 6.8% 12.4% 27.8% 27.2% 0.0% 1.2% 24.7% 162
Viewing 4.4% 6.1% 25.4% 15.7% 0.9% 0.0% 47.5% 343
Controlled 8.6% 0.0% 22.9% 34.3% 0.0% 0.0% 34.3% 35

viewing
Entering 5.5% 8.0% 42.9% 12.3% 0.0% 1.2% 30.1% 163

input
Changing 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 2
Modifying 0.0% 16.7% 50.0% 0.0% 0.0% 0.0% 33.3% 6
Constructing 22.2% 0.0% 0.0% 77.8% 0.0% 0.0% 0.0% 9
Overall 5.6% 7.6% 29.6% 19.3% 0.4% 0.6% 36.9% 720

Legend: w/I = with instructor; w/G = with gestures; t/I = to instructor; Ex = exerices;
EM=error messages

5.2 Activities

The distribution of the activities on each EET level is presented in Table VIII.
EET levels that contained fewer than ten observations or that had categories
that did not contain any observations (controlled viewing, changing, modifying
and constructing) were excluded from the analysis. Activity columns that con-
tained observations only on one or two EET levels (i.e., looking at or searching
for examples or course materials, and reviewing the exercise) were also ex-
cluded due to the restrictions of χ

2-test. These categories only contributed less
than eight percent of the overall data.

The distributions of the EET levels no viewing, viewing and entering input
were compared, first collectively (χ2(8) = 48.5, p < .01), and then pairwise
(no viewing vs. viewing χ

2(4) = 28.4, p < .01; no viewing vs. entering input
χ

2(4) = 17.0, p < .01; viewing vs. entering input χ
2(4) = 20.9, p < .01). All

tests were found to be statistically significant, meaning that the EET level has
an effect on the distribution.

Figure 3 shows the distributions of activities for the three most common
EET levels collapsed into three columns. The different forms of conversing are
combined into one, sum of conversing, and the categories that did not have ob-
servations for all engagement levels were removed as they contributed less
than eight percent of the data. The distributions were first compared col-
lectively (χ2(4) = 41.6, p < .01), and then pairwise (no viewing vs. viewing
χ

2(2) = 25.0, p < .01; no viewing vs. entering input χ
2(2) = 37.6, p < .01;

viewing vs. entering input χ
2(2) = 28.2, p < .01). All tests were found to be

significant. Figure 3 shows that entering input produced the greatest amount
of conversation. When students were not viewing a visualization, they listened
to the teacher more often than on any other EET level. When students were
viewing a visualization they were more often silent.

Figure 4 illustrates the difference between conversing and silent activities
performed by the groups when either on viewing or on entering input level. On
entering input level over half of the activities contained discussions whereas
in viewing level the percentage was approximately 35%. Almost the opposite
happens with the amount of silence.

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

Extending the Engagement Taxonomy · 7: 19

Fig. 3. Activity distributions on different EET levels.

Fig. 4. Viewing and entering input EET-levels compared on sum of conversing and silent
categories.

Table IX shows how the distribution of activities differs on each EET level,
depending on the tool used by the students. Jeliot provides support only for
the first four EET levels and the modifying level, which did not appear in
the data, therefore, there are no results for the higher levels. The within-
tool distributions of the activities for the most common EET levels (no view-
ing, viewing and entering input) were compared to each other and differences

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

7: 20 · N. Myller et al.

Table IX. Distribution of Activities on Each EET Level and When Using a Particular Tool.
(Legend as in Table VIII)

Conversing Conversing Conversing Listen Silent Count

w/I w/G t/I

Jeliot

No viewing 4.8% 16.7% 23.8% 33.3% 21.4% 42
Viewing 0.4% 4.9% 22.5% 12.7% 59.6% 245
Controlled viewing 8.3% 0.0% 41.7% 16.7% 33.3% 12
Entering input 1.8% 10.9% 25.5% 10.9% 50.9% 55

BlueJ

No viewing 7.6% 11.0% 29.7% 25.4% 26.3% 118
Viewing 14.7% 9.5% 33.7% 24.2% 17.9% 95
Controlled viewing 8.7% 0.0% 13.0% 43.5% 34.8% 23
Entering input 7.6% 6.6% 52.8% 13.2% 19.8% 106
Changing 0.0% 0.0% 0.0% 100.0% 0.0% 2
Modifying 0.0% 16.7% 50.0% 0.0% 33.3% 6
Constructing 22.2% 0.0% 0.0% 77.8% 0.0% 9

Table X. The Average Number of Participants at Each EET Level

EET Average Number of Participants

No viewing 3.1
Viewing 3.1
Controlled viewing 3.5
Entering input 2.9
Changing 4.0
Modifying 3.0
Constructing 3.2
Overall 3.1

were found to be statistically significant (Jeliot: χ
2(8) = 35.0, p < .01; BlueJ:

χ
2(8) = 19.9, p < .05). The activity distributions on both tools are similar to

the overall distribution shown in the Figure 3 (cf., previous paragraph).

5.3 Participation

Table X shows the average number of participants on each EET level. In the
most frequently occurring levels (no viewing, viewing, entering input), the
number of participants is almost the same. There were no statistically sig-
nificant differences and the number of participants on each activity is large
enough to argue that the students were truly collaborating.

5.4 Discussion Contents

All the activities that contained discussions were further classified based on
their discussion contents. Table XI shows the distribution of the frequency of
topics during the conversations when the students were working on one of the
EET levels.

The variability of the discussion contents between EET levels was large;
for example, on the no viewing level, the program category contains 25.7% of
the data, while there are no data for program category on the viewing level.

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

Extending the Engagement Taxonomy · 7: 21

Table XI. Discussion Topics Distribution on Each EET Level

EET / P PB PC Tool ED EC Visual- On- Off- I Count
Content ization topic topic

No viewing 25.7% 24.9% 0.0% 9.9% 4.0% 9.9% 0.0% 22.8% 2.0% 1.0% 101
Viewing 0.0% 33.1% 2.1% 14.8% 9.2% 2.8% 3.5% 29.6% 2.1% 2.8% 142
Controlled 0.0% 9.5% 9.5% 42.9% 4.8% 0.0% 0.0% 33.3% 0.0% 0.0% 21

viewing
Entering 2.1% 37.9% 4.2% 11.6% 4.2% 1.1% 1.1% 34.7% 0.0% 3.2% 95

input
Changing 0.0% 0.0% 0.0% 50.0% 0.0% 0.0% 0.0% 50.0% 0.0% 0.0% 2
Modifying 0.0% 25.0% 0.0% 0.0% 50.0% 25.0% 0.0% 0.0% 0.0% 0.0% 4
Constructing 33.3% 0.0% 33.3% 33.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 3

Legend: P=Program; PB=Program behavior; PC=Program concepts; ED=Error detection;
EC=Error correction; I=Indeterminable

Table XII. Transactive Reasoning on Each EET Level

EET Transactive reasoning Count

No viewing 5.0% 101
Viewing 3.6% 139
Controlled viewing 0.0% 21
Entering input 6.5% 93
Changing 0.0% 2
Modifying 33.3% 3
Constructing 0.0% 3

Therefore, the χ
2 test might not be reliable. The three most frequent EET

levels (no viewing, viewing and entering input) were included into the analy-
sis. The test was first done for all three levels showing that the discussion
content distributions and the EET levels are related (χ2(18) = 85.1, p < .01).
However, pairwise comparison revealed that only differences between no view-
ing and viewing (χ2(9) = 54.1, p < .01), and between no viewing and entering
input (χ2(9) = 39.6, p < .01) were significant, meaning that those levels have
different discussion content distributions. This also means that the distribu-
tions of the discussion contents were very similar on both of the EET levels,
viewing and entering input, based on the statistical tests.

5.5 Transactive Reasoning

Less than five percent of all the discussions contained transactive reasoning.
Therefore, we do not report the results for each type separately, but, rather,
in Table XII we show the percentages of discussions that contained and did
not contain transactive reasoning. From the most frequent EET levels, enter-
ing input had the highest percentage of transactive reasoning; however, the
differences were not statistically significant.

6. DISCUSSION

The study partially confirms our hypothesis that the level of engagement on
which students select to work with the visualization tool affects the quality of
collaboration; that is, the engagement level and the interaction between the

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

7: 22 · N. Myller et al.

students are correlated. This seems to be true especially when a tool supports
engagement on the levels viewing and entering input: the latter increases the
amount of discussion significantly and reduces the time when students are
silent, the former does the opposite. The level entering input also increases
the amount of transactive reasoning, although the differences are not statisti-
cally significant. The increase in the amount of discussion changes neither the
contents of the discussions nor the participation of the students, and similar
numbers of students discuss similar topics on both levels, viewing and entering
input.

To summarize, this study shows that EET levels are positively correlated
with the amount of interaction, and it is interaction which is an important
component of the successful collaboration (Section 2.4). However, this does not
change the contents of the interactions and actually increases, although not
significantly, the amount of transactive reasoning, which is positively corre-
lated with learning outcomes.

At the lowest level of engagement (i.e., no viewing), the hypothesis does
not hold and the quality of the collaboration lies between that of entering in-
put and viewing. It seems that the no viewing level promotes different kinds
of interactions and communication among the students than the other levels.
Students’ discussions are more about the program code, which is natural, be-
cause the program code is often the only representation available at this level.
Furthermore, students listen to and discuss with the instructor more often,
which can mean either that they are seeking help or that they are listening
to instructor’s guidance more often when they are working on this level or
that the teacher guides them to this level when he/she comes to help the stu-
dents. It is reasonable to assume that this compensates for the lack of help
and guidance that is available from the visualization tool. This result par-
tially replicates the results of Hundhausen and Brown [2008] discussed in the
Section 2.3.

The average number of participants taking part in the collaboration is
roughly the same at all levels of engagement. Three students seem to be opti-
mal for collaborating on a single computer that is running a visualization tool.
We observed from the videos that in many cases when there were four stu-
dents, one of them sat far from the computer and was passive. Nevertheless,
for some groups the amount of collaboration among all four students was high,
a result we attribute to their interpersonal skills.

Although a comparison of Jeliot and BlueJ is not within the scope of this
article, a preliminary analysis indicates that it was the level of engagement
that was more influential than the specific tool. A currently unpublished
follow-up analysis of video protocols [Korhonen et al. 2008] from a study,
in which students were using the TRAKLA2 system to learn data structures in
small groups (see the report of the original study in Myller et al. [2007b] and in
Laakso et al. [2008] on students’ learning results), found the same correlation
between engagement levels and the amount of communication and collabora-
tion. This also supports the hypothesis and shows that it is independent of the
tool that is being used.

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

Extending the Engagement Taxonomy · 7: 23

Our experiment was carried out in an actual classroom and it has high
ecological validity, but this also means that we could not control all variables
as we could have done in an experimental setting. Therefore, we could not es-
tablish that the engagement level caused the increase in the interactions and
the quality of collaboration. We can only say that they are correlated, so the
causation, if any, could be in either direction. On the one hand, there are cer-
tain levels of engagement that were not always controlled by the students, but
happened as a side effect of the animation or other actions. For example, when
students were viewing an animation, students needed to enter input whenever
the visualized program needs input. Thus, they engaged on entering input, al-
though they only selected the viewing of the animation. On the other hand, an
activity could change the engagement level; for example, when students were
discussing with the instructor, s/he proposed the use of a visualization on a cer-
tain engagement level (e.g., seeing the source code instead of the animation).

In this study, we have not taken into consideration how the correlation
between EET levels and collaboration and communication develops over time.
Thus, based on the current research, we can definitely describe the correlation
only for the first week of the first course on programming. In future research,
we plan to study the effects of the use of visualizations on collaboration by
analyzing the video materials from several weeks of the course.

6.1 Threats to Validity and Reliability

Although we have tried to make sure that all the steps of the research process
would maintain the internal validity and reliability, there are issues that
might have affected the results. We have aimed to have a high ecological va-
lidity, so we carried out the study in a real classroom environment. We could
not randomize the students into the different sessions; however, we random-
ized the students within the sessions into small groups and by using a post-hoc
analysis, we checked that the background variables of the students were simi-
lar between the sessions. Thus, we expect that the collected data from several
groups is comparable and aggregable.

When the video data was sampled, we selected episodes in the materials
from one week. There could be bias in the random selection of the episodes
that could affect the results. We tried to minimize the bias by selecting a
similar number of episodes from each group for each tool. This should have
balanced out the influence of a single group to the final results.

The videos were coded using different coding schemes. The coding schemes
were checked for reliability by comparing the results of two coders on a subset
of the data. It was found that most of the coding schemes are reliable except
for the discussion contents and transactive reasoning categories. Thus, we use
them as secondary evidence not as the primary evidence for our hypothesis.
The reliability of this secondary evidence needs to be further tested in the
future studies.

Some of the EET levels were not completely assessed because we did not
have enough data from those levels. Given the high inter-rater reliabilities in

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

7: 24 · N. Myller et al.

classifying all the EET levels, we believe that additional data collection will
enable us to analyze other levels in the future experiments.

7. CONCLUSION

We have presented an extension to the Engagement Taxonomy, the Extended
Engagement Taxonomy, and used it to investigate the mutual relationship
between visualization tools and collaborative learning. Our empirical study
demonstrated support for the hypothesis that increasing the level of engage-
ment between learners and the visualization tool results in a higher positive
impact of the visualization on the collaboration process.

The EET can be used during the design and development of visualization
tools for collaborative learning. There are several design implications that are
already implemented in practice:

—We have added a capability for automatic question generation to Jeliot 3 in
order to support the EET level responding [Myller 2007].

—We believe that closer linking of BlueJ and Jeliot [Myller et al. 2007a] can in-
crease the engagement level of students. Students should be able to see both
BlueJ’s object bench and Jeliot’s animation at the same time, so that any
modification of an object results in a change in the animation. This would
allow a step-by-step construction of dynamic visualizations by the students.

—We have combined Jeliot 3 with Woven Stories 2, a collaborative authoring
tool [Myller and Nuutinen 2006], in order to provide Jeliot 3 with collabora-
tive editing support and augmenting visualizations that can support online
collaborative learning.

There are also pedagogical implications of the findings:

—Higher levels of engagement provide more support for collaborative activi-
ties, so instructors should find ways to use visualization tools at these levels.

—The viewing level seems to reduce collaboration significantly because stu-
dents become passive. Thus, engagement at this level should be avoided,
if possible, or it should combined with explanations by the teacher, as was
done by Ben-Bassat Levy et al. [2003] with positive results.

—The lowest level of engagement (no viewing) does not decrease interaction
and collaboration of students as much as viewing. However, when this level
of the EET is used in teaching, the instructor should be aware of the change
in the focus of the discussions (the program code) and of the need to provide
students with more help and guidance.

Our study suggests new directions in research on engagement in collabora-
tive learning with visualizations. The first step should be an expansion of the
analysis of the differences at a finer level of detail; for example, the contents of
the discussions between the students could be further analyzed to determine
what communicative resources they are referring to during the discussions
(e.g., the visualization or the source code). Also, the interaction of learning and
time-on-task should be analyzed in order to better understand how the role of
the visualization during the students’ learning process changes in long run.

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

Extending the Engagement Taxonomy · 7: 25

Therefore, a longitudinal analysis of the collected data from this study (video
materials from sessions during several weeks) could be used to analyze the
effects of time and learning, for example, by using a time-series analysis.

We also plan to evaluate the question generation support added to Jeliot 3
and the closer linking of BlueJ and Jeliot. This should shed more light on the
effects of the higher levels of the EET.

We think that it is important to create visualization tools that support
several engagement levels—especially the higher ones—and make the instruc-
tors aware of the potentials that the higher engagement levels can provide so
that students and their instructors can use the tools to their benefit during the
collaborative learning.

ACKNOWLEDGMENTS

The authors would like to thank Andrés Moreno for the help during the data
collection process.

REFERENCES

BEN-BASSAT LEVY, R., BEN-ARI, M., AND URONEN, P. A. 2003. The Jeliot 2000 program anima-
tion system. Comput. Ed. 40, 1, 15–21.

BERKOWITZ, M. W. AND GIBBS, J. C. 1983. Measuring the development of features in moral
discussion. Merill-Palmer Quar. 29, 399–410.

BRYANT, S., ROMERO, P., AND DU BOULAY, B. 2005. Pair programming and the reappropria-
tion of individual tools for collaborative programming. In Proceedings of the International ACM

SIGGROUP Conference on Supporting Group Work (SIGGROUP’05), M. Pendergast,
K. Schmidt, G. Mark, and M. Ackerman Eds. ACM Press, 332–333.

EBEL, G. AND BEN-ARI, M. 2006. Affective effects of program visualization. In Proceedings of the

2nd International Computing Education Research Workshop (ICER’06). ACM Press, 1-5.

EVANS, C. AND GIBBONS, N. J. 2007. The interactivity effect in multimedia learning. Comput.

Ed. 49, 4, 1147–1160.

GALL, M. D., GALL, J. P., AND BORG, W. R. 2006. Educational Research: An Introduction 8th Ed.

Allyn & Bacon.

GREEN, T. R. G. AND PETRE, M. 1996. Usability analysis of visual programming environments:
A “cognitive dimensions” framework. J. Vis. Lang. Comput. 7, 131–174.

GRISSOM, S., MCNALLY, M., AND NAPS, T. L. 2003. Algorithm visualization in CS education:
Comparing levels of student engagement. In Proceedings of the 1st ACM Symposium on Software

Visualization (SOFTVIS’03). ACM Press, 87–94.

HAASTER, K. V. AND HAGAN, D. 2004. Teaching and learning with BlueJ: An evaluation of a
pedagogical tool. In Proceedings of Informing Science + IT Education Conference (InSITE’04).
Informing Science Institute, 455–470.

HÜBSCHER-YOUNGER, T. AND NARAYANAN, N. H. 2003. Constructive and collaborative learning
of algorithms. SIGCSE Bull. 35, 1, 6–10.

HUNDHAUSEN, C. D. 2002. Integrating algorithm visualization technology into an undergraduate
algorithms course: Ethnographic studies of a social constructivist approach. Comput. Ed. 39, 3,
237–260.

HUNDHAUSEN, C. D. 2005. Using end-user visualization environments to mediate conversations:
A “communicative dimensions” framework. J. Vis. Lang. Comput. 16, 3, 153–185.

HUNDHAUSEN, C. D. AND BROWN, J. L. 2005. Personalizing and discussing algorithms within
CS1 studio experiences: An observational study. In Proceedings of the International Workshop

on Computing Education Research (ICER’05). ACM Press, 45–56.

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

7: 26 · N. Myller et al.

HUNDHAUSEN, C. D. AND BROWN, J. L. 2007. What you see is what you code: A “live” algorithm
development and visualization environment for novice learners. J. Vis. Lang. Comput. 18, 1,
22–47.

HUNDHAUSEN, C. D. AND BROWN, J. L. 2008. Designing, visualizing, and discussing algorithms
within a CS 1 studio experience: An empirical study. Comput. Ed. 50, 1, 301–326.

HUNDHAUSEN, C. D., DOUGLAS, S. A., AND STASKO, J. T. 2002. A meta-study of algorithm
visualization effectiveness. J. Vis. Lang. Comput. 13, 3, 259–290.

JANSSEN, J., ERKENS, G., KANSELAAR, G., AND JASPERS, J. 2007. Visualization of participation:
Does it contribute to successful computer-supported collaborative learning? Comput. Ed. 49, 4,
1037–1065.

JEHNG, J.-C. J. AND CHAN, T.-W. 1998. Designing computer support for collaborative visual
learning in the domain of computer programming. Comput. Hum. Behav. 14, 3, 429–448.

KÖLLING, M., QUIG, B., PATTERSON, A., AND ROSENBERG, J. 2003. The BlueJ system and its
pedagogy. Comput. Science Ed. 13, 4, 249–268.

KORHONEN, A., LAAKSO, M., AND MYLLER, N. 2008. How does algorithm visualization affect
collaboration? Video analysis of engagement and discussions. 5th International Conference on

Web Information Systems and Technologies (WEBIST’09). Submitted.

LAAKSO, M.-J., MYLLER, N., AND KORHONEN, A. 2008. Analyzing the extended engagement

taxonomy in collaborative algorithm visualization. J. Ed. Technol. Soc. To appear.

LANDIS, J. R. AND KOCH, G. G. 1977. The measurement of observer agreement for categorical
data. Biometrics 33, 159–174.

MCDOWELL, C., WERNER, L., BULLOCK, H. E., AND FERNALD, J. 2006. Pair programming
improves student retention, confidence, and program quality. Comm. ACM 49, 8, 90–95.

MEIER, A., SPADA, H., AND RUMMEL, N. 2007. A rating scheme for assessing the quality of
computer-supported collaboration processes. International J. Comput. Support. Collab. Learn.

2, 1, 63–86.

MORENO, A., MYLLER, N., SUTINEN, E., AND BEN-ARI, M. 2004. Visualizing program with
Jeliot 3. In Proceedings of the International Working Conference on Advanced Visual Interfaces

(AVI’04). ACM Press, 373–380.

MYLLER, N. 2007. Automatic generation of prediction questions during program visualization.
Electron. Notes Theor. Comput. Sci. 178, 43–49.

MYLLER, N., BEDNARIK, R., AND MORENO, A. 2007a. Integrating dynamic program visualization
into BlueJ: The Jeliot 3 extension. In Proceedings of the 7th IEEE International Conference on

Advanced Learning Technologies, J. M. Spector, D. G. Sampson, T. Okamoto, Kinshuk, S. A.
Cerri, M. Ueno, and A. Kashihara Eds. IEEE Computer Society, 505–506.

MYLLER, N., LAAKSO, M., AND KORHONEN, A. 2007b. Analyzing engagement taxonomy in
collaborative algorithm visualization. In Proceedings of the 12th Annual SIGCSE Conference

on Innovation and Technology in Computer Science Education (ITiCSE’07), J. Hughes, D. R.
Peiris, and P. T. Tymann Eds. ACM Press, 251–255.

MYLLER, N. AND NUUTINEN, J. 2006. JeCo: Combining program visualization and story weaving.
Informatics Ed. 5, 2, 267–276.

NAGAPPAN, N., WILLIAMS, L., FERZLI, M., WIEBE, E., YANG, K., MILLER, C., AND BALIK, S.
2003. Improving the CS1 experience with pair programming. In Proceedings of the 34th SIGCSE

Technical Symposium on Computer Science Education (SIGCSE’03). ACM Press, 359–362.

NAPS, T. L. 2005. Jhavé – Addressing the need to support algorithm visualization with tools for
active engagement. IEEE Comput.- Graph. Appl. 25, 5, 49–55.

NAPS, T. L. AND GRISSOM, S. 2002. The effective use of quicksort visualizations in the classroom.
J. Comput. Sci. Coll 18, 1, 88–96.

