
UNIVERSITY OF JOENSUU

DEPARTMENT OF COMPUTER SCIENCE

Roman Bednarik

Towards an Eye-tracking Methodology for

Studies of Programming

Licentiate thesis

UNIVERSITY OF JOENSUU

2006

Supervisors Markku Tukiainen
Department of Computer Science
University of Joensuu
Joensuu, FINLAND

Erkki Sutinen
Department of Computer Science
University of Joensuu
Joensuu, FINLAND

Reviewers Associate Professor Andrew T. Duchowski
Department of Computer Science
Clemson University
Clemson, SC, USA

Professor Kari-Jouko Räihä
Department of Computer Science
University of Tampere
Tampere, FINLAND

Computing Reviews (1998) Classification: H.5.1, D.2, J.4, K.3.1.

Towards an Eye-tracking Methodology for Studies of Programming

Roman Bednarik

Department of Computer Science

University of Joensuu

P.O.Box 111, FIN-80101 Joensuu, FINLAND

bednarik@cs.joensuu.fi

University of Joensuu 2006, 100 pages

Abstract

E
mpirical studies of programming have previously employed approaches such

as think-aloud or comprehension summary analysis. Despite its potentials,

eye-movement tracking has not been widely applied to the studies of behav-

ioral aspects of programming. In this thesis we study limitations and benefits of

eye-movement tracking in the domain of psychology of programming. We argue

for development of a methodological framework that would allow for safe and effec-

tive application of eye-movement tracking to study human behavior and cognition

during programming tasks. As initial steps toward the methodology, we perform

exploratory studies of programmers during program debugging and comprehension.

Keywords: Eye-movement tracking methodology, psychology of programming, pro-

gram comprehension

iii

Acknowledgements

”Cool, here I can write thanks to everyone.” In the template that I have used

as a starting point, exactly this phrase is included as the only content of

acknowledgments. With every other build of the manuscript, I saw it. Who are

those everyone? Will I remember them all? The list would be long. I would forget

somebody. Although I think it is too early to thank to everyone, here we go: thank

you, everybody, with whom I could work during past years, who helped me and

supported me.

iv

List of original publications

P1. Bednarik, R., Tukiainen, M.: Visual Attention and Representation Switch-

ing in Java Program Debugging: A Study Using Eye Movement Tracking. In

Proceedings of 16th Annual Psychology of Programming Interest Group Work-

shop (PPIG’04), Institute of Technology Carlow, Ireland, April 5-7, 2004, pp.

159-169.

P2. Bednarik, R., Tukiainen, M.: Visual Attention Tracking During Program De-

bugging. In Proceedings of NordiCHI 2004, The Third Nordic Conference on

Human-Computer Interaction, October 23-27, 2004, Tampere, Finland, ACM

Press, pp. 331-334.

P3. Bednarik, R., Tukiainen, M.: Effects of Display Blurring on the Behavior of

Novices and Experts during Program Debugging. In CHI ’05 extended ab-

stracts on Human factors in computing systems, CHI 2005, Portland, Oregon,

USA, April 2-7, 2005, ACM Press, pp. 1204-1207.

P4. Bednarik, R., Myller, N., Sutinen, E., Tukiainen, M.: Effects of Experience on

Gaze Behaviour during Program Animation. In Proceedings of the 17th Annual

Psychology of Programming Interest Group Workshop (PPIG’05), Brighton,

UK, June 28 - July 1, 2005, pp. 49-61.

P5. Bednarik, R., Myller, N., Sutinen, E., Tukiainen, M.: Analyzing Individual

Differences in Program Comprehension. Technology, Instruction, Cognition

and Learning (TICL), 3(3-4), 2006, pp. 205-232.

v

Contents

Acknowledgements iv

Contents vii

1 Introduction 1

1.1 Motivation . 2

1.2 Research Questions . 2

1.3 Research Methodology . 3

1.4 Organization of the Thesis . 3

2 Visual Attention and Eye-Movement Tracking Methodology 4

2.1 Visual Attention and Eye-Movements 5

2.2 Visual Attention Tracking and Analysis 6

2.3 Restricted Focus Viewer: An Alternative Tool to Track Visual Attention 8

3 Behavioral and Cognitive Aspects of Programming 9

3.1 Theories of Program Comprehension 10

3.2 Analyzing Cognitive Aspects of Programming 11

3.3 Related Studies . 12

4 General Discussion 15

4.1 Future Directions . 16

5 Summary of Original Publications 18

References 21

vi

Original Publications 27

vii

Chapter 1

Introduction

P
rogram comprehension, the ability to understand programs written by oth-

ers1 , is widely recognized as central skill to programming. Being also a

cognitively complex skill of acquiring mental models of structure and func-

tion of a program, program comprehension has been for many years a field of

need to develop and apply methods and techniques to effectively capture and an-

alyze the involved mental processes. Although originally centered around (profes-

sional) computer-programmers developing computer programs, studies of program-

ming strategies nowadays extend far beyond these borders (Blackwell, 2002), both

in terms of users and application domains.

Researchers interested in examining cognitive processing during problem-solving

tasks have several possibilities of how to get insights into the behavior and strategies

exhibited by the participants. Especially in the situations when the stimuli are visual

and the reasoning is related and depended on it, eye-tracking systems have shown to

be useful in revealing the patterns of visual attention during the task. The classical

examples of successful applications of eye-movement tracking include studies relating

the eye-movement patterns to cognitive processes (Just and Carpenter, 1976), re-

search in reading (Rayner, 1998), or studies investigating differences between novices

and experts in terms of the eye-movement patterns (e.g., Hyönä et al., 2002, Law

et al., 2004). In the domain of studies of programming, instead, investigations have

been mostly based on verbal-protocols, a well established - and probably the most

popular - method used to capture and analyze the thought-processing. Despite its

potentials, eye-movement tracking has not been widely applied in the domain.

1And, of course, also the programs written by oneself, after a prolonged period.

1

1.1 Motivation

It seems therefore obvious that eye-movement tracking could help us to shed a light

onto the mental processes involved in programming. However, there are several im-

portant issues to be considered before applying an eye tracker. First is technological:

the relatively high price of an accurate eye-tracking equipment and problems such

as the need for calibration, drift or a certain level of obtrusiveness have prevented

a wider application of the technology. To remedy some of the problems and limita-

tions, researchers have sought to develop cheap and yet accurate alternatives to eye-

trackers. This thesis will illustrate how well these alternatives deliver their promise

to capture the patterns of visual attention in comparison with an eye-tracker.

Another issue is methodological: previous research using eye-movement tracking

in other domains than studies of programming have established numerous mea-

sures and models of gaze behavior during certain tasks. For instance, Aaltonen

et al. (1998) studied user behavior during menu selection. In usability studies,

eye-tracking data can directly inform the evaluation (Goldberg and Kotval, 1999)

and therefore also the design of computer interfaces. However, applications of eye-

movement tracking to study the behavioral aspects of programming are still rare. At

the moment, we have only a little knowledge how to apply an eye-tracking to study

programmers. Therefore, we believe it is a high time to develop an eye-tracking

methodology for this particular domain.

1.2 Research Questions

This thesis is written to start answering the question, how visual attention tracking,

and eye-movement tracking in particular, can effectively be applied to record and

analyze the cognitive processes involved in programming. More precisely, it starts

to develop a methodological framework that will allow researchers from the domains

of psychology of programming, and problem-solving in general, to safely apply eye-

movement tracking and to analyze the resulting data to build proper conclusions

about underlying behavior.

By comparing some of the alternative tools to track visual attention in a replica-

tion study we validate both their ability and usability to measure the visual attention

patterns exhibited by programmers during debugging tasks. Further, we investigate

what eye-movement measures developed in previous eye-tracking research can be

used to characterize comprehension and debugging strategies. In addition, we inves-

tigate whether and what measures reflect a difference in expertise levels.

We approach the development process by answering the following questions:

• As some alternative tools to track visual attention have previously been devel-

2

oped, how do they compare to an eye-tracking device?

• Are expertise levels in programming reflected in some of the eye-movement

data?

• Eye-tracking has not been widely applied to studies of programming, what

previously developed measures can be applied to study cognitive processing

of computer programmers? How do these measures relate to the underlying

cognitive activities?

1.3 Research Methodology

In order to answer the research questions, we employ controlled empirical exper-

iments conducted in a usability laboratory. We use within- and between-subject

repeated measures designs with usually one and/or more factors. Independent vari-

ables controlled by the experimenter will be, for example, the technology to track

the visual attention. Depended variables measured during the experiment will be

performance (for example: time to complete the task, number of bugs discovered,

cognitive model acquired), resulting visual attention patterns. In some cases we

use also semi-structured interviews to evaluate the participants’ subjective experi-

ence with the technology used in the experiments. Both exploratory and evaluative

studies that would respectively generate and validate further hypotheses will be

conducted. To analyze the resulting data from this research, we employ analysis of

variance (ANOVA) techniques, pre-planned t-tests, and analysis of correlations.

1.4 Organization of the Thesis

The rest of this work is organized as follows: first, we discuss how visual attention

focus is reflected in eye-movement patterns and the current state of visual atten-

tion tracking methodologies. At the second part of this thesis, we review previous

research in programming behavior, in terms of the theoretical underpinnings of pro-

gram comprehension and tools to study the behavioral aspects of programming.

After presenting general discussion, we provide an overview of the results.

3

Chapter 2

Visual Attention and

Eye-Movement Tracking

Methodology

W
hile the eyes of the readers of this thesis fixate on the words as they read

this sentence, rather complex and complicated processes take part. The

words have to be encoded, comprehended, integrated with the previous

text, while the eyes have to be repositioned on the next word or, perhaps, on the

previous, if an inconsistency appeared. As the stimuli in reading tasks are visual

and therefore the underlying processes also visually driven, studies of reading, text

comprehension, and language processing are a successful example of the benefits

from applying eye-movement tracking. 1

There are many reasons and advantages to employ eye-movement tracking as a

research methodology. In past, eye-movements have been shown not only to provide

a rich and relevant source of information about person’s cognitive processes and

intentions, but have been also employed as an interaction modality. Eye-movement

tracking has been successfully employed in studies of reading (e.g., Just and Carpen-

ter, 1980, Rayner, 1998), gaze-based interaction (e.g., Jacob, 1991, Jacob and Karn,

2003), eye typing (Majaranta and Räihä, 2002), menu selection (Crosby and Peter-

son, 1991, Aaltonen et al., 1998), usability (Goldberg and Kotval, 1998, 1999) or in

virtual reality (Duchowski et al., 2000, 2002). Between many advantages of applying

eye-movement tracking to study human behavior also belong that participants do

1Since this work is not primarily concentrated on eye-movement tracking and reading, but the
research in the domain can serve as a good source of inspiration, for a detailed discussion of the
previous research see (Rayner, 1998).

4

not have to be trained to exhibit their natural visual strategies and the most of the

current eye-trackers are highly non-invasive. That makes the eye-tracking a usable,

non-intrusive tool without causing any interferences with natural behavior.

In the following sections, we first present the main assumptions on which the

research based on eye-movements rests and then focus on current methodologies to

track and analyze the visual attention.

2.1 Visual Attention and Eye-Movements

Humans, as every vertebrate, have movable eyes. We move our eyes in order to

bring an image of the inspected object onto the fovea, a small and high-resolution

area of the retina where the cones are most densely packed. Once the image of the

object is stabilized on the retina, the information can be extracted. This way the

visual attention is linked with the current gaze direction and most of the time the

visual information is processed it is also diverted to the point of visual inspection.

In eye-movement tracking research, this principle is called an eye-mind assumption

(Just and Carpenter, 1980). There are, however, situations when the visual attention

and gaze direction are dissociated. Parafoveal or peripheral processing can be used

to extract information from the environment. However, as also Duchowski (2003,

p.14) points out: ” ...in all eye-tracking work...we assume that attention is linked to

foveal gaze direction, but we acknowledge that it maybe not always be so.” This thesis

rests on the assumption of Just and Carpenter, however, similarly as Duchowski, we

acknowledge that the focus of visual attention and the direction of gaze might be,

at times, dissociated.

Because of the limited size of the fovea, the gaze has to be re-directed to the

new points of interest of the scene or object in order to allow for the new details to

be perceived and processed. Once the eyes are directed and stabilized at the area of

interest, the visual information can be extracted and encoded. The relatively stable

position of the gaze direction is called fixation, while the shift of the gaze between

two fixations is called saccade. A single saccade can last between 30 and 120 ms and

can span over 1 to 40 degrees of visual angle (Sibert and Jacob, 2000), with velocities

ranging up to 500 degrees per second (Rayner, 1998). It is assumed that a) during

the saccades the vision is supressed and no information is extracted and processed;

the phenomena known as saccadic suppression (Matin, 1974), and b) once initiated,

a saccade’s destination cannot be altered.

Fixations, on the other hand, are the movements of eyes during which the infor-

mation can be extracted, encoded, and processed. Typically, the fixation duration

ranges from 200 ms to 300 ms (Rayner, 1998) and can be thought as related to

the processing required to extract and interpret the information (Just and Carpen-

5

ter, 1976, Goldberg and Kotval, 1999). Following the eye-mind assumption, if we

can track the movements of the eyes, we can also obtain good insights into and

investigate the path and focus of visual attention during a task. Previous research

has firmly confirmed this relation between eye movements, visual attention and un-

derlying cognitive processes (e.g., Just and Carpenter, 1976, 1980, Rayner, 1998).

Knowing which objects and elements have been visually fixated, in which order, fre-

quency and context, we can attempt to infer what cognitive processes were involved

in performing a task related to these objects.

Other types of eye-movements exist (Carpenter, 1988, Duchowski, 2003). Smooth

pursuits occur when they eyes track a moving object, to match the velocity of the

eyes with the target’s and therefore reduce the target’s retinal motion to minimum.

Nystagmus eye movements serve to correct the motion of head or to attend repetitive

patterns. Miniature eye movements, such as drifts and microsaccades, that might

appear as a noise in the eye-movement signal, are executed to stabilize the retinal

image during a fixation. Finally, the movements of the eyes that are not conjugate,

executed for instance when attending an approaching object, are called vergence. For

a more detailed review of eye-movements and their models, we refer an interested

reader to (Carpenter, 1988).

Although not being eye-movements itself, blinks play an important role in vision

and in eye-movement data analysis. Regarding the former role, blink is involuntary

unconscious reflex that moves the eye lid, purposed to moist the cornea. As for

the latter, a blink causes an instability and noise in the eye movement protocol

and therefore has to be properly identified. Using blink rate as a physiological

measure, Brookings and colleagues (1996) showed that blink rate decreases under

higher cognitive load.

2.2 Visual Attention Tracking and Analysis

Eye-movement tracker is a device that records the point of gaze, i.e. the location

of intersection of the line of sight and the surface of the observed object. Probably

most of the current commercial eye-tracking systems are based on capturing infrared

light reflections from the cornea and video image analysis of the center of the pupil.

Unlike their first predecessors, the modern eye-trackers are relatively cheap and

able to collect gaze data reliably and unobtrusively (Jacob and Karn, 2003). Two

general classes of eye-tracking devices exist: a remote optics, table-mounted version

and a head-mounted optics with a see-through mirror. The remote eye-movement

trackers are usually used in experiments where the stimuli are presented at the video

displays. They tolerate some head-movements, however, experimental participants

are limited in their freedom of movements in the environment. On the other hand,

6

the head-mounted eye-tracking systems allow the participants to freely move during

the recording, but they impose certain discomfort by having the eye-tracking cameras

mounted tightly on participants head. Regardless of the option, both types of eye

trackers must be calibrated for each user before the first recording.

The data stream coming from an eye-tracker usually contains a timestamped

pair of coordinates of current point of gaze, pupil diameter, and also some kind of

validity codes. In order to identify fixations and saccades from the eye-tracking pro-

tocols, several algorithms to process the raw data were developed, for an overview

see (Salvucci and Goldberg, 2000). These algorithms represent a middle layer be-

tween the raw data and higher level eye-tracking measures. As we mentioned above,

fixation is a measure of highest interest in eye-movement based studies. In this

work, we use the definition of fixation as in (Jacob and Karn, 2003): fixation is a

stable position of the point of gaze within some threshold of dispersion over some

minimum duration (100-200ms), and velocity below a defined threshold. Once the

eye-tracking protocol is cleaned up from artifacts such as blinks and unwanted noise,

fixations can be identified using the definition above.

In their summary of 21 usability studies, Jacob and Karn (2003) report on the

most commonly used eye-tracking measures. Of these studies, 11 made use of number

of fixations, 7 reported the proportional time spent looking on each area of interest.

Another 6 studies used mean fixation duration and number of fixations on each area,

5 employed the mean gaze duration and 5 reported the rate of fixations per second.

Other measures also exist, see (Jacob and Karn, 2003, Goldberg and Kotval, 1998)

for more details and a review, respectively.

Jacob and Karn (2003) distinguish two ways of using the gaze data from an

eye-tracking device: real time eye-tracking and retrospective analysis. The former

approach involves gaze location as a direct interaction medium, so that the eyes

of the user have a direct impact on the interaction with the interface in real time.

The latter one, retrospective analysis of eye-movement data, normally, starts with a

researcher defining so called areas of interest : (usually) rectangular areas covering

the interface elements in question. The researcher then conducts an experiment,

records the gaze data, and after the experiment tries to related the measures over

the areas of interest to the manipulated variables and underlying cognitive processes,

or to the eye control as such.

It turns out that one of the biggest challenges in any application of eye-movement

tracking is to develop methods and techniques to effectively record, analyze, and

interpret the gaze data. While the technical problems with eye-trackers, such as their

relatively awkward application or low reliability, seem to be progressively solved by

industrial vendors, methodological problems still persist.

7

2.3 Restricted Focus Viewer: An Alternative Tool to

Track Visual Attention

To overcome some of the drawbacks of eye-movement tracking, certain alternatives

to eye-movement tracking were developed. Recently, the Restricted Focus Viewer

(Jansen et al., 2003), a tool that blurs the display and restricts users to only a small

focused spot within an otherwise blurred stimulus, has been introduced as an alter-

native tool to track visual attention. When an experimenter employs the Restricted

focus viewer (RFV) to track the visual attention, participants move the focused spot

using a computer mouse to explore the visual representations in question. In order

to get another part of the stimuli focused, a participant has to move the focused

region using the computer mouse. The RFV then records the moves over the stimuli

that are stored for later analysis. The tool collects the timestamped data for the

mouse and the keyboard events, focused region’s index, the total durations of ses-

sions, and other events. Voice protocols can be recorded along the interaction data.

The RFV tool, naturally, is not capable of collecting visual attention data when the

blurring is turned off.

The Restricted Focus Viewer has been validated in two experiments run by

Jansen et al.(2003); however, these validations involved only a relatively simple

reasoning with visual stimuli. In other studies, the RFV-based technology has been

applied 1) to discover strategies of participants debugging computer programs with

an aid of multiple and linked visual representations of the programs (Romero et al.,

2002a,b, 2003a,b), and for 2) investigating the issues of usability of hyper-linked

documents (Tarasewich and Fillion, 2004, Tarasewich et al., 2005), or for 3) research

of shifts of visual attention during integration of text and graphics (Futrelle and

Rumshisky, 2001). Analysis and interpretation of the data recorded by RFV and

their relation to the investigated task is, similarly as in eye-tracking studies, up

to the researcher. Usually, the so-called areas of interest (AOI) are defined within

the interface and several metrics can be computed, as for instance the total or

proportional time spent on an AOI. Recently, the use of the RFV-based approach was

questioned for the purposes of visual attention tracking during complex reasoning

tasks such as computer-program debugging (P2, P3).

8

Chapter 3

Behavioral and Cognitive

Aspects of Programming

P
rogramming is a complex and cognitively demanding task due to the mul-

tiple interrelated components, trade-off decisions, and performance require-

ments that concern the whole process (Detienne, 2002). Traditionally, the

studies of cognitive aspects of programming have been focused on expert computer-

programmers.1 Following the spread of computerized technologies, however, studies

of programming strategies nowadays extend far beyond these borders (Blackwell,

2002).

One of the central tasks in programming, such as creating, maintaining and

modifying a software product, is program comprehension, the ability to understand

programs written by others (Pennington, 1987), and also own programs after an ex-

tended period. Program comprehension as a cognitively complex skill of acquiring

mental models of structure and function of a program, is also a field of need to de-

velop methods and techniques to effectively capture and analyze the involved mental

processes. Despite its clear potentials, eye-movement tracking techniques have been

only rarely applied in the domain. As the focus of the research of cognitive aspects of

programming moves from the professional programmers to the end-users and novices

in new domains such a program visualization, the traditional methodologies such as

think-aloud might not be anymore as efficient as they showed to be in the past. In

the following sections we review the previous research in program comprehension

models and theories and in analysis of the cognitive aspects of programming.

1In many cases, the experts and novices alike were recruited from university students. Therefore,
the experts shall rather be classified as intermediate programmers.

9

3.1 Theories of Program Comprehension

Studies of cognitive processes involved in program comprehension tasks are central

to our understanding of software maintenance and development (von Mayrhauser

and Vans, 1996). The theories that describe the program comprehension can be

divided into top-down, bottom-up, or a combination of the two, according to how the

comprehension is assumed to proceed (von Mayrhauser and Vans, 1996).

Top-down models propose that programmers use domain-knowledge and ap-

proach the comprehension by creating hypotheses and expectations that are later

matched against the fractions of source code (Brooks, 1983). Brooks suggests that

while verifying a hypothesis, programmers attempt to find a beacon (Wiedenbeck,

1986), a piece of code that would fit into the hypothesis. When such an information

is not found, programmers either change their focus to another part of code, or

modify the hypothesis or reject it. According to Brooks, the hypotheses are hierar-

chically organized and subdivided, until a certain level of fitness that the source code

can explain and validate is found. Recently, different forms of top-down processes

and sources of the actions that drive the programmers while approaching the com-

prehension have been studies by O’Brien et al. (2004).

Bottom-up models suggest that, as source-code is read, the high-level abstract

representations and concepts are constructed from extracting and integrating the

low-level information into the already formed model (Pennington, 1987, Shneider-

man and Mayer, 1979). Pennington based her model on previous work on text com-

prehension (Pennington, 1987), distinguishing program model and situation model

that are formed by a programmer. While the program model is constructed first

and contains abstractions of information such as operations, control and data flow

relations, the situation model is formed only after at least a part of the program

model is constructed and contains more domain-oriented abstractions.

Based on observations of professional programmers during maintenance of large

software products, Mayrhauser and Vans (1996, 1997) proposed so called integrated

program comprehension model. The model proposes that programmers approach

the comprehension using both top-down and bottom-up strategies, as described in

previous research. When the programmers are familiar with the domain they tend

to comprehend the program in a top-down manner. However, in unfamiliar domains,

the comprehension is carried out in a bottom-up style to increase the domain and

program knowledge. Therefore, (expert) programmers often switch between the two

strategies.