NAPS, T. L., RÖSSLING, G., ALMSTRUM, V., DANN, W., FLEISCHER, R., HUNDHAUSEN, C.,
KORHONEN, A., MALMI, L., MCNALLY, M., RODGER, S., AND VELÁZQUEZ-ITURBIDE, J. Á.
2002. Exploring the role of visualization and engagement in computer science education. In
ITiCSE on Innovation and Technology in Computer Science Education (ITiCSE’02). (Working
Groups Report). ACM Press, 131–152.

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

Extending the Engagement Taxonomy · 7: 27

OECHSLE, R. AND MORTH, T. 2007. Peer review of animations developed by students. Electron.

Notes Theor. Comput. Sci. 178, 181–186.

RAGONIS, N. AND BEN-ARI, M. 2005. On understanding the statics and dynamics of object-
oriented programs. SIGCSE Bull. 37, 1, 226–230.

ROSCHELLE, J. 1996. Designing for cognitive communication: Epistemic fidelity or mediating col-
laborative inquiry. In Computers, Communication & Mental Models, D. L. Day and D. K. Kovacs
Eds. Taylor & Francis, London, UK. 13–25.

RÖßLING, G. AND NAPS, T. L. 2002. A testbed for pedagogical requirements in algorithm vi-
sualizations. In Proceedings of the Innovation and Technology in Computer Science Education

(ITiCSE’02). ACM Press, 96–100.

SCAIFE, M. AND ROGERS, Y. 1996. External cognition: how do graphical representations work?
Int. J. Hum.-Comput. Stud. 45, 2, 185–213.

SIMON, B., ANDERSON, R., HOYER, C., AND SU, J. 2004. Preliminary experiences with a tablet
PC based system to support active learning in computer science courses. In Proceedings of the

9th Annual SIGCSE Conference on Innovation and Technology in Computer Science Education

(ITiCSE’04). ACM, 213–217.

SPADA, H., MEIER, A., RUMMEL, N., AND HAUSER, S. 2005. A new method to assess the quality of
collaborative process in CSCL. In Computer Supported Collaborative Learning 2005: The Next

10 Years, T. Koschmann, D. Suthers, and T. W. Chan Eds. Lawrence Erlbaum, Mahwah, NJ.
622–631.

SUTHERS, D. D. AND HUNDHAUSEN, C. D. 2003. An experimental study of the effects of repre-
sentational guidance on collaborative learning processes. J. Learn. Sciences 12, 2, 183–219.

SUTHERS, D. D., HUNDHAUSEN, C. D., AND GIRARDEAU, L. E. 2003. Comparing the roles of
representations in face-to-face and online computer supported collaborative learning. Comput.

Ed. 41, 4, 335–351.

TEASLEY, S. 1997. Talking about reasoning: How important is the peer in peer collabora-
tion. In Discourse, Tools and Reasoning: Essays on Situated Cognition, L. Resnick, R. Säljö,
C. Pontecorvo, and B. Burge Eds. Springer, Berlin, Germany. 361–384.

WILLIAMS, L., KESSLER, R. R., CUNNINGHAM, W., AND JEFFRIES, R. 2000. Strengthening the
case for pair programming. IEEE Softw. 17, 4, 19–25.

Received January 2008; revised September 2008; accepted November 2008

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 7, Pub. date: March 2009.

P2.

Myller, N., Laakso, M., and Korhonen, A. (2007). Analyzing engagement taxonomy in
collaborative algorithm visualization. In Hughes, J., Peiris, D. R., and Tymann, P. T., editors,
Proceedings of the 12th annual SIGCSE conference on Innovation and technology in computer
science education (ITiCSE ’07), pages 251–255, New York, NY, USA. ACM Press.

Reprinted with permission, Copyright 2007 ACM

2

Analyzing Engagement Taxonomy In Collaborative
Algorithm Visualization

Niko Myller
Department of Computer

Science and Statistics
University of Joensuu

P.O. Box 111
FI-80101 Joensuu
Joensuu, Finland

nmyller@cs.joensuu.fi

Mikko Laakso
Department of Information

Technology
University of Turku

22014 Turun Yliopisto
Turku, Finland

milaak@utu.fi

Ari Korhonen
Department of Computer
Science and Engineering

Helsinki University of
Technology

P.O. Box 5400
FI-02015 TKK
Espoo, Finland

archie@cs.hut.fi

ABSTRACT
More collaborative use of visualizations is taking place in

the classrooms due to the introduction of pair programming

and collaborative learning as teaching and learning methods.

This introduces new challenges to the visualization tools,

and thus, research and theory to support the development

of collaborative visualization tools is needed. We present an

empirical study in which the learning outcomes of students

were compared when students were learning in collabora-

tion and using materials which contained visualizations on

different engagement levels. Results indicate that the level

of engagement has an effect on students’ learning results

although the difference is not statistically significant. Es-

pecially, students without previous knowledge seem to gain

more from using visualizations on higher engagement level.

Categories and Subject Descriptors
K.3.2 [Computer Science Education]: Computer & In-

formation Science Education—Computer Science Education

General Terms
Algorithms, Human Factors

Keywords
Algorithm Visualization, Algorithm Simulation, Collabora-

tive Learning, Engagement Taxonomy

1. INTRODUCTION
Since its introduction, Algorithm Visualization (AV) has

been hoped to solve problems related the learning of data

structures and algorithms. However, empirical evaluations

have yielded mixed results when determining the usefulness

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’07, June 23–27, 2007, Dundee, Scotland, United Kingdom.
Copyright 2007 ACM 978-1-59593-610-3/07/0006 ...$5.00.

of visualizations as teaching and learning aids over tradi-

tional methods [8]. Thus, researchers have sought explana-

tions for the mixed results as well as better grounds to justify

the use of visualizations in teaching. In a meta-analysis of

the research on AV, Hundhausen et al. [8] concluded that

the activities performed by the students are more important

than the content of the visualization. This led to the analy-

sis of different engagement levels by ITiCSE working group

[12] that proposed Engagement Taxonomy (ET) to describe

the various types of activities that students perform with

visualizations and their effect on learning.

Collaboration have become accepted and popular in Com-

puter Science education. A good example is the benefits

of pair programming [10, 16]. Thus, visualizations are also

used in collaborative learning. Collaboration introduces new

challenges for the visualization tools. For example, the ex-

change of experiences and ideas and coordination of the joint

work are needed, when students are not working individu-

ally [15]. Furthermore, visualizations can provide a shared

external memory that can initiate negotiations of meanings

and act as a reference point when ideas are explained or

misunderstandings are resolved [15]. This implies that also

theory is needed to guide the development and research of

the visualization tools for collaborative learning.

Currently, the applicability of ET framework in collab-

orative use of visualizations has not been researched. We

wanted to test the impact of ET level of the visualization

to the performance differences when visualizations are used

in collaboration. We present an empirical study, in which

learning materials containing visualizations on different ET

levels were compared when students were collaboratively

learning concepts related to binary heap. Although statis-

tically significant differences were not detected, the results

indicate that the engagement level of the visualizations has

an effect on the performance when students are working in

pairs.

2. PREVIOUS RESEARCH
As an attempt to describe the mixed results of previous

research in AV usage (cf. [8]) in learning and teaching of al-

gorithms and data structures, Engagement Taxonomy (ET)

was introduced by Naps et al. [12]. The central idea of the

taxonomy is that the higher the engagement between learner

and the visualization, the higher the positive effect on learn-

ing outcomes are. ET consists of six levels of engagement

between the user and the visualization:

No viewing – There is no visualization to be viewed.

Viewing – The visualization is only looked at.

Responding – Visualization is accompanied with questions

which are related to the content of the visualization.

Changing – Modification of the visualization is allowed, for

example, by varying the input data set or algorithm

simulation.

Constructing – Visualization of program or algorithm is

created.

Presenting – Visualizations are presented to others for

feedback and discussions.

ET has been used in development of AV tools and several

studies have utilized the framework and provided further

support for it (e.g [4, 11]). Other studies have provided

similar support without actually utilizing the ET framework

in the design of the study [1]. In addition to this, research

in educational psychology and multimedia learning has also

got similar results [3].

Although several AV tools have been developed and em-

pirical studies carried out, the collaborative use of AV tools

is not well researched. To our knowledge there have not

been any studies that would have tested the applicability of

ET in collaborative learning with visualizations.

There are a few studies that have research some aspects

of collaborative use of visualizations in learning. The work

of Hundhausen et al. [6] studied the collaborative aspects

of AV construction and presentation. This work led into

the development of a visualization tool, ALVIS, which sup-

ports construction and presentation of AVs in small groups

[7]. Their results seem to indicate that ET is applicable

in the context of collaborative learning. Hübscher-Younger

and Narayanan [5] developed a web-based system that al-

lowed students to post their own algorithm representations

(e.g. text, pictures, animations or multimedia) and discuss

them on the web. The research concluded that students who

actively participated in this activity achieved higher grades

than the passive students who might have only viewed and

commented others’ presentations.

From a more general perspective, there are studies of an-

alyzing the use of visualizations in collaboration. For in-

stance, Suthers and Hundhausen [15] have performed re-

search in the area of scientific inquiry. They compared

the effects of different representations (e.g. matrix, graph

or text) when students were collecting and analyzing data,

hypotheses and their evidential relations. Their research

showed that the form of the visualization and what kinds

of interactions it drives have an effect on the collaboration

process.

Roschelle [13] studied pairs of students using the learn-

ing environment of Newtonian physics and analyzed their

learning outcomes as well as the process that led to those

outcomes. It was recognized that learning tools and espe-

cially visualizations used in collaboration should focus more

on supporting communication rather than presenting the un-

derlying model as accurately as possible. The last lesson in

the paper is, “one should design activities which actively en-

gage students in doing and encounter meaningful experien-

tial feedback as a consequence of their actions”. The analy-

sis of the interaction between external presentation and its

users has been identified as a key research area by Scaife and

Rogers [14]. These findings are supporting the applicability

of ET in the context of collaborative learning.

3. TRAKLA2 OVERVIEW
TRAKLA2 is a practicing environment for visual algo-

rithm simulation exercises [9] that can be assessed automat-

ically. The system distributes individually tailored tracing

exercises to students and provides automatically feedback

about students’ solutions. In visual algorithm simulation

exercises, a student directly manipulates the visual repre-

sentation of the underlying data structures. Thus, the stu-

dent manipulates real data structures through GUI opera-

tions with the purpose of performing the same changes on

the data structures that the actual algorithm would do. An

answer to an exercise is a sequence of discrete states of the

data structures, and the task is to perform the correct op-

erations that will cause the transitions between each of the

two consecutive states.

Each TRAKLA2 exercise page consists of a description of

the exercise with links to other pages that introduce the the-

ory and examples of the algorithm in question, instructions

how to interact with the GUI, code window, and an inter-

active Java applet. The current exercise set consists of over

40 assignments on basic data structures, sorting, searching,

hashing, and graph algorithms.

Let us consider the exercise in Figure 1. The student is

supposed to manipulate the visual representation(s) of the

Binary Heap data structure by invoking context-sensitive

drag-and-drop operations. The idea is to simulate the linear

time BuildHeap algorithm. The manipulation can be done

in either of the representations shown in the figure (array

representation or binary tree representation). A key can be

sifted up in terms of swap operations with its parent until the

heap property is satisfied (the key at each node is smaller

than or equal to the keys of its children). A single swap

operation is performed by dragging and dropping a key in

the heap on top of another key.

An exercise applet is initialized with randomized input

data. The BuildHeap exercise, for example, is initialized

with 15 numeric keys that correspond to the priority values.

The student can reset the exercise by pressing the Reset

button at any time. As a result, the exercise is reinitialized

with new random keys. When attempting to solve the exer-

cise, the student can review the answer step by step using

the Animator panel. Moreover, the student can Submit the

answer in which case the answer is assessed and immediate

feedback is delivered. The feedback reports the number of

correct steps out of the total number of steps in the exercise.

An exercise can be submitted unlimited times. However,

a solution for a single instance of an exercise with certain

input data can be submitted only once. In order to resub-

mit a solution to the exercise, the student has to reset the

exercise and start over with new randomized input data. A

student can also review a Model answer for each attempt. It

is represented in a separate window as an algorithm anima-

tion accompanied with pseudo code animation so that the

execution of the algorithm is visualized step by step. The

states of the model solution can be browsed back and forth

Figure 1: TRAKLA2 exercise page.

using similar animator panel as in the exercise. For obvious

reasons — after opening the model solution — the student

cannot submit a solution until the exercise has been reset

and resolved with new random data.

4. EXPERIMENT
To summarize the previous sections, the collaborative use

of AV tools have not been researched, yet the need for this

kind of research emerges from the increasing use of visual-

ization tools in collaborative learning. In addition, we hy-

pothesize that ET framework can be used to predict perfor-

mance differences when visualizations are used in collabora-

tion. Previous research supports this view, although it has

not be directly tested before.

In order to test our hypothesis, we carried out an exper-

iment in which we compared learning outcomes of students

who were collaboratively using visualizations which were on

different ET level, namely viewing and changing. Partic-

ipants were university students on a data structures and

algorithms course at the University of Turku. We utilized

TRAKLA2[9] in order to provide students with algorithm

simulation exercises that act on the ET level changing. How-

ever, the students did not have the option to reset the exer-

cise with new input data, but they had to work with a single

exercise during the whole session. The animations that stu-

dents in viewing condition used were similar in nature to the

model answers provided by TRAKLA2 system.

4.1 Method
The study was between subject design with pre-test and

post-test. We had one between subject factor: the ET level

of the visualizations in the learning materials, namely view-

ing or changing. The unit of analysis is a student even

though the learning was done in pairs.

The learning materials contained textual materials that

were same for both conditions. In the changing condition

textual materials were accompanied with TRAKLA2 [9] al-

gorithm simulation exercises related to the binary heap.

Pairs in the viewing condition were presented with anima-

tions about the operations of the binary heap that were sim-

ilar to TRAKLA2 exercises. In addition, pairs in both con-

ditions were given exercise that asked questions on binary

heap that were supposed to be answered during the learning

process. In this way, we tried to motivate the learning and

make sure that the possible differences are due to controlled

variable (level of engagement), and not because pairs in one

condition performed cognitively more demanding activities

or used more time on the tasks [4, 8].

Quantitative results were analyzed with two-tailed t-test,

and Bonferroni correction was applied when more than one

related t-test was performed.

4.2 Subjects
Experiment was performed on a course of data struc-

tures and algorithms at the University of Turku, Finland.

Students were mainly second year students, however some

students from other years were also on the course. Stu-

dents were randomized to the computer lab sessions and

sessions were randomly assigned to each condition with the

limitation that parallel sessions belonged to different condi-

tions. The total number of participating students was 105

(n = 105) divided into 6 groups (3 control groups having

viewing condition and 3 treatment groups having changing

condition). There were 52 students in the treatment group

and 53 students in the control group.

The most of the students were studying in the Faculty of

Mathematics and Natural Sciences. There were 93 of 105

students who had Computer Science as the major and ten

students had major in mathematics. There were also two

students from other departments, one from the Faculty of

Social Sciences and one from The Faculty of Humanities.

Most of the students were from first (17), second (36) or

third (27) year which sums up to 80 students out of 105.

Furthermore, there were 12 fourth year students and 13 stu-

dents who had started their studies in 2002 or earlier.

4.3 Materials
The pre-test and post-test consisted of six questions which

were exactly the same. The first question was asking if a

given array is a heap. In the second question, we asked

if an ordered array is a heap or not. The third and the

fourth question asked the students to write an answer where

is the place of the smallest value in the minimum binary

heap, or in the maximum binary heap, respectively. In the

fifth question, students where asked to write down a given

binary heap’s heap property. The last question asked the

students to draw a binary tree representation from given

array presentation of a minimum binary heap.

4.4 Procedure
Study was performed on the second week of the course

at the computer lab sessions that lasted for 2 hours. There

were a total of 6 sessions and they were run on a single day,

so that there were two sessions running at the same time,

one for each condition.

In the beginning of the session, students could freely form

pairs with their peers. If there were an odd number of stu-

dents one group consisted of 3 students. Each pair was allo-

cated to a single computer. Students gave their consent to

participate to the experiment and took an individual pre-

test in which they needed to answer questions related to

binary heaps in 15 minutes.

After pre-test, students were presented with the learning

materials of that condition. Students had 45 minutes to

Table 1: The means of the differences between
pretest and posttest scores for each question and
for the total points between the conditions. The fi-
nal row shows the averaged normalized difference in
in total scores between pre- and post-test calculated
for each student with formula (pposttest−ppretest)/(24−

ppretest). Standard deviations are in the parenthesis.
Question Viewing Changing

1 1.62 (2.41) 2.02 (2.55)

2 2.10 (2.06) 2.15 (2.24)

3 2.25 (2.14) 2.62 (1.90)

4 1.77 (1.38) 2.36 (1.11)

5 2.46 (1.58) 2.74 (1.50)

6 3.06 (1.66) 3.06 (1.68)

Total 13.25 (6.90) 14.94 (7.05)

Normalized Total 0.66 (0.29) 0.73 (0.27)

go through the learning materials. Students learning was

monitored by recording their talking and capturing their

computer screens. The analysis of this data is out of the

scope of this paper.

The session ended with an individual post-test that tested

same questions as pre-test. In addition to this, post-test con-

tained more demanding questions in order to see, if differ-

ences between conditions can be detected in them. However,

the results of these additional questions are not analyzed in

this paper. Students were given 30 minutes to answer the

questions in the post-test.

Each question in the pre- and post-tests was analyzed in

a scale from 0 and 4. Zero points meant that there was less

than 25 percent correct in the answer, and each point meant

25 percent increase in the correctness of the answer.

4.5 Results
There was no significant difference in the pre-test scores

between students in the each condition. Average scores

(standard deviations are in the parenthesis) in pre-test for

viewing and changing conditions were 4.65 (5.81) and 4.34

(5.41), respectively . As expected the post-test scores were

significantly higher than the pre-test scores for both groups

(viewing: tpw(51) = −13.84, p < .001, changing: tpw(52) =

−15.44, p < .001).

To analyze the differences of the learning outcomes be-

tween the conditions, we subtracted the pre-test score from

each student’s post-test score. The average increases for

each question and condition are presented in Table 1. Only

the difference in question 4 was found to be under the α=0.05

(t(103) = −2.41, p = .018). However, due to the fact that

there were a total of six related t-tests performed, a Bon-

ferroni correction should be applied in order to account for

the chance factor. Thus, the α-level becomes α = 0.05/6 =

0.00833 and we cannot say that the difference in question 4

is statistically significant.

In order to analyze how students with different previous

knowledge about binary heaps learned the subject, we di-

vided students into two groups: Students who scored points

in pre-test (26 students in both conditions) and students

who did not score any points in pre-test (26 and 27 students

in viewing and changing conditions, respectively). The re-

sults are shown in Table 2. None of the differences were

statistically significant. For the NPK groups, the largest

differences were in question 5 and in the overall difference

t(50) = −1, 72, p < .1 and t(50) = −1.71, p < .1, respec-

tively. For the SPK, the largest one was question 4 t(50) =

−2.363, p < .05, when α = 0.05/6 = 0.0083.

5. DISCUSSION
Based on this study, we cannot confirm our hypothesis

that ET level would have a significant effect on the learning

outcomes. However, in every question, students in changing

condition performed better or at least as well as students in

the viewing condition (see the Table 1).

We divided students further into two groups in order to

see if there are differences in students learning outcomes de-

pending on their previous knowledge of binary heaps. This

division indicated that the differences between conditions

were larger when students had no previous knowledge of bi-

nary heaps. Although differences were not statistically sig-

nificant, this seem to indicated that higher ET level of the

visualizations may have greater impact on students learning

results when they do not have previous knowledge.

There are at least three explanations why the study could

not find significant differences: there are no detectable dif-

ferences, the differences could not be detected due to uncon-

trolled variables or because of design issues in the treatments

or in the pre-test and post-test (see below), or the sample

size was not large enough in order to detect the differences.

This needs to be clarified in the future research.

In order to analyze the reasons behind the insignificant

results, we calculated the effect sizes of the treatment. The

Cohen’s effect size measure [2] for the whole sample, NPK

sample and SPK sample respectively were, 0.28, 0.53 and

0.24, for the total difference between pre-test and post-test.

Based on Cohen’s classification [2], the effect size of the stu-

dents without previous knowledge is medium. This indicates

that the effect could be found to be significant with a larger

sample size and it should have some practical significance.

The effect of the treatment was small for the students who

had previous knowledge and this affected on the over all

effect size which was also small.

In addition, we analyzed the individual scores from each

student on each question to determine any anomaly in the

scores that might explain our results. Scores from question

6 indicate that the question might have been too easy for

the students. Question 6 asked to draw binary tree repre-

sentation from array presentation of the minimum binary

heap. The reason why this question might have been too

easy for students is that they had been just shown heap for-

mation in either tree or array format in the visualizations

and they seemed to have grasped that well. Moreover, ques-

tions which were formulated in a way that gave students a

50 percent chance to answer correctly (yes/no-questions) by

guessing might have distorted the scores. In overall, stu-

dents’ performance in the post-test was very good. In the

future, the test need to be made more difficult in order to

tease out the differences.

When grading the question 4, there was a misconception

of a heap’s characteristic found. Several students assumed

that the maximum heap’s smallest value was found in the

lowest and rightmost node in the heap’s binary tree presen-

tation. We need to investigate this misconception further in

order to understand where this misconception has appeared

and if the materials should be changed in order to prevent

this misconception.

Table 2: The mean differences between pre-test and post-test for each question and for the total points
between the condition for students with no previous knowledge (NPK) and students with some previous
knowledge (SPK). The final row shows the averaged normalized difference in in total scores between pre-
and post-test calculated for each student with formula (pposttest − ppretest)/(24 − ppretest). Standard deviations
are in the parenthesis.

Question Viewing NPK Changing NPK Viewing SPK Changing SPK

1 2.62 (1.94) 3.08 (1.72) 0.62 (2.45) 1.00 (2.81)

2 2.73 (1.87) 3.31 (1.49) 1.46 (2.08) 1.04 (2.30)

3 3.73 (0.96) 4.00 (0.00) 0.77 (1.97) 1.30 (1.88)

4 2.15 (1.43) 2.50 (0.81) 1.38 (1.24) 2.22 (1.34)

5 2.31 (1.64) 3.00 (1.23) 2.62 (1.53) 2.48 (1.70)

6 3.73 (0.96) 3.73 (0.96) 2.38 (1.94) 2.41 (1.97)

Total 17.27 (5.61) 19.62 (4.20) 9.23 (5.67) 10.44 (6.29)

Normalized Total 0.72 (0.23) 0.82 (0.17) 0.60 (0.33) 0.64 (0.33)

6. CONCLUSION AND FUTURE WORK
We presented an empirical study which analyzed the hy-

pothesis that ET framework can be used to predict perfor-

mance differences when visualization are used in collabora-

tion. We could not confirm this hypothesis, although results

point to that direction especially for students without any

previous knowledge.

As a future work, we will analyze the differences in the

more difficult questions that were only present in the post-

test. Furthermore, we will analyze students’ behavior during

the learning session from the recorded audio and screen cap-

ture. In this way, we can see if the level of engagement has

an effect on the students learning process.

As pointed out in the discussion, there were some flaws in

the design of the pre-test and post-test questions, which will

be corrected and the experiment will be replicated during

the spring 2007.

7. REFERENCES
[1] R. Ben-Bassat Levy, M. Ben-Ari, and P. A. Uronen.

The Jeliot 2000 program animation system.

Computers & Education, 40(1):15–21, 2003.

[2] J. Cohen. Statistical power analysis for the behavioral

sciences. Academic Press, New York, 1977.

[3] C. Evans and N. J. Gibbons. The Interactivity Effect

in Multimedia Learning. Accepted to Computers &

Education, 2006.

[4] S. Grissom, M. McNally, and T. L. Naps. Algorithm

visualization in CS education: comparing levels of

student engagement. In Proceedings of the First ACM

Symposium on Software Visualization, pages 87–94,

June 2003.

[5] T. Hübscher-Younger and N. H. Narayanan.

Constructive and collaborative learning of algorithms.

SIGCSE Bulletin, 35(1):6–10, 2003.

[6] C. D. Hundhausen. Integrating Algorithm

Visualization Technology into an Undergraduate

Algorithms Course: Ethnographic Studies of a Social

Constructivist Approach. Computers & Education,

39(3):237–260, 2002.

[7] C. D. Hundhausen and J. L. Brown. Designing,

Visualizing, and Discussing Algorithms within a CS 1

Studio Experience: An Empirical Study. Computers &

Education, In press.

[8] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko. A

Meta-Study of Algorithm Visualization Effectiveness.

Journal of Visual Languages and Computing,

13(3):259–290, 2002.

[9] A. Korhonen, L. Malmi, P. Silvasti, V. Karavirta,

J. Lnnberg, J. Nikander, K. St̊alnacke, and

P. Ihantola. Matrix — a framework for interactive

software visualization. Research Report TKO-B

154/04, Laboratory of Information Processing Science,

Department of Computer Science and Engineering,

Helsinki University of Technology, 2004.

[10] N. Nagappan, L. Williams, M. Ferzli, E. Wiebe,

K. Yang, C. Miller, and S. Balik. Improving the CS1

experience with pair programming. In Proceedings of

the 34th SIGCSE technical symposium on Computer

science education, pages 359–362. ACM Press, 2003.

[11] T. L. Naps and S. Grissom. The effective use of

quicksort visualizations in the classroom. Journal of

Computing Sciences in Colleges, 18(1):88–96, 2002.

[12] T. L. Naps, G. Rößling, V. Almstrum, W. Dann,

R. Fleischer, C. Hundhausen, A. Korhonen, L. Malmi,

M. McNally, S. Rodger, and J. Á. Velázquez-Iturbide.

Exploring the Role of Visualization and Engagement

in Computer Science Education. In Working Group

Reports from ITiCSE on Innovation and Technology

in Computer Science Education, pages 131–152, New

York, NY, USA, 2002. ACM Press.

[13] J. Roschelle. Designing for cognitive communication:

Epistemic fidelity or mediating collaborating inquiry.

In D. L. Day and D. K. Kovacs, editors, Computers,

Communication & Mental Models, pages 13–25. Taylor

& Francis, London, 1996.

[14] M. Scaife and Y. Rogers. External cognition: how do

graphical representations work? International Journal

of Human-Computer Studies, 45(2):185–213, 1996.

[15] D. D. Suthers and C. D. Hundhausen. An

experimental study of the effects of representational

guidance on collaborative learning processes. Journal

of the Learning Sciences, 12(2):183–219, 2003.

[16] L. Williams, R. R. Kessler, W. Cunningham, and

R. Jeffries. Strengthening the case for pair

programming. IEEE Software, 17(4):19–25, 2000.

P3.

Laakso, M.-J., Myller, N., and Korhonen, A. (2009). Comparing learning performance of
students using algorithm visualizations collaboratively on different engagement levels.
Accepted for publication in Journal of Educational Technology & Society.

Reprinted with permission, Copyright 2009 International Forum of Educational Technology &
Society (IFETS)

3

Comparing Learning Performance of
Students Using Algorithm

Visualizations Collaboratively on
Different Engagement Levels

 Mikko-Jussi Laakso

Department of Information Technology
University of Turku

22014 Turun Yliopisto
Turku, Finland
milaak@utu.fi

tel. +358 2 333 8672
fax. +358 2 333 8600

Niko Myller

Department of Computer Science and Statistics
University of Joensuu

P.O. Box 111
FI-80101 Joensuu
Joensuu, Finland

nmyller@cs.joensuu.fi
tel. +358 13 251 7929
fax. +358 13 251 7955

Ari Korhonen

Department of Computer Science and Engineering
Helsinki University of Technology

P.O. Box 5400
FI-02015 TKK
Espoo, Finland
archie@cs.hut.fi

tel. +358 9 451 3387
fax. +358 9 451 3293

Abstract
In this paper, two emerging learning and teaching
methods have been studied: collaboration in
concert with algorithm visualization. When
visualizations have been employed in
collaborative learning, collaboration introduces
new challenges for the visualization tools. In
addition, new theories are needed to guide the
development and research of the visualization
tools for collaborative learning. We present an
empirical study, in which learning materials
containing visualizations on different Extended
Engagement Taxonomy levels were compared,
when students were collaboratively learning
concepts related to binary heap. In addition, the
students’ activities during the controlled
experimental study were also recorded utilizing a
screen capturing software. Pre- and post-tests
were used as the test instruments in the
experiment. No statistically significant differences
were found in the post-test between the
randomized groups. However, screen capturing
and voice recording revealed that despite the
randomization and instructions given to the
students, not all of the students performed on the
engagement level, to which they were assigned.
By regrouping the students based on the
monitored behavior, statistically significant
differences were found in the total and pair
average of the post-test scores. This confirms
some of the hypothesis presented in the
(Extended) Engagement Taxonomy.

Keywords: Algorithm Visualization, Algorithm Simulation,
Collaborative Learning, Engagement Taxonomy

1 Introduction

Since its introduction, it has been hoped that Algorithm Visualization
(AV) would solve problems related to learning of data structures and
algorithms. However, empirical evaluations have yielded mixed results
when determining the usefulness of such visualizations as teaching and
learning aids over traditional methods (see the meta-analysis of the
research on AV by Hundhausen et al. (2002)). Thus, researchers have
sought explanations for the mixed results as well as better grounds to
justify the use of visualizations in teaching. Hundhausen et al. (2002)
concluded that the activities performed by the students are more
important than the content of the visualization. This has led to the
analysis of different engagement levels Naps et al. (2002) by ITiCSE
Working Group that proposed Engagement Taxonomy (ET) to describe
the various types of activities that students perform with visualizations
and their effect on learning and Myller et al. (2008) have developed it
further into Extended Engagement Taxonomy (EET).

Collaboration has become accepted and popular in Computer Science
education. A good example is the benefits of pair
programming (Nagappan et al., 2003; Williams et al., 2000; McDowell
et al., 2003). Whilst visualizations are employed in collaborative
learning, collaboration introduces new challenges for the visualization
tools. For example, the exchange of experiences and ideas, and
coordination of the joint work are needed when students are not
working individually anymore (Suthers and Hundhausen, 2003).
Furthermore, visualizations can provide a shared external memory that
can initiate negotiations of meanings and act as a reference point when
ideas are explained or misunderstandings are resolved (Suthers and
Hundhausen, 2003). This implies that also new theories are needed to
guide the development and research of the visualization tools for
collaborative learning.

In this paper, the applicability of EET in collaborative use of
visualizations has been studied. We test the impact of EET levels on
the performance when visualizations are used in collaboration. We
present an empirical study, in which learning materials containing
visualizations on different EET levels were compared when student
pairs were collaboratively learning concepts related to binary heap. The
pairs had a mutual task to read through a tutorial including
visualizations and answer questions related to the topic. Although,

statistically significant differences were not detected in a previous
study, the results indicated that the engagement level of the
visualizations has an effect on the performance when students are
working in pairs (Myller et al., 2007). Thus, we replicated that study in
a different institution, and improved the settings in such a way that the
detection of the statistically significant differences would be possible.
In this paper, we report the results from the replication study conducted
at the Helsinki University of Technology in which two groups of
students were randomized to the computer lab sessions. Each session
was randomly assigned to an EET level, either changing or controlled
viewing (in the rest of the paper this can be also shortened to viewing
when we are discussing about the groups), with the limitation that
parallel sessions belonged to different conditions.

During the analysis of the screen and voice recordings collected in the
study, it was detected that despite the randomization and instructions
given to the students, not all of the students performed their learning on
the expected EET level. This meant that although the tool allowed
students to learn on a higher EET level, some of the students choose
not to do so, but worked on a lower engagement level. Fortunately, the
screen capturing and voice recording done during the students’ learning
process provided us a tool for noticing this and taking it into account in
the analysis. Thus, in addition to the results from the study, we learned
an important methodological lesson as well. Screen capturing and voice
recording should be a standard procedure, because otherwise we cannot
know for sure if the participants really do what we expect them to do.

In Chapter 2, we describe the relevant literature related to the
engagement taxonomy and similar theories. In addition, we give an
overview of the learning tool used in the experiments. Chapter 3
describes the research setting, i.e., the used pre- and post-tests,
subjects, materials, and procedures. In Chapter 4, we report on the
results. Finally, in Chapters 5 and 6, we make conclusions and
highlight some future directions.

2 Previous Research

2.1 Visualizations and Engagement

As an attempt to describe the mixed results of previous research in AV
usage (cf. (Hundhausen et al., 2002)) in learning and teaching of
algorithms and data structures, Engagement Taxonomy (ET) was
introduced by Naps et al. (2002). The central idea of the taxonomy is
that the higher the engagement between the learner and the
visualization, the higher the positive effects on learning outcomes. ET
consists of six levels of engagement between the user and the
visualization:

No viewing There is no visualization to be viewed.
Viewing The visualization is only looked at without any

interaction.
Responding Visualization is accompanied with questions, which are

related to the content of the visualization.
Changing Modification of the visualization is allowed, for

example, by varying the input data set or algorithm
simulation.

Constructing Visualization of program or algorithm is created.
Presenting Visualizations are presented to others for feedback and

discussions.

ET has been used in the development of AV tools and several studies
have utilized the framework and provided further support for it (see,
e.g., Grissom et al. (2003); Naps and Grissom (2002)). However, the
time to study the materials on different ET levels has commonly been
an uncontrolled variable in the studies, meaning that students have had
freedom to use as little or as much time as they wanted to. Thus, those
students who have been studying with visualizations that are on the
higher ET level have spent more time on the task. This, in turn, makes
it questionable if the reason for better performance in the post-test is
due to the additional time spent on studying or the higher ET level of
the materials. In the experiment, which is presented in this paper, we
controlled the time so that all the students needed to spend exactly the
same amount of time on learning the topic.

There are also other studies which have shown that visualizations
improve learning, without actually utilizing the ET framework in the
design of the study (Ben-Bassat Levy et al., 2003). In addition to this,

research in educational psychology and multimedia learning had also
had similar results (Evans and Gibbons, 2006).

Myller et al. (2008) have proposed an extension to the ET called the
Extended Engagement Taxonomy (EET). The idea of this extension is
to let the designers and researchers of visualizations to use finer
granularity of engagement levels in their tools and experimental
designs. They provide the following engagement levels to be used
together with the original ones: controlled viewing, providing input,
modification, and reviewing. In this study, we will utilize the controlled
viewing level in order to make a difference between the visualizations
that can only be viewed by the student (EET level: viewing, e.g. static
visualizations or animations with only a playing option) compared to
those which can be controlled (EET level: controlled viewing, e.g.
animations with VCR-like controls in order to step and play the
animation both forwards and backwards).

2.2 Visualizations and Collaboration

From a more general perspective, there are studies that analyze the use
of visualizations in collaboration. For instance, Suthers and
Hundhausen (2003) have performed research in the area of scientific
inquiry. They compared the effects of different representations (i.e.,
matrix, graph, and text) when students were collecting and analyzing
data, hypotheses and their evidential relations. Their research showed
that the form of the visualization and what kinds of interactions it
drives have an effect on the collaboration process by making certain
data and their relations more explicit or implicit.

Roschelle (1996) studied pairs of students using the learning
environment of Newtonian physics and analyzed their learning
outcomes as well as the process that led to those outcomes. During the
study, it was recognized that learning tools and especially
visualizations used in collaboration should focus more on supporting
communication rather than presenting the underlying model as
accurately as possible. Furthermore, Roschelle (1996) tells as the last
lesson in his paper that, “one should design activities, which actively
engage students in doing and encountering meaningful experiential
feedback as a consequence of their actions”. Scaife and Rogers (1996)

also identified the analysis of the interactions between external
presentation and its users as a key research area for the future. All these
points of view seem to support the applicability of ET/EET in the
context of collaborative learning.

Although several AV tools have been developed and empirical studies
carried out, the collaborative use of AV tools is researched very little.
Myller et al. (2008) have studied the applicability of EET to describe
differences in the learning process when visualizations are used during
collaborative learning. They pointed out that when students were using
visualizations on lower EET levels the interaction/engagement between
students also dropped, meaning that students communicated and
collaborated more when they were using materials on higher EET
levels.

The work of Hundhausen (2002) is related to the collaborative aspects
of AV construction and presentation. This work led into the
development of a visualization tool, ALVIS, which supports
construction and presentation of AVs in small groups (Hundhausen and
Brown, 2008). Their results also indicate that ET is applicable in the
context of collaborative learning, although it is not directly tested.
Furthermore, Hundhausen (2005) has proposed a communicative
dimensions framework in order to analyze the aspects of visualizations
that affect communication between end-users. Hübscher-Younger and
Narayanan (2003) developed a web-based system that allows students
to post their own algorithm representations (e.g., text, pictures,
animation, or multimedia) and discuss them on the web. The research
concluded that the students who actively participated in this activity
achieved higher grades than the passive students who might have only
viewed and commented on others’ presentations.

2.3 Other Algorithm Visualization Studies on
Heap Data Structures

Stasko et al. (1993) utilized algorithm animations focusing on a pairing
heap that was implemented as a binary tree. The results were
disappointing: the animation group outperformed the control group but
the differences were not high even on absolute scale, and the
differences were not statistically significant. Moreover, they noted that

using animations did not grant obvious learning benefits and they
believe that algorithm animations benefit advanced students more than
“novice students”.

In 1996, Byrne et al. (1996) conducted algorithm animation research on
binomial heap. The results were not statistical significant, either, and
their findings supported the view that the benefits of animations are not
that obvious, and careful task analysis is essential to determine in
which situations animation can be helpful. Also Kehoe et al. (2001)
studied the learning of binomial heap through animations in open lab
sessions. They hypothesized that animations make complex algorithms
more accessible and less intimidating and enhance students’
motivation, interaction and learning. Their study, however, was
inconclusive (they made hypotheses), and further empirical studies
were suggested.

There are some differences between these studies and ours. Our
students were novices with little or no previous knowledge on the
topic, but they were not novices in using the visualization tool but had
previous knowledge on how to use the tool and how to make sense of
its visualization. However, students needed to study in our experiment
concepts related to binary heap, which might be easier to understand
and more accessible for novices compared to the pairing heap or the
binomial heap. Furthermore, we used fixed time limits for the learning
session meaning that all students needed to use exactly the same time
to learn the topic, and we monitored their learning process in order to
detect how they were learning.

2.4 TRAKLA2 Overview

TRAKLA2 is a practicing environment for visual algorithm simulation
exercises (Korhonen et al., 2004) that can be assessed automatically.
The system distributes individually tailored tracing exercises to
students and provides feedback about students’ solutions automatically.
In visual algorithm simulation exercises, a student directly manipulates
the visual representation of the underlying data structures (i.e., a
student acts on the EET level changing). Thus, the student manipulates
real data structures through GUI operations with the purpose of
performing the same changes on the data structures the actual

algorithm would do. An answer to an exercise is a sequence of discrete
states of data structures, and the task is to perform the correct
operations that will cause the transitions between each of the two
consecutive states.

Each TRAKLA2 exercise page consists of a description of the exercise
with links to other pages that introduce the theory and examples of the
algorithm in question, instructions on how to interact with the GUI,
code window, and an interactive Java applet. The current exercise set
consists of over 40 assignments on basic data structures, sorting
algorithms, search trees, hashing methods, and graph algorithms.

Figure 1: TRAKLA2 exercise page. The student acts in EET level

changing by solving the exercise in terms of swapping the data
elements in the data structure(s).

Let us consider the exercise in Figure 1. The student is supposed to
manipulate the visual representation(s) of the Binary Heap data
structure by invoking context-sensitive drag-and-drop operations. The
idea is to simulate the linear time BuildHeap algorithm. The
manipulation can be done in either of the representations shown in the
figure (i.e. the array or the binary tree representation). A key can be
sifted up in terms of swap operations with its parent until the heap
property is satisfied (the key at each node is smaller than or equal to the

keys of its children). A single swap operation is performed by dragging
and dropping a key in the heap on top of another key.

An exercise applet is initialized with randomized input data. The
BuildHeap exercise, for example, is initialized with 15 numeric keys
that correspond to the priority values. The student can reset the
exercise by pressing the Reset button at any time. As a result, the
exercise is reinitialized with new random keys. When attempting to
solve the exercise, the student can review the answer step by step using
the Animator panel. Moreover, the student can Submit the answer in
which case the answer is assessed and immediate feedback is delivered.
The feedback reports the number of correct steps out of the total
number of steps in the exercise. This kind of automatic assessment is
possible due to the fact that, again, the student is manipulating real data
structures through the GUI. Thus, it is possible to implement the same
algorithm the student is simulating, and execute it so that the algorithm
manipulates the same data structures, but different instances, as the
student just did. The assessment is based on comparison between these
two different instances of data structures with each other.

An exercise can be submitted an unlimited number of times. However,
a solution for a single instance of an exercise with certain input data
can be submitted only once. In order to resubmit a solution to the
exercise, the student has to reset the exercise and start over with new
randomized input data. A student can also review a Model answer for
each attempt. It is represented in a separate window as an algorithm
animation accompanied with a pseudo code animation so that the
execution of the algorithm is visualized step by step. The states of the
model solution can be browsed back and forth using a similar animator
panel as in the exercise. For obvious reasons — after opening the
model solution — the student cannot submit a solution until the
exercise has been reset and resolved with new random data.

TRAKLA2 visual algorith simulations and their instant feedback and
model answer capabilities can also help students to collaborate with
each other by providing shared external imagery and memory that can
be processed together. Furthermore, they can increase the awareness of
the students on each others abilities and knowledge (Collazos et al.,
2007).

2.4.1 Previous Studies on TRAKLA2

In 2001, the first intervention study Korhonen et al. (2002) with three
randomized groups A, B, and C (N

A
=372,N

B
=77,N

C
=101) was

performed. Students’ behavior was monitored over the second year
course in data structures and algorithms (DSA) lasting twelve weeks.
The examination results of students using the TRAKLA learning
environment (predecessor of TRAKLA2) were compared with those in
the traditional classroom sessions. The results showed that, if the
exercises are the same, there is no significant difference in the final
examination results between students exercising on the web (group A)
or in the classroom (group B). In addition, the commitment to the
course (low drop-out rates), is almost equal in both versions of the
course. However, if the exercises are more challenging (group C), there
is a significant difference in the examination results, but the drop-out
rate is significantly higher as well.

Laakso et al. (2005a) reported on another whole semester study, in
which TRAKLA2 was introduced at the University of Turku. The
students’ learning results were compared between students, who used
or did not use TRAKLA2, during a course on DSA. In addition, a
survey-data (N = 100) was collected on the changes in students’
attitudes towards web-based learning environments. The results
showed that TRAKLA2 considerably increased the positive attitudes
towards web-based learning. According to students’ self-evaluations,
the best learning results were achieved by combining traditional and
web-based exercises. In addition, the overall student performance was
clearly better than in 2003 when only in class pen-and-paper exercises
were used.

In 2005, the 2001 and 2004 studies were repeated at the Helsinki
University of Technology (HUT) and at the University of Turku (UTU)
during the spring semester (Laakso et al., 2005b). The students (N =
133 + 134) were divided into two randomized exercise groups in both
universities. The first group started their exercises on the web with the
TRAKLA2 learning environment while the second group did their
exercises in classroom sessions. In order to prevent the high drop-out
rates (see, group C in 2001), however, the same learning experience
were provided for all the students. At the midpoint of the course, the
treatment for the students was changed. The first group continued in
the class room and the second group on the web. Moreover, the same

attitude survey, which carried out at UTU in 2004, was administered in
both of the aforementioned universities.

The study concluded that it is good to introduce easy and guided
exercises at the very beginning of the course. In addition to this, there
is an emerging need for both web-based and classroom exercises. The
recommended way to introduce the web-based exercises in DSA
courses is by combining these two approaches. There is a set of
exercises that are more suitable to be solved and automatically assessed
on the web while the rest of the exercises are more suitable for
traditional classroom sessions. More detailed information about this
repetition study can be found in Laakso et al. (2005b).

The above studies were whole semester studies, in which the focus was
on students’ overall performance and drop-out rates. The difference
between the treatments were in learning settings: the control groups
were in classroom while the treatment groups were on the web.
However, the learning objectives were the same for all groups, i.e., the
exercises were algorithm simulation exercises. In addition, we studied
the students’ attitudes towards web based learning environments.

In contrast to the above studies, Myller et al. (2007) conducted an
experimental study focusing on engagement taxonomy in fall 2006 at
University of Turku. In the study, the learning outcomes of the
students, who learned in collaboration by using visualization on
different engagement levels were compared. There were 52 students in
the treatment group (EET level: changing) and 53 students in the
control group (EET level: controlled viewing), which sums up to 105
participants. The setup was a pre-test, treatment, post-test design. The
post-test included the same questions as the pre-test, and additionally
more difficult questions in order to see if the differences were apparent
in them. The results indicated that the level of engagement had an
effect on students’ learning results in favor of the treatment group,
although the differences were not statistically significant. Especially
students without previous knowledge seemed to learn more from using
visualizations on higher engagement level. In this paper, we report on a
replication of this study with minor changes in order to repair the flaws
in the design of the pre-test and post-test as reported by Myller et al.
(2007).

3 Experimental Setup

To summarize the previous sections, the collaborative use of AV tools
has been studied only little, yet the need for this kind of research
emerges from the increasing use of visualization tools in collaborative
learning. We hypothesize that the EET framework can be used to
predict performance differences when visualizations are used in
collaboration. Previous research supports this view and our hypothesis
is based on the previous research on TRAKLA2 and formulated as
follows: Students using visualizations collaboratively on EET-level
changing (i.e. in pairs) perform better compared to students using only
visualization on EET-level controlled viewing (again in pairs).