Effect of expertise is an important issue not only in program understanding

(Burkhardt et al., 2002, Pennington, 1987), but in any problem-solving domain.

Therefore, as well as on program comprehension theories, the previous research has

been focusing on differences between novice and skilled programmers, too. The

10

studies have shown the superiority of expert programmers over novices in terms of

domain knowledge, performance and strategies, both during comprehension and de-

bugging of computer programs. Expert programmers found more bugs, found them

faster and tended to spend more time on building a mental model of the problem

(Gugerty and Olson, 1986). Experts are also more able to remember specific parts

of the source code (Fix et al., 1993), they focus only on relevant information needed

to solve the problem (Koenemann and Robertson, 1991), they are not committed to

one interpretation as novices (Vessey, 1985) and are therefore able to change their

strategies as needed.

3.2 Analyzing Cognitive Aspects of Programming

In past, program comprehension has been studied mostly using three main method-

ologies: cognitive processes during comprehension have been captured using think-

aloud protocols and the outcomes of program comprehension have been analyzed

using comprehension summaries and comprehension questions.

Particularly popular techniques to capture the thought-processes are different

variations and derivations of the think-aloud methodology, either concurrent or ret-

rospective, since the seminal work of Ericsson and Simon (1984). In the empirical

studies of programmers, the think-aloud methodology was applied in numerous ex-

periments, starting with the pioneering studies conducted by Soloway and others

during 1980’s, (e.g., Letovsky, 1986, Soloway et al., 1988, Littman et al., 1986, Pen-

nington, 1987) through 1990’s (e.g., von Mayrhauser and Vans, 1996, 1997, von

Mayrhauser and Lang, 1999) and recently (Burkhardt et al., 2002, Ko and Uttl,

2003, O’Brien et al., 2004) and many others.

By analyzing verbal protocols, these and other studies attempted to get an ac-

cess to cognitive processes and knowledge representation and thus provide insights

into what strategies programmers of various expertise take while undergoing the

tasks of program comprehension. To increase the validity of verbal reports, research

practitioners often complement them with other concurrent behavioral data, such as

direct observations, video or interaction protocols, as for example von Mayrhauser

and Vans (1996) or Ko and Uttl (2003). An attempt to improve the methodology

of think-aloud protocols for studies of programmers was proposed by Mayrhauser

and Lang (1999). By unifying the terminology and improvements in coding of the

verbal protocols, the proposal aims to reduce the efforts to conduct protocol analysis

and provides researchers a way how to compare the results (Lang and Mayrhauser,

1997).

The approaches based on verbal reports, however, have been criticized widely

(e.g., Branch, 2000, Nielsen et al., 2002, van den Haak et al., 2003), especially when

11

used with complex tasks involving high cognitive load and requiring verbalizing

visual information. As many of the studies of programming strategies are conducted

with novice participants working with some programming environment, it might be

hypothesized that indeed the tasks impose heavy cognitive load. Although not shown

empirically, this might result in an interference with their normal problem-solving

strategies and therefore biased results. In the context of usability studies, Goldberg

and Wichansky (2003) also point out that some aspects of behavior, such as focus

of attention during a task, have little awareness to an individual, and are thus hard

to verbalize.

Besides the tools and techniques to record the human behavior during problem

solving, also methodologies to analyze the cognitive processing and the resulting

outcomes are needed. The outcomes of program comprehension are the mental

models of program acquired by the programmer during the comprehension task.

Good and Brna (2004) developed a schema based on the information types found in

comprehension summaries. The schema allows a researcher to evaluate mental mod-

els acquired during comprehension in terms of proportions of different information

types, such as statements related to control-flow, data-flow, function or operation.

In addition, it allows to classify the statements according to the abstraction used to

describe the objects. Recently, Byckling et al. (2004) suggested that also irrelevant

category shall be included into the schema.

One of the traditional ways to analyze and evaluate the comprehension level and

model are comprehension questions. After the comprehension task the participants

are asked several questions that shall reflect the information that they have available.

Comprehension questions were, for instance, employed in the studies of Pennington

(1987) to validate her model.

3.3 Related Studies

Normally, programmers work within a computer-based (graphical) environments,

such as program development, debugging or visualization tools. These environments

often present some of the program representations in several adjacent windows and

programmers have to coordinate these representations in order to construct a vi-

able mental model. In these situations, when the problem-solving and formation

of mental model is driven by visual information, such as during dynamic program

visualization, it would be beneficial to capture and analyze the patterns of visual

attention. As eye-movement data provide insight into visual attention allocation, it

is also possible to infer underlying cognitive processes (Rayner, 1998).

Understanding that opportunity, Romero et al. (2002a, 2002b, 2003a, 2003b)

conducted a series of experiments that involved the Restricted Focus Viewer (RFV)

12

(Jansen et al., 2003). In these studies, a Software Development Environment (SDE)

was built on top of the RFV and employed to track visual attention to investigate

the coordination strategies of programmers debugging Java programs, reasoning with

multiple adjacent representations. Several eye-movement-like metrics were derived

to identify superior debugging strategies of participants or to measure the effects

of different visualizations on the coordination strategies. For example, balanced

accumulated fixation times between different representations could reflect good de-

bugging performance (Romero et al., 2003b). Another measure derived in the afore-

mentioned studies is a number of switches per minute between the representations of

a program. More experienced programmers were found to exhibit a higher switching

frequency between the main representations.

This approach, however, was shown to be questionable. Using a remote eye-

tracker, Bednarik and Tukiainen (2004a, 2004b, 2005) replicated one of the experi-

ments in which the RFV was employed. They suggested that the blurring technique

interferes with the natural strategies involved in program debugging, especially with

those of more experience programmers. Similarly as in the influential studies of

Petre (1995), the visual representations in experiments of Romero et al. were sta-

tic. Modern program visualization tools, however, often present the concepts in

form of dynamic animations. The ecological validity of these experiments could be,

therefore, questioned too.

Eye-tracking as a research methodology in studies of programming has been

previously applied to investigate how programmers read the code (Crosby and

Stelovsky, 1990). Using an eye-tracker, patterns of programmers’ visual attention

were recorded while reading a binary search algorithm written in Pascal. Authors

analyzed fixation times and number of fixations to reveal the strategies involved

in reading source code. Crosby and Stelovsky argue, beside other findings, that

while the subjects with greater experience paid attention to meaningful areas of

source code and to complex statements, novice participants, on the other hand, vi-

sually attended comments and comparisons. Both groups paid least attention to the

keywords and did not exhibit any difference in reading strategies. However, only

one representation of program was used (the code) and the focus of the research

was mainly on the critical, but surface features of code, not on the behavior while

reasoning with multiple and dynamic visualizations.

Other studies using eye-movement tracking during program comprehension or

debugging, such the one of Crosby and Stelovsky above, are infrequent and appeared

only recently, (e.g., Bednarik and Tukiainen, 2004b, 2005, Nevalainen and Sajaniemi,

2005). Nevalainen and Sajaniemi (2004) compared three eye-tracking devices for

the purposes of studying point of gaze of programmers using a program animation

tool. The authors concentrated on practical issues of applying eye-tracking, such

as the ease of use in terms of time needed to prepare a participant for a study, the

13

accuracy measured as a mean distance of actual gaze from a requested point on the

computer screen, and the validity of data obtained from an eye-tracker. Although

somewhat vague in the analysis of the obtained results, the study suggests that a

remote eye-movement tracker fits better for the given purposes than a head-mounted

tracker.

Same authors (Nevalainen and Sajaniemi, 2005) later conducted an empirical

experiment to investigate an effect of two program visualization tools on gaze pat-

terns during comprehension. In the study, Nevalainen and Sajanimemi employed a

remote eye-tracker and, not surprisingly, found some differences between the ways

participants targeted their visual attention while working with a graphical program

visualization tool to those gaze patterns exhibited while working with a traditional

textual program visualization tool. As the depended eye-tracking measures, the au-

thors used absolute viewing times (the sum of all fixations) and proportions of these

times over three discrete areas. From a methodological point of view, it seems likely

that the differences in the absolute viewing times might be related to or biased by

the time needed to complete the animation task in each of the tools. Interestingly,

with both tools the most of the time (about 58-64%) was spent looking at other area

than at those containing code and visualization. In addition, no significant effect of

a tool on the mental models created was found.

Bednarik et al. (2006, 2005) conducted an exploratory program-comprehension

study where eye-movements of the participants were recorded using a remote eye-

tracker. Authors reported that in terms of fixation counts and attention switching

between main representations (code and graphical representation of execution) of a

program during its animation, patterns of novice and more experienced programmers

did not differ. An effect of experience was found, however, on overall strategies

adopted to comprehend programs and on fixation durations.

In summary, although novel in employing a dynamic representation of program

(Bednarik et al., 2005) or studying short-term effects of a visualization on compre-

hension (Nevalainen and Sajaniemi, 2005), researchers often approached the analysis

of eye-movement data only from a long-term, global point of view: the data were

treated as means over a whole comprehension session. In other words, a single

measure, such as a mean fixation duration or total fixation time, are employed to

represent a rather complex cognitive process of comprehending a computer program.

We argue that these approaches are therefore oversimplification of the underlying

processes and demonstrate a need to develop a more thorough methodological frame-

work. To characterize and analyze the cognitive processes involved in programming

in a greater detail, therefore, another approaches have to be involved.

14

Chapter 4

General Discussion

T
hanks to the greater availability and improved usability, eye-movement track-

ing technologies become increasingly applied to study cognitive aspects of

human behavior in various domains and psychology of programming is not

an exception. Although the technical problems with applying eye-trackers are grad-

ually disappearing, methodological issues and challenges remain.

Most of the previous research in the field of human behavior during program-

ming tasks has been conducted using methodologies such as think-aloud or program

summary analysis. In this thesis we introduce eye-tracking as an effective tool to

study the behavioral aspects. We propose to build a solid methodological grounds,

in terms of tools, measures, analysis methods, and relating the measures to the cog-

nitive processes that shall allow researchers to safely apply eye-movement tracking.

As an initial step toward the methodological framework, we have validated an

alternative tool, the Restricted Focus Viewer, that has been previously used to

study human behavior in programming. We conducted a replication of a previous

debugging experiment that employed RFV and we demonstrated that a remote eye-

movement tracker is superior to RFV-based tracking for these complex domains.

In addition, we revealed that the strategies of more experienced programmers were

influenced by the blurring condition. Regarding the eye-tracking measures used in

these studies, we found that the mean fixation duration can be used as an indicator

of experience of the participants.

The initial studies were conducted using an artificial programming environment.

The representations were static and precomputed, and the environment did not

allow participants to interact with it. To increase the ecological validity of the

eye-movement studies of programming behavior, we have conducted second exper-

iment that employed a real program visualization environment. Participants of

varying programming experience comprehended three Java programs while their

15

eye-movements were recorded. In addition, we recorded interface-level events, such

as mouse clicks, and application-level events such as start, pause or stop of the visual-

ization. While the difference in expertise levels of the participants was demonstrated

in the interaction protocols, only some of frequently used eye-tracking measures re-

flected the difference.

How much the eye-movements can reveal about the cognitive strategies of pro-

grammers? By conducting the exploratory experiments reported in this work and by

reviewing some of the related studies, it seems that the adoption of the measures em-

ployed in previous eye-movement studies in usability domain (Goldberg and Kotval,

1999) can reveal only a fragment of the programmers’ thought processes. Cognitive

processes involved in programming are far more complex to be described by a single

aggregated number, such as the proportion of time spent fixating on an area of in-

terest. On the other hand, eye-movement patterns contain much more information

than can be represented by a single aggregated measure. Our current efforts aim to

address these issues.

4.1 Future Directions

Based on the results and experience gained from the presented studies, we suggest

several research directions that seem to be worth of pursuing in the future.

In (P4, P5) we approached the analysis of eye-movement data only from a long-

term, global point of view: the data were treated as means over a whole comprehen-

sion session. The experience gained from these studies indicates that to characterize

the comprehension processes more completely, another, more detailed approach has

to be taken. In future studies we plan to subdivide the comprehension process into

meaningful pieces and study gradual changes in the related eye-movement patterns.

By doing so, we believe to capture the changes in the role each of the representations

take during the comprehension and therefore better characterize the construction of

the mental model of the comprehended program.

Another step toward integration of eye-movement tracking into studies of pro-

gramming is to investigate the relation of eye-movements to the cognitive activity

and performance. Questions like ”can a strategy that leads to a successful com-

prehension be identified from eye-movement patterns?” are to be answered in the

future. Simultaneously, these questions have to be answered by using the currently

available methodologies, such as information type analysis of comprehension sum-

maries, verbal protocols, and interaction performance. The information of what

part of the programming strategies and knowledge can be discerned using the vari-

ous methods and how the data correlate will become an important contribution of

the eye-tracking framework for studies of programming.

16

Finally, the previous research in program comprehension and debugging mod-

els established several models of program comprehension. Once the methodological

grounds for applying eye-movement tracking are established, the previously created

comprehension models can be validated using the technology or new models of com-

prehension can, possibly, be developed.

17

Chapter 5

Summary of Original

Publications

Main results of the original publications (P1)-(P5) can be summarized and

related to the research questions as follows:

In the first paper (P1), we conduct a small-scale empirical experiment and

using a remote eye-tracker we replicate one of the previous studies that employed

an alternative visual-attention tracking tool, the Restricted Focus Viewer (Jansen

et al., 2003). We compare the measures obtained by the RFV to those recorded by

a remote eye-tracker. Although based on a relatively moderate sample population,

the results suggest that the data obtained from the eye-movement tracker differ from

those obtained by the RFV. This work motivates us to concentrate on methodological

issues of visual attention tracking in the domain of psychology of programming.

In the second paper (P2), we extend the study from (P1) to further validate

our previous claim that the RFV-based systems do not seem to provide reliable

information about gaze behavior. In comparison with a remote eye-tracker, the

RFV-based system does not report the focus of visual attention as accurately. By

observation of the video protocols with the gaze-direction superimposed, we support

our empirical results that the focus of attention as measured by the eye-tracker is

often displaced from the one measured by the Restricted Focus Viewer. Therefore,

the conclusions based on the RFV-data can be subject of bias.

In the third paper (P3) we aimed to further delineate the limitations of the

RFV-based visual attention. Rather surprisingly, we found that the effect of display

blurring is more profound on more experienced participants, while their debugging

18

performance is not influenced.

Altogether, the contributions (P1)-(P3) answer first research question. They

demonstrate that there are limits on the generality of the conclusion that RFV is an

equivalent substitute for eye-tracking in studies of problem solving strategies such

as debugging computer programs. The blurring technique has been shown a) to

not accurately collect visual attention, and b) to interfere with natural strategies of

programmers. On the other hand, eye-movement tracking in its remote option, has

been shown as highly non-invasive and superior tool for tracking visual attention

of computer programmers. As the technique has not been widely applied to study

the cognitive processes and related gaze patterns involved in programming, the pub-

lished results represent the first steps toward an eye-tracking methodology to study

behavioral aspects of programming.

Unlike in numerous previous investigations, in the fourth and fifth papers

(P4, P5), we study computer programmers while working with a real, dynamic en-

vironment. We apply eye-movement tracking to record visual attention patterns of

computer programmers during comprehension task aided by a Java program visu-

alization tool. Programmers in our study were not limited in the ways they could

interact with the environment; therefore some of them considered the visualization as

guiding the comprehension process from beginning, while others used the visualiza-

tion to confirm their hypotheses constructed from reading the source code. It turned

out that the former pattern of interaction was characteristic to novice programmers,

while the latter was exhibited by more experienced programmers. To allow for a fair

comparison, in both reports, we analyzed allocation of visual attention only during

program animation.

In the direction of second research question, in the paper (P4) we investigate

differences in gaze behavior between novice and intermediate programmers. We con-

centrate on fixation count on each area, switching frequency between main represen-

tations, and mean fixation durations. We found that only mean fixation duration,

whether measured on each of the important areas, or in general, reflects the differ-

ences in expertise of programmers. Other measures seem not to be affected by the

experience levels.

There were two possible approaches to further de-construct the gaze behavior

data during the complex tasks: spatial and temporal. We addressed the former one

in (P5). Interface of a program visualization tool usually contains several linked

representations displayed in adjacent windows, in which the tools provide different

perspectives on program execution. During comprehension, programmers have to

coordinate the representations and integrate with their mental models. As the tool

employed in the experiment provides several representations (e.g. code, expression

evaluation, instances of objects, and other) we analyzed the gaze patterns in terms of

19

these representations, accordingly. Interaction events such as mouse clicks and states

of the visualization tool were recorded, and analyzed. In addition, comprehension

summaries were studied to evaluate the outcomes.

In regard of the third research question, we have found only a partial answer.

Although capturing some of the differences caused by the experience levels and

thus reflecting the differences in cognitive processing, the studies (P4) and (P5)

demonstrate a partial inability of frequently used eye-tracking measures to distin-

guish novices from more experienced programmers. These findings motivate our

future research to investigate the relation between cognitive processes involved in

programming and eye-movement data.

20

References

Aaltonen, A., Hyrskykari, A., and Räihä, K.-J. (1998). 101 spots, or how do users

read menus? In CHI ’98: Proceedings of the SIGCHI conference on Human factors

in computing systems, pages 132–139, New York, NY, USA. ACM Press/Addison-

Wesley Publishing Co.

Bednarik, R., Myller, N., Sutinen, E., and Tukiainen, M. (2005). Effects of expe-

rience on gaze behaviour during program animation. In Proceedings of the 17th

Annual Psychology of Programming Interest Group Workshop (PPIG’05), pages

49–61, Brighton, UK.

Bednarik, R., Myller, N., Sutinen, E., and Tukiainen, M. (2006). Analyzing individ-

ual differences in program comprehension with rich data. To appear in Technology,

Instruction, Cognition and Learning, 3(1).

Bednarik, R. and Tukiainen, M. (2004a). Visual attention and representation switch-

ing in java program debugging: A study using eye movement tracking. In Pro-

ceedings of the 16th Annual Psychology of Programming Interest Group Workshop

(PPIG’04), pages 159–169, Carlow, Ireland.

Bednarik, R. and Tukiainen, M. (2004b). Visual attention tracking during program

debugging. In Proceedings of The Third Nordic Conference on Human-Computer

Interaction (NordiCHI’04), pages 331–334, New York, NY, USA. ACM Press.

Bednarik, R. and Tukiainen, M. (2005). Effects of display blurring on the behavior

of novices and experts during program debugging. In Proceedings of (CHI’05),

Extended abstracts of the ACM Conference on Human Factors in Computing

Systems, pages 1204–1207, Portland, OR, USA. ACM Press.

Blackwell, A. F. (2002). First steps in programming: A rationale for attention in-

vestment models. In HCC ’02: Proceedings of the IEEE 2002 Symposia on Human

Centric Computing Languages and Environments (HCC’02), page 2, Washington,

DC, USA. IEEE Computer Society.

Branch, J. L. (2000). Investigating the information-seeking processes of adolescents:

The value of using think alouds and think afters. Library and Information Science

21

Research, 22(4):371–392.

Brookings, J. B., Wilson, G. F., and Swain, C. R. (1996). Psychophysiological

responses to changes in workload during simulated air traffic control. Biological

Psychology, 42:361–377.

Brooks, R. (1983). Towards a theory of the comprehension of computer programs.

International Journal of Man-Machine Studies, 18:543–554.

Burkhardt, J., Détienne, F., and Wiedenbeck, S. (2002). Object-oriented program

comprehension: Effect of expertise, task and phase. Empirical Software Engineer-

ing, 7(2):115–156.

Byckling, P., Kuittinen, M., Nevalainen, S., and Sajaniemi, J. (2004). An inter-rater

reliability analysis of good’s program summary analysis scheme. In Proceedings

of the 16th Annual Workshop of the Psychology of Programming Interest Group

(PPIG 2004), pages 170–184, Institute of Technology Carlow, Ireland.

Carpenter, R. H. S. (1988). Movements of the Eyes. (2nd ed.). Pion, London, UK.

Crosby, M. and Peterson, W. (1991). Using eye movements to classify search strate-

gies. In Proceedings of the Human Factors Society 35th Annual Meeting, pages

1476–1480.

Crosby, M. E. and Stelovsky, J. (1990). How do we read algorithms? A case study.

IEEE Computer, 23(1):24–35.

Detienne, F. (2002). Software Design - Cognitive Aspects. Springer-Verlag, Inc.,

London, UK.

Duchowski, A. T. (2003). Eye Tracking Methodology: Theory & Practice. Springer-

Verlag, Inc., London, UK.

Duchowski, A. T., Medlin, E., Cournia, N., Gramopadhye, A., Melloy, B., and Nair,

S. (2002). 3d eye movement analysis for vr visual inspection training. In ETRA

’02: Proceedings of the symposium on Eye tracking research & applications, pages

103–110, New York, NY, USA. ACM Press.

Duchowski, A. T., Shivashankaraiah, V., Rawls, T., Gramopadhye, A. K., Melloy,

B. J., and Kanki, B. (2000). Binocular eye tracking in virtual reality for inspection

training. In ETRA ’00: Proceedings of the symposium on Eye tracking research

& applications, pages 89–96, New York, NY, USA. ACM Press.

Ericsson, K. A. and Simon, H. A. (1984). Protocol analysis: Verbal reports as data.

Braford Books/MIT Press, Cambridge, MA.

Fix, V., Wiedenbeck, S., and Scholtz, J. (1993). Mental representations of programs

by novices and experts. In CHI ’93: Proceedings of the SIGCHI conference on

Human factors in computing systems, pages 74–79, New York, NY, USA. ACM

Press.

22

Futrelle, R. P. and Rumshisky, A. (2001). Discourse structure of text-graphics doc-

uments. In Proceedings of 1st International Symposium on Smart Graphics, New

York, NY, USA. ACM Press.

Goldberg, J. and Kotval, X. P. (1998). Eye movement-based evaluation of the com-

puter interface. In Kumar, S. K., editor, Advances in Occupational Ergonomics

and Safety, pages 529–532. IOS Press.

Goldberg, J. and Kotval, X. P. (1999). Computer interface evaluation using eye

movements: Methods and constructs. International Journal of Industrial Er-

gonomics, 24:631–645.

Goldberg, J. H. and Wichansky, A. M. (2003). Eye tracking in usability evaluation:

A practitioner’s guide. In Hyönä, J., Radach, R., and Deubel, H., editors, The

Mind’s Eye: Cognitive and Applied Aspects of Eye Movement Research, pages

493–516. Elsevier Science.

Good, J. and Brna, P. (2004). Program comprehension and authentic measurement:

a scheme for analysing descriptions of programs. International Journal of Human

Computer Studies, 61(2):169–185.

Gugerty, L. and Olson, G. M. (1986). Comprehension differences in debugging

by skilled and novice programmers. In First Workshop on Empirical Studies of

Programmers on Empirical Studies of Programmers, pages 13–27.