In order to test our hypothesis, we carried out an experiment in which
we compared the learning outcomes of students who were
collaboratively using visualizations which were on different EET
levels. Participants were (mostly first year) Computer Science major
students on a data structures and algorithms course at the Helsinki
University of Technology. We utilized TRAKLA2 (Korhonen et al.,
2004) in order to provide students with algorithm simulation exercises
that act on the EET level changing (treatment group). However, the
students did not have the option to reset the exercise to obtain a new
similar exercise with new input data, but they had to work with a fixed
input data for each exercise during the whole session. The animations
that the students used in controlled viewing condition (control group)
were similar to those used in model answers provided by the
TRAKLA2 system.

Quantitative results were analyzed with one-tailed t-test, ANOVA and

2χ -test depending on the nature of the data. We used the Bonferroni
correction when applicable. The justification for using one-tailed t-test
is based on the formulation of our hypothesis, which predicts that
students using visualizations on EET-level changing perform better
than students using visualization on EET-level controlled viewing. The
hypothesis is based on the previous research in which it was found that
student groups using visualizations on EET-level changing consistently
performed better than student groups using visualization on EET-level
viewing or controlled viewing although differences were not
statistically significant Myller et al. (2007).

3.1 Method 1: Experimental Study

The study was a between
(dependent variable). We had one between
variable): the highest available EET level of the visualizations in the
learning materials, namely
analysis was either a student or a pair of students depending on the
measure. Each student answered the pre
all the observational data collected during the pair learning is not
individual but the same
average performance of the pair in the post
analysis.

Figure 2: Binary heap insert animation in the tutorial. The student
acts on EET level

(Backward, Forward, Begin, End) to interact with the animation.

The learning materials contained textual materials that were the same
for both conditions. In the
accompanied with TRAKLA2 (Korhonen et

Method 1: Experimental Study

The study was a between-subject design with pre-test and post
(dependent variable). We had one between-subject factor (independent
variable): the highest available EET level of the visualizations in the
learning materials, namely controlled viewing or changing. The unit of
analysis was either a student or a pair of students depending on the
measure. Each student answered the pre- and post-test individually, but
all the observational data collected during the pair learning is not
individual but the same for the pair. Moreover, we also report the
average performance of the pair in the post-test and use it in the

Figure 2: Binary heap insert animation in the tutorial. The student
acts on EET level controlled viewing. The user has VCR like butt

(Backward, Forward, Begin, End) to interact with the animation.

The learning materials contained textual materials that were the same
for both conditions. In the changing condition, textual materials were
accompanied with TRAKLA2 (Korhonen et al., 2004) algorithm

test and post-test
subject factor (independent

variable): the highest available EET level of the visualizations in the
. The unit of

analysis was either a student or a pair of students depending on the
test individually, but

all the observational data collected during the pair learning is not
for the pair. Moreover, we also report the

test and use it in the

Figure 2: Binary heap insert animation in the tutorial. The student
. The user has VCR like buttons

(Backward, Forward, Begin, End) to interact with the animation.

The learning materials contained textual materials that were the same
condition, textual materials were

4) algorithm

simulation exercises related to the binary heap (see Figure 1). Student
pairs in the controlled viewing condition were presented with
animations about the operations of the binary heap that were similar to
TRAKLA2 exercises (see Figure 2). In addition, student pairs in both
conditions were given an exercise sheet that asked questions on binary
heap that were supposed to be answered during the learning process. In
this way, we tried to motivate the learning and make sure that the
possible differences are due to controlled variable (level of
engagement), and not because pairs in one condition performed
cognitively more demanding activities or used more time on the tasks
(Grissom et al., 2003; Hundhausen et al., 2002).

3.2 Method 2: Observational Study

The students’ activities during the controlled experimental study were
also recorded utilizing a screen capturing software. The recording
accompanied by an audio track contained on-screen activity, i.e.,
mouse movements, keyboard typings, scrolling of the tutorial page
back and forth in the browser window, as well as the conversation
between the pair members.

The observed pairs were aware of being observed and we asked a
permission to monitor them in advance. In this overt research method,
we observed the students in their activities without intervention, i.e., by
watching the recordings afterwards (Gall et al., 2006).

A detailed record of the events that occurred during the period of
monitoring the students was produced. These events were categorized
into the following four engagement levels according to the extended
engagement taxonomy: no viewing (e.g., reading phase), viewing (e.g.,
watching figures), controlled viewing (e.g. watching of animations or
model solution step-by-step with user controls) and changing (i.e.,
solving an algorithm simulation exercise). We separated passive
viewing and more active controlled viewing from each other. In passive
viewing, there was a still picture on the screen that we assumed the pair
was watching. However, some of this time was spent to solve the given
exercises on paper, as well. In controlled viewing, however, we knew
that students were more actively involved with the animation as we
required that they needed to control the animation by pressing VCR-

like buttons to execute the animation backwards or forwards, and there
were no pauses longer than 20 seconds between each action. The total
time-on-task was measured from each four EET levels. Obviously, the
students in controlled viewing condition (control group) did not spend
time on changing mode. However, not all students in changing
condition (treatment group) did either. Based on this analysis, we
classified the students to groups based on their behavior.

3.3 Participants

Students were mainly first year students, however, some students from
other years were also on the course. Students were randomized to the
computer lab sessions and sessions were randomly assigned to each
condition with the limitation that parallel sessions belonged to different
conditions. The total number of participating students was 92.
However, not all of them allowed to monitor their performance, nor
were they willing to do pair work. In addition, in some of the
workstations, the Java applet was not working properly. Moreover, we
excluded foreign students from the study as they did not get the same
treatment as the others due to the fact that their study materials were in
a different language (i.e. English, while the original materials were in
Finnish) and did not include animations nor algorithm simulation
exercises, but they solved them by paper and pencil. Thus, the total
number of analysis units (students) was 75 (n=75) divided into 7 small
groups (3 control groups having viewing condition and 4 treatment
groups having changing condition). The original number of lab
sessions was 8, but the last one (that would have been control group)
was the excluded English speaking group.

All students had been previously using TRAKLA2 during the course to
complete three assignment rounds related to basic data structures (e.g.
lists and stacks), algorithm analysis, sorting algorithms (i.e., insertion
sort, quicksort, and mergesort), and binary tree traversing. Thus, all
students should have been able to use TRAKLA2, understand its
visualization, and know all its features that were needed to complete
the assignments.

3.4 Materials

Pre-test consisted of the following questions. In the first question, the
student were asked to define concepts array, binary tree, and priority
queue. We assumed that the students are able to answer the first two as
those concepts were already introduced in the course. The last concept
and the rest of the questions were such that we assumed the participants
do not have prior knowledge to answer them. However, we wanted to
test whether they have some prior knowledge, e.g., due to taking the
course already in the previous year (without passing it). The second
question was, if a given array is a heap and the third, whether an
ordered array is a heap or not. In addition, we asked the students to
describe where the smallest value in a minimum binary heap (question
5) and maximum binary heap is located (question 6), respectively.
Finally, we asked them to write down a given binary heap’s heap
property (question 7). The third question asked the students to draw the
binary tree representation of the minimum binary heap, which was
given in an array presentation, in the previous question.

The post-test consisted of the following questions. The pre-test and
post-test included two questions which were exactly the same. The first
question in the pre-test was omitted from the post-test. However, the
questions 2, 3, 4, 5, 6 and 7 were the same in both (but the numbering
started from 1 in the post-test). In addition, participants needed to do
similar exercises that they did in the lab session. One of these was
insertion of new items into an initially empty maximum binary heap
(question 7 in the post-test). The question 8 asked participants to
remove two smallest items from a minimum binary heap. Finally, we
gave a pseudo-code example of a recursive MAX-HEAPIFY procedure
and asked several questions, such as for which algorithm one can apply
this procedure (question 9). This was a multiple choice question with
four alternatives of which the last three were applicable: Heap-
Insert, Heap-Exctract-Max, (linear-time) BuildHeap, and
HeapSort. In addition, we asked them to describe and give an
example execution (line-by-line) of what this procedure does and how
(question 10). Question 11 requested the participants to provide an
example which shows the recursive nature of the algorithm. The code
example did not have a complete implementations for how to inquire
the left and right child of a node in a complete binary tree implemented
as an array. The task was to write this code (e.g., LEFT(i) = 2i and
RIGHT(i) = 2i+1) (questions 12). Finally, they needed to analyze

the worst case time complexity of MAX-HEAPIFY (question 13).

3.5 Procedure

Study was performed halfway through the course at the computer lab
sessions that lasted for 2 hours. There were a total of 4 + 3 sessions,
and they were run on two days in two following weeks. On each day,
there were two times two sessions with different conditions running
simultaneously. On the second day, there were also 4 sessions, but only
3 of them were included in this study as the last one was the excluded
session given in English.

In the beginning of the session, students took the individual pre-test, in
which they needed to answer questions related to binary heaps in 15
minutes. After this, they freely formed pairs with their peers and gave
their consent to participate in the experiment and to be monitored
during the experiment. If there was an odd number of students, one
group consisted of 3 students. Each pair was allocated to a single
computer.

After the pre-test, students had 45 minutes to go through the learning
materials of their condition and complete paper-and-pencil exercises
together. The collaboration was monitored by recording their talking
and capturing their activities on the computer screens. After the 45
minutes the paper-and-pencil exercises were collected and the session
ended with an individual post-test. The students were given 30 minutes
to answer the questions in the post-test.

Each question in the pre- and post-tests was analyzed in a scale from 0
and 4. Zero points meant less than 25 percent of the answer was correct
in the answer, and each point meant a 25 percent increase in the
correctness of the answer.

4 Results

4.1 Randomized Treatment and Control Groups

In this section, we report the results as they were obtained by using the
randomized treatment groups (42 students) and control groups (33
students) (n=75).

4.1.1 Previous Knowledge and Motivation

All the information related to the previous knowledge of the students
could be determined only through post-hoc analysis, and thus, we could
not make sure before-hand that the randomization did not introduce any
bias to the experimental settings. Table 1 represents the students’
previous knowledge in Computer Science and Mathematics for both
groups. The first column shows the pre-test scores for the topics
studied in the experiment. The column “Prog. Course Results” shows
the students’ average grades from a previous programming course. The
average number of CS and Math credits units (each credit unit equals to
about 30 hours of work) obtained are shown in the next columns,
respectively. The difference between groups in the previous
programming course grades is approaching statistical significance
(t(73)=-1.94, p=0.056). Other differences are statistically insignificant.

Pre-test Prog. Course

Grade
CS Math

Control (33)9.27 (6.87) 2.61 (1.77) 10.72 (16.77) 9.13 (9.33)
Treatment (42)8.57 (5.04) 3.36 (1.57) 10.44 (14.80) 8.34 (6.87)
Table 1: Previous knowledge of the students on Heap data structure,

and in CS and Math.

Table 2 shows the results from a motivational questionnaire filled
in by the students. The questions were answered in a 7-degree Likert-
scale and they were as follows:

Q1. How useful do you regard this course for your working career?
Q2. Do you expect that the on-line learning will help your learning

of the course content?
Q3. How well do online exercises fit into this course?
Q4. How useful have the on-line learning tools and materials been

in your previous courses?

 Q1 Q2 Q3 Q4
Control 4.84 (1.25) 4.78 (1.18) 5.38 (1.01) 4.94 (1.39)
Treatment 5.12 (1.33) 5.24 (1.14) 5.88 (1.05) 5.59 (1.30)

Table 2: Motivation of students based on a questionnaire (questions
Q1 to Q4 are discussed in the text).

There were no statistically significant differences between the groups
in any of the questions in the motivational questionnaire.

4.1.2 Post-test results

In the post-test, we used the same questions as in the pre-test and in
addition to this seven more demanding questions. In the questions that
were the same as in the pre-test, control and treatment group received
on average 16.88 points (st.dev. 4.34) and 17.38 points (st.dev. 4.32),
respectively. When comparing the pre- and post-test scores on the same
questions within the group, statistically significant differences were
found in both groups’ total scores using pairwise t-test (Control:
t(33)=-13.48, p<.001, Treatment: t(42)=-25.71, p<.001) (see the
Table 1 for average pre-test scores and standard deviations). This
means that both groups had learned the subject, which seems obvious
when they spent 45 minutes to learn the topic.

When the points from all the questions were summed together the
control group received on average a total of 30.79 points (st.dev. 6.99)
and the treatment group 31.55 (st.dev. 6.29) points out of 52 points.
There were no statistically significant differences found between the
post-test scores.

We further calculated pair averages by taking the average of individual
post-test scores of the pair. We treat this value as the learning outcome
of a pair. The pair averages for control and treatment groups were
30.68 points (st.dev. 4.74) and 31.63 points (st.dev. 4.44), respectively.
There were no statistically significant differences between the final
scores or in any individual question scores.

4.2 Observational Study

In this section, we report the results as obtained by using a video
analysis to match the students activities with the definition of treatment
and control group. Based on the analysis, we regrouped students into
different groups based on their behavior dur
identified three groups based on their assignment to control and
treatment groups and their behavior. Firstly, the students in the control
group seemed to behave homogeneously and they watched the
animations as expected. We will ref
Viewing C (C as in Control). Secondly, we identified a group of
students in the treatment condition, who behaved exactly the same as
the control group by only watching the animations and not even once
trying to do any algorithm simulation exercises. We will refer t
group with the name
students who only viewed the animations (i.e. students in groups
Viewing C and Viewing
Thirdly, we found the students who behaved as we
treatment group. These students solved algorithm simulation exercises
at least one time but most often three to six times. We will refer to this
group with the name
illustrated in Figure

Based on the video analysis, we classified 33 students to the
Viewing C, 17 student to the
Changing T (n=71
analysis in this section due to technical problems when matching the

Observational Study

In this section, we report the results as obtained by using a video
analysis to match the students activities with the definition of treatment
and control group. Based on the analysis, we regrouped students into
different groups based on their behavior during the observation. We
identified three groups based on their assignment to control and
treatment groups and their behavior. Firstly, the students in the control
group seemed to behave homogeneously and they watched the
animations as expected. We will refer to this group with the name

(C as in Control). Secondly, we identified a group of
students in the treatment condition, who behaved exactly the same as
the control group by only watching the animations and not even once
trying to do any algorithm simulation exercises. We will refer t
group with the name Viewing T (T as in Treatment). We will refer to all
students who only viewed the animations (i.e. students in groups

Viewing T) with the name Viewing A (A as in All.
Thirdly, we found the students who behaved as we expected in the
treatment group. These students solved algorithm simulation exercises
at least one time but most often three to six times. We will refer to this
group with the name Changing T. The division of the groups is
illustrated in Figure 3.

Figure 3: The division of the groups.

Based on the video analysis, we classified 33 students to the
, 17 student to the Viewing T, and 21 students to the

=71). We needed to exclude four students from the
in this section due to technical problems when matching the

In this section, we report the results as obtained by using a video
analysis to match the students activities with the definition of treatment
and control group. Based on the analysis, we regrouped students into

ing the observation. We
identified three groups based on their assignment to control and
treatment groups and their behavior. Firstly, the students in the control
group seemed to behave homogeneously and they watched the

er to this group with the name
(C as in Control). Secondly, we identified a group of

students in the treatment condition, who behaved exactly the same as
the control group by only watching the animations and not even once
trying to do any algorithm simulation exercises. We will refer to this

(T as in Treatment). We will refer to all
students who only viewed the animations (i.e. students in groups

(A as in All.
expected in the

treatment group. These students solved algorithm simulation exercises
at least one time but most often three to six times. We will refer to this

. The division of the groups is

Based on the video analysis, we classified 33 students to the
, and 21 students to the

). We needed to exclude four students from the
in this section due to technical problems when matching the

students to correct videos. Two of the students would have belonged to
the Viewing T and two to the Changing T groups.

In this section, we present two comparisons. Firstly, we analyze the
data between three groups, namely Viewing C, Viewing T and
Changing T because based on the original randomization and the video
analysis these groups are distinct. However, when only the video
analysis and groups’ behavior is taken into consideration, we have only
two groups, namely Viewing A and Changing T. Therefore, in order to
provide a complete account of the results, we provide the analysis of
both of these groupings. The validity, justifications and methodological
implications of these groupings are further discussed in section Error!
Reference source not found..

4.2.1 Previous Knowledge and Motivation

The format of Table 3 is similar to the Table 1. None of the differences
were statistically significant neither Viewing C vs. Viewing T vs.
Viewing T nor Viewing A vs. Changing T. This was different compared
to the original experimental design where there was a significant
difference in favor of the treatment group in previous programming
course grades.

 Pre-test Prog. Course
Grade

CS Math

Viewing C 9.27 (6.87) 2.61 (1.77) 10.72 (16.77) 9.13 (9.33)
Viewing T 8.06 (4.49) 3.47 (1.46) 12.56 (21.04) 7.69 (6.63)
Viewing A 8.86 (6.14) 2.90 (1.71) 11.33 (18.10) 8.64 (8.46)
Changing T 9.29 (5.72) 3.14 (1.80) 10.43 (9.35) 9.67 (7.21)

Table 3: Previous knowledge of the students on Heap data structure,
and in CS and Math.

Table 4 shows the results from the same motivational questionnaire

that was also reported in the Table 2 for the experimental groups (See
Section 4.1.1 for the description of the questions). None of the
differences were statistically significant.

 Q1 Q2 Q3 Q4

Viewing C 4.84 (1.25) 4.78 (1.18) 5.38 (1.01) 4.94 (1.39)
Viewing T 5.00 (1.51) 5.25 (0.93) 5.81 (1.05) 5.44 (1.26)
Viewing A 4.90 (1.32) 4.94 (1.12) 5.52 (1.03) 5.10 (1.36)
Changing T 5.19 (1.33) 5.19 (1.36) 5.86 (1.11) 5.67 (1.43)

Table 4: Motivation of students based on a questionnaire
(questions from Q1 to Q4 are discussed in Section 4.1.1).

4.2.2 Time Allocation between Engagement levels

Table 5 presents the distribution of the average times spent on each
EET level. This was measured by watching the videos and marking
times when the EET level changed from one to another, and then
summing up the times on each EET level.

 No viewing Viewing Controlled

viewing
Changing

Viewing C 47.45%
(15.28)

38.26%
(12.24)

14.29%
(6.23)

0.00%
(0.00)

Viewing T 49.45%
(17.09)

37.82%
(15.01)

12.73%
(5.47)

0.00%
(0.00)

Viewing A 48.13%
(15.78)

38.11%
(13.10)

13.76%
(5.97)

0.00%
(0.00)

Changing T 43.22%
(19.20)

38.30%
(15.84)

5.87%
(6.03)

12.61%
(1.98)

Table 5: The distribution of time (45 minutes) between EET levels.

Table 6 shows how many times students used materials on each
EET level. For example, students in the control group used user-
controlled visualizations (controlled viewing) 5 times on average,
whereas students in the treatment group used them 2 or 3 times on
average.

 No viewing Viewing Controlled

viewing
Changing

Viewing C 6.76 (2.11) 7.82 (3.61) 5.15 (2.71) 0.00 (0.00)
Viewing T 7.18 (2.19) 7.53 (3.04) 5.29 (2.91) 0.00 (0.00)
Viewing A 6.90 (2.12) 7.72 (3.40) 5.20 (2.75) 0.00 (0.00)
Changing T 6.24 (1.73) 6.67 (3.20) 2.48 (2.56) 4.10 (1.61)

Table 6: The number of times each EET level was used.

4.2.3 Post-test results

The results of the post-test are presented in Table 7. When comparing
the pre- and post-test scores within the group, statistically significant
differences were found in both groups’ total scores between pre- and
post-tests when only same questions were compared with pairwise t-
test (Viewing C: t(32)=-13.15, p<.001$, Viewing T: t(16)=-13.96,
p<.001, Viewing A: t(49)=-18.09, p<.001, and Changing T: t(20)=-
19.35, p<.001) (see the Table 3 for average pre-test scores and the
subtotal in the Table 7 for the comparable average post-test scores and
standard deviations).

 Viewing C Viewing T Viewing A Changing T
Question 1 2.64 (1.58) 2.12 (1.65) 2.46 (1.61) 2.33 (1.80)
Question 2 1.76 (1.23) 1.82 (1.29) 1.78 (1.23) 2.19 (1.29)
Question 3 3.64 (1.08) 4.00 (0.00) 3.76 (0.89) 4.00 (0.00)
Question 4 2.39 (1.23) 2.18 (1.33) 2.32 (1.42) 2.33 (1.59)
Question 5 2.61 (1.43) 2.65 (1.58) 2.62 (1.47) 3.38 (0.92)
Question 6 3.85 (0.71) 3.76 (0.97) 3.82 (0.80) 4.00 (0.00)
Subtotal 16.88 (4.34) 16.53 (4.90) 16.76 (4.49) 18.24 (3.56)
Question 7 3.97 (0.17) 3.94 (0.24) 3.96 (0.20) 3.43 (1.29)
Question 8 3.33 (1.19) 3.65 (1.00) 3.44 (1.13) 3.76 (0.89)
Question 9 2.48 (0.87) 2.12 (0.78) 2.36 (0.85) 2.67 (0.91)
Question 10 2.09 (1.44) 2.41 (0.94) 2.20 (1.29) 2.62 (1.40)
Question 11 0.45 (1.25) 0.71 (1.45) 0.54 (1.31) 1.10 (1.70)
Question 12 1.30 (1.85) 0.18 (0.73) 0.92 (1.64) 1.24 (1.84)
Question 13 0.27 (0.45) 0.29 (0.99) 0.28 (0.67) 0.29 (0.46)
Total 30.79 (6.99) 29.82 (5.71) 30.46 (6.54) 33.33 (6.71)
Pair Average 30.68 (4.74) 29.88 (4.37) 30.42 (4.55) 33.45 (4.34)
Table 7: Post-test results (post-test questions were discussed in Section

3.4 and compostion of the groups in Figure 3).

Based on ANOVA, there were no statistically significant differences
between Viewing C, Viewing T and Changing T groups in the post-test
scores. When comparing the total values from the post-tests between
Viewing A and Changing T, statistically significant differences were
found in the total and pair average of the post-test scores by using one-

tailed t-test (t(69)=-1.73, p<0.05) and (t(31)=-1.97, p<0.05),
respectively.

5 Discussion

5.1 Interpretation of the Results

We presented an empirical study which analyzed whether the EET
framework can be used to predict performance differences when
algorithm visualizations are used in collaboration. Two randomized
groups of students were involved in this study reading and answering
questions related to a hypermedia tutorial presented on a web page. The
control group used the algorithm visualizations on controlled viewing
level, on which they had the opportunity to watch algorithm animations
embedded in the tutorial. The treatment group interacted with the
tutorial on changing level, on which they had the option to solve small
algorithm simulation exercises and get feedback on their performance.
In both groups, the students formed pairs and learned collaboratively
about the binary heaps for 45 minutes during the 2-hour closed lab
session. The analysis of the video material has showed that students
were collaborating and discussing the subject matter during the
learning process, therefore we are confident to say that students were
truly learning collaboratively in both groups (Myller et al., 2008). The
null hypothesis of the experiment was that there would be no
significant statistical difference between the learning outcomes of the
control and treatment group after the session.

Pre- and post-tests were used to analyze the performance. Each student
answered these tests individually. There were no significant differences
between groups if we analyzed only the pre-test scores. However, post-
hoc analysis of some background variables revealed that there was
almost a significant bias between the groups. The grades from the
previous programming course were better in the treatment group than
in the control group. Furthermore, based on the post-test results we
could not reject the null hypothesis. This all was (at first) a counter-
intuitive result, because a) it was against the theory that we were
testing, b) it was against our previous findings and c) even the bias

between the groups was in favor of the treatment group.

Fortunately, during the experimental study, we monitored the student
pairs in a parallel observational study. After examining the video
recordings, we realized that not all of the students in the treatment
group were using the tutorial as expected. Some of the pairs did not
solve the exercises, but only watched the model solutions instead.
Thus, they were interacting with the tutorial only on controlled viewing
level, not in changing level as expected. Based on this new evidence,
we re-grouped the students. We regarded those students in the
treatment group, not behaving on the changing level, belonging to a
controlled viewing level. Interestingly, the aforementioned bias in
previous programming course grades disappeared, and we found
significant differences between the learning outcomes of the groups.
Although there were no differences when only three groups were
compared, the group working on changing level outperformed all
student groups working on controlled viewing level in the total score of
post-test. This was true both in the individual performance and the
average performance of pairs. Thus, based on this study, we can reject
the null hypothesis and confirm our previous findings that the level of
engagement on which the students interact with the visualization tool
has an influence on the learning. On changing level, they learned better
than on controlled viewing level.

Stasko et al. (1993) hypothesize that “algorithm animations will not
benefit novice students just learning a new topic as much as the
animations will benefit more advanced students”, and moreover, that
“the novice students would benefit more by actually constructing an
algorithm animation rather than viewing a predefined one.” We can
confirm these hypotheses. However, in this first hypothesis, we need to
be careful in the definition of a “novice”. In our experiment, all
students were exposed to TRAKLA2 before they attended the
experiment. They solved similar exercises, but on different topics, a
couple of weeks before the experiment took place. Thus, they were not
“novices” when it comes to the “graphical notation” used in the
experiment. Still, they were novices when it comes to the topic (i.e.
they had not studied binary heaps earlier). Therefore, the conclusion is
that the first hypothesis holds only if “novice” is defined to be a student
who is not familiar with the used notation in the animations. One can
still be a novice of the topic but understand the used notation, and
benefit as much as more advanced students. Actually, it might even
happen that the more advanced students cannot take the full advantage

of this kind of learning material, and thus, perform worse, at least in
relative scale (Myller et al., 2007). The confirmation of the second
hypothesis is a direct outcome of our study in which the treatment
group was “constructing an algorithm animation” in terms of changing
the visualization, and they outperformed those students in the control
group who just were “viewing a predefined” animation.

As discussed in the section on previous research, the learning time has
not been a controlled variable in several previous studies, which have
used the engagement level as the independent variable (Grissom et al.,
2003; Naps et al., 2002; Hundhausen et al., 2002). Furthermore, it has
been reported that students using visualizations on higher engagement
levels have been motivated to spend more time on learning the topic.
This has made it questionable if the time that students spend on
learning the topic affects the learning results more than the engagement
level, on which the visualization is used, and the engagement level
affects only the amount of time students are willing to spend on
learning the topic. In this study, we have shown that although we
controlled the learning time and monitored students’ activities, the
learning results are significantly different between engagement levels.
This means that the engagement level has a direct effect on the learning
results.

5.2 Methodological Considerations

Based on the results, screen capturing and voice recording should be a
standard procedure because we cannot always know for sure if the
participants really do what we expect them to do. Our study shows that
we could not have obtained full understanding of the phenomenon
without monitoring the students: not all of them performed on the
expected engagement level even though we instructed them to do so.
As we can see from our study, the conclusion would have been that we
could not find any evidence that the EET level has an impact on
learning, which would have been a false negative result. Thus,
monitoring should be a standard procedure especially in large scale
studies in which the researcher(s) cannot make sure by other means that
the conditions remain constant within a group.

However, when using an observational design in the study, we need to

pay attention to possible confounds that might affect our results. Due to
the fact that in the observational study, we could not control the
placement of participants into conditions, but they selected it
themselves, this could have caused differences in the final results and
there still might be background variables that we have not analyzed or
detected affecting the results. However, as stated earlier, we did a post-
hoc analysis of several background variables and detected that actually
the re-grouping made the groups more similar on one aspect while
keeping the other aspects unchanged. Thus, we are fairly confident that
the observed differences are due to the claimed causes.

6 Conclusion and Future Work

Our results confirm that EET framework can predict performance
differences also in collaborative use of visualizations. The results
substantiate that there is a difference in learning results between
viewing and changing modes. The findings of the observational study
also explain why the original experimental design failed to reject the
null hypothesis. This was due to the fact that students in the treatment
group did not perform the learning tasks that we assumed them to do.
Thus, they might have outperformed the control group in the
experimental design if they only had performed in the changing mode.

From our point of view, the results emphasize the importance of
engagement with visualizations, and we should promote systems that
support different modes of engagement. The mere viewing of the
algorithm animations is not enough, not even when there is a partner
with whom to share the understandings and misunderstanding during
the viewing of the visualization. Thus, we should, especially, design
systems that act on the higher levels of the engagement taxonomy. For
example, visual algorithm simulation exercises acting on the changing
level produce better results compared to the viewing level.
Furthermore, we should encourage the use of the systems on higher
engagement levels in classrooms in order to achieve active and more
student-centered learning. We hope this paper encourages teachers on
different disciplines to try out visualization tools that enable higher
engagement between the tool and the students especially in
collaborative learning as this seems to increase the learning outcomes.

The future research challenge is to determine the importance and role
of collaboration in the EET, i.e., can we repeat this experiment also in
the case of individual learning? In this experiment, collaboration was
used to encourage discussion in pairs and to collect better evidence of
the real behavior in terms of screen capturing. The collaboration,
however, has an influence on the performance as well. Thus, one
research direction would be toward individual learning, but in a context
that can still be monitored in order to prevent inconclusive results due
to the fact that the individuals did not behave on the expected EET
level.

7 Acknowledgements

This work was supported by the Academy of Finland under grant
numbers 111350 and 210947. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the Academy of Finland.

8 References

Ben-Bassat Levy, R., Ben-Ari & M., Uronen, P. A. (2003). The
Jeliot 2000 program animation system. Computers &
Education 40 (1), 15–21.

Byrne, M. D., Catrambone, R. & Stasko, J. T. (1996). Do
algorithm animations aid learning? Technical Report GIT-
GVU-96-18, Graphics, Visualization, and Usability Center,
Georgia Institute of Technology, Atlanta, GA.

Collazos, C., Guerrero, L., Redondo, M., Bravo, C. (2007).
Visualizing Shared-Knowledge Awareness in Collaborative
Learning Processes. In J.M. Haake, S.F. Ochoa, and A.
Cechich (Eds.), Proceedings of CRIWG 2007, Lecture Notes
on Computer Science, vol. 4715, Springer Verlag Editions,
pp. 56-71.

Evans, C. & Gibbons, N. J. (2007). The interactivity effect in

multimedia learning. Computers & Education, 49 (4), 1147-
1160.

Gall, M. D., Gall, J. P. & Borg, W. R. (2006). Educational
Research: An Introduction (8th Edition). Allyn & Bacon.

Grissom, S., McNally & M., Naps, T. L. (2003). Algorithm
visualization in CS education: comparing levels of student
engagement. In Proceedings of the First ACM Symposium on
Software Visualization, ACM Press, 87–94.

Hübscher-Younger, T. & Narayanan, N. H. (2003). Constructive

and collaborative learning of algorithms. SIGCSE Bulletin
35 (1), 6–10.

Hundhausen, C. D. (2002). Integrating Algorithm Visualization
Technology into an Undergraduate Algorithms Course:
Ethnographic Studies of a Social Constructivist Approach.
Computers & Education 39 (3), 237–260.

Hundhausen, C. D. (2005). Using end-user visualization

environments to mediate conversations: a ‘Communicative
Dimensions’ framework. Journal of Visual Languages and
Computing 16 (3), 153–185.

Hundhausen, C. D. & Brown, J. L. (2008). Designing, visualizing,
and discussing algorithms within a CS 1 studio experience:
An empirical study. Computers & Education 50 (1), 301–326.

Hundhausen, C. D., Douglas, S. A. & Stasko, J. T. (2002). A

Meta-Study of Algorithm Visualization Effectiveness. Journal
of Visual Languages and Computing 13 (3), 259–290.

Kehoe, C., Stasko, J. & Taylor, A. (2001). Rethinking the
evaluation of algorithm animations as learning aids: An

observational study. International Journal of Human-
Computer Studies 54 (2), 265–284.

Korhonen, A., Malmi, L., Myllyselkä, P. & Scheinin, P. (2002).
Does it make a difference if students exercise on the web or in
the classroom? In Proceedings of The 7th Annual
SIGCSE/SIGCUE Conference on Innovation and Technology
in Computer Science Education, ITiCSE’02. ACM Press,
121–124.

Korhonen, A., Malmi, L., Silvasti, P., Karavirta, V., Lönnberg, J.,
Nikander, J., Stålnacke, K. & Ihantola, P. (2004). Matrix — a
framework for interactive software visualization. Research
Report TKO-B 154/04, Laboratory of Information Processing
Science, Department of Computer Science and Engineering,
Helsinki University of Technology.

Laakso, M.-J., Salakoski, T., Grandell, L., Qiu, X., Korhonen, A.

& Malmi, L. (2005a). Multi-perspective study of novice
learners adopting the visual algorithm simulation exercise
system TRAKLA2. Informatics in Education 4 (1), 49–68.

Laakso, M.-J., Salakoski, T. & Korhonen, A. (2005b). The
feasibility of automatic assessment and feedback. In Kinshuk,
D. G. Sampson, P. Isafas, L. Rodrigues & P. Barbosa (Eds.)
Proceedings of Cognition and Exploratory Learning in
Digital Age (CELDA 2005). IEEE Technical Committee on
Learning Technology and Japanese Society of Information
and Systems in Education, IADIS Press, 113–122.

McDowell, C., Werner, L., Bullock, H. E. & Fernald, J. (2003).
The impact of pair programming on student performance,
perception and persistence. In Proceedings of the 25th
International Conference on Software Engineering. IEEE
Computer Society, 602–607.

Myller, N., Bednarik, R., Ben-Ari, M. & Sutinen, E. (2008).

Extending the Engagement Taxonomy: Software

Visualization and Collaborative Learning. Submitted to the
Journal of Educational Resources in Computing (JERIC).

Myller, N., Laakso, M. & Korhonen, A. (2008). How Does
Algorithm Visualization Affect Collaboration? Video
Analysis of Engagement and Discussions. Submitted to the
Fourth International Computing Education Research
Workshop (ICER 2008)

Myller, N., Laakso, M. & Korhonen, A. (2007). Analyzing
engagement taxonomy in collaborative algorithm
visualization. In: Hughes, J., Peiris, D. R., Tymann, P. T.
(Eds.), ITiCSE ’07: Proceedings of the 12th annual SIGCSE
conference on Innovation and technology in computer science
education. ACM Press, 251–255.

Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K.,
Miller, C. & Balik, S. (2003). Improving the CS1 experience
with pair programming. In: Proceedings of the 34th SIGCSE
technical symposium on Computer science education. ACM
Press, 359–362.

Naps, T. L. & Grissom, S. (2002). The effective use of quicksort
visualizations in the classroom. Journal of Computing
Sciences in Colleges 18 (1), 88–96.

Naps, T. L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R.,

Hundhausen, C., Korhonen, A., Malmi, L., McNally, M.,
Rodger, S. & Velázquez-Iturbide, J. Á. (2002). Exploring the
Role of Visualization and Engagement in Computer Science
Education. In: Working Group Reports from ITiCSE on
Innovation and Technology in Computer Science Education.
ACM Press, 131–152.

Roschelle, J. (1996). Designing for cognitive communication:
Epistemic fidelity or mediating collaborating inquiry. In: Day,
D. L., Kovacs, D. K. (Eds.), Computers, Communication &
Mental Models. Taylor & Francis, London, 13–25.

Scaife, M., Rogers, Y. (1996). External cognition: how do
graphical representations work? International Journal of
Human-Computer Studies 45 (2), 185–213.

Stasko, J., Badre & A., Lewis, C. (1993). Do algorithm animations
assist learning? an empirical study and analysis. In S.
Ashlund, S., Henderson, A., Hollnagel, E., Mullet, K. &
White, T. (Eds.) Proceedings of the INTERCHI ’93
Conference on Human Factors in Computing Systems, 61–66.

Suthers, D. D. & Hundhausen, C. D. (2003). An experimental
study of the effects of representational guidance on
collaborative learning processes. Journal of the Learning
Sciences 12 (2), 183–219.

Williams, L., Kessler, R. R., Cunningham, W. & Jeffries, R.

(2000). Strengthening the case for pair programming. IEEE
Software 17 (4), 19–25.

P4.

Korhonen, A., Laakso, M.-J., and Myller, N. (2009). How does algorithm visualization affect
collaboration? Video Analysis of Engagement and Discussions. In the Proceedings of the 5th
International Conference on Web Information Systems and Technologies (WEBIST), pages
479–488.

Reprinted with permission, Copyright 2009 the Institute for Systems and Technologies of
Information, Control and Communication (INSTICC)

4

HOW DOES ALGORITHM VISUALIZATION AFFECT
COLLABORATION?

Video Analysis of Engagement and Discussions

Ari Korhonen
Department of Computer Science and Engineering, Helsinki University of Technology

P.O. Box 5400, FI-02015 TKK, Finland
archie@cs.hut.fi

Mikko-Jussi Laakso
Department of Information Technology, University of Turku, FI-22014 Turun Yliopisto, Finland

milaakso@utu.fi

Niko Myller
Department of Computer Science and Statistics, Universityof Joensuu, P.O. Box 111, FI-80101 Joensuu, Finland

niko.myller@cs.joensuu.fi

Keywords: Extended engagement taxonomy, Collaborative learning, Algorithm animation, Visual algorithm simulation.

Abstract: In this paper, we report a study on the use of Algorithm Visualizations (AV) in collaborative learning. Our pre-
vious results have confirmed the hypothesis that students’ higher engagement has a positive effect on learning
outcomes. Thus, we now analyze the students’ collaborativelearning process in order to find phenomena that
explain the learning improvements. Based on the study of therecorded screens and audio during the learning,
we show that the amount of collaboration and discussion increases during the learning sessions when the level
of engagement increases. Furthermore, the groups that usedvisualizations on higher level of engagement,
discussed the learned topic on different levels of abstraction whereas groups that used visualizations on lower
levels of engagement tended to concentrate more on only one aspect of the topic. Therefore, we conclude that
the level of engagement predicts, not only the learning performance, but also the amount of on-topic discus-
sion in collaboration. Furthermore, we claim that the amount and quality of discussions explain the learning
performance differences when students use visualizationsin collaboration on different levels of engagement.

1 INTRODUCTION

Empirical evaluations have yielded mixed results
when determining the usefulness of Algorithm Vi-
sualizations (AV) with empirical experiments. The
meta-analysis by (Hundhausen et al., 2002) con-
cluded that the activities performed by the students
are more important than the content of the visual-
ization. This has led to the proposition ofEngage-
ment Taxonomyby (Naps et al., 2002) to characterize
the different levels of activities the students can per-
form with AV. The taxonomy is based on the Cogni-
tive Constructivist learning theory (Hundhausen et al.,
2002; Garrison, 1993; Piaget, 1977) and a student is
supposed to achieve better learning results on higher
engagement levels. Moreover, (Myller et al., 2008)
have developed the taxonomy further by introducing

Extended Engagement Taxonomy(EET), which de-
scribes the levels of engagement in finer level of de-
tail. Furthermore, they have correlated the qualities
of students’ collaboration processes to different EET-
levels, and therefore, extended the taxonomy into the
direction of Social Constructivism (Palincsar, 1998;
McMahon, 1997; Vygotsky, 1978).

Collaborative learning has become popular in
Computer Science education (Beck and Chizhik,
2008; Teague and Roe, 2008; Valdivia and Nuss-
baum, 2007). Although visualizations have been em-
ployed in collaborative learning, collaboration intro-
duces new challenges for the visualization tools. For
example, the exchange of experiences and ideas, and
coordination of the joint work are needed when stu-
dents are no longer working individually (Suthers and
Hundhausen, 2003). Furthermore, visualizations can

479

provide a shared external memory that can initiate ne-
gotiations of meanings and act as a reference point
when ideas are explained or misunderstandings are
resolved (Suthers and Hundhausen, 2003). This im-
plies that also new theories or extension of the pre-
vious ones are needed to guide the development and
research of the visualization tools for collaborative
learning.

In this paper, we study the use of AV incollabora-
tive learning. We have utilized EET as a framework
to test the impact of engagement levels on the learning
process when the students work in pairs. In this exper-
imental study, students collaborating on different en-
gagement levels were compared with each other while
they were learning concepts related tobinary heaps.
This is a follow-up study in a series of studies. The
previous studies have shown that the engagement lev-
els have a role to play in learning and showed that the
use of visualizations on higher levels of engagement
improves learning results (Laakso et al., 2009; Myller
et al., 2007). However, this further investigation re-
vealed new results that support the view that higher
engagement levels have an effect not only on learning
outcomes, but also on the amount of collaboration or
discussion students have during the learning sessions.
In other words, the engagement seems to have an ef-
fect not only on the student-content interaction, but
also on the student-student interaction (see (Moore,
1989)). We hypothesize that these two together have
influenced the students learning results.

Although a plethora of studies that concentrate on
students’ performance (Grissom et al., 2003; Naps
and Grissom, 2002; Naps et al., 2002; Hundhausen
et al., 2002) exist, we also need to understand the
learning process and how the visualizations affect it
(Hundhausen, 2002; Hundhausen and Brown, 2008).
This information is essential when developing new
systems in order to enhance students’ learning with
algorithm visualizations.

The structure of this paper is as follows: section 2
presents previous work on visualizations, engagement
and interaction. The setup and design of the study are
described in section 3. In section 4, the results are
presented and they are further discussed in section 5.
Finally, conclusions and future directions are given in
section 6.

2 PREVIOUS WORK

2.1 Engagement

As an attempt to describe the mixed results of previ-
ous research in AV usage (Hundhausen et al., 2002)

in learning and teaching of algorithms and data struc-
tures, Engagement Taxonomy (ET) was introduced by
(Naps et al., 2002). The central idea of the taxonomy
is that the higher the engagement between the learner
and the visualization, the higher the positive effects
on learning outcomes. ET consists of six levels of en-
gagement between the user and the visualization:

No viewing – There is no visualization to be viewed.

Viewing – The visualization is only looked at with-
out any interaction.

Responding – Visualization is accompanied with
questions, which are related to the content of the
visualization.

Changing – Modification of the visualization is al-
lowed, for example, by varying the input data set
or algorithm simulation.

Constructing – Visualization of program or algo-
rithm is created.

Presenting – Visualizations are presented to others
for feedback and discussion.

ET has been used in the development of AV
tools and several studies have utilized the frame-
work and provided further support for it (?, see,
e.g.,)]Grissom2003, Grissom2002. There are also
other studies which have shown that visualizations
improve learning results, without actually utilizing
the ET framework in the design of the study (Ben-
Bassat Levy et al., 2003). In addition to this, research
in educational psychology and multimedia learning
have received similar results (Evans and Gibbons,
2007).

Although there is some anecdotal evidence on
how the visualizations could affect collaborative
learning process (Hundhausen, 2002; Hundhausen,
2005), there have been very few formal studies in-
vestigating it, especially from the point of view of
engagement (Hundhausen and Brown, 2008). In this
paper, we aim to research how the engagement be-
tween the learners and the visualization affects the in-
teractions (i.e. collaboration and discussion) between
learners.

(Myller et al., 2008) have proposed an extension
to the ET calledExtended Engagement Taxonomy
(EET). The idea of this extension is to let the design-
ers and researchers of visualizations to use finer gran-
ularity of engagement levels in their tools and exper-
imental designs. They provide the following engage-
ment levels to be used together with the original ones:
controlled viewing, providing input, modification, and
reviewing. In this study, we will utilize the controlled
viewing level in order to make a difference between

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

480

the visualizations that can only be viewed by the stu-
dent (EET level:viewing, e.g. static visualizations or
animations with only a playing option) compared to
those which can be controlled (EET level:controlled
viewing, e.g., animations with VCR-like controls in
order to step and play the animation both forwards
and backwards).

2.2 TRAKLA2

TRAKLA2 is a practicing environment forvisual al-
gorithm simulation exercises(Korhonen et al., 2003;
Malmi et al., 2004) that are automatically assessed
tracing exercises solved by a student in a web-based
learning environment. The system distributes individ-
ually tailored exercises to students and provides in-
stant feedback on students’ solutions. In visual algo-
rithm simulation exercises, a student directly manipu-
lates the visual representations of the underlying data
structures. Thus, the student actually manipulates real
data structures through operations of the graphical
user interface (GUI) with the purpose of performing
the same changes on the data structures as the actual
algorithm would perform. Each change leads the data
structure to a new state. An answer to an exercise is
a sequence of these states, and the task is to perform
the correct operations that will simulate the running
of the algorithm.

Each TRAKLA2 exercise consists of a description
of the exercise accompanied with pseudo-code repre-
sentation of the algorithm, and possibly support ma-
terial that introduces the theory and examples of the
algorithm in question, instructions on how to interact
with the GUI, and an interactive Java applet that is
utilized to enter the answer. The current exercise set
consists of over 50 assignments on basic data struc-
tures, search structures, hashing methods as well as
sorting and graph algorithms.

Example: Let us consider the exercise in Fig-
ure 1. The student is supposed to manipulate the vi-
sual representation(s) of the Binary Heap data struc-
ture by invoking context-sensitivedrag-and-drop op-
erations. The idea is to simulate the linear time Build-
Heap algorithm. The manipulation can be done in ei-
ther of the representations shown in the figure (i.e. the
array or the binary tree representation). A key can be
shifted up in terms ofswap operationswith its par-
ent until the heap property is satisfied (the key at each
node is smaller than or equal to the keys of its chil-
dren). A single swap operation is performed by drag-
ging and dropping a key in the heap on top of another
key

An exercise applet is initialized withrandomized
input data. The BuildHeap exercise, for example, is

initialized with 15 numeric keys that correspond to
the priority values. The student canreset the exer-
ciseby pressing theResetbutton at any time. As a
result, the exercise is reinitialized with new random
keys. When attempting to solve the exercise, the stu-
dent canreview the answerstep by step using theAn-
imator panel. Moreover, the student canSubmitthe
answer for immediate assessment and feedback. The
feedback reports the number of correct steps out of
the total number of steps in the exercise. This kind
of automatic assessment is possible due to the fact
that the student is manipulating real data structures
through the GUI. Thus, it is possible toimplement
the same algorithm the student is simulating, and exe-
cute it so that the algorithm manipulates the same data
structures with same data, but different instances, as
the student. Therefore, the assessment is based on
the comparison of the two instances of the same data
structures with each other.