Hyönä, J., Lorch, R., and Kaakinen, J. K. (2002). Individual differences in reading

to summarize expository text: Evidence from eye fixation patterns. Journal of

Educational Psychology, 94:44–55.

Jacob, R. J. K. (1991). The use of eye movements in human-computer interaction

techniques: what you look at is what you get. ACM Transactions of Information

Systems, 9(2):152–169.

Jacob, R. J. K. and Karn, K. S. (2003). Eye tracking in human-computer interaction

and usability research: Ready to deliver the promises (section commentary). In

Hyönä, J., Radach, R., and Deubel, H., editors, The Mind’s Eye: Cognitive and

Applied Aspects of Eye Movement Research, pages pp. 573–605. Elsevier Science.

Jansen, A. R., Blackwell, A. F., and Marriott, K. (2003). A tool for tracking visual

attention: The Restricted Focus Viewer. Behavior Research Methods, Instru-

ments, and Computers, 35(1):57–69.

Just, M. A. and Carpenter, P. A. (1976). Eye fixations and cognitive processes.

Cognitive Psychology, 8:441–480.

Just, M. A. and Carpenter, P. A. (1980). A theory of reading: From eye fixations

to comprehension. Psychological Review, 87(4):329–354.

Ko, A. J. and Uttl, B. (2003). Individual differences in program comprehension

23

strategies in unfamiliar programming systems. In IWPC ’03: Proceedings of the

11th IEEE International Workshop on Program Comprehension, page 175, Wash-

ington, DC, USA. IEEE Computer Society.

Koenemann, J. and Robertson, S. P. (1991). Expert problem solving strategies for

program comprehension. In CHI ’91: Proceedings of the SIGCHI conference on

Human factors in computing systems, pages 125–130, New York, NY, USA. ACM

Press.

Lang, S. and Mayrhauser, A. V. (1997). Building a research infrastructure for

program comprehension observations. In Proceedings of the Fifth Iternational

Workshop on Program Comprehension, pages 165–169. IEEE Computer Society.

Law, B., Atkins, M. S., Kirkpatrick, A. E., and Lomax, A. J. (2004). Eye gaze

patterns differentiate novice and experts in a virtual laparoscopic surgery train-

ing environment. In ETRA’2004: Proceedings of the Eye tracking research &

applications symposium, pages 41–48, New York, NY, USA. ACM Press.

Letovsky, S. (1986). Cognitive processes in program comprehension. In Papers

presented at the first workshop on empirical studies of programmers on Empirical

studies of programmers, pages 58–79, Norwood, NJ, USA. Ablex Publishing Corp.

Littman, D. C., Pinto, J., Letovsky, S., and Soloway, E. (1986). Mental models

and software maintenance. In Papers presented at the first workshop on empir-

ical studies of programmers on Empirical studies of programmers, pages 80–98,

Norwood, NJ, USA. Ablex Publishing Corp.

Majaranta, P. and Räihä, K.-J. (2002). Twenty years of eye typing: systems and de-

sign issues. In ETRA ’02: Proceedings of the symposium on Eye tracking research

& applications, pages 15–22, New York, NY, USA. ACM Press.

Matin, E. (1974). Saccadic suppression: a review and an analysis. Psychological

Bulletin, 81(12):889–917.

Nevalainen, S. and Sajaniemi, J. (2004). Comparison of three eye tracking devices in

psychology of programming research. In Proceedings of the 16th Annual Workshop

of the Psychology of Programming Interest Group (PPIG 2004), pages 151–158,

Institute of Technology Carlow, Ireland.

Nevalainen, S. and Sajaniemi, J. (2005). Short-term effects of graphical versus

textual visualisation of variables on program perception. In Proceedings of the

17th Annual Psychology of Programming Interest Group Workshop (PPIG’05),

pages 77–91, Brighton, UK.

Nielsen, J., Clemmensen, T., and Yssing, C. (2002). Getting access to what goes

on in people’s heads? Reflections on the think-aloud technique. In Proceedings of

The Second Nordic Conference on Human-Computer Interaction (NordiCHI’02),

24

pages 101–110, New York, NY, USA. ACM Press.

O’Brien, M. P., Buckley, J., and Shaft, T. M. (2004). Expectation-based, inference-

based, and bottom-up software comprehension. Journal of Software Maintenance

and Evolution: Research and Practice, 16:427–447.

Pennington, N. (1987). Comprehension strategies in programming. In Empirical

studies of programmers: second workshop, pages 100–113, Norwood, NJ, USA.

Ablex Publishing Corp.

Petre, M. (1995). Why looking isn’t always seeing: readership skills and graphical

programming. Communications of ACM, 38(6):33–44.

Rayner, K. (1998). Eye movements in reading and information processing: 20 years

of research. Psychological Bulletin, 124:372–422.

Romero, P., Cox, R., du Boulay, B., and Lutz, R. (2002a). Visual attention and rep-

resentation switching during java program debugging: A study using the restricted

focus viewer. In DIAGRAMS ’02: Proceedings of the Second International Con-

ference on Diagrammatic Representation and Inference, pages 221–235, London,

UK. Springer-Verlag.

Romero, P., du Boulay, B., Cox, R., and Lutz, R. (2003a). Java debugging strategies

in multi-representational environments. In 15th Annual Workshop of the Psychol-

ogy of Programming Interest Group (PPIG’03), pages 412–434.

Romero, P., du Boulay, B., Lutz, R., and Cox, R. (2003b). The effects of graphical

and textual visualisations in multi-representational debugging environments. In

Proceedings of 2003 IEEE Symposia on Human Centric Computing Languages and

Environments, pages 236–238, Washington, DC, USA. IEEE Computer Society.

Romero, P., Lutz, R., Cox, R., and du Boulay, B. (2002b). Co-ordination of multiple

external representations during Java program debugging. In HCC ’02: Proceed-

ings of the IEEE 2002 Symposia on Human Centric Computing Languages and

Environments (HCC’02), pages 207–214, Washington, DC, USA. IEEE Computer

Society.

Salvucci, D. D. and Goldberg, J. H. (2000). Identifying fixations and saccades in eye-

tracking protocols. In ETRA ’00: Proceedings of the symposium on Eye tracking

research & applications, pages 71–78, New York, NY, USA. ACM Press.

Shneiderman, B. and Mayer, R. (1979). Syntactic/semantic interactions in pro-

grammer behavior: A model and experimental results. International Journal of

Computer and Information Sciences, 8(3):219–238.

Sibert, L. E. and Jacob, R. J. K. (2000). Evaluation of eye gaze interaction. In

CHI ’00: Proceedings of the SIGCHI conference on Human factors in computing

systems, pages 281–288, New York, NY, USA. ACM Press.

25

Soloway, E., Lampert, R., Letovsky, S., Littman, D., and Pinto, J. (1988). Designing

documentation to compensate for delocalized plans. Communications of ACM,

31(11):1259–1267.

Tarasewich, P. and Fillion, S. (2004). Discount eye tracking: The enhanced restricted

focus viewer. In Proceedings of 2004 Americas Conference on Information Sys-

tems, pages 1–9, New York, NY, USA.

Tarasewich, P., Pomplun, M., Fillion, S., and Broberg, D. (2005). The enhanced

restricted focus viewer. International Journal of Human-Computer Interaction,

19(1):35–54.

van den Haak, M., Jong, M. D., and Schellens, P. J. (2003). Retrospective vs. con-

current think-aloud protocols: testing the usability of an online library catalogue.

Behaviour and Information Technology, 22(5):339–351.

Vessey, I. (1985). Expertise in debugging computer programs: A process analysis.

International Journal of Man-Machine Studies, 23(5):459–494.

von Mayrhauser, A. and Lang, S. (1999). A coding scheme to support systematic

analysis of software comprehension. IEEE Transactions on Software Engineering,

25(4):526–437.

von Mayrhauser, A. and Vans, A. M. (1996). Identification of dynamic comprehen-

sion processes during large scale maintenance. IEEE Transactions on Software

Engineering, 22(6):424–437.

von Mayrhauser, A. and Vans, A. M. (1997). Program understanding behavior

during debugging of large scale software. In ESP ’97: Papers presented at the

seventh workshop on Empirical studies of programmers, pages 157–179, New York,

NY, USA. ACM Press.

Wiedenbeck, S. (1986). Beacons in computer program comprehension. International

Journal of Man-Machine Studies, 25(6):697–709.

26

Original Publications

27

P1.
Bednarik, R., Tukiainen, M.: Visual Attention and Representation Switching in Java Program Debugging: A

Study Using Eye Movement Tracking. In Proceedings of 16th Annual Psychology of Programming Interest

Group Workshop (PPIG’04), Institute of Technology Carlow, Ireland, April 5-7, 2004, pp. 159-169.

PPIG 2004

16th Workshop of the Psychology of Programming Interest Group www.ppig.org

Visual attention and representation switching in Java program debugging:

A study using eye movement tracking

Roman Bednarik and Markku Tukiainen

Department of Computer Science

University of Joensuu

{roman.bednarik, markku.tukiainen}@cs.joensuu.fi

Keywords: POP-V.A. Attention Investment, POP-V.B. Eye Tracking, POP-II-B. Debugging

Abstract

This paper describes a study of Java program debugging using a multiple window software debugging

environment (SDE). In this study we have replicated an earlier study by Romero et al. (2002a, 2002b,

2003), but with the difference of using both the Restricted Focus Viewer and the eye tracking

equipment to track the visual attention of the subjects. The study involved ten subjects debugging

short Java programs using the SDE. The SDE included three different representations of the Java

programs, those of the program source code, a visualization of the program, and its output

concurrently in three separate panels in SDE. We used the Restricted Focus Viewer (RFV) and a

remote eye tracker to collect the visual attention of the subjects. A with-in subject design, similar to

Romero et al., employing both RFV/no-RVF task conditions was used.

The overall results of the time distributions over three different representations of the programs agree

with the study of Romero et al. But the results of visual attention switching raise some questions to

be considered in later studies.

Introduction

Modern tools for software development usually include debugging environments, which typically

consist of multiple mutually linked representations of the program under development. Programmers

use these different representations to build up a mental model of a program. While discovering the

errors in the source code, programmers have to perform a large number of mental tasks and at the

same time have to coordinate different representations offered by the debugger. Typically, the

program code, the debugger output, and some other kinds of representation of the program are

displayed simultaneously. One of the aims of the research related to debugging is to understand, how

programmers coordinate multiple representations, and what debugging strategies they exhibit.

Previous work on visual attention and representation switching in debugging

One way to investigate the coordination of multiple representations employed in debugging tasks is to

use a tool to track the visual attention. For tracking visual attention eye tracking equipment has

become more common in recent years. The Restricted Focus Viewer (RFV) has been developed as an

alternative to eye tracking (Blackwell, 2000). One of the main advantages of RFV is that it enables

automated collection of subjects' focus of attention. The RFV blurs the stimuli image and displays it

on a computer screen, therefore allowing the subject to see only a limited focused region at a time. In

order to get another part of the stimuli focused, subject has to move the focused region using the

computer mouse. The RFV then records the moves over the stimuli, which are stored for later

analysis. The tool collects the data for both mouse and keyboard events together with the timestamps,

focused region's index, total durations of debugging sessions, and other events.

A special software debugging environment (SDE) on top of the RFV has been developed for the

purpose of tracking the switches between the representations (Romero et al. 2002a, 2002b). For that

 ii

PPIG 2004 www.ppig.org

purpose, the RFV has been modified so that the subject has to click a mouse button to set the place of

the focused region. The SDE also remembers the positions of the focused regions for each of the

displayed panels. When the subjects return their attention pointer to the panel with a representation,

the SDE automatically focuses the last region of interest. The SDE shows several representations of a

program in the adjacent windows, namely the source code, the output, and the visualization. While

working under the restricted focus condition, only a small region of the SDE window is shown in

focus. Figure 1 shows a typical screen shot of the sample interaction with SDE under the restricted

condition. The focused region following the mouse pointer is shown over the visualization.

Although the RFV-based debugging environment allows for easy tracking of attention, it also

introduces several constrains. First, the environment is limited to the static pre-computed stimuli

images, thus it does not allow us to track the visual attention in unlimited dynamic environments.

Second, it requires subjects to move frequently the computer mouse to see the areas of interest

focused. Finally, the temporal resolution of the RFV-based measurement is limited to the movement-

by-movement level of detail. To our best knowledge, eye tracking has not been applied to research

related to debugging strategies of programmers.

Eye movements

While searching for a visual object people make rapid eye movements, called saccades, shifting the

point of gaze. It is supposed that no information is collected during the saccade since vision is

Figure 1 Software debugging environment used in the experiment

 iii

PPIG 2004 www.ppig.org

suppressed during the shifts. This phenomenon is known as saccadic suppression. Once the object is

positioned on the high acuity fovea, the information from the stimuli is extracted during the fixation.

Jacob and Karn (2003) define a fixation as “a relatively stable eye-in-head position within some

threshold of dispersion (typically ~2°) over some minimum duration (typically 100-200ms), and with

a velocity below some threshold (typically 15-100 degrees per second).”

Eye movements and visual attention are coupled in the sense that the shifts in the foveal gaze

direction are linked with the voluntary intention to change the focus of visual attention. Although the

link is vivid and confirmed across the research in the recent decades, we acknowledge that it might

not be always so, since we may sometimes attend to an object without moving our eyes.

While comparing the gaze and computer mouse as the input modalities, gaze is considered to be a

more natural and intuitive way of input, since we move our eyes mostly unconsciously. Because the

eye movements are rapid, the gaze is also significantly faster than the mouse (Sibert&Jacob, 2000);

however, due to the limitation of human fovea it is less accurate, with the effective range being 1

degree of the visual field (Zhai et al., 1999).

For a comprehensive review of eye movement research see e.g. (Duchowski, 2003; Rayner, 1998;

Jacob, 1995), for the overview of the research related to the relationship between eye movements and

attention, see e.g. (Godijn&Theeuwes, 2003).

Eye tracking

Up to date, eye tracking techniques have been involved in many different kinds of studies. Their

wider application, however, has been limited by many factors. The earlier eye trackers were

expensive, required frequent recalibration, were awkward for subjects due to having mechanical

contact with their eyes, and the data analysis was time consuming and tedious. Recently, the price of

the technology dropped and enabled more research laboratories to acquire the eye tracking system.

The ability to track subjects' eyes has also been significantly improved in comparison with the

systems from the recent decades. Modern, commercially available eye trackers are usually based on

video images of the eye (Jacob&Karn, 2003; Duchowski, 2003). A ray of light, usually from an

invisible infrared source of illumination, is shone at the subjects' eye, and multiple reflections from

the eye are captured together with the geometrical properties of the eye. Multiple reflections are used

to dissociate minor head movements from the rotations of the eyes. Subjects are thus allowed to move

their head freely, only with minor spatial restrictions. The table-mounted, remote eye trackers, do not

make any contact with subjects, some even do not introduce any visible interference with the working

environment. While using a remote eye tracker the subjects' head movements are restricted to

approximate spatial cube of edge about 25cm. The head-mounted version of eye tracking optics,

however, poses a need for a headband firmly mounted on the subject’s head. The disadvantage is

counterbalanced by the fact that the head movements are not limited in space or speed.

The spatial accuracy of the modern eye trackers ranges around the half of visual degree, and the

temporal resolution is often above 50 Hz, which allow tracking the eyes with the high spatial and

temporal precision. In their recent study, Nevalainen and Sajaniemi (2004) confirm that eye tracking

can be used in the research of psychology of programming, with a relatively high accuracy of point of

gaze recording. Most of the current eye-tracking systems include a software package, which makes

the collection and analysis of the data easy and fast.

Aims of the study

The goal of the current study was to validate the previous results in representation switching obtained

using the RFV against results measured by the remote-mounted eye tracker. We especially aimed to

set up an environment and stimuli programs as close as to those reported in (Romero et al. 2002a,

2002b; Romero et al 2003), but in addition, we used eye-movement tracking. Therefore, for the same

settings we could compare the focus of attention measured by the RFV to that measured by the eye

tracker. The RFV reports the focus of attention in form of the index of stimuli image and the position

of mouse, the eye tracker reports the position of the gaze and corresponding area of interest index. As

 iv

PPIG 2004 www.ppig.org

a part of the study, the investigation also aimed at validation of visual attention focus as measured by

RFV and by eye tracking.

Method

The experimental setting

For eye-movement tracking we used the remote Tobii ET-1750 eye tracker with the sampling-rate set

to 30Hz. Participants were seated comfortably in an ordinary office chair, facing the seventeen inch

TFT computer screen from a distance of about one meter.

The software debugging environment (SDE) originally utilized e.g. in (Romero et al. 2002a, 2002b;

Romero et al 2003) was used in the experiment. In these studies and also in the current experiment,

the representations, i.e. the program code, visualization, and output of the program, were pre-

computed and static. In the current study, all of the debugging sessions employed only graphical

functional visualization.

The eye-tracking data and the audio protocol were collected throughout the whole experiment. Thus,

for the same instant the three sources of data could be analyzed: the focus of attention measured by

the RFV, the focus of attention measured by the eye tracker, and the audio protocol. The eye tracking

protocol was processed by the automatic fixation detection algorithm, with the thresholds set as

follows: the minimal fixation duration was 10 ms and the fixation radius limited to 50 pixels. The

coordinates of the areas of interest corresponded to the corners of the windows presented by SDE.

Participants and procedure

The subjects in the experiment were teachers and students from the Department of Computer Science

at the University of Joensuu. All subjects were volunteers and they received a lunch ticket for their

participation. In the study were the total of ten participants, one female and nine males, all with

perfect or corrected-to-perfect vision. None of the subjects had previously participated in eye tracking

study. The level of programming experience varied, ranging from undergraduate students who had

just passed an introductory course in Java, through postgraduate students with substantial

programming experience, to experienced programmers with a long history of using Java. Some of the

participants were Java teachers or even worked as professional programmers. Table 1 gives the

background information about the participants’ programming experience.

Participant 1 2 3 4 5 6 7 8 9 10

Java experience 24 4 5 6 3 10 60 12 5 6

Programming exp. 36 120 108 36 24 96 60 120 84 36

Professional exp. No No No Yes No Yes Yes Yes Yes No

Table 1. Programming experience of participants in months

Prior to the debugging sessions, each participant had to pass an automatic eye-tracking calibration

routine, which consisted of tracking the eyes as they followed sixteen shrinking points across the

computer screen. This procedure ensured the accuracy of the eye tracking and accommodation of the

eye tracker’s parameters to the personal characteristics. After the calibration, participants read the

description of the experiment, specifying the environment used, its control and the setting of the

study. Then they performed three debugging sessions. The first one was performed under the

restricted focus condition and served as a warm-up, however, the participants were not aware of that

 v

PPIG 2004 www.ppig.org

fact. After the warm-up, the two main debugging sessions were performed. One of these was under

the restricted focus condition, the other without the restriction. The order of the target programs and

restricting conditions were counterbalanced.

Each debugging session consisted of two phases. In the first, the participants were presented with the

short specification of the target program, which included a description of the problem, the approach

to the solution, and two sample outputs of the interaction with the program. One output presented the

actual, erroneous behaviour of the program, and the other one presented the desired, correct

behaviour of the program.

In the second phase, participants were given ten minutes to debug each program; a sound signalled

two minutes till the end of each session. Participants were instructed to find as many errors as

possible and to report them aloud by stating the error itself, the class and line number in which it

occurred, and how the error could be corrected. They were also encouraged, but not forced, to think

aloud while debugging.

The target programs used in this study were identical to those used in (Romero et al. 2002b). The

warm-up program inspected whether a point was inside a rectangle. The first program (‘Family’

program) prints out the names of the children of a sample family and the second program (‘Till’

program) counts the cash in a cash-register till, giving subtotals for the different denominations of

coins. In their study (2002b), Romero et al. had two versions of the target programs; the main

difference between these versions was that the second one was a more sophisticated version of the

first one. We used the less sophisticated versions of the programs and the graphical functional

representations in visualizations. Altogether with and without the restricted focus imposed by the

RFV, there were four different experimental conditions.

The two main experimental programs contained four errors each; the warm-up program was seeded

with two errors. Following the classification of the errors established in (Romero et al. 2002a, 2002b;

Romero et al 2003) the errors in the target programs can be classified as functional, control-flow, and

data-structure. There was no syntactical error in the programs (all programs could be compiled) and

participants were notified of this.

In order to collect the additional subjective experiences, each participant was debriefed after the

debugging session.

Results

Debugging performance

The results related to the debugging performance are presented in Table 2, which summarizes the

number of errors spotted for the two main sessions. There were four errors in each of the target

source codes. The results show that the most successful participants were number 9, who discovered

all errors, then number 6 who spotted seven errors, and number 2, who located six errors. Participants

3, 8, 10 and 4, 7 achieved average scores of five and four, respectively. Participant 1 located three

bugs, and participant 5 discovered one error.

The total number of errors found for all participants in restricted view condition was 22 and in

unrestricted view condition was 26 out of a maximum of 40 errors. There seems to be no difference

in distribution of errors spotted between the conditions of restricted and unrestricted view. In general,

more experienced programmers found more errors (participants 2, 3, 6, 8 and 9, general programming

experience of 6 years or more), U-value U(5,5) = 24, p<0.05 for the effect of experience on errors

found.

 vi

PPIG 2004 www.ppig.org

Participant 1 2 3 4 5 6 7 8 9 10

RFV on 2 3 3 3 0 3 2 3 4 3

RFV off 1 3 2 1 1 4 2 2 4 2
Errors

found

Total 3 6 5 4 1 7 4 5 8 5

Table 2. Number of errors found (each condition contained 4 errors)

Eye tracking results and debugging behaviour

The global experimental results for debugging behaviour are shown in Tables 3 and 4. Table 3

presents the percentage of time that participants spent looking at each representation obtained by the

eye tracker. The results for time distribution between the windows in the SDE agree with the results

obtained by Romero et al. (2002a, 2002b, 2003); most of the time is spent on the code window, then

on the visualisation window, and least time is spent on the output window. In our experiment, there

was nearly significant effect (t(9)=1.895, p<0.05) of proportional time spent on the visualization

between the restricted view condition (RFV on) and the unrestricted view condition (RFV off). There

were no significant effects for proportional time spent on the code and the output for the conditions.