An exercise can be submitted an unlimited number
of times. However, a solution for a single instance of
an exercise with certain input data can be submitted
only once. In order to resubmit a solution to the ex-
ercise, the student has to reset the exercise and start
over with new randomized input data. A student can
also review aModel answerfor each attempt. It is
represented in a separate window as an algorithm an-
imation accompanied with a pseudo code animation
so that the execution of the algorithm is visualized
step by step. The states of the model solution can
be browsed back and forth using a similar animator
panel as in the exercise. For obvious reasons — af-
ter opening the model solution — the student cannot
submit a solution until the exercise has been reset and
resolved with new random data.

2.3 Our Previous Studies on the Same
Topic

The study reported in this paper belongs to a series of
studies that have been run since autumn 2006 (Laakso
et al., 2009; Myller et al., 2007). This is actually
a follow-up video analysis of an experiment that we
carried out in spring 2007 (Laakso et al., 2009). The
objective of the experiment was to compare the learn-
ing outcomes of students who collaboratively used al-
gorithm visualizations on two different EET levels,
namelycontrolled viewingandchanging. The results
in sections 2.3.1 and 2.3.2 have already been reported
and explained in more detail elsewhere (Laakso et al.,
2009) but are given here in order to allow the discus-
sion of them in relation to the findings that are re-
ported in this paper in section 4. In the sections 2.3.1
and 2.3.2, the analysis was done for all the partic-

HOW DOES ALGORITHM VISUALIZATION AFFECT COLLABORATION? - Video Analysis of Engagement and
Discussions

481

Figure 1: TRAKLA2 algoritm simulation exercise is on the left and corresponding model answer animation on the right.

ipants or groups of the same experiment that is re-
ported in this paper. See section 3 for further descrip-
tion of the study design.

2.3.1 Learning Results

The pre- and post-test results for both conditions are
given in Table 1. Based on the two-tailed t-test, the
differences in the pre-test scores between conditions
were not statistically significant meaning that the stu-
dents’ preliminary knowledge on the topic was sim-
ilar. The differences in the post-test scores between
conditions, both individual and group averages, were
statistically significant based on the one-tailed t-test
(t(69) = −1.73, p < 0.05 and t(31) = −1.97, p <

0.05, respectively). We used the one-tailed t-test to
analyze the post-test scores because of our hypothe-
sis that the treatment group was expected to perform
better. This hypothesis was formed based on the En-
gagement Taxonomy (Naps et al., 2002) and the pre-
vious results in similar studies performed by others
(Grissom et al., 2003; Hundhausen and Brown, 2008;
Naps and Grissom, 2002) and us (Myller et al., 2007).

Table 1: The pre- and post-test results between conditions
(standard deviations are given in parentheses) (n = 71).

Pre-test Post-test Post-test
individual avg group avg

Control 8.9 (6.1) 30.5 (6.5) 30.4 (4.6)
Treatment 9.3 (5.7) 33.3 (6.7) 33.5 (4.3)

2.3.2 Time Allocation between Engagement
Levels

Table 2 presents the distribution of the average times
spent on each EET level. This was measured by
watching the videos and marking times when the EET

level changed from one to another, and then summing
up the times on each EET level. Based on this anal-
ysis, we made the final classification of groups into
different conditions, because although some students
were originally assigned to treatment condition, in
which they were supposed to work onchanginglevel,
they never did, and therefore belonged to the control
condition. This also shows that the amount of time
that students spent on reading or looking at static im-
ages is almost the same in both groups and only the
looking at the animations, which they could control,
and the algorithm simulation exercises were used dif-
ferently. In the control condition, the animations were
the only active form of engagement whereas in treat-
ment condition they also had the option of solving al-
gorithm simulation exercises. The latter was more im-
portant due to the fact that this group used animations
almost only for figuring out how they should simulate
the algorithm.

Table 2: The distribution of time between EET levels (stan-
dard deviations are given in parentheses) (n = 35).

Control Treatment
No viewing 48.1% (15.8) 43.2% (19.2)
Viewing 38.3% (15.8) 38.1% (13.1)
Controlled viewing 13.8% (6.0) 5.1% (6.0)
Changing 0.0% (0.0) 12.6% (2.0)

Table 3: The number of times each EET level is entered
(standard deviations are given in parentheses) (n = 35).

Control Treatment
No viewing 6.9 (2.1) 6.2 (1.7)
Viewing 7.7 (3.4) 6.7 (3.2)
Controlled viewing 5.2 (2.8) 2.4 (2.6)
Changing 0.0 (0.0) 4.1 (1.6)

Table 3 shows how many times students used ma-

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

482

terials on each EET level. For example, students
in the control group used user-controlled animations
(controlled viewing) 5 times on average, whereas stu-
dents in the treatment group used them 2 or 3 times on
average. This also shows the shift from the use of an-
imations to the algorithm simulations in the treatment
condition.

3 METHODOLOGY

This is a follow-up analysis for the quantitative study
(Laakso et al., 2009), in which we showed that the use
of higher engagement levels has an positive effect on
the students’ learning outcomes. Thus, the descrip-
tion of the experiment in this section is in many ways
similar to the previous report. However, as we ana-
lyze the learning process — not its outcomes — the
methodology is naturally different.

The objective in this study is to compare the learn-
ing processes of students who collaboratively used al-
gorithm visualizations on two different EET levels,
namelycontrolled viewingandchanging. This is an
observational study based on screen capture and audio
recording analysis of students’ interactions during the
experiment. Students’ activities were recorded utiliz-
ing a screen capturing software. The recordings were
accompanied by an audio track and thus, contained
on-screen activities, i.e., mouse movements, keyboard
typings, scrolling of the tutorial page back and forth
in the browser window, as well as the conversation
between the pair members.

3.1 Participants

Students were mainly first year students, however,
some students from other years were also on the
course. All students had previously been using
TRAKLA2 during the course to complete three as-
signment rounds related to basic data structures (e.g.
lists, stacks and queues) and algorithm analysis, sort-
ing and binary tree traversing. Thus, all students
should have known how to use TRAKLA2, been fa-
miliar with its visualizations and all its features that
were needed to complete the assignments.

Students were randomized to the computer lab
sessions and sessions were randomly assigned to each
condition with the limitation that parallel sessions be-
longed to different EET levels. The total number of
participating students was 92. However, not all of
them allowed to monitor their performance, nor were
they willing to do group work. In addition, in some
of the workstations, the Java applet was not work-
ing properly and there were problems in data cap-

ture. Thus, the total number of participants (students)
was 71, divided into 7 groups (sessions). The original
number of lab sessions was 8, but the last one (that
would have been a control group) was excluded be-
cause it was an English speaking group, and the ma-
terials were mostly in Finnish.

The study was performed at the computer lab ses-
sions that lasted for 2 hours, and they were run on two
days in two consecutive weeks. Each day, there were
two times two sessions with different conditions (con-
trol and treatment) running simultaneously. There
were 10 to 15 participants in each session in both con-
ditions. The external conditions, such as noise level,
were similar in all sessions and based on the video and
audio analysis it did not affect the learning process.

3.2 Procedure

In the beginning of the session, students took the in-
dividual pre-test, in which they answered questions
related to binary heaps in 15 minutes. There were 9
simple questions about binary heaps, which could be
answered with a few words, and one question asked
students to draw a binary heap’s tree representation.
After this, they freely formed pairs with their peers
and gave their consent to participate in the experiment
and to be monitored during the experiment. If there
was an odd number of students, one group consisted
of 3 students. Each pair was allocated to a single com-
puter.

After the pre-test, students had 45 minutes to go
through the learning materials of their condition. The
collaboration was monitored by recording their talk-
ing and capturing their activities on the computer
screens. In addition, in this learning phase student
were given three paper-and-pencil assignments. The
session ended with an individual post-test. The stu-
dents were given 30 minutes to answer the questions
in the post-test. The post-test contained six questions
which were the same as in the pre-test, and in ad-
dition to that, there were seven questions that were
more difficult and comparable to the questions stu-
dents needed to answer during the learning session.

Each question in the pre- and post-tests was ana-
lyzed on a scale from 0 and 4. Zero points meant less
than 25 percent of the answer was correct in the an-
swer, and each point meant a 25 percent increase in
the correctness of the answer.

3.3 Method

In this overt research method, we observed the stu-
dents in their activities, i.e., by watching the record-
ings afterwards (Gall et al., 2006). Participants were

HOW DOES ALGORITHM VISUALIZATION AFFECT COLLABORATION? - Video Analysis of Engagement and
Discussions

483

Computer Science major students on a data structures
and algorithms course at Helsinki University of Tech-
nology. The students worked in pairs, and they were
aware of being observed. We asked a permission to
monitor them in advance.

We utilized TRAKLA2 in order to provide the stu-
dents with algorithm simulation exercises that act on
the EET levelchanging(i.e, treatment group). How-
ever, the students did not have the option to reset the
exercise in order to obtain a new similar exercise with
new input data, but they had to work with a fixed input
data for each exercise for the whole session. The an-
imations that the students used oncontrolled viewing
level (i.e., control group) were similar to the model
answers provided by the TRAKLA2 system.

There was a total of 35 videos (about 45 minutes
each), and we included three videos from both con-
ditions into this analysis, in total six videos. From
each video, we randomly selected a clip about 20 min-
utes long that contained activities on all applicable en-
gagement levels. The videos were analyzed in five
second time slots that were classified according to the
following four factors.

The first factor classified the engagement level ac-
cording to the extended engagement taxonomy:no
viewing(e.g., reading phase),viewing(e.g., watching
figures), controlled viewing(e.g., watching anima-
tions or model solutions step-by-step with user in con-
trol), andchanging(i.e., solving an algorithm simula-
tion exercise). However, if the students were solving
the paper-and-pencil exercises, these episodes were
classified into a separate class that was not used in the
analysis. The second factor categorized each time slot
based on audio analysis and determined whether the
pair was having a conversation (or if they were silent).
The third aspect specified the content of the conversa-
tion according to the following six categories:algo-
rithm and data structure (DS) behavior(e.g., students
discuss the features of binary heap),the tool and its
features(e.g., students discuss how to use the tool),
exercise(e.g., students discuss how to solve the ex-
ercise),referring to the learning materials(e.g., stu-
dents are reading parts of the learning material out
loud and then discussing that part of the materials),
on-topic(i.e., students are discussing something that
is related to the learning but does not belong to any
other category) andoff-topic (i.e., student are dis-
cussing something that does not relate to the learning
process in any way).

Three different persons classified randomly se-
lected videos with the restriction that each person an-
alyzed at least one video from the control group and
one from the treatment group.

4 RESULTS

In this section, we present the results of our study in
which we analyzed the students’ behavior during their
learning process. Six groups were randomly selected
(three groups from both conditions) from a total of 35
groups. We analyzed a 20-minute-long clip of screen
capturing video and audio for each group in order to
collect the amount of discussions, their contents, and
the EET-level at each moment in order to understand
the differences in the amount of discussions and their
contents between the engagement levels.

Figure 2: Distribution of activities in all groups on all EET-
levels.

Figures 2, 3 and 4 show the distributions between
the percentages of time that the students were con-
versing and silent. Based on the figures, one can
see that the amount of conversation increases when
the engagement level increases. This was also con-
firmed by using theχ2-test on counts (all:χ2(4) =
330.5, p < .001, control: χ2(4) = 84.1, p < .001,
treatment:χ2(4) = 134.4, p < .001), which showed
that the engagement level has an effect on the amount
of discussion, overall and in each condition.

Figure 3: Distribution of activities for control groups on all
EET-levels.

Pairwise comparison of the distributions on each
EET level between conditions (see Figure 5) with the
χ2-test on counts showed that the distributions were
different on levelsno viewing(χ2(1) = 9.2, p< .001),
viewing(χ2(1) = 24.4, p< .001) andcontrolled view-
ing (χ2(1) = 21.4, p < .001), but not when students
were doing a paper and pencil exercise. The test could
not be performed on the changing level as it was only
available to treatment condition.

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

484

Table 4: Discussion content for all groups on all EET-levels.

Alg. & DS Code Exercise Referring to Tool Coordination On Off
behavior reading learning mat. topic topic

Paper and pencil 65.2% 0.9% 11.3% 0.0% 0.0% 15.7% 1.7% 5.2%
exercise
No viewing 39.2% 14.9% 5.4% 14.2% 4.1% 6.8% 10.1% 5.4%
Viewing 32.8% 24.8% 5.1% 4.4% 2.2% 7.3% 16.8% 6.6%
Controlled 68.7% 19.4% 0.9% 3.3% 1.9% 3.8% 0.0% 1.9%
viewing
Changing 65.0% 0.0% 7.8% 0.0% 13.8% 1.8% 9.7% 1.8%

Figure 4: Distribution of activities for treatment groups on
all EET-levels.

Figure 5: The percentages of time that students were dis-
cussing on each EET-level. The rest of the time students
were silent. The control group does not have a value for the
changinglevel, because it was unavailable for them.

Tables 4 and 5 show the distributions of the discus-
sion contents on each engagement level and in each
condition. When looking at the overall distribution,
one can observe that the distributions of the discus-
sion contents are similar on thecontrolled viewing
andchanginglevels and when students are doing the
paper and pencil exercises. Similarly, the distribu-
tions ofno viewingandviewingseem more alike.

However, when the distributions between the con-
ditions are compared, it can be seen that theno view-
ing, viewingandcontrolled viewinglevels induce dif-
ferent kinds of discussions between the conditions.
In control condition, the discussions are more re-
lated to the algorithm and data structure (DS) be-
havior, whereas in treatment condition larger propor-
tions of the discussions on these levels are related to
the pseudo code reading. In treatment condition, the

changinglevel seems to be similar to thecontrolled
viewinglevel and the paper and pencil exercise doing.

5 DISCUSSION

In this study, we have investigated the collaboration
process when students were learning with visualiza-
tion on different engagement levels. We can con-
clude that higher engagement with the visualization
has a positive effect on students interaction with each
other. Moreover, it seems that when students work on
a larger number of engagement levels, their collabo-
ration and communication is further improved.

Our results support the findings of (Hundhausen
and Brown, 2008; Hundhausen, 2002), i.e., the higher
engagement level between the visualization and learn-
ers increases the peer-to-peer (or student-student by
(Moore, 1989)) communication. Students are more
actively involved as the engagement level increases.
Based on the results, we can say that if students work
on higher engagement levels, their activities also pos-
itively change on lower levels. This phenomenon can
be easily observed when we investigate the changes
in the amount of discussion in the Figures 3 and 4
on controlled viewingand viewing between control
and treatment groups. When students were working
on changing level in the treatment group, the amount
of silence dramatically decreased as the engagement
level increased. At the two highest levels, the silence
is practically absent. In control condition, the amount
of silence decreases, but the change is smaller. For
example, there is over 30% of the time when stu-
dents are silent oncontrolled viewinglevel in con-
trol group while the time of being silent is well below
10% for the treatment group. The same difference is
much more drastic in theviewing-levelbetween the
groups. Our understanding is that this is due to the
fact that while students are solving a paper-and-pencil
or TRAKLA2 algorithm simulation exercise, they re-
alize that they cannot solve it. Therefore, they need to
go back to the learning materials or the correspond-

HOW DOES ALGORITHM VISUALIZATION AFFECT COLLABORATION? - Video Analysis of Engagement and
Discussions

485

Table 5: Discussion content for control and treatment groups on all EET-levels.

Alg. & DS Code Exercise Referring to Tool Coordination On Off
behavior reading learning mat. topic topic

CONTROL
Paper and pencil 67.0% 0.9% 11.6% 0.0% 0.0% 13.4% 1.8% 5.4%
exercise
No viewing 25.7% 0.0% 11.4% 25.7% 14.3% 14.3% 2.9% 5.7%
Viewing 54.2% 0.0% 12.5% 4.2% 0.0% 8.3% 8.3% 12.5%
Controlled 79.7% 7.4% 0.7% 4.7% 0.7% 4.1% 0.0% 2.7%
viewing
TREATMENT
Paper and pencil 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0%
exercise
No viewing 43.4% 19.5% 3.5% 5.3% 0.9% 4.4% 12.4% 5.3%
Viewing 28.3% 30.1% 3.5% 5.3% 2.7% 7.1% 18.6% 5.3%
Controlled 42.9% 47.6% 1.6% 0.0% 4.8% 3.2% 0.0% 0.0%
viewing
Changing 65.0% 0.0% 7.8% 1.8% 13.8% 1.8% 9.7% 1.8%

ing animation in order to understand, how to solve
the exercise. The reason that this is happening more
in the treatment condition is the instant feedback that
TRAKLA2 provides on each simulation, which helps
students to understand when their mental models of
the algorithms and data structures are not viable and
they need to revise them. This example also indicates
that the visiting of the engagement levels does not
happen in any particular order, but can happen ran-
domly.

(Teasley, 1997) has found that talking is correlated
with better learning results. This, at least partially,
explains why students learned better in the treatment
condition compared to the control condition. The
visualization helped them to discuss relevant topics
in order to learn them. Because the topic that the
participants were studying was unfamiliar to most of
the participants, the conversations in the group aided
students to better cope with the questions and prob-
lems that arose during the learning process. There-
fore, we believe that pair-support is one of the key
factors in enhancing students’ learning, and it should
be taken into account when designing and developing
next generation learning tools and methods. Teasley
has also found thattransactive reasoning(Berkowitz
and Gibbs, 1983) is strongly correlated with learning
results, and in the future studies, we will also ana-
lyze the amount of transactive reasoning in the dis-
cussions.

In addition to the amount of discussion, we an-
alyzed the discussion contents. Based on the analy-
sis, we found that the students’ discussions were re-
lated to the learned topic, otherwise there were no

large differences. The only noticeable difference was
the absence ofcode readingon thechanginglevel.
When we compared the distributions between condi-
tions, there were more noticeable difference. In the
treatment condition, the discussions related to the al-
gorithm and data structure behavior and code read-
ing were more balanced on levelsno viewing, viewing
andcontrolled viewingcompared to the control con-
dition, where students concentrated on the algorithm
and data structure behavior and had very little discus-
sion on the code. One could argue that the discus-
sions on various levels of abstraction increased the
students’ understanding of the topic, and therefore,
this could also be an explanation why students per-
formed better in the post-test in the treatment condi-
tion.

6 CONCLUSIONS

Many studies related to the use of algorithm visualiza-
tions (AV) in teaching and learning have focused on
the learning outcomes. On the one hand, (Extended)
Engagement Taxonomy (EET) has been suggested to
answer the question, if an AV system is effective in
this respect or not. On the other hand, collaborative
learning (CL) has proven to be an efficient teaching
and learning method. However, very little is known
about the interconnection between EET and CL.

We have investigated the use of AV in CL in many
repeated studies. Our previous studies have confirmed
that the engagement levels have a role to play in learn-
ing outcomes. The pairs of students that used AV

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

486

on higher engagement levels performed better in the
post-test than those pairs learning on lower engage-
ment levels. The research in this paper has revealed
that the amount of discussion in collaboration is also
different between engagement levels, and increases as
the engagement level increases.

Based on this study, EET not only predicts the in-
crease in learning performance when student groups
learn with visualization on higher engagement level,
but also explains it by enabling students to have more
discussions on topics that are relevant for learning.
Thus, engagement goes hand in hand with collabora-
tion so that the engagement taxonomy level has an in-
fluence over the collaborative learning process as well
as the learning outcomes.

6.1 Future Directions

(Teasley, 1997) has found thattransactive reasoning
(Berkowitz and Gibbs, 1983) (TR) is strongly corre-
lated with learning results. Transactive reasoning is
discussion about one’s own or collaboration partner’s
reasoning and logical thinking. TRAKLA2 exercises
have interesting interconnections with the character-
izations of TR categories. For example, Teasley de-
scribesprediction type TR as “explaining ..., stating
a hypothesis about causal effects” Moreover, the
feedback requestcategory can be characterized with a
question: “Do you understand or agree with my posi-
tion?”

Even though these do not correspond directly to
TRAKLA2 exercises, the same elements are present
in the exercise solving process. The student is sup-
posed topredicteach step in the algorithm simulation;
and s/he receives instantfeedbackfrom the exercise.
Thus, this kind of framework could function as a fu-
ture testbed to explain good learning results that also
individual learners get in the TRAKLA2 environment
or in any other environment.

ACKNOWLEDGEMENTS

This work was supported by the Academy of Finland
under grant numbers 111396. Any opinions, find-
ings, and conclusions or recommendations expressed
in this material are those of the authors and do not
necessarily reflect the views of the Academy of Fin-
land.

REFERENCES

Beck, L. L. and Chizhik, A. W. (2008). An experimental
study of cooperative learning in CS1. InSIGCSE ’08:
Proceedings of the 39th SIGCSE technical symposium
on Computer science education, pages 205–209, New
York, NY, USA. ACM.

Ben-Bassat Levy, R., Ben-Ari, M., and Uronen, P. A.
(2003). The Jeliot 2000 program animation system.
Computers & Education, 40(1):15–21.

Berkowitz, M. W. and Gibbs, J. C. (1983). Measuring the
development of features in moral discussion.Merill-
Palmer Quarterly, 29:399–410.

Evans, C. and Gibbons, N. J. (2007). The interactivity ef-
fect in multimedia learning.Computers & Education,
49(4):1147–1160.

Gall, M. D., Gall, J. P., and Borg, W. R. (2006).Educa-
tional Research: An Introduction (8th Edition). Allyn
& Bacon.

Garrison, D. R. (1993). A cognitive constructivist view of
distance education: An analysis of teaching-learning
assumptions.Distance Education, 14:199–211.

Grissom, S., McNally, M., and Naps, T. L. (2003). Algo-
rithm visualization in CS education: Comparing levels
of student engagement. InProceedings of the First
ACM Symposium on Software Visualization, pages
87–94. ACM Press.

Hundhausen, C. D. (2002). Integrating algorithm visual-
ization technology into an undergraduate algorithms
course: Ethnographic studies of a social constructivist
approach.Computers & Education, 39(3):237–260.

Hundhausen, C. D. (2005). Using end-user visualization
environments to mediate conversations: A ‘Commu-
nicative Dimensions’ framework.Journal of Visual
Languages and Computing, 16(3):153–185.

Hundhausen, C. D. and Brown, J. L. (2008). Designing,
visualizing, and discussing algorithms within a CS 1
studio experience: An empirical study.Computers &
Education, 50(1):301–326.

Hundhausen, C. D., Douglas, S. A., and Stasko, J. T.
(2002). A meta-study of algorithm visualization ef-
fectiveness.Journal of Visual Languages and Com-
puting, 13(3):259–290.

Korhonen, A., Malmi, L., and Silvasti, P. (2003).
TRAKLA2: a framework for automatically assessed
visual algorithm simulation exercises. InProceedings
of Kolin Kolistelut / Koli Calling – Third Annual Baltic
Conference on Computer Science Education, pages
48–56, Joensuu, Finland.