Participant 1 2 3 4 5 6 7 8 9 10

Code 92.7 86.8 87.2 91.4 71.8 89.8 75.1 92.7 93.1 73.0

Visualization 4.1 4.9 9.8 4.7 27.6 4.6 22.8 6.4 5.8 16.0RFV on

Output 3.2 8.3 3.0 3.9 0.6 5.6 2.1 0.9 1.1 11.0

Code 93.6 91.5 79.2 73.6 62.9 88.3 81.0 85.9 84.4 75.1

Visualization 5.7 2.8 17.1 17.5 33.0 7.0 15.3 9.6 9.0 22.5RFV off

Output 0.7 5.7 3.7 8.9 4.1 4.7 3.7 4.5 5.6 2.4

Table 3. Percentage of time spend in each representation measured by the eye tracker

Table 4 presents the average number of switches per minute measured by both the RFV tool and the

eye tracker. By the term “switch” we mean the change of focus between the areas of interest, here

between the code window, visualization window and output. The results obtained from the RFV tool

protocol in restricted view condition (RFV on) are slightly higher than those in previous works (total

average of 2.56 switches per minute for nine subjects, Romero et al. (2002a) total average of 1.73

switches per minute for five subjects), but in line with results from Romero et al (2002a). The results

under the restricted condition obtained from the eye tracker, however, differ significantly from those

obtained by the RFV (t(9) = 3.49, p<0.01). The participants switch their visual attention more often

than they change the focused area with the mouse pointer in the RFV. This is also evident from

looking into the eye movement protocols. From the eye movement protocols, we can see that the

participants look at the blurred areas quite often and switch their gaze point even between the totally

blurred windows in SDE. There is also a significant difference in switches per minute between the

RFV on and RFV off conditions measured by the eye tracker (t(14)=2.32, p<0.05).

 vii

PPIG 2004 www.ppig.org

Participant 1 2 3 4 5 6 7 8 9 10

RFV 1.2 1.69 3.01 7.2 2.0 4.11 3.91 2.0 1.1 4.01
RFV on

Eye Tracker 5.31 6.55 8.81 4.4 5.61 6.34 6.71 4.01 3.01 8.03

RFV off Eye Tracker 4.11 6.08 4.92 7.81 6.51 13.09 9.35 10.74 12.14 10.13

Table 4 Average numbers of switches per minute measured by RFV and eye tracking

The debugging behaviour measured by the eye tracker of all the participants in terms of switches per

minute between each of the representations is shown in Table 5. For both of the conditions there are

six types of switches and a corresponding number of switches per minute: a switch from code to

visualization (the upper number) and a switch from visualization to code (the number at the bottom),

a switch from code to output and an inverse switch from output to the code, and a switch from

visualization to output and from output to visualization.

The effect of the restricted view condition on switching between the code and visualization

representations and between the visualization and output was not significant. The effect of the

restricted view on the total number of switches per minute from the code to output and from output to

code was significant (t(9) = 2.39, p<0.05).

Participant 1 2 3 4 5 6 7 8 9 10

Code

<->

visual.

2.0

1.9

1.58

1.48

2.9

3.11

1.1

0.9

2.5

2.5

2.23

1.71

1.9

2.0

1.2

1.4

1.1

0.9

2.51

2.51

Code

<->

output

0.3

0.4

1.37

1.48

1.2

1.1

0.7

1.0

0

0.1

0.51

0.86

0.4

0.3

0.5

0.4

0.2

0.3

1.2

1.2
RFV on

Visual.

<->

output

0.4

0.3

0.42

0.21

0.2

0.3

0.5

0.2

0.3

0.2

0.69

0.34

1.0

1.1

0.2

0.3

0.3

0.2

0.3

0.3

Code

<->

visual.

1.5

1.4

0.9

1.01

1.01

0.9

2.2

1.8

1.6

1.7

3.83

4.03

2.11

2.21

3.51

3.61

2.91

2.61

4.41

4.31

Code

<->

output

0.2

0.4

1.58

1.58

1.11

1.21

1.1

1.5

0

0

2.01

1.81

1.51

1.41

1.1

1.1

1.4

1.81

0.2

0.3
RFV off

Visual.

<->

output

0.4

0.2

0.45

0.56

0.4

0.3

0.8

0.4

1.6

1.6

0.6

0.81

1.01

1.11

0.7

0.7

1.91

1.51

0.5

0.4

Table 5 Number of switches per minute for each switch type. Upper number corresponds with the

rate from code or visualization; bottom corresponds with the rate from visualization or output.

Figure 2 and Figure 3 summarize the data from Table 4 and Table 5 in the form of graphs. The

debugging behavior of participants 10 (less experienced) and 9 (most successful), respectively, is

shown. The diagrams on the left describe the behavior under the restricted condition; the diagrams on

the right describe the behavior under the unrestricted setting. The direction of arrows follows the

types of switches introduced above.

 viii

PPIG 2004 www.ppig.org

 2.51 1.2

 2.51 0.3 1.2

 0.3

 4.41 0.2

4.31 0.4 0.2

 0.5

Figure 2 Number of switches per minute and percentage of time spent on each of the representation

for participant 10.

 0.9 0.3

 1.1 0.2 0.2

 0.3

 2.61 1.81

2.91 1.51 1.4

 1.91

Figure 3 Number of switches per minute and percentage of time spent on each of the representation

for participant 9.

From the Figure 2 and Figure 3 it can be observed that the more experienced participant (9) exhibited

more balanced behavior in terms of switches per minute between all the representations than less

experienced participant (10). These two participants were selected also as the representatives of their

experience groups.

Subjective experiences reported by participants

Each subject was debriefed after the experiment. The majority of the experienced participants have

stated that the restrictive condition imposed by the RFV does influence their ability to extract all the

information needed. For instance, the most successful participant (9) hypothesized that he “was not

good with the blur” although he spotted all the errors under both conditions. On the other hand, the

majority of novices expressed the feeling that the restricted focus allows them to concentrate more on

the particular piece of the code, while they are not influenced by the surrounding lines. Novices often

expressed the opinion that using the RFV’s restricting condition might bring efficiency into their

debugging performance.

Almost all of the participants asked during the warm-up session whether it is possible to modify the

program and to correct the error they found. Some of the participants asked whether they could take

the notes using pen and paper.

Visualization

 16.0%

Code

 73.0%

Output

 11.0%

Visualization

 22.5 %

Code

 75.1%

Output

 2.4%

Visualization

 5.8%

Code

 93.1%

Output

 1.1%

Visualization

 9.0 %

Code

 84.4%

Output

 5.6%

 ix

PPIG 2004 www.ppig.org

Discussion

This experiment was done in order to verify the results obtained from earlier studies (Romero et al.

2002a, 2002b; Romero et al 2003) using two different tools. The Restricted Focus Viewer is a tool

which relates the focus of visual attention to the location of a fully focused area within the blurred

stimuli images. The eye tracker measures the location of gaze, which is thought to be tightly

connected with the locus of visual attention.

Ten volunteers participated in the experiment, half of them with the experience outreaching six years

of active programming. The four experimental conditions used in the study consisted of two target

Java programs and two settings of RFV (restricted focus on and off). Each of the programs was

seeded with four errors. Participants debugged two different programs, being allowed to debug each

program for ten minutes.

The results of debugging performance agree with the findings from earlier studies, the error-finding

performance is related to programmers’ experience with programming. The more experienced

programmers were more successful than the less experienced programmers in finding errors in the

programs. The general programming experience determined the expertise of the participants better

than their experience with Java programming.

Similarly to earlier studies (Romero et al. 2002a, 2002b; Romero et al 2003), the results for visual

attention show that participants spent most of the time looking at the code window. This is not

surprising, because the code contains most of the information and is clearly the primary

representation of the program. However, our results differed from the earlier results of Romero et al.

concerning the distributions of the times between the windows of the SDE. Our participants spent

more time on the visualisation window (on average 12.5 % of the total time compared to an average

of 8 % of the total time for the data structure visualisation, estimated from Romero et al. 2002a and

2002b). This could be explained by at least two causes. The first is that our results are for a small

number of subjects (only 10 subjects compared to 49 subjects in Romero et al. 2002b). We are going

to run the experiment with more subjects to find out if this is the case. The second explanation is that

the RF tool itself might affect the behaviour of the subjects. In our study we were able to measure the

time distributions using the actual eye movements from the participants, the results showed that our

participants spent significantly more time on the visualisation window without using the RFV, than

using RFV.

The experimental results for switching behaviour agree with the findings of the earlier studies in

principle, that the most common type of switch is between the code window and the visualisation

window, the second most common between the code window and the output window, and the least

common between the visualisation window and the output window. However, when we study the

switches at the level of the visual attention-tracking tool used, we see first a significant difference in

the average number of switches per minute and second, a significant increase in the number of

switches between the visualisation window and the output window in the unrestricted view condition

(RFV off) compared to the restricted view condition (RFV on).

The first difference is due to fact that the RFV tool and an eye tracker measure the visual attention,

and thus the attention switching, differently. This is illustrated in Figure 4. The blurred image of the

visualisation of the data structure used, or the output of the program, could serve as a memory aid for

the programmer to recognize the specific working of the program once he/she comprehends it in the

unblurred mode. This could explain why the programmer does not have to shift the unblurred spot to

the window but can just look at the blurred image.

The second difference could have at least two possible explanations. The first one is that the

switching has a lower cognitive cost in unblurred mode. The fact that the average number of switches

per minute increases in the unrestricted view condition compared to restricted view condition could

be seen as support for this. The second explanation is that the RFV tool has an effect on debugging

strategy. For some reason, the unrestricted view allures the programmer to test an error hypothesis

between the output representation and the visualisation representation. However, the results do not

 x

PPIG 2004 www.ppig.org

show better debugging performance for the unrestricted view condition than for the restricted view

condition.

Several methodological reasons can be found for the differences between the RFV-based results and

eye tracking results. The temporal resolution of RFV-based measurement is limited to the movements

of the computer mouse. In our experiment, during the ten minutes of debugging a program the RFV

collected about 400 data points, while the number of fixations was around 7000. Thus, the eye-

tracking equipment provides a finer level of temporal details.

Furthermore, the spatial resolution of fixated areas as measured by RFV can be discussed. As seen

from Figure 1 and Figure 4, the size of the focused region ranges far beyond the two degrees of visual

angle as limited by the fovea. Therefore, it allows a subject to move his/her eyes within the focused

region of RFV without moving the mouse. These changes in focus location are not recorded by RFV.

It has often been the case that the participant working under the restricted focus view has set the

focused region onto the visualization and then returns the attention to the code or output without

moving the mouse. Figure 4 shows the screenshot of such a situation: the trace of the gaze

corresponds roughly to an interval of one second and the diameter of the fixation matches with about

50ms and increases. This behavior consisting of two or more switches between representations is not

registered by the RFV.

We also observed that subjects could be divided into two groups when use of the mouse during

debugging is considered. Some participants used the mouse as a pointer while reading the source

code, while the others had some problems coordinating the hand (mouse-controlled focused spot) and

gaze as required by the restricting view. In these subjects the gaze replay reveals that the destinations

of the mouse cursor and the gaze are almost always exclusive. This is especially true for large eye

movements, when the saccade precedes the movement of the hand. Several observations from the eye

movement protocol recorded during the debugging show that mouse position can also precede the

gaze. We maintain that the requirement of coordinating hand and gaze during debugging might be

one of the reasons why the RFV-on condition affected switching behavior.

 xi

PPIG 2004 www.ppig.org

Figure 4 The eye gaze trace and a fixation superimposed over the SDE with the restricting focus on

Acknowledgments

The authors would like to thank Jorma Sajaniemi for his deep insight into programmer studies and all

kinds of help with this experiment.

References

Blackwell, A. F., Jansen, A.R. and Marriott, K. (2000): Restricted Focus Viewer: A tool for tracking

visual attention. In M. Anderson, P. Cheng & V. Haarslev (Eds.), Theory and Applications of

Diagrams. Lecture Notes in Artificial Intelligence 1889, pp. 162-177. Berlin, Springer Verlag.

Duchowski, A. T. (2003): Eye Tracking Methodology: Theory & Practice. Springer-Verlag, London,

UK.

Godijn, R. & Theeuwes, J.(2003): The relationship between exogenous and endogenous saccades and

attention. In J. Hyönä, R. Radach, & H. Deubel (Eds), The Mind's Eyes: Cognitive and Applied

Aspects of Eye Movements. Elsevier Science.

Jacob R.J.K. (1995): Eye Tracking in Advanced Interface Design. In W. Barfield and T.A. Furness

(Eds.), Virtual Environments and Advanced Interface Design, pp. 258-288, Oxford University

Press, New York, (1995).

Jacob, R. J. K., & Karn, K. S. (2003): Eye tracking in human-computer interaction and usability

research: Ready to deliver the promises (Section commentary). In J. Hyona, R. Radach, & H.

 xii

PPIG 2004 www.ppig.org

Deubel (Eds.), The Mind's Eyes: Cognitive and Applied Aspects of Eye Movements. Elsevier

Science.

Nevalainen S., Sajaniemi J. (2004): Comparison of Three Eye Tracking Devices in Psychology of

Programming Research. Accepted to the 16th Annual Psychology of Programming Interest Group

Workshop (PPIG'04).

Rayner, K.(1998): Eye movements in reading and information processing: 20 years of research.

Psychological Bulletin 124, 3, pp. 372-422.

Romero, P., Cox, R., du Boulay, B. and Lutz, R. (2002a): Visual attention and representation

switching during Java program debugging: A study using the Restricted Focus Viewer.

Diagrammatic Representation and Inference : Second International Conference, Diagrams 2002

Callaway Gardens, GA, USA, April 18-20, 2002. Lecture Notes in Artificial Intelligence, 2317,

pp. 221-235. Berlin, Springer Verlag.

Romero, P., Lutz, R., Cox, R. & du Boulay, B.(2002b): Co-ordination of multiple external

representations during Java program debugging. Empirical Studies of Programmers symposium of

the IEEE Human Centric Computing Languages and Environments Symposia, Arlington, VA.

Romero, P., du Boulay, B., Cox, R. & Lutz, R.(2003): Java debugging strategies in multi-

representational environments. 15th Annual Workshop of the Psychology of Programming

Interest Group (PPIG), Keele University, UK.

Sibert L.E. and Jacob R.J.K. (2000): Evaluation of Eye Gaze Interaction. Proceedings of ACM CHI

2000 Human Factors in Computing Systems Conference, pp. 281-288, Addison-Wesley/ACM

Press.

Zhai, S., C. Morimoto & S. Ihde (1999): Manual and Gaze Input Cascaded (MAGIC) Pointing.

Proceedings of ACM CHI'99 Conference on Human Factors in Computing Systems, pp. 246-253.

P2.
Bednarik, R., Tukiainen, M.: Visual Attention Tracking During Program Debugging. In Proceedings of

NordiCHI 2004, The Third Nordic Conference on Human-Computer Interaction, October 23-27, 2004,

Tampere, Finland, ACM Press, pp. 331-334.

Visual Attention Tracking During Program Debugging
Roman Bednarik and Markku Tukiainen

Department of Computer Science, University of Joensuu
P.O. Box 111, FI-80101, Joensuu, FINLAND

{roman.bednarik, markku.tukiainen}@cs.joensuu.fi

ABSTRACT

This paper reports on a study which compared two tools for

tracking the focus of visual attention - a remote eye tracker

and the Restricted Focus Viewer (RFV). The RFV tool

blurs the stimuli in order to simulate human vision; the user

controls the portion of the screen which is in focus with a

computer mouse. Both tools were used by eighteen

participants debugging three Java programs for ten minutes

each. The results in terms of debugging accuracy and

debugging behavior were compared using the restricting

view condition of the RFV and a measuring tool as factors.

The results show that while the debugging performance and

the distribution of the time spent on areas of interest (AOI)

are not influenced by the restricting view condition, the

dynamics of programming behavior is different. The

number of switches between the AOIs as measured by the

RFV significantly differed from those measured by the eye

tracker. Also the number of switches under the restricted

and unrestricted RFV condition was significantly different.

We maintain that the RFV must be used with caution to

measure the switches of visual attention.

Author Keywords

Eye-movement tracking, visual attention, psychology of

programming.

ACM Classification Keywords

H5.1. Information interfaces and presentation (e.g., HCI):

Evaluation/methodology.

INTRODUCTION

The study of visual attention shifts is one of the approaches

to understanding the cognitive processes and reasoning.

Computer programmers are a typical class of computer

users whose mental processing is influenced by the visual

inputs their development environments provide.

Programmers use debugging tools which provide several

representations of a program in adjacent areas of interest.

During program comprehension they use these

representations to build up a mental model and during

debugging they have to coordinate these representations

which typically include the source code of a program, some

kind of visualization, and the output of the debugger or

program execution. Once we can track the visual attention

of programmers interacting with the debugger, we can

investigate how they coordinate multiple representations,

what strategies they adopt, and what their behavioral

patterns are. To arrive at the proper conclusions about

behavior, it is important to study the limitations and

possibilities of the technologies available.

Related Work

Currently, few tools to track visual attention exist. In recent

years, eye-trackers have become common tools for visual

attention tracking. Some alternatives to eye trackers,

however, have been developed. The Restricted Focus

Viewer (RFV) [2] is a visual attention tracking system

which displays visual stimuli in a blurred form and allows

only a small region to be seen in focus. To get a portion of

the stimuli in focus, users have to use a computer mouse to

move the focused spot; the focus of visual attention is then

thought to be linked to the position of the spot. The RFV

tracks the movements of a computer mouse over the stimuli

and records them together with the indices of AOIs and

timestamps.

In research of tracking the visual attention of programmers,

a modified version of RFV was employed in various studies

[4, 5, 6]. A Software Development Environment (SDE) was

built on top of the RFV and used to track visual attention

and investigate the coordination of multiple representations

of programmers debugging Java programs. Figure 1 shows

a screenshot of the SDE when the restricted condition is on.

The code is on the left, the visualization on the top-right,

and the output is on the bottom-right. The focused region is

displayed over the middle part of the visualization panel.

In our previous study [1], two tools for visual attention

tracking were compared: the RFV and the remote eye

tracker. Preliminary conclusions indicated that the use of

the RFV might affect the behavior of participants, while the

debugging performance seemed to be unaffected. Further,

our results indicated that for the visual attention tracking in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

NordiCHI '04, October 23-27, 2004 Tampere, Finland

Copyright 2004 ACM 1-58113-857-1/04/10... $5.00

331

multiple-representation displays, the RFV might not

accurately measure the data as expected.

Figure 1. Software debugging environment using RFV.

The aim of the present study was to closely compare two

tools for measuring visual attention, the RFV and the eye

tracker. Besides, we aimed to further verify the results

obtained in a previous study [1], using more participants.

Our working hypotheses were: using the restricted focus

view, the RFV-based tool can change the strategies and

behavior of a programmer and that the RFV does not

accurately measures all visual attention switches.

METHOD

We analyzed and compared the locations of the focus of

visual attention as measured by the eye tracker and by the

RFV. The RFV-tool links the visual attention focus to the

position of a mouse-controlled focused spot in the

otherwise blurred stimuli; the eye tracker reports the point

of gaze, thought to be linked to the focus of visual attention.

Design and Participants

A totally-within subject design was used with two factors

(RFV restricting condition and measuring tool) and four

dependent variables (errors spotted, accumulated fixation

time, mean fixation duration, and switching frequency as

measured by RFV and by eye tracker). The accumulated

fixation time is the total time spent during a session the

participant is fixating an AOI. For an AOI, all fixations are

summed and the number is divided by the total fixation

count throughout the experiment, giving the mean fixation

duration. The switching frequency refers to the average

number of switches per minute between each of the AOIs,

as measured by a tracking tool. Most of the results were

analyzed by performing ANOVA or paired samples t-tests.

In the study a total of 18 participants were recruited from

population of students, researchers, and teachers from the

authors’ department. All subjects had normal or corrected-

to-normal vision and never had taken part in an eye tracking

experiment. The average age was 25.3 (SD=4.4) years.

Three of participants were females. The programming and

Java experience varied from just passing a Java course and

having little experience to professionals working in

programming related careers. The average programming

experience in months was 78.7 (SD=34.7), and the average

Java experience was 11.5 (SD=14.8) months.

Procedure

Before the experiment, participants had to pass an

automatic eye-tracking calibration procedure. After that, the

participants read detailed instruction about the experiment

and the environment used. Three programs were debugged.

The first warm-up session was performed under the RFV

restricted view condition (RFV-on) so that the participant

could become familiar with controlling the focused spot and

operating the debugging environment. Then, the two main

debugging sessions were performed; one session was

performed under the RFV-on condition, the other session

was performed under the RFV-off condition. The order of

the programs and conditions was counterbalanced.

Each session had two phases. First, the specification of the

program was displayed which described the problem the

program was supposed to solve and the approach to the

solution. Two sample interactions were provided - the

desired behavior and actual behavior of the program.

Second, the participants were given ten minutes to debug

the program and were instructed to find as many errors as

possible and to report them aloud.

Materials and Setup

The target programs were identical to those used in [4]. The

object of the warm-up program was to determine whether a

point was inside a rectangle. The first program printed out

the names of the children of a sample family and the second

program counted the cash in a register till which gave

subtotals for the different denominations. In the previous

study [4], two versions of the target programs and several

visualizations were used. In our experiment, we used the

less sophisticated versions of the programs and graphical

functional representations. The two main target programs

were seeded with four errors each; the warm-up program

contained two errors. The programs contained no

syntactical error and participants were notified of this.

For the eye tracking, the remote Tobii ET -1750 (sampling

at 30Hz) eye tracker was used. The eye tracking data were

collected throughout the whole experiment; the RFV

collected data only in the RFV-on condition. The AOIs

were defined to correspond with the three main panels in

the SDE window: the code, visualization, and the output

panel.

The software debugging environment (SDE) used in the

previous studies [4, 5, 6] was employed for the experiment

as a source of stimuli. In these studies and in the present

experiment, the program code, the visualization, and output

were pre -computed and static.

332

RESULTS

Debugging performance

The results in terms of debugging performance show that

the total number of errors spotted under the RFV-on

condition was 46 (mean=2.56, SD=1.10) and under the

RFV-off condition was 44 (mean=2.44, SD=1.04) out of

maximum 72 errors. There was no significant difference in

the average number of errors found between the conditions

of restricted and unrestricted view (t(17) = 0.44, ns), the

grand mean was 2.5 (SD=1.06).

Debugging behavior

The debugging behavior was measured by the eye tracker

under the RFV-on/RFV-off and by the RFV-tool under the

RFV-on condition. Figure 2 presents the proportion of

accumulated time spent on fixating the AOIs as measured

by the eye tracker. The effect of the RFV condition on the

proportional times spent on the areas of interest was not

significant: there was about the same distribution of

proportional times regardless of whether the stimuli were

blurred or not.

Proportional time spent on an area of interest

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Code Visualization Output

RFV-on

RFV-off

Figure 2. Proportion of time spent on the areas of interest

Figure 3 presents the behavior in terms of number of

switches between the AOIs per minute. The results under

the RFV-on condition were measured by the RFV-tool.

The results under both conditions were measured by the eye

tracker. The term “switch” refers to the change of focus

between the AOIs, here between the code, visualization,

and output panels. Single factor ANOVA was run for the

average number of switches. The average number of

switches measured significantly differed (F(2,17)=18.37,

p<.001). Comparing the average number of switches as

reported by the measuring tool used under the restricted

view condition (RFV-on), there was a significant difference

(t(17) = 5.51, p<.001) between the RFV and eye tracker.

The difference of the number of average switches per

minute regarding the condition (RFV-on/RFV-off) was also

significant, t(17) =2.42, p<.001.

To further study the differences, we analyzed the switching

behavior in terms of switches per minute between each of

the AOIs. Three two-way ANOVA s revealed a significant

effect of the measurement and RFV condition to the

number of switches between each AOI (F(2,5)=38.2,

p<.001), a significant effect of the tool used under the RFV-

on condition (F(1,5)=50.7, p<.001), a significant interaction

between the tool used and the number of switches between

each of the AOIs under the RFV-on condition (F(1,5)=5.3,

p<.001), and a significant effect of the restricting view

condition to the number of switches between each of the

AOIs as measured by the eye tracker (F(1,5)=9.3, p<.01).

The numbers of switches per minute between each of the

AOIs under as measured by the RFV-tool and by the eye

tracker revealed were not correlated.

Average number of switches per minute

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

RFV-on/RFV RFV-on/Eye tracker RFV-off/Eye tracker

Figure 3. Average number of switches as measured by the

RFV under RFV-on, and as measured by the eye tracker
under RFV-on and RFV-off

The mean fixation durations measured by the eye tracker

are shown in Figure 4. They were obtained by dividing the

accumulative duration by the fixation count for each AOI.

The two-way ANOVA revealed a significant difference in

the mean fixation duration between the individual AOIs

(F(1,2)=6.2, p<.01); however, the effect of the condition

was not significant (F(1,2)=1.9, ns). All mean fixation

durations under the RFV-off condition were lower than

under the RFV-on condition, the effect of RFV condition

was nearly significant for the output panel (t(17)= 1.62,

p<ns) and significant for the overall mean fixation duration

(t(17) = 2.09, p<.01). The overall mean fixation durations

were also significantly correlated (r(18) = 0.857, p<.01)

between the conditions.

DISCUSSION

The purpose of this experiment was to compare two tools

for tracking visual attention measured by the eye tracker

and by the RFV tool. The RFV relates the focus of visual

attention to the location of a fully focused area within the

blurred stimuli images; the eye tracker reports the

coordinates of point of gaze which is thought to be

connected to the focus of visual attention.

The results show that the error-finding performance and

distribution of the fixation times is not influenced by

presenting the stimuli in a blurred form. The distributions of

333

the times spent over AOIs as reported by the eye tracker

show the consistent pattern of behavior and confirm the

results obtained in other studies.

Mean fixation durations

36
3.
76

26
6.7

8

37
1.4

9

35
7.
76

34
1.
53

24
9.
55

32
8.
84

31
2.
39

0.00

100.00

200.00

300.00

400.00

500.00

600.00

Code Visual Output Overall

m
s

RFV-on

RFV-off

Figure 4. Mean fixation duration for each area of interest

The dynamics of the switching behavior as reported by the

RFV tool and by the eye tracker differ significantly. The

eye movement protocols may indicate where these

differences stem from. Our explanation is that the

participants often briefly look onto the blurred areas

without moving the focused spot. Therefore, the RFV can

not register these changes which most probably serve as a

refresher of the mental images of the stimuli. A typical

situation of the problem is shown in Figure 5. The

participant has changed the visual focus and is fixating on

the blurred right-bottom output panel, as indicated by two

saccades and following fixation, while the focus as

measured by the RFV is in the middle of the code on the

left. The second difference is clear when comparing the

number of switches with and without the restricted focus

view. Participants changed the focus of visual attention

more often when the stimuli were presented in focus.

The distribution of mean fixation duration shows a decrease

in the duration while the stimuli are unrestricted and a

significant decrease of fixation duration over the AIO

containing the visualization. In some studies, e.g. [3], the

fixation duration mean is thought to be related to the

participants’ difficulty with extracting the information. This

result needs to be analyzed in further studies.

CONCLUSION

We compared two tools for tracking visual attention, the

Restricted Focus Viewer and the remote eye tracker, to

investigate their possibilities and limitations in the context

of software debugging environment. We investigated the

data provided by these tools and analyzed the changes in

the behavior of participants when the stimuli are presented

in a blurred form.

The results indicate that blurring of the stimuli does not

influence the error-finding performance of participants and

the distribution of times spent on the areas of interest.

However, the results show that there are changes in the

dynamics of the switching behavior and mean fixation

duration. Under the restricted view condition the RFV-tool

reports different dynamics in the attention switching than

that is measured by the eye tracker

Figure 5. Debugging under RFV-on

REFERENCES

1. Bednarik, R., Tukiainen, M. Visual attention and

representation switching in Java program debugging: A

study using eye movement tracking. 16th Annual

Psychology of Programming Interest Group Workshop

(PPIG'04), pp.159-169, 2004.

2. Blackwell, A. F., Jansen, A.R., Marriott, K. Restricted

Focus Viewer: A tool for tracking visual attention. In M.

Anderson, P. Cheng & V. Haarslev (Eds.), Theory and

Applications of Diagrams. Lecture Notes in Artificial

Intelligence 1889, pp. 162-177, Springer Verlag, 2000.

3. Goldberg, J. H. and Kotval, X. P. Eye Movement-Based

Evaluation of the Computer Interface. In Kumar, S. K.

(Eds.), Advances in Occupational Ergonomics and

Safety, Amsterdam: IOS Press, pp. 529-532, 1998.

4. Romero, P., Cox, R., du Boulay, B., Lutz, R. Visual

attention and representation switching during Java

program debugging: A study using the Restricted Focus

Viewer. Diagrammatic Representation and Inference:

Second International Conference, Diagrams 2002

Callaway Gardens, USA. Lecture Notes in Artificial

Intelligence, 2317, pp. 221-235, Springer Verlag, 2002.

5. Romero, P., Lutz, R., Cox, R., du Boulay, B. Co-

ordination of multiple external representations during

Java program debugging. Empirical Studies of

Programmers symposium of the IEEE Human Centric

Computing Languages and Environments Symposia ,

Arlington, VA , 2002.

6. Romero, P., du Boulay, B., Cox, R., Lutz, R. Java

debugging strategies in multi-representational

environments. 15th Annual Workshop of the Psychology

of Programming Interest Group (PPIG’03), 2003.

334

P3.
Bednarik, R., Tukiainen, M.: Effects of Display Blurring on the Behavior of Novices and Experts during

Program Debugging. In CHI ’05 extended abstracts on Human factors in computing systems, CHI 2005,

Portland, Oregon, USA, April 2-7, 2005, ACM Press, pp. 1204-1207.

Effects of Display Blurring on the Behavior of Novices
and Experts during Program Debugging

Roman Bednarik

Department of Computer Science
University of Joensuu

P.O. Box 111, FIN-80101, Joensuu, Finland
bednarik@cs.joensuu.fi

Markku Tukiainen

Department of Computer Science
University of Joensuu

P.O. Box 111, FIN-80101, Joensuu, Finland
mtuki@cs.joensuu.fi

ABSTRACT

The Restricted Focus Viewer (RFV) relates a small part of
an otherwise blurred display to the focus of visual attention.
A user controls which part of the screen is in focus by using
a computer mouse. The RFV tool records these movements.
Recently, some studies used the RFV to investigate the
cognitive behavior of users and some others have even
enhanced the tool for research of usability issues.

We report on an eye-tracking study where the effects of
RFV’s display blurring on the visual attention allocation of
18 novice and expert programmers were investigated. We
replicated a previous RFV-based study and analyzed
attention switching and fixation durations reported by an
eye tracker. Our results indicate that the blurring interferes
with the strategies possessed by experts and has an effect on
fixation duration: however, we found that debugging
performance was preserved. We discuss possible reasons
and implications.

Author Keywords

Eye-movement tracking, visual attention, psychology of
programming, experimental tools

ACM Classification Keywords

H5.1. Information interfaces and presentation (e.g., HCI):
Evaluation/methodology

INTRODUCTION

In fields of HCI research such as usability, the psychology
of programming, or diagram-understanding, it is important
to investigate the limitations and impacts of tools used for
collecting user behavior as indicators of the cognitive
processes of users. We are highly interested in whether the
actual use of tools does interfere with the (otherwise
unaltered) behavior of participants in an experiment.

Computer programming and research into the related
cognitive processes is typically a domain where researchers

benefit from applying tools to investigate visual attention
allocation. A great amount of research in the past has
consistently confirmed the relations between shifts of visual
attention focus and movements of the eyes; see [4] for a
review.

Related Work

The Restricted Focus Viewer (RFV) [6, 2] is a visual
attention tracking system which displays visual stimuli in a
blurred form and allows only a small region of the screen to
be seen in focus. To get a portion of the stimuli in focus,
users have to move the computer mouse over the area that
they want to come into focus ; the focus of visual attention
is then thought to be linked to the position of the spot. The
RFV tracks the movements of a computer mouse over the
stimuli and records them together with the indices of areas
of interest (AOI, e.g. the predefined areas of display
stimuli) and timestamps.

In the context of Java program debugging, a modified
version of RFV was employed in various studies [7, 8, 9].
In these studies, a Software Development Environment
(SDE) was built on top of the RFV and used to track visual
attention and to investigate the coordination of multiple
representations of programmers debugging Java programs.
Figure 1 shows a screenshot of the SDE when the restricted
condition is on. The SDE’s interface contains three AOIs:
the code is on the left, the visualization on the top-right, and
the output is on the bottom-right. The focused region, as set
by user’s mouse, is located over the code in left panel.

The RFV was also employed in the research of shifts of
visual attention during integration of text and graphics [3].
Other researchers used the RFV idea for usability studies of
hyperlinked documents [10].

In our previous report [1], we showed that RFV's blurring
condition introduces interference to the cognitive strategies
of programmers: representation (attention) switching was
inhibited and the mean fixation duration decreased. An
interesting and important question could be raised: "What is
the effect of this intervention on different classes of
experimental participants, when the experience is
considered as a study criterion?" Our hypothesis is that with
greater experience the actual usage of a tool does not

interfere with strategies possessed.

Copyright is held by the author/owner(s).
CHI 2005, April 2–7, 2005, Portland, Oregon, USA.
ACM 1-59593-002-7/05/0004.

CHI 2005 | Late Breaking Results: Posters April 2-7 | Portland, Oregon, USA

1204

Figure 1. A screenshot of SDE used in experiment. Focused

spot is located in the code on left.

METHOD

We analyzed and compared the locations of the focus of
visual attention between two conditions and two levels of
experience. The SDE interface, based on the RFV-tool, was
used to present stimuli blurred (RFV-on) and to present
stimuli unblurred (RFV-off). Two groups of programmers
(a novice and an expert group) worked with the
environment to debug three Java programs. The visual
attention was recorded using an eye-tracker.

Design and Participants

A mixed one within-subject (RFV restricting condition),
one between-subject (a level of experience) design was used
with four dependent variables (number of errors spotted,
accumulated fixation time, mean fixation duration, and
switching frequency as measured by eye tracker). The
accumulated fixation time is the total time a participant
spent during a session fixating an AOI. For an AOI, all
fixations were summed and the number was divided by the
total fixation count throughout the experiment, giving the
mean fixation duration. The switching frequency refers to
the average number of switches per minute between each of
the AOIs. Most of the results were analyzed by performing
ANOVA and/or planned paired t-tests.

In the study a total of 18 participants were recruited from a
population of students, researchers, and teachers from the
authors’ department. All subjects had normal or corrected-
to-normal vision according, by their own report, and had
never taken part in an eye-tracking experiment. The average
age was 25.3 (SD=4.4) years. Three participants were
females. The programming and Java experience varied from
having just passed a Java course and having little
experience to professionals working in programming-
related careers. The less-experienced group consisted of 10
programmers, who had an average of 63 months of
programming experience, 8.13 months of which were Java
programming. No novice participant had ever worked as a

professional programmer. The expert group was formed
from the remaining 8 participants, whose programming
experience was 96 months, whose Java experience was
16.25, and who all, except one, had professional experience
with programming.

Procedure

Before the experiment, participants had to pass an
automatic eye-tracking calibration procedure. After that, the
participants read detailed instructions about the experiment
and the environment used. Three programs were debugged.
The first warm-up session was performed under the RFV
restricted view condition (RFV-on) so that the participants
could become familiar with controlling the focused spot and
operating the debugging environment. Then, the two main
debugging sessions were performed; one session was
performed under the RFV-on condition, the other session
was performed under the RFV-off condition where the
whole display was presented in focus. The order of the
programs and conditions was counterbalanced.

Each session had two phases. First, the specification of the
program was displayed. It described the problem the
program was supposed to solve and the approach to the
solution. Two sample interactions were provided - the
desired behavior and actual behavior of the program.
Second, the participants were given ten minutes to debug
the program and were instructed to find as many errors as
possible and to report them aloud.

Materials and Setup

The target programs were identical to those used in [7]. The
object of the warm-up program was to determine whether a
point was inside a rectangle. The first program printed out
the names of the children of a sample family and the second
program counted the cash in a register till which gave
subtotals for different denominations. In a previous study
done by Romero et al. [7], two versions of the target
programs and several visualizations were used. In our
replication of the experiment, we used Romero’s less
sophisticated versions of the programs and graphical
functional representations. The two main target programs
were seeded with four errors each; the warm-up program
contained two errors. The programs contained no
syntactical error and participants were notified of this.

For eye-tracking, the remote Tobii ET-1750 (sampling at
30Hz) eye tracker was used. The eye tracking data were
collected throughout the whole experiment; the RFV
collected data in the RFV-on condition, but for the purposes
of this study this data was not used. The AOIs were defined
to correspond with the three main panels in the SDE
window: the code, visualization, and output panel.

The Software Debugging Environment (SDE) used in the
previous studies [7, 8, 9] was employed for the experiment
as a source of stimuli. In these studies and in the present
experiment, the program code, the visualization, and output
were pre-computed and static.

CHI 2005 | Late Breaking Results: Posters April 2-7 | Portland, Oregon, USA

1205

RESULTS

Debugging performance

The debugging performance was measured by the number
of errors spotted. Under the RFV-on condition, the less
experienced group found 2.1 (SD=1.10) errors on average
and the more experienced group spotted 3.125 (SD=0.84)
errors on average: t(7) = 2.53, p<.05. Under the RFV-off
condition, the less experienced group found 2.1 (SD=0.88)
errors on average, and the more experienced group spotted
2.88 (SD=1.13) errors on average. The effect of the
restricted view condition on debugging performance was
not significant.

Gaze related behavior

Figure 2 presents the mean fixation durations for each of
the three main areas of interest and the overall mean
fixation duration. A two way ANOVA revealed an effect of
RFV condition on mean fixation duration (F(1,16) = 4.45,
p<.051) and no interaction between level of experience and
RFV condition (F(1,16) = 0.26, ns). The planned paired t-
tests revealed that, for experts, the overall mean fixation
duration and the mean fixation durations over the code
AOI significantly differed between RFV-on and RFV-off
conditions (t(7) = 2.80, t(7) = 2.66, respectively, all p<.05).
The overall mean fixation durations of the experts were
308.82 ms (SD=83.95) and 263.09 ms (SD= 70.60) under
RFV-on and RFV-off, respectively. For the code panel, the
mean fixation durations of the expert group were 312.44 ms
(SD=85.69) and 268.23 ms (SD= 73.64) under RFV-of and
RFV-off, respectively. Considering novices, there was no
significant difference in fixation durations between RFV-on
and RFV-off conditions according to pair-wise tests.
However, the mean fixation duration between the areas was
significantly different, F(2,16) = 10.13, p<.005).

200

250

300

350

400

450

Code Visual Output Overall

m
e
a
n

 f
ix

.
d

u
ra

ti
o

n
 (

m
s
)

Novices - RFV on

Novices - RFV off

Experts - RFV on

Experts - RFV off

Figure 2. Mean fixation durations over the main panels of

interface and overall mean fixation duration.

The distribution of relative accumulated fixation time over
the areas of interest was not affected by the RFV condition
for either of two experimental groups. Novice participants
spent on average 82% of whole time fixating on the code
panel, 14% over visualization, and 4% of total time over the

output area of interest. For experts the relative accumulated
fixation time followed distribution 87%, 10%, and 3%.

The dynamics of attention switching behavior was
measured by the average number of switches per minute
between any two of all areas of interest (Figure 3). The
effect of RFV condition was significant, F(1,16) = 7.82,
p<.05), and the interaction between the level of experience
and RFV condition was significant at an alpha of 0.92,
F(1,16) = 3.59, p<.08). We observed a decrease in the
number of switches per minute, which was significant for
experts (t(7) = 2.53, p<.05). More over, the average number
of switches per minute of novices was significantly
correlated under RFV-on and RFV-off (r(10) = 0.642,
p=.046), while the same correlation for experts was low and
not significant (r(8) = 0.068, p=.873).

3

4

5

6

7

8

9

10

RFV on RFV off

N
u

m
b

e
r

o
f

s
w

it
c

h
e

s
/m

in
.

Novices

Experts

Figure 3. Number of switches per minute.

DISCUSSION AND CONLUSIONS

The purpose of this experiment was to investigate the
effects of RFV’s display blurring on the behavior of
experimental participants. The RFV displays a focused spot
within otherwise blurred stimuli images; the spot is
controlled using a computer mouse. An eye tracker reports
the coordinates of point of gaze which is thought to be
connected to the focus of visual attention. We used an eye
tracker to measure (1) the visual attention location of
participants, (2) the accumulated fixation time over areas of
interest, and (3) the fixation duration while debugging using
the RFV based environment. We replicated one of the
previous studies which used the RFV as a tool to measure
visual attention switching.

The accumulated fixation time distributions of either
novices or experts were not affected by the RFV’s restricted
view. This indicates that an RFV-based tool does not
interfere with this measure; moreover, it means that
participants spend the same amount of time fixating the
areas of interest.

The mean fixation durations of all participants were
increased under the RFV-on condition; for experts the
effect led to a significant increase under the RFV-on
condition. In eye movement based studies, the mean

CHI 2005 | Late Breaking Results: Posters April 2-7 | Portland, Oregon, USA

1206

fixation duration is a measure of processing, which is
related to the depth of required processing [5]. The RFV’s
blurred display caused our study’s experts to process visual
information longer that it was under the unrestricted view.

The RFV makes switching a manual task rather than a
perceptual one. When a display is blurred the natural
switching frequency decreases. In our study, the effect of
the blurring was more significant for experts than for
novices. As also seen from the correlations, novices’
strategies seemed to be almost unaffected, while experts’
behavior was different when the display was blurred.

These results indicate that experts are most probably
processing much information through peripheral vision
during debugging and the blurring is creating an obstacle
causing the processing to take longer. This hypothesis is
supported by a look into the video protocols. It is common
that a participant places the focused point over the
investigated piece of interface, while visually attending to
some other, blurred part of the interface. The focused spot
is therefore functioning as a kind of bookmark, but not as a
single spot through which the information is exclusively
extracted.

Despite the fact that RFV does not interfere with debugging
performance, we conclude that it creates several effects on
the behavior of experimental participants. The effects, in
our study, were more serious for a group consisting of
participants with higher experience levels. Since some
researchers continue the idea of measuring visual attention
allocation by display blurring, our results provide a
warning: some conclusions based on a behavior measured
using the RFV might be inaccurate.

ACKNOWLEDGMENTS

The work of first author was supported by a grant of
Faculty of Science, University of Joensuu, Finland.

We would like to thank Pablo Romero for sharing the
materials used in this study.

REFERENCES

1. Bednarik, R., Tukiainen, M. Visual attention tracking
during program debugging. In Proceedings of NordiCHI

2004, The Third Nordic Conference on Human-

Computer Interaction, October 23-27, 2004, Tampere,

Finland, ACM Press, pp. 331-334.

2. Blackwell, A. F., Jansen, A.R., Marriott, K. Restricted
Focus Viewer: A tool for tracking visual attention. In M.
Anderson, P. Cheng & V. Haarslev (Eds.), Theory and
Applications of Diagrams. Lecture Notes in Artificial

Intelligence 1889, pp. 162-177, Springer Verlag, 2000.

3. Futrelle, R. P. & Rumshisky, A. Discourse Structure of
Text-Graphics Documents. 1st International Symposium

on Smart Graphics Hawthorne, NY. ACM Press, 2001.

4. Godijn, R. & Theeuwes, J. The relationship between
exogenous and endogenous saccades and attention. In
Jukka Hyönä, Ralph Radach & Heiner Deubel (Eds).
The Mind's Eyes: Cognitive and Applied Aspects of Eye

Movements, pp. 3-26, 2003.

5. Goldberg, J. H. and Kotval, X. P. Eye Movement-Based
Evaluation of the Computer Interface. In Kumar, S. K.
(Eds.), Advances in Occupational Ergonomics and

Safety, Amsterdam: IOS Press, pp. 529-532, 1998.

6. Jansen, A.R., Blackwell, A.F. and Marriott, K. A tool
for tracking visual attention: The Restricted Focus
Viewer. Behavior Research Methods, Instruments, and

Computers, 35(1), 57-69, 2003.

7. Romero, P., Cox, R., du Boulay, B., Lutz, R. Visual
attention and representation switching during Java
program debugging: A study using the Restricted Focus
Viewer. Diagrammatic Representation and Inference:

Second International Conference, Diagrams 2002

Callaway Gardens, USA. Lecture Notes in Artificial

Intelligence, 2317, pp. 221-235, Springer Verlag, 2002.

8. Romero, P., Lutz, R., Cox, R., du Boulay, B. Co-
ordination of multiple external representations during
Java program debugging. Empirical Studies of
Programmers symposium of the IEEE Human Centric

Computing Languages and Environments Symposia,

Arlington, VA, 2002.

9. Romero, P., du Boulay, B., Cox, R., Lutz, R. Java
debugging strategies in multi-representational
environments. 15th Annual Workshop of the Psychology
of Programming Interest Group (PPIG’03), pp. 421-

434, 2003.

10. Tarasewich, P., Fillion, S. Discount eye tracking: The
Enhanced Restricted Focus Viewer. In Proceedings of

AMCIS, August 2004, New York, pp. 1-9.

CHI 2005 | Late Breaking Results: Posters April 2-7 | Portland, Oregon, USA

1207

P4.
Bednarik, R., Myller, N., Sutinen, E., Tukiainen, M.: Effects of Experience on Gaze Behaviour during Program

Animation. In Proceedings of the 17th Annual Psychology of Programming Interest Group Workshop

(PPIG’05), Brighton, UK, June 28 - July 1, 2005, pp. 49-61.