Laakso, M.-J., Myller, N., and Korhonen, A. (2009). Com-
paring learning performance of students using algo-
rithm visualizations collaboratively on different en-
gagement levels. Accepted to the Journal of Educa-
tional Technology & Society.

Malmi, L., Karavirta, V., Korhonen, A., Nikander, J.,
Seppälä, O., and Silvasti, P. (2004). Visual algo-
rithm simulation exercise system with automatic as-
sessment: TRAKLA2. Informatics in Education,
3(2):267 – 288.

HOW DOES ALGORITHM VISUALIZATION AFFECT COLLABORATION? - Video Analysis of Engagement and
Discussions

487

McMahon, M. (1997). Social constructivism and the world
wide web – a paradigm for learning. InProceedings
of the ASCILITE conference, Perth, Australia.

Moore, M. G. (1989). Editorial: Three types of interac-
tion. The American Journal of Distance Education,
page 16.

Myller, N., Bednarik, R., Ben-Ari, M., and Sutinen, E.
(2008). Applying the Extended Engagement Taxon-
omy to Collaborative Software Visualization. Ac-
cepted to the ACM Transactions on Computing Ed-
ucation.

Myller, N., Laakso, M., and Korhonen, A. (2007). Analyz-
ing engagement taxonomy in collaborative algorithm
visualization. In Hughes, J., Peiris, D. R., and Ty-
mann, P. T., editors,ITiCSE ’07: Proceedings of the
12th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education, pages
251–255, New York, NY, USA. ACM Press.

Naps, T. L. and Grissom, S. (2002). The effective use of
quicksort visualizations in the classroom.Journal of
Computing Sciences in Colleges, 18(1):88–96.

Naps, T. L., Rößling, G., Almstrum, V., Dann, W., Fleis-
cher, R., Hundhausen, C., Korhonen, A., Malmi, L.,
McNally, M., Rodger, S., and Velázquez-Iturbide,
J. Á. (2002). Exploring the role of visualization and
engagement in computer science education. InWork-
ing Group Reports from ITiCSE on Innovation and
Technology in Computer Science Education, pages
131–152, New York, NY, USA. ACM Press.

Palincsar, A. S. (1998). Social constructivist perspectives on
teaching and learning.Annual Review of Psychology,
49:345–375.

Piaget, J. (1977).The Development of Thought: Equilibra-
tion of Cognitive Structures. Viking, New York.

Suthers, D. D. and Hundhausen, C. D. (2003). An exper-
imental study of the effects of representational guid-
ance on collaborative learning processes.Journal of
the Learning Sciences, 12(2):183–219.

Teague, D. and Roe, P. (2008). Collaborative learning: to-
wards a solution for novice programmers. InACE
’08: Proceedings of the tenth conference on Aus-
tralasian computing education, pages 147–153, Dar-
linghurst, Australia, Australia. Australian Computer
Society, Inc.

Teasley, S. (1997). Talking about reasoning: How important
is the peer in peer collaboration. In Resnick, L., Säljö,
R., Pontecorvo, C., and Burge, B., editors,Discourse,
Tools and Reasoning: Essays on Situated Cognition,
pages 361–384. Springer, New York.

Valdivia, R. and Nussbaum, M. (2007). Face-to-face col-
laborative learning in computer science classes.Inter-
national Journal of Engineering Education, 23:434–
440(7).

Vygotsky, L. S. (1978). In Cole, M., John-Steiner, V., Scrib-
ner, S., and Souberman, E., editors,Mind in Society.
Harvard University Press, Cambridge, Mass.

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

488

P5.

Myller, N. (2007). Automatic generation of prediction questions during program visualization.
Electronic Notes in Theoretical Computer Science, 178:43–49. (Proceedings of the Fourth
Program Visualization Workshop).

Reprinted with permission, Copyright 2007 Elsevier B.V.

5

Automatic Generation of Prediction

Questions during Program Visualization

Niko Myller1 ,2

Department of Computer Science
University of Joensuu
Joensuu, Finland

Abstract

Based on previous research, it seems that the activities performed by and the engagement of the students

matter more than the content of the visualization. One way to engage students to interact with a visualiza-

tion is to present them with prediction questions. This has been shown to be beneficial for learning. Based

on the engagement taxonomy and benefits of the question answering during the algorithm visualization, we

propose to implement an automatic question generation into a program visualization tool, Jeliot 3. In this

paper, we explain how the automatic question generation can be incorporated into the current design of

Jeliot 3. In addition, we provide various example questions that could be automatically generated based on

the data obtained during the visualization process.

Keywords: Program visualization, Engagement taxonomy, Automatic question generation.

1 Introduction

According to Hundhausen et al. [6], the activities performed by and the engage-

ment of the students matter more than the content of the visualization. Thus, a

research program has been laid down in which the level of engagement (engagement

taxonomy) and its effects on learning with algorithm or program visualization are

being studied [13]. One of the ways to engage students to interact with a visual-

ization is to present them with questions, which ask the students to predict what

happens next in the execution or visualization (level 3: responding) [12]. This has

been shown to be beneficial for learning as well [3,11]. Furthermore, interaction

and question answering during learning have been found to have a positive influ-

ence on problem-solving ability in the given domain [5]. In addition to the benefits

1
I want to thank Erkki Sutinen and Moti Ben-Ari for their helpful comments and guidance during the

research work, and Andrés Moreno and Roman Bednarik for fruitful discussions related to the topic of this

paper. Part of this work was carried out during author’s visit to Massey University, Palmerston North, New

Zealand.

2
Email: firstname.lastname@cs.joensuu.fi

Electronic Notes in Theoretical Computer Science 178 (2007) 43–49

1571-0661/$ – see front matter © 2007 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2007.01.034

found in the literature, in my work in progress, I am trying to show that actually

the engagement taxonomy has a linkage to collaboration. The hypothesis in this

research is that the higher the engagement level the larger the positive impact on

collaboration.

Based on the found benefits of the question answering during visualization, we

propose to implement an automatic question generation into a program visualization

tool, Jeliot 3 [9]. In this paper, we explain how the automatic question generation

can be incorporated into the current design of Jeliot 3. In addition, we provide

various example questions that could be automatically generated based on the data

obtained during the visualization process. Finally, conclusions and future directions

are presented.

2 Jeliot 3

Jeliot 3 is a program visualization system that visualizes the execution of Java pro-

grams [9]. It has been designed to support the teaching and leaning of introductory

programming. Jeliot visualizes the data and control flow of the program. In a class-

room study, it was found that especially the mid-performers benefited from the use

of Jeliot while the performance of others was not harmed [1].

We describe the structure of Jeliot 3 in Figure 1 in order to explain in the

next section how the automatic question generation fit into the current design. The

user interacts with the user interface and creates the source code of the program (1).

The source code is parsed and checks are performed before the actual interpretation

by DynamicJava, a Java interpreter (2). During the interpretation, a representa-

tion of the program’s execution, MCode, is extracted (3). MCode is assembly like

language in which each line represents a single instruction that contains instruction

type, instruction identifier (can be used as a reference), variable number of operands

(references to other instruction ids, type and value) and the instruction’s location

in source code [8]. MCode is interpreted and the directions are given to the visual-

ization engine (4 and 5). The user can control the animation by playing, pausing,

rewinding or playing step-by-step the animation (6). Furthermore, the user can

give input to the program executed by the interpreter (6, 7 and 8). For further

information related to the internal structure of Jeliot the reader is pointed to [8,10].

3 Automatic Question Generation in Jeliot 3

The steps of question generation are: 1) information collection, 2) question forma-

tion, and 3) its presentation during the animation. In order to generate prediction

questions, we need to collect information related to the program interpretation. We

list here items that are needed to generate a question:

• Type of Expression, so that different question text is generated for assignment

expression compared to method call.

• Instruction identifier to ensure that the question is popped up at right time.

N. Myller / Electronic Notes in Theoretical Computer Science 178 (2007) 43–4944

��
��

User

User interface

�
�

�
�

Source code
of the program

Interpretation

of the program

�

�

�

�
Representation

of the program’s

execution
MCode

Visualization
engine

Intermediate
presentation

Interpreter
�

�

1

!
2

!
3

4

"
5

!
6

!
7

#
#

#
#

#
#

#$

8

Fig. 1. The functional structure of Jeliot 3 [9].

• All the different concepts related to the expression that the question concerns. In

this way, students performance in questions related to different concepts can be

recorded into a user model.

• Correct answer that is the result of the program’s interpretation.

• Zero to three incorrect answers depending on the question type: multiple choice

questions have four answers, yes-or-no questions have two answers and open-ended

questions have none. Currently, incorrect answers are determined randomly, but

it could be possible to apply certain heuristics based on the previous steps in the

execution and current values of variables.

• Location of the expression in the source code so we can highlight that part of the

code when the question is shown.

As discussed in the previous section, the interpretation of the program produces

a program trace that is called MCode. In order to collect the listed information,

we implemented a preprocessor for MCode. It goes through the MCode before it

is interpreted and extracts the information from the MCode. This information is

saved so that MCode interpreter can query them based on the expression identifier

during the interpretation. In the Figure 1, this phase would be located in the middle

of the arrow 4.

Then during the interpretation of every MCode instruction, interpreter checks

whether a question for the current instruction identifier is found. If a question is

found, it is shown to the user before the instruction is animated. We adapted the

avInteraction package developed by Rößling and Häussge [14] in order to present

questions and collect users’ answers. The answers can be saved into a file or a

N. Myller / Electronic Notes in Theoretical Computer Science 178 (2007) 43–49 45

database. Thus, this feature can be used in order to adapt the program visualization

as well as to summatively evaluate the students performance as part of their course

work or on-line exam.

As a proof of concept, we have implemented a restricted question generation

that only asks questions related to the results of the assignment statements. An

example of the generated question is displayed in Figure 2. The question is shown in

the right together with the visualization and the related code segment is highlighted

in the left.

Fig. 2. An example question generated by Jeliot 3.

Moreover, different kinds of question related to the execution and animation of

the program can be automatically generated. We list here some possibilities:

• Predict the result of any expression evaluation.

• Ask the user to click on the variable which is part of the expression, or into which

the result of an expression evaluation is going to be assigned.

• In loops, it is possible to ask if the execution will continue for next round or not

and in conditional statements, it is possible to ask if the execution will continue

into the then or else part of the statement.

• User can be asked to click the line (or line number) that is being executed next,

for instance, after a method call or in the beginning of a loop or an if-statement.

• In sorting, it would be possible to determine a swap operation and ask the user

to click on those array cells that are going to be swapped.

It is not feasible to pop up questions in every possible place, because students can

get annoyed or tired of the questions. Thus, there should be ways to determine when

it is most appropriate and meaningful to generate a question. For example, Jeliot

N. Myller / Electronic Notes in Theoretical Computer Science 178 (2007) 43–4946

could allow the user to select the variables or expression types that should generate

questions and thus focus the questions on the selected concepts or parts of the

program. Similarly to related systems (e.g. Problets and WadeIn (see Section 4)),

we could adapt the question generation, visualizations and explanations based on

the performance data of the user. We have done preliminary work on this direction,

and it is described in [7].

Moreover, there should be a possibility for a teacher to manually create questions

for programs in order to allow the use of question generation for quizzes or in-class

exams. This can be achieved with the package that we use to display and save

the question information, because it provides a file format for manual question

specification [14].

4 Previous Work

Kumar et al. [4] have developed a system, called Problets, that generates exercises

related to programming concepts (e.g. loops, pointers etc.) from language indepen-

dent templates, thus supporting multiple programming languages. These exercises

present a program and ask the user to identify the lines that generate output and

determine what is the output during the execution of the program. In exercises re-

garding pointers, user needs to identify the code lines that are either syntactically or

semantically erroneous. These exercises are delivered in the form of an applet that

is connected to a server that handles the exercise generation and stores information

related to the performance of the user. This is done in order to analyze what kind

of exercises to present to the user.

When compared to the question generation in Jeliot 3, we can identify certain

similarities and differences. Both ask questions related to the execution of a pro-

gram. However, Problets are related to the program code, whereas questions in

Jeliot can be related to the program code and visualization. This can give more

variation in the question types as seen in Section 3. Jeliot supports dynamic as-

pects of the program execution, for example, user can give input to the program and

the questions are adjusted accordingly because they are based on the information

acquired during the interpretation process. Currently, Jeliot supports only Java.

However, if interpreters for other programming languages are integrated into it, the

question generation is language independent. Problets support multiple program-

ming languages because of the language independent templates that are translated

to the programming language in question. Problets can be used for learning and

testing similarly as the automatic question generation in Jeliot 3.

Another related system is JHAVÉ [11] which combines visualization tools and

support for interaction. It provides textual materials, questions, and other exercises

related to the visualization, and thus engages users to the visualization. JHAVÉ

supports only post-mortem visualization of the programs meaning that user needs

to provide input data before the program or algorithm is run. The questions need

to be defined manually into the source code of the program. These issues make the

approach different from Jeliot.

N. Myller / Electronic Notes in Theoretical Computer Science 178 (2007) 43–49 47

WadeIn II [2] visualizes the expression evaluation in C language. The sys-

tem consist of two modes: exploration and knowledge evaluation. The question

generation is related to the knowledge evaluation mode in which student needs to

demonstrate the understanding of the expression evaluation by simulating it. The

task is to simulate the evaluation of the expression, whereas in Jeliot, a user is

asked to predict what will happen next in the given context of the program and its

execution.

5 Conclusion and Future Work

We have presented a way to automatically generate prediction questions during a

program visualization automatically and a proof of concept implementation of it.

We have also presented different types of questions that could be automatically

generated with the same framework and ways to determine when those questions

should be raised in order to support different ways of learning and testing.

As future work, we implement the proposed question types and test their us-

ability. We also plan to study the use of question answering both during individual

as well as collaborative learning of programming concepts and programming. We

will variate the level of engagement to analyze its effects to the learning and col-

laboration. Furthermore, we can test how different types of questions support the

understanding of programs and programming learning. For example, should the

questions be related to data flow or control flow, or both. In addition to this, we

are planning to use the feature in distance education as a part of the summative

evaluation.

References

[1] Ben-Bassat Levy, R., M. Ben-Ari and P. A. Uronen, The Jeliot 2000 program animation system,
Computers & Education 40 (2003), pp. 1–15.

[2] Brusilovsky, P. and T. D. Loboda, WADEIn II: A Case for Adaptive Explanatory Visualization, in:
Proceedings of The Eleventh Annual Conference on Innovation and Technology in Computer Science
Education, Bologna, Italy, 2006.

[3] Byrne, M. D., R. Catrambone and J. T. Stasko, Evaluating animations as student aids in learning
computer algorithms, Computers & Education 33 (1999), pp. 253–278.

[4] Dancik, G. and A. Kumar, A Tutor for Counter-Controlled Loop Concepts and Its Evaluation, in:

Proceedings of Frontiers in Education Conference (FIE 2003), Boulder, CO, USA, 2003, pp. T3C–7–

12.

[5] Evans, C. and N. J. Gibbons, The interactivity effect in multimedia learning (2006), accepted to

Computers & Education.

[6] Hundhausen, C. D., S. A. Douglas and J. T. Stasko, A meta-study of algorithm visualization
effectiveness, Journal of Visual Languages and Computing 13 (2002), pp. 259–290.

[7] Lin, T., A. Moreno, N. Myller, Kinshuk and E. Sutinen, Inductive Reasoning and Programming
Visualization, an Experiment Proposal, in: Proceedings of the Fourth International Program
Visualization Workshop, Florence, Italy, 2006, pp. 83–88.

[8] Moreno, A., “The Design and Implementation of Intermediate

Codes for Software Visualization,” Master’s thesis, Deparment of Computer Science, University of

Joensuu (2005), (http://cs.joensuu.fi/jeliot/files/Andres thesis.pdf) (Accessed (5.9.2006)).

N. Myller / Electronic Notes in Theoretical Computer Science 178 (2007) 43–4948

[9] Moreno, A., N. Myller, E. Sutinen and M. Ben-Ari, Visualizing Program with Jeliot 3, in: Proceedings
of the International Working Conference on Advanced Visual Interfaces, AVI 2004, Gallipoli (Lecce),

Italy, 2004, pp. 373–380.

[10] Myller, N., “The Fundamental Design Issues of Jeliot 3,” Master’s thesis, Deparment of Computer

Science, University of Joensuu (2004), (http://cs.joensuu.fi/jeliot/files/niko thesis.pdf)
(Accessed (5.9.2006)).

[11] Naps, T. L., JHAVÉ – Addressing the Need to Support Algorithm Visualization with Tools for Active
Engagement, IEEE Computer Graphics and Applications 25 (2005), pp. 49–55.

[12] Naps, T. L., J. R. Eagan and L. L. Norton, JHAVÉan environment to actively engage students in
Web-based algorithm visualizations, in: Proceedings of the thirty-first SIGCSE technical symposium on
Computer Science Education (2000), pp. 109–113.

[13] Naps, T. L., G. Rös̈ling, V. Almstrum, W. Dann, R. Fleischer, C. Hundhausen, A. Korhonen,

L. Malmi, M. McNally, S. Rodger and J. Á. Velázquez-Iturbide, Exploring the Role of Visualization and
Engagement in Computer Science Education, in: Working Group Reports from ITiCSE on Innovation
and Technology in Computer Science Education (2002), pp. 131–152.

[14] Rößling, G. and G. Häussge, Towards Tool-Independent Interaction Support, in: A. Korhonen, editor,

Proceedings of the Third International Program Visualization Workshop, Warwick, England, 2004, pp.

110–117.

N. Myller / Electronic Notes in Theoretical Computer Science 178 (2007) 43–49 49

P6.

Myller, N. and Nuutinen, J. (2006). JeCo: Combining program visualization and story weaving.
Informatics in Education, 5(2):195–206.

Reprinted with permission, Copyright 2006 Institute of Mathematics and Informatics, Vilnius

6

Informatics in Education, 2006, Vol. 5, No. 2, 255–264 255
 2006Institute of Mathematics and Informatics, Vilnius

JeCo: Combining Program Visualization and Story
Weaving

Niko MYLLER Jussi NUUTINEN
Department of Computer Science, University of Joensuu
P.O. Box 111, FI-80101 Joensuu, Finland
e-mail: niko.myller@cs.joensuu.fi, jussi.nuutinen@cs.joensuu.fi

Received: May 2006

Abstract. We present a collaborative learning tool for programming, Jeliot Collaboratively or JeCo.
Jeliot Collaboratively is a combination of a program visualization tool for Java programs, called
Jeliot 3, and a collaborative authoring tool, Woven Stories. We introduce these systems and explain
how they can be used in learning. Furthermore, we present future directions in order to support a
wider range of use cases with JeCo.

Key words: CSCL, program visualization, programming learning, collaborative authoring, Java.

1. Introduction

Currently, a large number of students are struggling with their programming courses (Mc-
Crackenet al., 2001) and especially in the distance education courses in programming
(V. Meisalo et al., 2003). Pair programming is one of the processes suggested by ex-
treme programming (XP) methodology. Pair programming has been found successful in
learning situations (Kuppuswami and Vivekanandan; McDowellet al., 2003; Williamset
al., 2003; Nagappanet al., 2003; Stottset al., 2003). Studies have shown that students
enjoy programming in pairs, produce better quality programs and perform better in ex-
aminations. Furthermore, students should also learn team work skills because team work
is one of the key elements of software development. Pair or group programming could
be introduced to distance education programming courses as well but that would require
new tools to support the interaction between students when they are learning and working
at a distance. However, there have been only few attempts to develop appropriate tools
(Ratcliffe and Thomas, 2004; Jehng and Chan, 1998; Hanks, 2005).

Hundhausen (Hundhausen, 2002) and Hübscher-Younger (Hübscher-Younger and
Narayanan, 2003) have claimed that when communication and collaboration are ac-
companied by visualizations, students’ learning of algorithms is enhanced. According
to Hundhausen (Hundhausen, 2002), bi-directional communication between instructor
and students as well as between students supported with relevant visualizations helps stu-
dents to learn algorithmics because visualization supports relevant communication of the
topic. Hübscher-Younger (Hübscher-Younger and Narayanan, 2003) states that construc-

256 N. Myller, J. Nuutinen

tion, sharing and discussion of the students’ representations of a certain algorithm help
students to learn the algorithm better.

We have developed a program visualization tool,Jeliot 3, that can be used during
learning and teaching of programming (Morenoet al., 2004c). It is designed to help
novice level students by visualizing the Java program’s state and source code during
the execution of the program. In this way, students are able to build a reference model
that they can use to solve problems they have not encountered before and they acquire
vocabulary to discuss programs with each other and their teacher (Ben-Bassat Levyet al.,
2003).

As a first attempt to support distributed collaborative programming and learning to
program, we have combined a program visualization system, Jeliot 3, and a co-authoring
tool, Woven Stories, into an application calledJeCo (Jeliot Collaboratively) (Morenoet
al., 2004b; Morenoet al., 2004a). The version of JeCo described in earlier papers was
based on the previous version of Woven Stories which had limited capabilities. In this
paper, we explain a new version of JeCo and the underlying systems: Jeliot 3 and the new
version ofWoven Stories (Nuutinen, 2006). Moreover, we present some future directions
which could benefit all these systems in the contexts of distance education.

2. Previous Work

As stated in the previous section, new tools are needed in order to support the interaction
between students when they are learning and working at a distance. There are several tools
that support just the minimum requirements (e.g., collaborative editor or desktop sharing)
to support distributed pair/group-programming as reviewed by (Hanks, 2005). However,
there are less tools that try to elaborate on this and add other features to increase the
usability and productivity of the tools such as visualizations or gestures (Hanks, 2005).

An example of a tool that uses visualization to support collaboration isVorteX (Rat-
cliffe and Thomas, 2004). It supports the design of programs with a modifiable class dia-
gram that is shared by the group. This tool can be primarily used only during the design
phase of programming, however, other parts of the programming process should also be
supported. Jehng and Chan (Jehng and Chan, 1998) have developed a collaborative pro-
gramming environment for LISP-LOGO. They also showed that their environment had a
positive influence on learning results when students were learning recursion in collabora-
tion. This is a good indication how visualization can support programming when students
are not co-present. However, LISP-LOGO or LOGO based languages in general are not
commonly used in programming courses and thus this approach is not widely applicable
as such.

3. Jeliot

Jeliot 3 (Morenoet al., 2004c) is a program visualization tool supporting teaching and
learning of programming in introductory Java programming courses. It supports dif-

JeCo: Combining Program Visualization and Story Weaving 257

ferent kinds of approaches in teaching of introductory programming such as objects-
first or fundamentals-first. It is released under the GPL and is freely available at
(http://cs.joensuu.fi/jeliot/).

Fig. 1 illustrates the user interface of Jeliot 3. Most of the Java language concepts
are currently supported and visualized by Jeliot 3. It displays the operation of a virtual
machine during program execution. However, the animation takes place on the Java lan-
guage level and not the level of bytecode to make it relevant for students. It shows all the
details of the program execution by visualizing expression evaluations, method calls, and
object- and array allocations. Thus, the visualization can be used to teach and learn pro-
gramming concepts. Another view (not shown in the figure) shows the method call tree of
the executed program. Furthermore, Jeliot provides a possibility to explore the history of
the execution through static snapshots taken before and after a possible interesting event
in the visualization.