Effects of Experience on Gaze Behavior during Program
Animation

Roman Bednarik, Niko Myller, Erkki Sutinen, and Markku Tukiainen

Department of Computer Science, University of Joensuu,
P.O. Box 111, FI-80101 Joensuu, FINLAND

firstname.lastname@cs.joensuu.fi

Abstract. The purpose of program visualization is to illustrate some aspects of
the execution of a program. A number of program visualization tools have been
developed to support teaching and learning of programming, but only few have
been empirically evaluated. Moreover, the dynamics of gaze behavior during pro-
gram visualization has not been investigated using eye movements and little is
known about how program animation is attended by learners with various lev-
els of experience. We report on an empirical study of the gaze behavior during a
dynamic program animation. A novice and an intermediate group, a total of 16
participants, used Jeliot 3, a program visualization tool, to comprehend two short
Java programs. Referring to previous literature, we hypothesized that the perfor-
mance as well as the gaze behavior of these two groups would differ. We found
statistically significant differences in performance measures and in fixation du-
rations. Other commonly used eye-tracking measures, the fixation count and the
number of attention switches per minute, seem to be insensitive to the level of
experience. Based on the results, we propose further directions of the research
into gaze behavior during program visualization.

1 Introduction

Program visualization is used to illustrate visually the run-time behavior of computer
programs. These systems can be utilized, for example, in programming courses to sup-
port teaching of programming concepts to novice programmers. Jeliot 3 is an interac-
tive program visualization system that automatically visualizes data and control flows
of Java programs. It has been successfully used in classroom settings to teach program-
ming to high school students [1].

Although several program visualization tools exist, only few have been evaluated
and little knowledge is available about the aspects of gaze behavior during a dynamic
program visualization. It is not clear how different users attend the animation and what
cognitive efforts they have to exercise in order to comprehend the dynamic visualiza-
tion. Therefore, in order to improve program visualization systems to fit their users best,
it is a crucial issue to investigate the visual attention paths of users while visualizing
a program. If a purpose of program visualization is to support the novices in their un-
derstanding, it is reasonable to study how their behaviors differ from the behaviors of
intermediates. In other domains, eye-movement tracking has been successfully applied
to investigate the gaze patterns of participants while performing their tasks. However,

In P. Romero, J. Good, E. Acosta Chaparro & S. Bryant (Eds). Proc. PPIG 17 Pages 49 - 61

17th Workshop of the Psychology of Programming Interest Group, Sussex University, June 2005 www.ppig.org

no eye-movement based analysis of the gaze behavior during a dynamic program visu-
alization has been conducted yet.

We report on an initial study in which we have employed a remote eye tracker to
measure the gaze behavior of programmers during program comprehension facilitated
by an animation tool, Jeliot 3.

The rest of the paper is arranged as follows. In Section 2, we review some related
work in eye tracking research and program visualization, and Jeliot 3 is introduced. The
experiment and results are described in Sections 3 and 4, respectively, and discussed in
Section 5. Conclusions and future work are presented in Section 6.

2 Related Work

2.1 Eye Tracking

Humans move their eyes in order to bring an inspected object or a portion of it onto
fovea, the high-resolution area of retina. This way the visual attention is closely linked
with the direction of the eye-gaze, and most of the time it is also diverted to the point
of visual inspection. Following this assumption, if we can track the movements of eyes,
we can also get insights into and investigate the path and focus of attention during a task
such as program comprehension. Furthermore, knowing which objects have been visu-
ally inspected and in which order and context, we can attempt to infer what cognitive
processes were involved to perform the task related to these objects.

Eye tracker is a device that records eye movements. Most of the current eye trackers
use infrared light emitters and video image analysis of the corneal reflections and pupil
center to relate them to the direction of gaze. Typically, the accuracy of current eye
trackers ranges around 1 degree, while the data is sampled at rates of 50–500Hz. Current
eye trackers are relatively cheap and able to reliably and unobtrusively collect gaze data.

From the signal obtained from an eye tracker, two most important types of eye
movements are usually identified: saccades and fixations [2]. Saccades are rapid bal-
listic movements of eyes that are executed to reposition the eyes from one location of
attention to another one. A single saccade can last between 30 and 120 ms, can span over
1 to 40 degrees of visual angle [2], with velocities ranging up to 500 degrees per second
[3]. No visual information is extracted during a saccade, a phenomena called saccadic
suppression [4]. Fixations are eye movements stabilizing the image of an object on the
retina. Typical fixation duration ranges between 200–300 ms [3]. It is assumed that dur-
ing the period of a single fixation the information is extracted, decoded, and interpreted.
The fixation duration can be therefore thought to be related with a required processing
to extract and interpret the information [5, 6]. An accurate measurement and analysis of
eye movements in terms of saccades and fixations provide researchers with the details
of cognitive processing and related visual attention allocation within a performed task.
For instance, the fixation count or sum of fixation durations on a certain element can be
related to the importance of the element. In the context of program visualization inter-
faces, the relative fixation count measure can correspond with the relative importance
of a representation (e.g. a code or a state diagram) of a program.

It is a well-known fact that eye movement patterns of experts and novices differ. Pre-
vious eye movement studies in other domains than program visualization have shown,

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

for instance, that (1) search strategies differ between novice and expert radiologists [7],
(2) expert-pilots’ eye movement patterns were better defined and the dwell times were
significantly shorter than those of novices [8]. A common denominator in these and
other reports is that domain knowledge and experience of participants seem to be the
main factors influencing not only the performance, but also the related gaze behavior.

Visual attention tracking during program comprehension has been previously stud-
ied by Crosby and Stelovsky [9]. They used an eye tracker to discover the relation-
ship between cognitive styles and individual differences, and code-reading patterns. In
their study, novices and experts were eye tracked during an algorithm comprehension.
However, only one representation of program was used (the code) and the focus of the
research was mainly on the critical, but surface features of code, not on the behavior
during a dynamic program visualization.

In the direction of investigating issues such as visual attention switching or a multiple-
representation use during program comprehension or debugging, previous studies in-
volved only a static precomputed stimuli and the analysis was based on a recording of
mouse movements over a blurred interface [10, 11]. The validity of such an approach
was shown to be questionable [12, 13]. To our knowledge, no eye movement based
analysis of behavior during program animation has been conducted yet. This is cer-
tainly surprising, considering the importance of knowledge how the visual attention
and cognitive processes involved in program comprehension are influenced by program
animation.

2.2 Program Visualization

A number of program visualization systems have been developed over the previous
years to teach programming or to visually debug programs. Here we will briefly review
those systems that in some aspects are similar to Jeliot, the program visualization tool
employed in the present experiment.

Javavis [14] is a tool that visualizes automatically the runtime behavior of the Java
programs. It shows changes in the state of the program during execution using animated
UML-like object and sequence diagrams. DDD [15], a debugging front-end, uses dia-
grams to illustrate the references between data structures during program execution.
The diagram can be seen as graphs where nodes are the separate data structures (e.g.
struct in C) and vertices are the references between them. The DDD does not explicitly
visualize the control flow of the program. Jive [16] uses a similar approach to Javavis
and DDD to visualize the program state using diagrams. The references, primitive val-
ues and variables are visualized similarly in Jeliot 3 and these systems. However, only
Javavis visualizes control flow, but in less detail compared to Jeliot 3.

PlanAni [17] is a program visualization system that illustrates the data flow of a
program during its execution. The use of variables in different purposes is illustrated
through the roles of variables. The expression evaluation and control flow are also vi-
sualized. Currently, the animations must be programmed beforehand by an instructor
and the visualization of object-oriented concepts is not supported. The organization of
the user interface in PlanAni is similar to Jeliot. However, Jeliot does not visualize the
roles of variables as PlanAni and PlanAni does not visualize the control flow.

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

2.3 Jeliot 3

Moreno at al. [18] have developed a program visualization system, called Jeliot 3. Its
predecessor, Jeliot 2000, has been successfully used to improve the teaching of intro-
ductory programming helping the novices to acquire vocabulary to explain program-
ming structures and concepts [1]. Jeliot 3 retains the novice-oriented GUI and anima-
tion display of Jeliot 2000. Jeliot 3 introduced a new design in order to make the system
extensible and to allow for adding new features into the visualization. It visualizes au-
tomatically the execution of user-written Java programs by illustrating the data and
control flow and object-oriented features of the program. Jeliot 3 can visualize a large
subset of novice-level Java programs (see http://cs.joensuu.fi/jeliot/).
The user interface of Jeliot 3 is shown in Figure 1.

The interface consists of four discrete areas. A code editor on the left hand side
shows the program code, and during program visualization, the currently executed state-
ment or expression is highlighted. A control panel in the bottom left corner is used to
control the animation with VCR-like buttons. The largest area of the user interface of
Jeliot is occupied by the visualization view showing the execution state of the pro-
gram on the right hand side of the window. Visualization consists of method frames,
local variables, expression evaluation, static variables, objects and arrays. Finally, an
output console lies in the bottom right corner of the window, showing the output of
the executed program. To sum it up, Jeliot provides four different areas of interest to
the user: code view, animation view, control panel, and output console. Moreover, ani-
mation view is further divided into four different areas of interest: method, expression
evaluation, constant, and object and array areas. Furthermore, there are separate spe-
cialized visualizations where only the call tree of the program or the execution history
are shown.

In a typical session with Jeliot, a user either writes or loads a previously stored
program. User can compile the program through the user interface of Jeliot. When the
program is compiled, a visualization view, where the user can see the animation of the
program execution, is opened. Jeliot shows the execution either step by step or contin-
uously. User can control the speed of the animation and stop or rewind the animation
at any point. User can select the current visualization with the tabs on top of the visual-
ization view.

3 Experiment

The present research investigates the differences in the gaze behavior during program
animation of participants with different levels of programming experience. Based on
the results from available literature, our hypothesis was that the performance and gaze
behavior of novices and intermediates differ during the program animation. In other
words, our aim was to answer the question, whether intermediates and novices pay at-
tention to the animation in a similar or different way. Our hypothesis is not surprising,
since we naturally assume that a different level of experience shall result into a dif-
ferent gaze behavior and performance, as it has been found in other domains. More
experienced programmers are expected to form better hypotheses about the problem
and this knowledge should guide them to use the available representations in a distinct

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

Fig. 1. User interface of Jeliot 3. Area 1 is code editor, area 2 is animation frame, area 3 is control
panel and area 4 is output console.

way, compared to novices. We had a further assumption that novices would rely more
on the visualization than code and the other way around for intermediates.

To validate these hypotheses, we conducted an empirical experiment where we used
a remote eye-tracker to record the gaze behavior of the participants during program
comprehension task aided by an animation. Two groups of participants with different
level of experience used Jeliot 3 to comprehend three short Java programs while their
eye movements were simultaneously tracked.

3.1 Method

We used a between-subject design with experience (novice or intermediates) as the
factor. The depended variables were: relative fixation count over the areas of interest,
number of switches per minute and mean fixation duration over the areas of interest and
in overall. The fixation count is a measure related to the level of participant’s interest in
an area. The number of switches per minute is a measure of attention allocation dynam-
ics. The mean fixation duration is associated with the depth of processing required to
understand an attended element. Only the gaze data during the program animation were
used in this analysis because that is the only time when all the representations were
available concurrently and the selection of the attended representation would make a
difference in understanding the program. Most of the analysis was carried out using
ANOVA and planned comparisons based on t-test.

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

3.2 Participants

Eighteen participants were recruited from high-school students attending a university-
level programming course, undergraduate and graduate computer science students from
local university. Due to technical problems with the eye tracking, data from two partic-
ipants had to be discarded. Therefore, the results are based on the data collected from
16 subjects (13 male, 3 female). Participants were divided into two groups according
to their level of programming experience. Participants with less than 24 months of pro-
gramming experience were regarded as novices and above 24 months as intermediates.
The characteristics of the two groups are presented in Table 1. Groups’ mean values for
programming experience (in months) and Java experience (in months) and counts for
previous experience with Jeliot 3 (yes=1, no=0) and previous experience as professional
programmer (yes=1, no=0) are shown. Standard deviations are shown in parentheses.

Table 1. Characteristics of the groups. * marks a significant difference between groups in two-
tailed t-test (interval values) or χ2-test (nominal values) with p < 0.05

Experience level Count Prog. exp.* Java exp.* Jeliot exp. Prof. exp.
Novices 8 12.8 months 6.4 months 3 1

(6.9) (4.6)
Intermediates 8 85.5 months 19.8 months 2 1

(56.4) (15.0)

3.3 Materials and Apparatus

Three short Java programs, factorial computation, recursive binary search, and naı̈ve
string matching were presented to the participants. The lengths of the programs in lines
of code were 15, 34, and 38 respectively. Each of the programs generated only one line
of output and did not require any user input. The names of methods and variables were
altered so that the recognition of a program based on these surface features would be
difficult.

In our study, we used an adapted version of Jeliot 3 which logged all the user ac-
tions and all the changes in the visualization of the programs to be compared with the
eye tracking data. However, this material is not used in this analysis. The specialized
visualizations, the execution history and the call tree, were disabled to avoid problems
in interpreting the gaze behavior.

The remote Tobii ET-1750 (sampling rate 50Hz) eye tracker making no contact with
participants was used to track eye movements; the eye tracker is built into a TFT panel
so no moving part is visible and no sound can be heard during the recording. Only
a computer mouse was available during the experiment to interact with the tool. The
interaction protocols (such as mouse clicks) were collected for all the target programs,
and audio and video were recorded for a whole session. Fixations shorter than 100 ms
were disregarded from analysis. We have defined four main areas of interest matching

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

the four main areas in the Jeliot interface: the code, the animation, the control, and the
output area. Figure 2 illustrates the experimental settings used in the study.

Fig. 2. Experimental settings.

3.4 Procedure and Design

The experiment was conducted in a quiet usability lab. Participants were seated in an
ordinary office chair, near the experimenter, and facing a 17” TFT display. Every par-
ticipant then passed an automatic eye-tracking calibration. During the calibration pro-
cedure, a participant had to follow sixteen shrinking points appearing one by one across
the screen. If needed, the calibration was repeated in order to achieve the highest possi-
ble accuracy.

After a successful calibration, participants performed three sessions, each consist-
ing of a comprehension phase using Jeliot 3 and a program summary writing phase.
Participants were instructed to comprehend the program as well as possible and they
could interact with Jeliot as they found it necessary. The target programs contained no
errors and were always preloaded into Jeliot and compiled. The duration of a session
was not limited.

The first program was factorial computation and it was used as a warm-up and the
resulting data were discarded. The order of the two actual comprehension tasks was
randomized so that half of the participants started with the recursive binary search and
other half with naı̈ve string matching.

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

4 Results

4.1 Completion and Animation Times

Mean completion times for the comprehension phase were 17.6 minutes (SD= 10.0)
for novices, and 9.8 minutes (SD=2.6) for intermediates; the difference was statistically
significant according to a two-tailed t-test (t(7) = 2.48, p < .05). From that time,
novices spent on average 85.4% (SD=9.6) animating the program whereas intermedi-
ates spent 52.9% (SD=20.0) of their time to animation; the difference was statistically
significant according to the two-tailed t-test (t(7) = 5.38, p < .01).

4.2 Fixation count distribution

Figure 3 shows a relative fixation count distribution over the areas of interest during
the animation. Both groups spent most of the viewing time fixating the animation area,
57.4% (SD=11.9) novices, and 54.8% (SD=15.2) intermediates, of all fixations during
the program animation. Next, 39.4% (SD=11.2) and 43.3% (SD=14.5), novices and in-
termediates, respectively, of all fixations was paid to the code area. No significant effect
of experience on the distribution of fixations was found, without any interaction be-
tween the area of interest and experience. The fixation count has significantly differed
between all four areas of interest, F (3, 42) = 105.75, p < .001. The planned compari-
son revealed a significant difference in the fixation count between the two most attended
areas, the code and the animation (t(15) = 2.29, p < .05).

4.3 Switching Behavior

Figure 4 illustrates the switching behavior as expressed by the number of switches per
minute between the different areas of interest. The average number of switches per
minute was 30.15 (SD=10.66) and 27.57 (SD=8.04) for novices and intermediates, re-
spectively. The analysis of the effect of experience on the switching behavior discovered
no significant change in the number of switches per minute, F (1, 14) = 0.004, ns. The
switch between the code and the animation areas was far most common, F (5, 70) =
145.25, p < .001. Finally, the interaction effect between type of switch and experience
was not significant, F (5, 70) = 0.421, ns.

4.4 Fixation Durations

Figure 5 shows the mean fixation durations during animation for the four main areas
of interest and the overall mean fixation duration. These have been computed as a sum
of durations of all fixations landing at an area of interest divided by number of the
fixations. Since the programs did not generate an extensive output, some of the partici-
pants were not gazing to this area of interest. For the analysis, the missing values were
replaced by the mean value of a group.

The overall mean fixation duration was 406.49 ms (SD=81.40) and 297.26 ms
(SD=80.52) for novice and intermediate group, respectively. The effect of area of inter-
est on the mean fixation duration was nearly significant, F (3, 42) = 2.79, p = .052.

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

Fig. 3. Relative fixation count distribution during animation.

We also found an interaction between the fixation durations on the areas of interest and
the level of experience, F (3, 42) = 2.87, p = .048. The effect of experience on the
mean fixation durations was significant, F (1, 14) = 8.98, p = .01. Moreover, the ef-
fect of experience on overall fixation duration, F (1, 14) = 7.16, p = .018, was also
significant.

5 Discussion

Intermediates completed the comprehension phase much faster than novices. Intermedi-
ates also spent significantly less time animating the programs which was in agreement
with the hypothesis that intermediates would concentrate more on the code reading.
This happened, however, only before they began and after they stopped visualizing the
program. Both times can be kept as measures of performance. The initial code-reading
episodes could have affected the behavior of the intermediates during the program ani-
mation compared to novices. Sajaniemi and Kuittinen [17] reported that during exercise
sessions, students using PlanAni did not pay attention to the program code as much as
to the visualization. Our results agree with this observation. Although both areas were
attended with high fixation counts, it was more common to use the visualization than
the code area during program animation, in our study, regardless the experience.

Analysis of the comprehension summaries have been done elsewhere in Bednarik et
al. [19] with the program summary analysis by Good and Brna [20]. In this analysis, the
summaries of intermediate subjects were found to be slightly better in the quality, but

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

Fig. 4. Number of switches per minute between the main areas of interest.

there were no statistically significant differences found. Intermediates used higher level
of abstraction than novices but again there were no statistically significant differences.

The results of this experiment related to the gaze behavior during program anima-
tion show that the relative fixation counts and the switching behavior between the areas
defined in this study are insensitive to the level of experience. The distribution of fix-
ations between code and animation was slightly more balanced for more experienced
participants, but did not significantly differ from the distribution of novice fixations.
With respect to these measures, we have to reject our hypothesis. Most of the animation
time was spent on viewing the visualization part of the Jeliot interface.

The switches between code and animation areas were the far most common during
the animation and therefore the sum of all switches is mostly composed by this type of
switch. The code-control and animation-control switches were higher for novices. This
is probably due to the fact that novices were interacting more with the tool during the
animation than intermediates and therefore attending the control panel more often [19].
In terms of the total number of switches per minute, the two groups exhibited about the
same behavior.

With respect to previous eye movement studies investigating the relationship be-
tween gaze behavior and expertise, these result are rather surprising. Several factors
could, however, explain the results. One explanation seems to be that the features of
animation attract equally novice and intermediate programmers to attend the animation
in similar patterns. The visualization environment restricts the access to the elements
of the graphical representation to only a short period of time, therefore the effects of

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

Fig. 5. Mean fixation duration during animation.

experience cannot materialize in the gaze measures used in this experiment. We also
believe that more accurate measures have to be developed to reveal the differences be-
tween these two groups. For example, we could measure the disassociation between the
current animation step and the gaze of the subject. Another possibility for not observing
differences in the gaze behavior could be the number of subjects involved in the study
and this will be taken into the consideration in the further studies. Finally, the gap be-
tween the skills of the two groups involved in this experiment might not be big enough
to yield statistically significant differences in gaze behavior during animation.

Despite not finding differences in fixation count distribution and switching behav-
ior, we did find a significant effect of experience on the mean fixation duration. For all
the main areas (except for the control area) of the display and in overall, the mean fixa-
tion duration of intermediates was shorter than that of novices. This supports the results
from previous studies and could be explained by at least two facts or a combination of
both. One possibility is that, during the animation, intermediates might have an advan-
tage of already formed hypothesis about the visualized problem. This hypothesis would
be formed during the initial code reading before animating the program. The second
explanation could be the available domain-knowledge and programming experience of
the intermediates which would enable them to interpret the animation faster. From the
mean fixation duration over the control panel, we can observe that novices and interme-
diates alike needed about the same time (300 ms) to decide what buttons they are going
to use in order to control the flow on the ongoing animation.

Altogether, these findings could indicate that a difference in the programming ex-
perience can be seen in the mental efforts paid while attending the animation, while it
does not affect the general patterns how the animation is attended. Both groups attend

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

the suggested attention loci in about same way, but the more experienced programmers
extract the information faster and, most probably, are therefore able to pay attention
to the surrounding context. When a consecutive attention switch is suggested by the
animation, both groups will follow it and thus exhibit similar switching behavior.

6 Conclusion and Further Work

We have conducted an empirical experiment to discover the aspects of gaze behavior
during the dynamic program visualization. We employed a non-intrusive remote eye
tracking equipment to record the eye movements of programmers with various level of
experience. Our results, in terms of the attention switches between different program
representations and the distribution of fixations, show no difference in the gaze behav-
ior between novice and intermediate group of programmers during program animation.
In other words, the focus of visual attention seems to be distributed in time and space
evenly regardless of the experience in programming. When the level of processing re-
quired to attend the animation is measured as a mean duration of fixations over the
main areas of interest and in overall, our results show that novice programmers spend
significantly more time on extracting the features of animated concepts. We propose this
difference to be linked to the experience level and with a pre-established model of the
algorithm being animated. The performance measures seem to support this hypothesis.

Our initial experiment provides a take-off mark for further studies investigating gaze
behavior related to the dynamic program visualizations. Several directions for future re-
search can be taken. Based on the general, macro-level patterns presented in this paper,
we aim to deconstruct the behavior into more micro-level sequences. Between our next
aims belong to investigate the effects of the discrete animation elements on the gaze
behavior as well as the changes in the behavior in a course of time. Among the ques-
tions raised by the present study belong, what kind of suggested switches are consumed
during the animation and whether the decision differs given the level of experience.

To answer the questions, we plan to develop a methodological framework for a re-
liable application of eye-movement tracking in the context of program visualization.
These studies shall provide us with a deeper understanding about the cognitive pro-
cesses involved in program comprehension during program visualization.

Acknowledgments

We would like to thank all participants for taking part in this study. We acknowledge
Andrés Moreno for a help with preparation of this study.

References

1. Ben-Bassat Levy, R., Ben-Ari, M., Uronen, P.A.: The Jeliot 2000 program animation system.
Computers & Education 40 (2003) 15–21

2. Sibert, L.E., Jacob, R.J.K.: Evaluation of eye gaze interaction. In: CHI 2000, ACM Press
(2000) 281–288

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

3. Rayner, K.: Eye movements in reading and information processing: 20 years of research.
Psychological Bulletin 124 (1998) 372–422

4. Matin, E.: Saccadic suppression: a review and an analysis. Psychological Bulletin 81 (1974)
889–917

5. Carpenter, P.A., Just, M.A.: Eye fixations during mental rotation. In Senders, J.W., Fisher,
D.E., Monty, R.A., eds.: Eye movements and the higher psychological functions. Erlbaum,
Hillsdale, NJ (1997) 115–133

6. Goldberg, J.H., Kotval, X.P.: Eye Movement-Based Evaluation of the Computer Interface. In
Kumar, S.K., ed.: Advances in Occupational Ergonomics and Safety. IOS Press, Amsterdam
(1998) 529–532

7. Nodine, C., Mello-Thoms, C.: The nature of expertise in radiology. In Beutel, J., Kundel,
H., Metter, R.V., eds.: Handbook of Medical Imaging. SPIE Press (2000)

8. Kasarskis, P., Stehwien, J., Hickox, J., Aretz, A., Wickens, C.: Comparison of expert and
novice scan behaviors during VFR flight. In: The 11th International Symposium on Aviation
Psychology. (2001)

9. Crosby, M., Stelovsky, J.: Subject Differences in the Reading of Computer Algorithms.
In Salvendy, G., Smith, M.J., eds.: Designing and Using Human-Computer Interfaces and
Knowledge-Based Systems. Elsevier (1989) 137–144

10. Romero, P., du Boulay, B., Cox, R., Lutz, R.: Java debugging strategies in multi-
representational environments. In: The 15th Annual Workshop of the Psychology of Pro-
gramming Interest Group (PPIG’03). (2003) 421–434

11. Romero, P., Lutz, R., Cox, R., du Boulay, B.: Co-ordination of multiple external represen-
tations during Java program debugging. In: Empirical Studies of Programmers symposium
of the IEEE Human Centric Computing Languages and Environments Symposia, Arlington,
VA (2002) 207–214

12. Bednarik, R., Tukiainen, M.: Visual attention tracking during program debugging. In:
NordiCHI’04, ACM Press (2004) 331–334

13. Bednarik, R., Tukiainen, M.: Effects of display blurring on the behavior of novices and
experts during program debugging. In: CHI ’05: CHI ’05 extended abstracts on Human
factors in computing systems, ACM Press (2005) 1204–1207

14. Oechsle, R., Schmitt, T.: JAVAVIS: Automatic Program Visualization with Object and Se-
quence Diagrams Using the Java Debug Interface (JDI). In Diehl, S., ed.: Software Vi-
sualization. Volume 2269 of Lecture Notes in Computer Science., Springer-Verlag (2002)
176–190

15. Zeller, A., Lütkehaus, D.: DDD — A Free Graphical Front-End for UNIX Debuggers. ACM
SIGPLAN Notices 31 (1996) 22–27

16. Gestwicki, P., Jayaraman, B.: Interactive visualization of Java programs. In: IEEE Symposia
on Human Centric Computing Languages and Environments. (2002) 226–235

17. Sajaniemi, J., Kuittinen, M.: Program animation based on the roles of variables. In: ACM
symposium on Software visualization, ACM Press (2003) 7–16

18. Moreno, A., Myller, N., Sutinen, E., Ben-Ari, M.: Visualizing Programs with Jeliot 3. In:
Advanced Visual Interfaces (AVI 2004). (2004) 373–376

19. Bednarik, R., Myller, N., Sutinen, E., Tukiainen, M.: Analyzing Individual Differences in
Program Comprehension with Rich-Data Capture. Submitted (2005)

20. Good, J., Brna, P.: Program comprehension and authentic measurement: a scheme for
analysing descriptions of programs. International Journal of Human-Computer Studies 61
(2004) 169–185

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

P5.
Bednarik, R., Myller, N., Sutinen, E., Tukiainen, M.: Analyzing Individual Differences in Program

Comprehension. Technology, Instruction, Cognition and Learning (TICL), 3(3-4), pp. 205-232, 2006.

Analyzing Individual Differences
in Program Comprehension

ROMAN BEDNARIK*, NIKO MYLLER, ERKKI SUTINEN

AND MARKKU TUKIAINEN

Department of Computer Science
University of Joensuu

Joensuu, Finland

Programming is a complex problem-solving domain often involving
many dependent entities which may be even hidden or latent. Novice
programmers have little knowledge about program execution and may
see it as an abstract and non-deterministic process. To support novices,
Jeliot was developed to visualize program execution, and thus help in
specifying viable program development models. This paper reports on an
empirical experiment in program comprehension where 16 subjects used
Jeliot to comprehend two Java programs. The experiment focused on
how the experience level and complexity of the program affected (a) the
patterns of interaction with the tool, (b) the gaze behavior, (c) the use of
visualization, and (d) the cognitive processes related to program com-
prehension. This was done by investigating the protocols obtained from
an eye-tracker, interaction logging, and comprehension summaries. An
interaction between experience and behavior was found. Experts read the
whole code first, constructed a hypothesis, and tested it against the ani-
mation. Novice programmers did not read the code first. They animated
the program directly, and replayed the animation several times focusing
on the difficult sections. The results reveal the potentials of gaze as an
additional modality in an adaptive tool for program visualization.

Keywords: Complex systems; Empirical programmer studies; Eye tracking;
Program comprehension; Program visualization.

205

*Corresponding author: Tel: +358 13 251 7977; Fax: +358 13 251 7955; Email: bednarik@cs.joensuu.fi

Tech., Inst., Cognition and Learning, Vol. 3, pp. 205-232 © 2006 Old City Publishing, Inc.
Reprints available directly from the publisher Published by license under the OCP Science imprint,
Photocopying permitted by license only a member of the Old City Publishing Group

INTRODUCTION

Programming is a complex and cognitively demanding task due to the
multiple interrelated components, tradeoff decisions, and performance
requirements that concern the whole process (Detienne, 2002; Hoc, 1990).
One of the central parts in the processes of programming, such as creating,
maintaining and modifying a software product, is program comprehension.
Therefore, the ability to comprehend computer programs is essential and
should be learned and supported with proper tools. In order to aid the
process of program comprehension and its learning, several tools have
already been developed. However, little is known about the user interaction
with the tools and about the effects of these systems on the program
comprehension and the underlying cognitive processing.

The present study addresses the questions of whether and how a dynamic
visualization of program is used during comprehension processes, and how
the experience of programmers and complexity of the target programs are
reflected in eye-movement patterns and in patterns of interaction.
Knowledge of these aspects may help us to create better and more
personalized tools and methods for aiding program comprehension.

The complexity of programming
A complex system consists of a large number of components whose

interrelations are difficult if not impossible to trace. We can call the
complexity of these systems substantial. A computer-aided system is
supposed to clarify these interrelations and help a human to understand the
dynamics of the system, most often by the means of simplifying the
interrelations and visualizing the system.

In a sequential program, the dependencies between its structures are –
unlike those of a typical complex system – well defined and need no
simplification or reduction. The value of a certain variable depends on the
predetermined sequence of statements, which make use of other data
structures of the program.

However, the complexity lies in the human process of comprehending a
program, especially at the novice level. The learner needs to take into account
diverse aspects of a program, such as its I/O, control flow, data management,
and memory allocation, and to grasp all this information simultaneously makes
understanding difficult. Individual preferences, like appropriate representation,
complicate things even further: if a learner is exposed to a visualization of, for
instance, a variable and its contents that s/he has difficulty to interpret, the

206 BEDNARIK et al.

representation may mislead her/him even more. Thus, we can characterize the
complexity of a sequential program as cognitive.

At the same time, depending on the values of the inputs, even a short
piece of code might have several different manifestations. This is
particularly apparent in the case of short string algorithms, like in the
variations of Knuth-Morris-Pratt or Boyer-Moore string searching
algorithms. The call tree of a simple recursive program, for example, one
operating on a binary search tree, might also result in complex-to-
understand structures.

To summarize, the complexity related to programming and its learning is
more cognitive than that in a conventional complex system where the
complexity is substantial. Therefore, the fundamental challenge of any
system that helps a learner to understand or, as a programmer, to control the
internal dynamics or operations of a sequential program, is to lessen the
cognitive load involved in elaborating the program. This means that the
learner should get closer to the actual, often relatively simple, idea of the
program. One approach to make the inherent simplicity of any program
understandable to a novice programmer is to clarify its operations by
visualization. Jeliot, a tool used in the present study, is one of several
solutions to this challenge.

Currently, there are many visualization engines or systems available.
Most of them have also been evaluated, at least partly; and there are even
meta-studies, like that of Hundhausen (2002). However, careful analyses of
how a user browses an animation are still mostly lacking. These analyses are
essential for developing the visualization environments further, so that they
can help the learner to focus on a program’s essentials as efficiently as
possible. In other words, future systems should uncover the cognitive
complexity and give way for the substantial simplicity of the program.

It is worth noting that there are also programs which behave like a
complex system and could hence be categorized as substantially complex
systems. For example, it is not possible to predict the next step of a
concurrent program; the same applies to randomized algorithms, as well as
to multithreaded or event-driven programs. However, tools for these kinds
of environments are not discussed in the current study.

Program comprehension
A number of studies have been carried out in the field of program

comprehension. The theories of program comprehension can be divided
roughly into three categories: bottom-up, top-down and mixed models.

ANALYZING INDIVIDUAL DIFFERENCES IN PROGRAM COMPREHENSION 207

The bottom-up model of program comprehension was proposed by
Shneiderman and Mayers (1979), and Basili and Mills (1982). Pennington
(1987) reported that programmers approached a comprehended program in a
bottom-up manner from the control structures to the functional structure of
the program. However, this model has not received strong support as a
comprehensive model for describing the comprehension process, but it is
often incorporated as a part of the model.

Brooks (1983) presented a model in which the program was
comprehended in a top-down manner. The central idea of the theory was that
programmers generate hypotheses about the code, using their programming
and domain knowledge, and try to verify them. Brooks treated the bottom-
up comprehension process as a degenerated special case of the top-down
strategy. Letovsky (1986) proposed a similar model and verified the model
in an empirical experiment. The conclusion was that the comprehension
process is guided by the hypotheses. However, Letovsky also recognized the
importance of the bottom-up approach in program comprehension.

The mixed model was supported by the findings of von Mayerhausen,
Vans and Somlo (1999), who studied professional programmers in
authentic software development projects. They proposed an integrated
code comprehension model that combines the results from previous
research. The top-down strategy is commonly used, but when the
program or the domain is unfamiliar, the comprehension is carried out in
a bottom-up manner to gather the program and domain knowledge. With
these strategies and using their knowledge base, the programmers build
and relate the domain, program and situational models to each other. The
proper combination of these three models determines how well the
programmer understands the program.

The methodology for studying and analyzing the program
comprehension process relies mostly on three approaches: comprehension
questions, comprehension summaries and think-aloud protocols.

Comprehension questions are used to determine how well the user has
comprehended the program and can remember some aspects of it
(Pennington, 1987). These can be used as a measure of comprehension
performance. Although program summaries can also be evaluated for
analysis of the performance, they are commonly used to investigate the
mental models of the program acquired by the programmers during the
comprehension task. Previously, comprehension summaries have been
analyzed from two different standpoints (Pennington, 1987; Good & Brna,
2004). One focus is on the information types that are used in the summaries,

208 BEDNARIK et al.

wherefore ten categories were discovered for different information given
from the program. The categories describe several dimensions of the
comprehension outcome. First of all, categories can be divided roughly into
four knowledge types, namely functional, state, data flow and control flow
knowledge. Furthermore, functional and state knowledge have different
abstraction levels. Functional knowledge has three abstraction levels:
function, for what the program is used, action, function of a part of the
program, and operation, a statement level description. State knowledge has
two levels state-high and state-low depending on how high is the abstraction
level in the description. In addition to the knowledge types, the information
types contain four categories for elaboration, meta-cognition, unclear and
incomplete statements and Byckling et al. (2004) proposed also an
irrelevant category. The other focus of the summary analysis scheme is on
object descriptions. They are classified according to their level of
description in the summary. For instance, the descriptions are classified in
different categories depending on if the objects are described in program or
domain specific terms.

The thought sequences and cognitive processing during problem solving
are often analyzed with think-aloud protocol analysis (Ericsson & Simon,
1984). Resting on an assumption that the sequence of thoughts is not altered
during verbalization, protocol analysis has been used successfully in several
domains as well as in analysis of the program comprehension processes.

Program Visualization
Many systems have been developed in the field of Software Visualization

(SV) in the last two decades. Algorithm Visualization (AV), a subset of SV
systems, has received the most attention and has been studied relatively
intensively. However, the results have been inconclusive (Hundhausen et
al., 2002). Program Visualization (PV) is another subfield of SV where
visualization is closely coupled with the program and some aspects of the
programs execution are visualized either during run-time or post-mortem.
These systems are used, for example, to analyze the performance of the
software, to debug programs visually or to teach programming concepts.
Here we will briefly review systems that are similar in some aspect to Jeliot,
the tool used in this experiment.

Javavis (Oechsle & Schmitt, 2002), Jive (Gestwicki & Jayaraman, 2002)
and DDD (Zeller & Lütkehaus, 1996) are tools that automatically visualize
the programs data flow and part of the control flow during program
execution. Javavis and Jive are educational tools whereas DDD is a visual

ANALYZING INDIVIDUAL DIFFERENCES IN PROGRAM COMPREHENSION 209

front end to a debugger. To visualize Java programs, Javavis uses UML-like
diagrams in their visualizations. It illustrates the run-time behavior of the
program through animated object and sequence diagrams. Jive uses a
modified contour diagrams and shows the different contexts (i.e. static or
dynamic) in which the program is executed together with the source code
and local variables. DDD uses its own graph-like format to lay out the data
structures and references between them on the screen. Jeliot combines this
work to show objects and their fields in a UML-like notation of class
diagram. References to the objects are treated as other variables to illustrate
the reference semantics of Java language.

The visualization in Dynalab (Boroni et al., 1996) and PlanAni (Sajaniemi
& Kuittinen, 2003) concentrates on variables. Dynalab shows the values of
variables in a textual format whereas PlanAni shows the variables as graphical
objects. Moreover, PlanAni visualizes the variables and operations on them
differently, depending on the role (Sajaniemi & Kuittinen, 2003) they are
assigned. Dynalab visualizes the programs automatically and can also animate
the programs backwards whereas the animations in PlanAni need to be written
manually beforehand. Both of these programs are currently developed to
visualize only procedural programs. Dynalab has full support for Pascal and
restricted support for C and Ada. PlanAni does not restrict the visualized
language as long as the animation scripts are described in Tcl/Tk. Jeliot
visualizes variables in different scopes separately. For example, method frames
contain the local variables of the method, objects contain the fields and static
variables are separated in their classes. Jeliot also does not make any difference
between the roles of variables. However, it can automatically visualize object-
oriented programs.

Jeliot 3
The Jeliot family is a collection of program visualization systems that

have been developed over the last ten years (Ben-Ari et al., 2002). The latest
version, Jeliot 3, which has been developed at University of Joensuu
(Moreno et al., 2004), is designed to help teach novices the programming
concepts and to aid in program comprehension and debugging. Its
predecessor, Jeliot 2000, has been successfully used to improve the teaching
of introductory programming courses, helping novices to acquire
vocabulary to explain programming structures and concepts (Ben-Bassat
Levy et al., 2003). This might be due to the fact that Jeliot can help the
learner to build a viable mental model of the computer executing the
program and use it to verbalize the execution.

210 BEDNARIK et al.

FIGURE 1
User interface of Jeliot 3. (1 = code editor; 2 = visualization view; 3 = control panel; 4 = out-
put console.)

Jeliot 3 retains the novice-oriented GUI and animation display of
Jeliot 2000 by only adding new menus to expose more functionality to
the user, especially when it is used during lectures. In order to make the
system extensible and to allow adding new features into the visualization,
Jeliot 3 introduced a new design. It automatically visualizes the execution
of user-written Java programs by illustrating the data and control flow
and object-oriented features of the program. Jeliot 3 can visualize a large
subset of novice-level Java programs and it is freely distributed under
GPL (see http://cs.joensuu.fi/jeliot/). The user interface of Jeliot 3 is
shown in Figure 1 (1 = code editor; 2 = visualization view; 3 = control
panel; 4 = output console).

The interface consists of four different areas. A code editor on the left
side shows the program code, and during program visualization, the
currently executed statement or expression is highlighted. A control panel in
the bottom left corner is used to control the animation with VCR-like
buttons. On the right side of the window, the largest area of the Jeliot’s

ANALYZING INDIVIDUAL DIFFERENCES IN PROGRAM COMPREHENSION 211

window is occupied by a visualization view showing the execution state of
the program. Moreover, the animation view is further divided into four
different areas:

• the method area showing the currently executed method and local
variables;

• the expression evaluation area where the expressions are evaluated
step-by-step and messages are shown to the user;

• the constant area containing classes together with their static variables
and the constant box from which the literal constants appear; and,

• the instance and array area showing the visualization of the arrays and
instances containing their fields.

Finally, an output console is located in the bottom right corner of the
window, showing the output of the executed program. Furthermore, there
are two specialized visualizations, where only the call tree or the execution
history of the program is shown, on separate tabs of the tabbed pane. These
views reduce the complexity and the amount of information shown to the
users and thus help them to concentrate on the relevant parts. In the call-tree
visualization, the previous method calls are shown and the currently active
methods are highlighted. This allows following the program execution in
the level of method calls and further reduces the complexity. In the history
view, users can analyze the previous stages of the execution in a step-by-
step manner and thus are able to reason about how the current execution
step was reached.

In a typical session with Jeliot, the user either writes or loads a program.
The user can then compile the program by using the user interface of Jeliot.
When the program is compiled, a visualization view, where the user can see
the animation of the program execution, is opened. Jeliot shows the
execution either step by step or continuously. The user can control the
animation with the buttons, for instance by stopping the animation and
continuing in a step-wise manner. Reverse execution is not possible; but the
user can view the execution history which is a stepwise recording of the
current execution.

Eye-movement tracking
We move our eyes in order to bring an image of the inspected object onto

the fovea, a small and high-resolution area of the retina. Once the image of
the object is stabilized on the retina, the information can be extracted. This

212 BEDNARIK et al.

way the visual attention is linked with the current direction of eye gaze and
most of the time it is also diverted to the point of visual inspection.
Following this eye-mind assumption, if we can track the movements of the
eyes, we can also obtain good insights into and investigate the path and
focus of visual attention during a task. Previous research has firmly
established this relation between eye movements, visual attention and
underlying cognitive processes (Just & Carpenter, 1976; 1980; Rayner,
1998). Knowing which objects have been visually inspected and in which
order and context, we can attempt to infer what cognitive processes were
involved in performing a task related to these objects.

An eye tracker is a device that records eye movements. To estimate the
direction of gaze, most of the current eye trackers use infrared light emitters
and video image analysis of the center of the pupil and reflections from the
cornea. Typically, the accuracy of the eye trackers currently available
commercially is around 1 degree, while the data are sampled at rates of
50–500Hz. Modern eye-trackers are relatively cheap and able to collect
gaze data reliably and unobtrusively. Two general classes of eye tracking
devices exist: a remote optics, table-mounted version and a head–mounted
optics with a see-through mirror. Regardless of the option, both types of eye
trackers must be calibrated for each user before the first experiment.

From the signal obtained from an eye tracker, the two most important
types of eye movements usually identified are saccades and fixations
(Salvucci & Goldberg, 2000; Sibert & Jacob, 2000). Saccades are rapid
ballistic movements of eyes that are executed to reposition the eyes from
one location of attention to another. A single saccade can last between 30
and 120 ms and can span over 1 to 40 degrees of visual angle (Sibert &
Jacob, 2000), with velocities ranging up to 500 degrees per second (Rayner,
1998). No visual information is extracted during a saccade; this is called
saccadic suppression (Matin, 1974). Fixations are the movements of eyes
stabilizing the image of an object on the retina, providing the human visual
system a possibility to extract the features of the object. Typically, the
fixation duration ranges from 200 ms to 300 ms (Rayner, 1998). It is
assumed that during the period of a single fixation the information is
extracted, decoded, and interpreted. The fixation duration can therefore be
thought to be related to the processing required to extract and interpret the
information (Just & Carpenter, 1976; Goldberg & Kotval, 1998; 1999).

Accurate measurement and analysis of eye movements in terms of
saccades and fixations therefore provide us with the details of cognitive
processing and related allocation of visual attention within a performed task.

ANALYZING INDIVIDUAL DIFFERENCES IN PROGRAM COMPREHENSION 213

For instance, the fixation count or the sum of fixation durations on a certain
element can be related to the importance of that element. The fixation
duration might also be seen as a measure of cognitive workload. As
Goldberg and Kotval (1999) reported, the fixation duration increased when
the task required difficult cognitive processing. In the context of program
visualization interfaces, the measure of relative fixation count can, for
instance, correspond with the relative importance of a representation (e.g. a
code or a state diagram) of a program to the current user of the tool.

Previous research of eye movement tracking
In many fields of HCI and in other domains, studies of eye-movement

tracking have significantly contributed to the body of available knowledge.
Eye-movement tracking has been successfully employed in studies of
reading (Just & Carpenter, 1980, 1984; Rayner, 1994), gaze-based
interaction (Jacob, 1993; Karn & Jacob, 2004), eye typing (Majaranta &
Räihä, 2002), menu selection (Crosby & Peterson, 1991; Aaltonen,
Hyrskykari & Räihä, 1998), usability (Goldberg & Kotval, 1998; 1999) or
in virtual reality (Duchowski et al., 2000, 2002).

Possible differences in the eye movement patterns of experts and
novices have been of great interest. Previous studies of eye movement
patterns in domains other than program visualization have shown that (a)
search strategies differ between novice and expert radiologists (Nodine
and Mello-Thons, 2000), and (b) the eye movement patterns of expert-
pilots were better defined and the dwell times were significantly shorter
than those of novices (Kasarskis et al., 2001). The common conclusion of
these and other reports is that the domain knowledge and experience of
participants seem to be the main factors influencing both the performance
and the related gaze behavior.

In the context of the psychology of programming, however, only a few
attempts to utilize eye-movement tracking have been made. Crosby and
Stelovsky (1989, 1990) studied aspects of visual attention during reading
the programs and program comprehension. In these studies, an eye tracker
was used to discover the relationship between cognitive styles and
individual differences, and code-reading patterns. In Crosby and Stelovsky’s
studies, novices and experts were eye tracked during algorithm
comprehension. With the help of eye tracking metrics, complex statements
in the source code of a variation of binary search algorithm have been found
and related to beacons (Crosby et al., 2002). Moreover, differences in the
programming experience of participants were reflected in the times they

214 BEDNARIK et al.

spent viewing different areas of particular complex statements. However,
only one representation of a program was used (the code), and the focus of
the research was mainly on the critical, but surface features of the code, not
on the behavior during dynamic visualization of the program.