In a classroom study, Ben-Bassat Levyet al. (Ben-Bassat Levyet al., 2003) found that
Jeliot 2000 supported the learning of mediocre students. Students created viable mental
models of the program execution based on the Jeliot’s visual display. Jeliot also provided
them with vocabulary to describe the execution. Because of that students were able to an-
swer questions related to unseen situations by drawing a Jeliot-like display and describing
the situation through the diagram. Because Jeliot 3 uses the same visualization scheme
as Jeliot 2000 and only extends it, we can assume that similar results are achieved when
Jeliot 3 is used in a classroom.

One reason to develop Jeliot 3 was to enhance the modularity and extensibility of the
previous versions. We have developed an extension that allows Jeliot 3 to interact with
BlueJ, a widely used educational programming environment. It is possible to start anima-
tions in Jeliot directly from BlueJ’s object bench. Another plugin has been developed for
Editing Java Easily (EJE), a development environment containing special features that
simplify the usage of the tool for novices and allows the use of the tool directly from a
web page. Furthermore, in this paper we present how Jeliot 3 has been combined with a
co-authoring tool, Woven Stories, to enable use of Jeliot collaboratively on the web.

Fig. 1. User interface of Jeliot 3.

258 N. Myller, J. Nuutinen

4. Woven Stories

Woven Stories (WS) (Gerdtet al., 2001; Nuutinen, 2006) is a concept that allows persons
to write stories with a new approach. The stories are built of small blocks that are called
sections. Each section can contain an unlimited amount of text. The sections are linked
together with arrows that are callededges. Using this approach the story can be visualized
as a directed graph where each path forms an individual story.

Fig. 2 represents a simple woven story that has four differentstorypaths. These sto-
rypaths have been achieved by introducing three new sections to the original story of six
sections (gray in Fig. 2). With this approach, the users are able to change the existing
story by introducing new sections to it. It means that the users are able to introduce their
ideas without removing anything from the original story. The result of the writing process
with Woven Stories can be a versatile document with several optional storypaths.

The concept of Woven Stories is a mixture ofconcept mapping (Novak and Gowin,
1984),flow charts, collaborative writing, graphs andfinite automata. It forces the users to
think what they write, to divide the texts into sections and finally, to see the relationships
between the sections. Since people learn what they process (Bereiter, 2002; pp. 274), this
approach can be efficient for learners, especially in collaborative situations.

Based on the concept of the Woven Stories a client-server application has been de-
veloped (Nuutinen, 2006). This tool consist of a client,the Loom, and a server called
WS-Server. Loom implements the concept of the Woven Stories into a collaborative en-
vironment, where synchronous and asynchronous users can work with the same story.
Fig. 3 represents the user interface of the Loom.

While using the Loom the users can see at all times the structure of the document
from theStory Space (1. in Fig. 3). The contents of the sections can be seen by selecting
the section from the Story Space. The contents are displayed on theContent Viewer (2.
in Fig. 3) at the top right corner. The Loom also supports small scale communication
with Chat (4. in Fig. 3) and awareness withAction Info (5. in Fig. 3) that displays recent
activities of the current document.

The Story Space has a relaxed WYSIWIS (What You See Is What I See) approach
which means that the users have the same data, but do not necessarily see the same portion
of it at all times. All the actions with the objects (sections and edges) are first sent to the
server and then back to the clients. This guarantees that all the clients really have the
same data at all times.

The Loom has been tested in a couple of situations with a small number of users,
during which it was found that the concept is easy to understand and that the software is
easy to use (Nuutinen, 2006). However, users found it problematic to reuse the sections
that other people had written. Due to this the stories tend to have a sequential nature.

Fig. 2. Visualization of a simple woven story.

JeCo: Combining Program Visualization and Story Weaving 259

Fig. 3. User Interface of the Loom.

We believe that this approach can be efficient in various subject domains. If the com-
munication and the awareness features of the Loom are improved, it can be used even
more efficiently within distributed group.

5. Jeliot Collaboratively (JeCo)

Program visualization tools normally support only individual learning and engage stu-
dents cognitively but do not necessarily support social activities, even though these social
practices can be crucial to learning. In a classroom, the social activities can be handled
with group activities that are guided by the teacher without any additional support from
the software. However, in distance education this is not possible because the interaction
and social aspects need to be supported by software. We want to support both cognitive
and social processes in a distance education throughJeCo (Morenoet al., 2004b; Moreno
et al., 2004a), which is a combination of Jeliot 3 and Woven Stories.

JeCo gives students a possibility to collaborate with each other with tools that are
made for the purpose. Students can acquire vocabulary related to the programming con-
cepts from Jeliot and thus it creates a context for the discussions (Ben-Bassat Levyet al.,
2003). In the case of JeCo, this vocabulary will grow into an inter-subjective set of shared
concepts.

Jeliot and Woven Stories are combined by modifying the Loom client program
whereas the WS-Server can be kept as it is because of its flexible design. Fig. 4 illustrates

260 N. Myller, J. Nuutinen

Fig. 4. The combination of Woven Stories and Jeliot in JeCo with multiple users.

how these systems are related to each other. The Loom client was modified to recognize
whether a section contains program code that can be animated in Jeliot. If it does, the
user is informed of this possibility by showing a text telling that Jeliot is available on
that section. When a user clicks the right mouse button on that kind of section, there is
an option in the popup menu to animate the program with Jeliot. This creates a link be-
tween these two systems and the animation allows both asynchronous and synchronous
communication among students about a program or its visualization. The program code
can be sent to the forum by editing a section and clicking on a button with Jeliot logo on
it and paste the code into the appearing window. This will make the code attached to the
section and recognizable to the Loom client.

For example, any user (e.g.,client A) can send to the server a section that consists
of a message and program source code. If another user (e.g.,client B) wants to see the
animation of the program code sent byclient A and discuss that withclient A about it,
s/he can request the section and animate it. While Jeliot is animating the program,clients
A and B can discuss the phases of the program’s execution. This kind of scenario is
illustrated also in Fig. 4 and the users would see a similar view as shown in Fig. 5. In the
Fig. 5, the currently viewed section is bordered with a rectangle and sections containing
the source code that can be animated with Jeliot 3 are indicated with theJeliot available
text in the bottom of the section rectangle. If the discussion leads into new developments,
Client B could add another section to the document and connect it to the section(s) that
inspi red this work. Thus, it would keep the history of the development visible to users
that are not currently logged in into the system.

Because Woven Stories supports HTML documents, it is possible to bring the whole
course materials inside multiple Woven Stories documents. For example, each topic of
the course can be a separate document. These documents can contain regular text but
also source code that can be visualized with Jeliot. Several students can then see the
same visualization at the same time and discuss it, but it is also possible that students
comment on the programs and give their own examples and let the other students try
them out as well. Thus, the tool is supporting both synchronous and asynchronous modes
of communication and learning. Moreover, JeCo can support programming courses as a
platform in collaborative exercises, assignments and projects.

JeCo: Combining Program Visualization and Story Weaving 261

Fig. 5. User Interface of JeCo.

6. Future Work

As stated in Section 4, the users of the Loom have had problems to create stories with
optional storypaths. While it is an important research question to find solutions to this
problem within the development of Loom, it is not such an issue when considering JeCo.
This is due to the fact that program versions tend to branch naturally. Furthermore, the
storypaths can be used for other purposes than version management. For example, we
could consider the story as a program and view the graph of sections as a class diagram
of a program in which each section would be a class.

Currently, there are also some features missing from the Loom in order to support
distributed use of the tool: Users should be more aware of other users and the communi-
cation capabilities should be enhanced.

Awareness (Gutwin and Greenberg, 1996) means the knowledge of other people and
their actions. This is an important aspect of collaboration, since the users of the system
must know what the others are doing at the same time, since this can affect their work.
For example the users have to be aware who are present at the system in order to engage
into conversations.

Communication is important part of collaboration. In systems where the users col-
laborate on-line, the communication should be carefully planned. Currently, the Loom
supports communication only by chatting. While this can be used when the users are
on-line, there is no way to communicate in other situations. Due to this, features sup-
porting the asynchronous communication has to be created. For example features such as
annotations (Nokelainenet al., 2003) could be useful in context of Woven Stories. In syn-
chronous communication, the users should be able to refer to the artifacts they are dealing
with. For example, in a chat session a user might want to refer to a just written section
and want to get opinions from others. In order to make things simple, users should be

262 N. Myller, J. Nuutinen

able to point at that section from the Story Space. Such features are calledconversational
props (Brinck and Gomez, 1992).

By implementing the features to improve the support of awareness and communica-
tion in the Loom, we can improve the usefulness of the Loom in distance use cases. When
paying attention also to asynchronous collaboration aspects, the Loom can be used also
in situations where the users are not able to be on-line at the same time. Since the JeCo is
based on the Loom these same benefits apply also to it. For example, the annotation could
be used to comment the source code or similar code segments in multiple files could be
annotated in order to find similarities.

Currently, the visualizations of two distributed users are not synchronized, and thus
it can be difficult to discuss a very specific point in a visualization. There should be a
possibility to stream one visualization to multiple users so that one user would be the host
of the visualization and other users could see the visualization but not necessarily control
it. This could be used also for guided session where a teacher controls the visualization
and send explanations to the chat and students can see the visualization from their screens
and post questions and comments to the chat.

7. Conclusion

In this paper, we have introduced a program visualization tool, Jeliot 3, a collaborative
authoring tool, Woven Stories, and their combination JeCo, a collaborative learning tool
for programming. The combination was possible due to their flexible and modular design.
We also discussed the possible scenarios where these systems can be used and how. We
have also presented future directions in order to enhance the learning experience with
JeCo. We have already published Jeliot 3 under GPL license and plan to do so for JeCo
as well. We hope this will encourage others to use the tools and contribute to them in
order to form a learning community of users and developers.

References

Ben-Bassat Levy, R., M. Ben-Ari, P.A. Uronen (2003). The Jeliot 2000 program animation system.Computers
& Education, 40(1), 15–21.

Bereiter, C. (2002).Education and Mind in the Knowledge Age. Lawrence Erlbaum Associates, Mahwah, NJ.
Brinck, T., and L.M. Gomez (1992). A collaborative medium for the support of conversational props. InCSCW

’92: Proceedings of the 1992 ACM Conference on Computer-Supported Cooperative Work. ACM Press,
New York, NY, USA. pp. 171–178.

Gerdt, P., P. Kommers, C.-K. Looi, E. Sutinen (2001). Woven stories as a cognitive tool. InCognitive Technol-
ogy: Instruments of Mind, Lecture Notes in Computer Science, 2117, 233–247.

Gutwin, C., and S. Greenberg. Workspace awareness for groupware. InCHI ’96: Conference Companion on
Human Factors in Computing Systems. pp. 208–209.

Hanks, B. (2005).Tool Support for Distributed Pair Programming – Empirical Studies of Distributed Pair
Programming. PhD dissertation, Computer Science, University of California, Santa Cruz.
http://faculty.fortlewis.edu/hanks_b/publications/dissertation.pdf (Ac-
cessed 8.8.2006).

Hübscher-Younger, T., and N.H. Narayanan (2003). Constructive and collaborative learning of algorithms.
SIGCSE Bulletin, 35(1), 6–10.

JeCo: Combining Program Visualization and Story Weaving 263

Hundhausen, C.D. (2002). Integrating algorithm visualization technology into an undergraduate algorithms
course: ethnographic studies of a social constructivist approach.Computers & Education, 39(3), 237–260.

Jehng, J.-C.J., and T.-W. Chan (1998). Designing computer support for collaborative visual learning in the
domain of computer programming.Computers in Human Behavior, 14(3), 429–448.

Kuppuswami S., and K. Vivekanandan (2004). The effects of pair programming on learning efficiency in short
programming assignments.Informatics in Education, 3(2), 251–266.

McCracken, M., V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. Ben-David Kolikant, C. Laxer, L. Thomas, I.
Utting, T. Wilusz (2001). A multi-national, multi-institutional study of assessment of programming skills of
first-year CS students,SIGCSE Bulletin, 33(4), 125–180.

McDowell, C., L. Werner, H.E. Bullock, J. Fernald (2003). The impact of pair programming on student per-
formance, perception and persistence. InProceedings of the 25th International Conference on Software
Engineering. IEEE Computer Society. pp. 602–607.

Meisalo, V., E. Sutinen, S. Torvinen (2003). Choosing appropriate methods for evaluating and improving the
learning process in distance programming courses. InProceedings of the 33rd ASEE/IEEE Frontiers in
Education Conference (FIE2003). Boulder, CO, USA. pp. T2B-11–16.

Moreno, A., N. Myller, E. Sutinen (2004a). Collaborative program visualization with woven stories and Jeliot 3.
In Proceedings of the IADIS International Conference on Web Based Communities 2004. Lisbon, Portugal.
pp. 482–485.

Moreno, A., N. Myller, E. Sutinen (2004b). JeCo: a collaborative learning tool for programming. InProceedings
of the IEEE Symposium on Visual Languages and Human-Centric Computing. Rome, Italy. pp. 26–29.

Moreno, A., N. Myller, E. Sutinen, M. Ben-Ari (2004c). Visualizing programs with Jeliot 3. InProceedings of
the International Working Conference on Advanced Visual Interfaces AVI 2004. Gallipoli (Lecce), Italy. pp.
373–376.

Moreno, A., N. Myller, E. Sutinen (2004b). JeCo: a collaborative learning tool for programming. InProceedings
of the IEEE Symposium on Visual Languages and Human-Centric Computing. Rome, Italy. pp. 26–29.

Nagappan, N., L.A. Williams, M. Ferzli, E. Wiebe, K. Yang, C. Miller, S. Balik (2003). Improving the CS1
experience with pair programming.SIGCSE, 359–362.

Nokelainen, P., J. Kurhila, M. Miettinen, P. Floren, H. Tirri (2003). Evaluating the role of a shared document-
based annotation tool in learner-centered collaborative learning. InAdvanced Learning Technologies, Pro-
ceedings of the 3rd IEEE International Conference. pp. 200–203.

Novak, J.D., and B.B. Gowin (1984).Learning How to Learn. Cambridge University Press, New York.
Nuutinen, J. (2006). Designing a computer supported collaborative mindtool: woven stories.Licentiate Thesis

(Manuscript in preparation).
Ratcliffe, M.B., and L.A. Thomas (2004). Understanding our students: incorporating the results of several

experiments into a student learning environment. In16th Workshop of the Psychology of Programming
Interest Group. Carlow, Ireland. pp. 10–20.

Stotts, P.D., L.A. Williams, N. Nagappan, P. Baheti, D.Jen, A. Jackson (2003). Virtual teaming: experiments
and experiences with distributed pair programming. In F. Maurer and D. Wells (Eds.)XP/Agile Universe,
Lecture Notes in Computer Science, 2753, pp. 129–141.

Williams, L.A., C. McDowell, N. Nagappan, J. Fernald, L.L. Werner (2003). Building pair programming knowl-
edge through a family of experiments.ISESE, 143–153.

264 N. Myller, J. Nuutinen

N. Myller has a master’s degree in mathematics and he has been working with educa-
tional technology since 2001. He has worked in number of interdisciplinary international
research projects. He is currently employed as a senior assistant at the Deparment of
Computer Science at the University of Joensuu and studying for his PhD under supervi-
sion of professor Erkki Sutinen (University of Joensuu, Finland) and Dr. Piet Kommers
(University of Twente, the Netherlands). His research topic is collaborative editors and
mindtools and especially a software called Woven Stories.

J. Nuutinen received his BSc in 2003 and MSc in 2004 both from the Department of
Computer Science at University of Joensuu in a record time of 2.5 years from starting.
Currently, he is studying for his PhD under supervision of prof. Erkki Sutinen (Uni-
versity of Joensuu) and prof. Mordechai Ben-Ari (Weizmann Institute, Israel) and the
expected graduation is in 2007. His research interests lie in the fields of visualization and
concretization technologies, CSCL, information retrieval, computer ethics and adaptive
systems. He has published more than 30 papers in international journals and conferences.

Priemonė „JeCo“: program ↪u vizualizavimo ir fabulos dėstymo jungtis

Niko MYLLER, Jussi NUUTINEN

Straipsnyje supažindinama su programavimo mokymo priemone „Jeliot Collaboratively“ arba
„JeCo“. „Jeliot Collaboratively“ apima program↪u vizualizavimo priemon↪e „Java“ programoms „Je-
liot 3“ ir interaktyvi ↪a priemon↪e „Woven Stories“, skirt↪a kuriantiems rašinius autoriams. Straipsnyje
aprašomos ši↪u sistem↪u galimyḃes ir supažindinama su j↪u panaudojimo mokymesi b̄udais. Be to,
brėžiamos kryptys ateičiai – siekiama išpl̇esti „JeCo“ galimo panaudojimo galimybes.

Dissertations at the Department of Computer Science and Statistics

Rask, Raimo. Automatic Estimation of Software Size during the Requirements

Specification Phase - Application of Albrecth‘s Function Point Analysis Within

Structured Methods. Joensuun yliopiston luonnontieteellisiä julkaisuja, 28 - Uni-

versity of Joensuu. Publications in Sciences, 28. 128 p. Joensuu, 1992.

Ahonen, Jarmo. Modeling Physical Domains for Knowledge Based Systems. Joen-

suun yliopiston luonnontieteellisiä julkaisuja, 33. 127 p. Joensuu, 1995.

Kopponen, Marja. CAI in CS. University of Joensuu, Computer Science, Disser-

tations 1. 97 p. Joensuu 1997.

Forsell, Martti. Implementation of Instruction-Level and Thread-Level Paral-

lelism in Computers. University of Joensuu, Computer Science, Dissertations 2.

121 p. Joensuu 1997.

Juvaste, Simo. Modeling Parallel Shared Memory Computations. University of

Joensuu, Computer Science, Dissertations 3. 190 p. Joensuu 1998.

Ageenko, Eugene. Contex-based Compression of Binary Images. University of

Joensuu, Computer Science, Dissertations 4. 111 p. Joensuu 2000.

Tukiainen, Markku. Developing a New Model of Spreadsheet Calculations: A

Goals and Plans Approach. University of Joensuu, Computer Science, Dissertations

5. 151 p. Joensuu 2001.

Eriksson-Bique, Stephen. An Algebraic Theory of Multidimensional Arrays.

University of Joensuu, Computer Science, Dissertations 6. 278 p. Joensuu 2002.

Kolesnikov, Alexander. Efficient Algorithms for Vectorization and Polygonal

Approximation. University of Joensuu, Computer Science, Dissertations 7. 204 p.

Joensuu 2003.

Kopylov, Pavel. Processing and Compression of Raster Map Images. University

of Joensuu, Computer Science, Dissertations 8. 132 p. Joensuu 2004.

Virmajoki, Olli. Pairwise Nearest Neighbor Method Revisited. University of

Joensuu, Computer Science, Dissertations 9. 164 p. Joensuu 2004.

Suhonen, Jarkko. A Formative Development Method for Digital Learning En-

vironments in Sparse Learning Communities. University of Joensuu, Computer

Science, Dissertations 10. 154 p. Joensuu 2005.

Xu, Mantao. K-means Based Clustering and Context Quantization. University of

Joensuu, Computer Science, Dissertations 11. 162 p. Joensuu 2005.

Kinnunen, Tomi. Optimizing Spectral Feature Based Text-Independent Speaker

Recognition. University of Joensuu, Computer Science, Dissertations 12. 156 p.

Joensuu 2005.

Kärkkäinen, Ismo. Methods for Fast and Reliable Clustering. University of

Joensuu, Computer Science, Dissertations 13. 108 p. Joensuu 2006.

Tedre, Matti. The Development of Computer Science: A Sociocultural Perspec-

tive. University of Joensuu, Computer Science, Dissertations 14. 502 p. Joensuu

2006.

Akimov, Alexander. Compression of digital Maps. University of Joensuu, Com-

puter Science, Dissertations 15. 116 p. Joensuu 2006.

Vesisenaho, Mikko. Developing University-level Introductory ICT Education in

Tanzania: A Contextualized Approach. University of Joensuu, Computer Science,

Dissertations 16. 200 p. Joensuu 2007.

Huang, Haibin. Lossless Audio Coding for MPEG-4. University of Joensuu,

Computer Science, Dissertations 17. 86 p. Joensuu 2007.

Mozgovoy, Maxim. Enhancing Computer-aided Plagiarism Detection. University

of Joensuu, Computer Science, Dissertations 18. 131 p. Joensuu 2007.

Kakkonen, Tuomo. Framework and Resources for Natural Language Parser Eval-

uation. University of Joensuu, Computer Science and Statistics, Dissertations 19.

264 p. Joensuu, 2007.

Podlasov, Alexey. Processing of Map Images for Improving Quality and Com-

pression. University of Joensuu, Computer Science and Statistics, Dissertations 20.

93 p. Joensuu, 2007.

Bednarik, Roman. Methods to Analyze Visual Attention Strategies: Applica-

tions in the Studies of Programming. University of Joensuu, Computer Science and

Statistics, Dissertations 21. 188 p. Joensuu, 2007.

Hautamäki, Ville. Improving Pattern Recognition Methods for Speaker Recogni-

tion. University of Joensuu, Computer Science and Statistics, Dissertations 22. 126

p. Joensuu, 2008.

Myller, Niko. Collaborative Software Visualization for Learning: Theory and

Applications. University of Joensuu, Computer Science and Statistics, Dissertations

23. 183 p. Joensuu, 2009.

Julkaisija Joensuun yliopisto

 Tietojenkäsittelytieteen ja tilastotieteen laitos

Publisher University of Joensuu

 Department of Computer Science and Statistics

Sarjan toimittaja Erkki Sutinen

Series Editor

Vaihdot Joensuun yliopiston kirjasto/Vaihdot

 PL 107, 80101 Joensuu

 Puh. 013-251 2677, fax 013-251 2691

 email: vaihdot@joensuu.fi

Exchanges Joensuu University Library/Exchanges

 P.O. Box 107, FI-80101 Joensuu, FINLAND

 Tel. +358-13-251 2677, fax +358-13-251 2691

 email: vaihdot@joensuu.fi

Myynti Joensuun yliopiston kirjasto/Julkaisujen myynti

 PL 107, 80101 Joensuu

 Puh. 013-251 4509, fax 013-251 2691

 email: joepub@joensuu.fi

Sales Joensuu University Library/Sales of publications

 P.O. Box 107, FI-80101 Joensuu, FINLAND

 Tel. +358-13-251 4509, fax +358-13-251 2691

 email: joepub@joensuu.fi

	file1.pdf
	file2.pdf
	file3.pdf
	file4.pdf
	file5.pdf
	file6.pdf
	file7.pdf
	file8.pdf
	file9.pdf
	file10.pdf
	file11.pdf
	file12.pdf
	file13.pdf
	file14.pdf
	file15.pdf