Program visualization often involves simultaneous presentation of
several different representations of a program in adjacent views. Previous
studies, investigating issues such as visual attention switching or a
representation use during program comprehension aided by visualization,
involved only static pre-computed stimuli and the analysis was based on a
recording of mouse movements over a blurred interface (Romero et al,
2002; 2003). In comparison to the eye movement tracking, the validity of
such an approach was shown to be questionable (Bednarik & Tukiainen,
2004). Although there is an apparent need for a deeper investigation of gaze
behavior and the underlying cognitive processes during program
visualization (Chandler, 2004), no attempts were made to fill this gap.

EXPERIMENT

The present research investigates differences in gaze behavior of
participants with different levels of programming experience during
program animation. In a preliminary study (Bednarik et al., 2005) we
discovered that, in terms of global attention allocation between code and
visualization, novice and expert gaze patterns do not differ during
comprehension aided by program animation. This result was quite
surprising, since in other domains experts’ and novices’ gaze patterns
differ significantly. However, we found some differences in the mean
fixation durations. To further investigate these findings, we deconstructed
the interface of the visualization tool and compared the performance of
novice and expert participants in terms of their gaze behavior. This
provides us with specific knowledge of how explicit areas are used by
different programmers and whether their use interacts with performance
and cognitive models.

To examine this hypotheses, we conducted an empirical experiment
using a remote eye tracker to record the gaze behavior of participants
during a program-comprehension task aided by an animation. Two groups
of participants with different levels of experience used Jeliot to
comprehend three short Java programs while their eye movements were
simultaneously tracked.

ANALYZING INDIVIDUAL DIFFERENCES IN PROGRAM COMPREHENSION 215

METHOD

A mixed one-between-subject (experience) with two levels and one-
within-subject (program) with two levels design was used. The dependent
variables were relative fixation count over the areas of interest, number
of switches per minute, mean fixation durations over the areas of interest
and overall. The fixation count is a measure related to the level of the
participant’s interest in an area and therefore related to the importance of
that area. The number of switches per minute is a measure of attention
allocation dynamics. The mean fixation duration is associated with the
depth of processing required to understand an attended element. The
analysis of eye movement protocols used only data recorded during the
program animation because that was the only time when all the
representations were shown concurrently and selection of the attended-to
representation could make a difference in understanding the program.

The process of program comprehension was recorded with a video
camera and the interaction protocol with Jeliot was logged. Program
summaries were analyzed using the program summary analysis scheme of
Good and Brna (2004) and revised by Byckling et al. (2004). The
summaries were scored from 0-3 according to the completeness and
correctness criteria. Most of the statistical analysis was carried out using
repeated measures ANOVA and planned comparisons based on t-test.

Participants
Eighteen participants were recruited from high-school students

attending a university level programming course, undergraduate and
graduate computer science students from the local university; each
received a lunch ticket. Due to technical problems, data from two
participants was discarded. The results are based on data collected from
16 subjects (13 male, 3 female).

Participants were divided into two groups according to their level of
programming experience. Those with less than 24 months of programming
experience were regarded as novices and those with more than 24 months as
experts. The characteristics of the two groups are presented in Table 1.
Groups’ mean values for programming experience (in months) and Java
experience (in months) and counts for previous experience with Jeliot
(yes=1, no=0) and previous experience as a professional programmer
(yes=1, no=0) are shown. Standard deviations are in parentheses.

216 BEDNARIK et al.

TABLE 1
Characteristics of the groups. * marks significant difference between groups in two-tailed t-test
(interval values) or χ2-test (nominal values) with p<0.05.

Materials and apparatus
Three short Java programs - factorial computation (program 1), recursive

binary search program (program 2) and naïve string matching (program 3) -
were presented to participants. The lengths of the programs (lines of code)
were 15, 34, and 38, respectively. Each of the programs generated one line of
output and did not require user input. The names of the methods and variables
were altered so that recognition of a program based on surface features was
difficult. To allow for comparison with the eye tracking data, we used an
adapted version of Jeliot 3 that logged all the user actions and all the changes in
the visualization of the programs in this study.

The remote Tobii ET-1750 (50Hz) eye tracker, which made no contact with
participants, was used to track eye movements; the eye tracker is built into the
TFT panel so no moving part is visible and no sound can be heard during
recording. The interaction protocol (such as key-strokes and mouse clicks) was
collected for all target programs, and audio and video were recorded for a
whole session. The minimal duration of fixation for the algorithm processing
eye-data was set at 100ms. Seven static areas of interest (AOI), matching the
seven main areas in the Jeliot interface, were defined: the code, the expression
evaluation area, the method area, the instances area, the constants, the control,
and the output area.

Procedure and design
The experiment was conducted in a quiet usability laboratory. Participants

were seated in an ordinary office chair near the experimenter and facing a 17’’
TFT display. Every participant then passed an automatic eye-tracking
calibration. The calibration required the participants to follow sixteen shrinking
points that appeared one by one across the screen. If needed, the calibration
was repeated in order to achieve the highest possible accuracy. The settings of
the experiment are shown in Figure 2.

ANALYZING INDIVIDUAL DIFFERENCES IN PROGRAM COMPREHENSION 217

Experience level Count Prog. exp.* Java exp.* Jeliot exp. Prof. exp.

novices 8
12.75 months

(6.90)

6.38 months

(4.60)
3 1

intermediates/

experts
8

85.50 months

(56.44)

19.75 months

(15.00)
2 1

FIGURE 2
Experimental settings in the laboratory.

After successful calibration, participants performed three sessions, each
consisting of a comprehension phase using Jeliot 3 and a program summary
writing phase. Participants were instructed to comprehend the program as
well as possible, and they could interact with Jeliot as they found necessary.
The target programs contained no errors and were always preloaded into
Jeliot and compiled. The duration of a session was not limited.

The first program was a factorial computation that was used as a warm-
up; the resulting data were discarded. The order of the two comprehension
tasks (program 2 and program 3) was randomized so that half of the
participants started with the recursive binary search and the other half with
naïve string matching.

RESULTS

Completion and animation times
Mean completion times for the comprehension phase were 17.6 minutes

(SD = 10.0) for novices and 9.8 minutes (SD = 2.6) for experts; according to

218 BEDNARIK et al.

a two-tailed t-test, the differences were statistically significant (t(14) = 2.23,
p<.05). From that time, novices spent, on average, 85.4% (SD = 9.6) of their
time animating the program whereas experts spent 52.9% (SD = 20.0) of
their time animating the program; according to a two-tailed t-test, the
difference was statistically significant (t(14) = 4.13, p<.01).

Interaction patterns
The mean number of clicks on each of the buttons on the control panel

and the mean number of animation replays between groups are show in
Table 2. Novices interacted with the user interface more than experts did.
Novices played, rewound and replayed the animation significantly more.

TABLE 2
Mean values of interaction with the user interface (standard deviations in parentheses).

The interaction patterns of a typical comprehension session of
program 3 for a novice and expert (Figure 3) show the states of the
visualization tool when used by a typical novice and by a typical
experienced programmer. In both of the comprehension tasks, the experts
spent significantly more time on initial code reading (on average, 173
seconds) before they animated a program for a shorter time (on average,
340 seconds) and usually at high speed. On the other hand, the novices
paid little attention to the code (on average, 45 seconds) and it took them
significantly more time to view the animation than it took the experts (on
average, 857 seconds). In addition, behavior of a novice in our study was
characterized by frequent use of a pausing/stepping approach combined

ANALYZING INDIVIDUAL DIFFERENCES IN PROGRAM COMPREHENSION 219

Button Pause Play Rewind Step Overall # of replays

Novices 3.22

(3.55)
5.28 (3.69)

1.83

(1.09)

39.56

(57.20)

49.89

(63.42)
2.722 (0.939)

Experts 1.25

(1.00)
2.19 (1.19)

0.63

(0.69)

2.50

(7.07)
6.57 (7.55) 1.625 (0.694)

t-value

(df=14)

1.395

ns

2.144

p=.05

2.824

p=.01

1.761

p=.10

1.91

p=.09

2.71

p=.01

The interaction patterns of a typical comprehension session of program 3 for a

and expert (Figure 3) show the states of the visualization tool when used by a typical nov

with more replays of the animation. From the protocols and gaze-
recordings it is clear that the stepping and pausing occurred around the
central parts of the currently comprehended algorithm.

FIGURE 3
The phases of Jeliot animation engine during the comprehension of the binary search program.

Analysis of comprehension summaries
The comprehension summaries were graded in a scale from 0 to 3 and the

averages of the two groups are shown in Table 3. The results indicate that
experts received more points than novices did; however, the differences
were not statistically significant.

TABLE 3
Points received from the summary evaluation (standard deviations in parentheses).

220 BEDNARIK et al.

program 2 program 3

both groups 1.81 (0.75) 1.88 (0.96)

novices 1.63 (0.52) 1.50 (1.07)

experts 2.00 (0.93) 2.25 (0.71)

In order to understand the qualitative differences in the summaries
better, they were analyzed according to the scheme described by Good
and Brna (2004). We analyzed only the information types found in the
summaries (Table 4). The first eleven rows describe the standard
categories of the analysis scheme. The repeated measures analysis of
variance revealed no significant effect of program (F(1,14) = 2.32, ns)
or experience (F(1,14) = 2.32, ns) on the information types contained in
the summaries. The interaction between program and experience was
not s ignif icant (F(1,14) = 2.32, ns) . However, an effect of the
information type was discovered (F(9, 126) = 6.82, p<.001), but had no
interaction with the level of experience (F(9, 126) = 0.71, ns). The
interact ion effect between program and information type was
significant (F(9, 126) = 2.45, p=.013).

To investigate this difference, pairwise comparisons were run.
According to these comparisons, the action, and the irrelevant categories
were present significantly more in the summaries of program 3 (t(14) =
2.38, p<.05) and t(14) = 2.45, p<.05, respectively), while the control
related statements were present more in the summaries of program 2
(t(14) = 2.36, p<.05). No other significant difference was found,
however, the state-low statements were more often present in program 2
summaries, with probability approaching a significance level of 0.05,
(t(14) = 1.99, p=.066).

TABLE 4
Information type analysis (standard deviations in parentheses; unused categories omitted).

ANALYZING INDIVIDUAL DIFFERENCES IN PROGRAM COMPREHENSION 221

program 2 program 3

novices experts novices experts

function 5.68 % (5.71) 5.96 % (4.59) 5.23 % (4.86) 6.17 % (4.84)

action 6.71 % (6.27) 5.68 % (6.78) 13.61 % (13.71) 9.87 % (9.49)

operation 17.75 % (19.73) 10.63 % (17.17) 15.69 % (13.09) 16.28 % (14.37)

state-high 5.70 % (6.36) 8.13 % (7.47) 6.73 % (3.09) 15.91 % (10.10)

state-low 12.59 % (15.36) 12.83 % (11.80) 11.99 % (13.07) 6.78 % (5.90)

data 8.84 % (7.43) 22.90 % (8.11) 10.47 % (8.36) 9,91 % (8,67)

control 23.65 % (21.73) 21.00 % (5.11) 10.57 % (6.57) 12,33 % (10.25)

elaborate 16.45 % (12.41) 10.78 % (12.20) 16.22 % (13.13) 19,63 % (15.47)

meta 0.96 % (2.72) 0.83 % (2.36) 5.21 % (9.76) 0,00 % (0,00)

irrelevant 0.00 % (0.00) 1.25 % (2.48) 4.28 % (5.50) 3.11 % (4.58)

info-high 20.22 % (12.70) 36.99 % (13.50) 22.42 % (8.72) 32.00 % (12.94)

info-low 53.99 % (25.53) 44.46 % (16.46) 38.25 % (17.88) 35.38 % (22.14)

The last two rows of Table 4 contain two aggregate values that describe
the level of abstraction used in the summaries. The value info-high is a
measure of high abstraction and is a sum of function, state-high and data
statements. On the other hand, info-low is a sum of operation, state-low and
control and indicates a low level of abstraction in the summary. The
abstraction levels were used differently (F(1,14) = 5.37, p<.05). Experts
used more info-high statements and less info-low statements, but there was
no interaction between abstraction level and experience (F(1,14) = 2.21, ns).

Eye-gaze related data
Since the programs did not generate an extensive output, some of the

participants were not gazing at the output area. Therefore, only the data of
those participants who produced at least one fixation to each of the areas
were included in the analysis. As one experimental participant did not
perform any switching during comprehending the program 2, data for only
fifteen participants were used in this analysis of eye-gaze data.

Distribution of Fixations
The distribution of the fixations over different areas of interest (AOI)

during animation is illustrated in Figure 4, the value of the visualization
AOI is composed as a sum of the method, expression, instance, and
constants areas of interest. Only the data of those participants who produced
at least one fixation to each of the areas were included in the analysis.

FIGURE 4
Relative fixation-count distribution during animation. The value of Visualization column rep-
resents a sum of fixations on the method, expression, instance, and constants areas.

222 BEDNARIK et al.

0

10

20

30

40

50

60

70

80

Code Theater Output Control Method Expression Instance Constants

F
ix

.
c

o
u

n
t

(%
)

Novices

Experts

According to the repeated measures ANOVA, the use of areas of interest
was significantly different (F(5,65) = 62.89, p<.001). The effect of program
was not significant (F(1,13) = 0.001, ns) and the effect of experience to the
fixation count distribution was also not significant (F(1,13) = 0.46, ns).
However, the interaction between program and AOI was significant (F(5,65)
= 9.00, p<.001). Other interactions were not significant.

Distribution of the fixations over the user interface during
comprehension of program 3 is shown in Figure 5 as hotspot visualization,
where the areas with more fixations are in darker colors. The distributions
were similar for both groups. During both programs there were two areas
that got the highest attention from both groups. One of the areas was in the
code where the central idea of the program lay, and the other was in the
expression area of the visualization frame.

FIGURE 5
Visualization of the fixation distribution for the string matching program; the more attended
areas are shown in darker colors.

Switching behavior
Figure 6 shows the mean number of switches per minute during

animation. A switch was measured every time a gaze location changed

ANALYZING INDIVIDUAL DIFFERENCES IN PROGRAM COMPREHENSION 223

between any two of the seven areas of interest. As one experimental
participant did not perform any switch with the program 2, there were only
data for fifteen participants used in this analysis. For the data during the
animation, a 2 x 2 x 21 (experience x program x switch type) ANOVA
showed a significant main effect of switch type (F(20, 260) = 68.44,
p<.001), and no effect of program (F(1,13) = 1.04, ns) on the switching
frequency. The effect of experience was not significant, however,
approaching near significance (F(1, 13) = 3.37, p = .089). The interactions
between program and experience, and between switch type and experience
were not significant (F(1, 13) = 0.50, ns), and (F(20, 260) = 1.02, ns,
respectively). However, the interaction between program and switch type
was significant (F(20,260) = 11.38, p<.001).

FIGURE 6
Visual attention switching during animation; * indicates significant difference in the two-tailed
t-test (p<.05).

The pairwise comparisons revealed the sources of the differences: the
switches between the code and the method AOIs and the code and the
instances AOIs differed significantly between the programs (t(13) = 3.07,
p<.01), and (t(13) = 3.62, p<.005, respectively). Some switches within the
animation frame, particularly those between the expression and the method
areas, between the instances and method areas, and between the expression
and instances areas, differed significantly (t(13) = 2.24, p<.05), (t(13) =
2.63, p<.03), and (t(13) = 6.97, p<.001, respectively).
Fixation durations

Figure 7 shows the mean fixation durations during animation for the
seven main areas of interest (AOI) and the overall mean fixation duration.

224 BEDNARIK et al.

-2

0

2

4

6

8

10

12

14

16

18

20

OUTPUT CONTROL M ETHOD EXPR. INSTANCE CONST. CONTROL M ETHOD EXPR. INSTANCE CONST. M ETHOD EXPR. INSTANCE CONST. EXPR. INSTANCE* CONST. INSTANCE CONST. CONST.

CODE CODE CODE CODE CODE CODE OUTPUT OUTPUT OUTPUT OUTPUT OUTPUT CONTROL CONTROL CONTROL CONTROL M ETHOD M ETHOD * M ETHOD EXPR. EXPR. INSTANCE

S
w

it
c
h

e
s
/m

in
.

Novices Experts

These have been computed as the sum of durations of all fixations landing at
an area of interest divided by the number of fixations. Since the programs
did not generate an extensive output, some of the participants were not
gazing at the output. The data on the areas affected during the animation, the
method, the expression evaluation, the instance, and the constants areas,
were included into the analysis.

According to repeated measures ANOVA, the durations of fixations on
different AOIs were significantly different (F(4,52) = 16.66, p<.001). On
almost all areas, experts seemed to fixate significantly shorter (F(1,13) =
7.27, p=.018) and an interaction effect between experience and fixation
duration on the areas was significant (F(4,52) = 3.88, p<.01). No effect of
program on the mean fixation duration was found (F(1,13) = 0.495, ns), as
well as no interaction between program and AOI (F(4,52) = 1.59, ns).

FIGURE 7
Fixation duration during animation. * indicates significant difference between groups in the
two-tailed t-test (p<.05) and ** the two-tailed t-test (p<.01).

DISCUSSION

In our study, expert programmers completed the comprehension phase
faster than novices did. This can be kept as one measure of performance.
From the analysis of the summaries it can be seen that, although the
differences were not statistically significant, experts performed better
than novices. In the qualitative analysis of the summaries, it was found
that, compared to novices, experts used higher level of abstraction in their

ANALYZING INDIVIDUAL DIFFERENCES IN PROGRAM COMPREHENSION 225

0

100

200

300

400

500

600

Code * Output Control Method * Expression * Instance ** Constants Overall *

M
e
a
n

 f
ix

a
ti

o
n

 d
u

ra
ti

o
n
s
 (

m
s
)

Novices Experts

summaries, but also this difference was not statistically significant.
However, according to previous studies, the use of high level references is a
sign of expertise (Hoadley et al., 1996; Pennington, 1987). Together with
the finding that experts comprehended the programs faster, these indicate
better performance of the experts compared to the novices.

From the interaction protocols analysis we found that the experts usually
started their comprehension task by reading the code and spending
significantly larger proportion of the session on constructing hypotheses.
This finding is in agreement with results obtained in previous studies
(Romero, 2003; 2002). After these initial code-reading episodes, the experts
spent significantly less time than novices on animating the programs.
Novices interacted with the user interface more than the experts did. This is
due to the fact that novices spent more time on visualizing the program than
experts did, and novices also replayed the animation more, compared to
experts. The number of replays indicates that novices relied on visualization
whereas experts used it as an additional source of information. Experts spent
less time animating the programs which was in agreement with the
hypothesis that experts would concentrate more on code reading. This
happened only before and after they had been visualizing the program. The
code-reading episodes could have affected the gaze behavior of the experts
during the program animation compared to novices. However, we have not
found such projection into the fixation patterns in terms of fixation
distribution during the animation.

The results of this experiment related to gaze behavior during animation
show that the level of experience does not affect the distribution of fixation
counts, while the switching behavior is affected slightly. This result is
inconsistent with previous eye movement studies where the differences
between novice and expert gaze behavior were investigated. The animation
attracts novice and expert programmers almost equally to attend it in quite
similar patterns. Most of the animation time was spent on viewing the
visualization part of the Jeliot’s user interface. For more experienced
participants, the distribution of fixations between code and animation was
slightly more balanced, in other words, the novice programmers relied more
on visualization.

During animation, the attention switch between the code and the
expression evaluation areas was most common, followed by the switch
between the code and the method area. The switches to and from the control
area were higher for novices. We connect this difference to the fact that
during the animation novices were interacting with the tool more than

226 BEDNARIK et al.

experts were. According to the analysis, the effect of experience on the
switching behavior was only a nearly significant.

Unlike the fixation counts and attention switching, we found a significant
effect of experience on the fixation duration. For all the main areas and also
overall, the fixation duration of experts was shorter than that of novices. The
fixation duration when participants gazed at the control buttons was the
same regardless of experience. Altogether this means that novices needed to
devote significantly more time to comprehending a currently animated
feature, which is naturally linked to expertise. This difference was greatest
when participants were attending to the instance area and smallest for the
area where constants were appearing.

Considering the gaze behavior as related to a target program, we found
that the use of the discrete areas and therefore the type of the attention
switch differed as the comprehended program changed. In previous studies
on the coordination of multiple representations during a debugging task
(Romero et al., 2003; 2003) it has been suggested that the balanced use of
different representations of a program during comprehension might be
linked to superior programming experience. As seen from the fixation count
distribution and switching behavior, both groups used the provided
representations in about the same balanced way. Therefore, it could be,
provocatively, suggested that using the Jeliot also made the novice
programmers to behave in patterns similar to those of experts. This view
could be supported by the difference found in the mean fixation durations:
although the animation was attended in similar patterns, novices spent
significantly more time to process the animation. However, the
performance, as measured by the comprehension summaries, was different
but not significantly.

FUTURE WORK

The results obtained in this initial experiment need to be confirmed further
and extended. Future research can take several directions. Our aim is to
investigate the effects that a single animation element and the difficult sections
of code have on gaze behavior as well as the changes in gaze behavior over
time and with increasing experience. The ultimate goal is to support learning
with dynamic program visualizations that could adapt to the needs of the users.
We believe that using the eye-tracker to collect the actual gaze directions and
use it to adapt visualization is a way to get closer to our goal.

ANALYZING INDIVIDUAL DIFFERENCES IN PROGRAM COMPREHENSION 227

In addition, we plan to develop better methodological grounds for applying
the eye-tracking in the context of program visualization. As seen from the
present study, some of the widely used eye-tracking metrics are not sufficiently
able to discover the links between experience, produced mental models and
gaze behavior. Therefore, available measures need to be related to the cognitive
processes and outcomes and new measures have to be developed. For example,
we plan to examine, whether and how attending a certain element or area of
animation correlates with the produced mental models captured in program
summaries. Another direction could be taken, for instance, when eye tracking
is applied to program visualization in real time: the level of dissociation
between the attention focus of a programmer and the currently animated
location should be investigated. These studies will provide a deeper
understanding of the cognitive processes involved in program comprehension
during program visualization and will further stimulate the research on the
adaptivity of visualization tools.

Adapting program visualization
When visualizing a program, users of the visualization tools have different

needs and levels of knowledge. Currently, a user can change some aspects of
the visualization manually, but there are only few systems that would
automatically adapt to the user’s previous experience or needs. This would be
beneficial for the user because her cognitive load could be reduced by hiding
details that are not relevant to the current task of users or are already known to
the users.

There are several scenarios how Jeliot could be made more adaptive. First
of all, we could collect data from a learning environment for programming and
use user modeling to analyze which programming concept the user currently
does or does not understand. With the information on user knowledge, we
could change the granularity of the visualization to emphasize those concepts
that the users are currently struggling with and minimize the details of those
that they already understand (Brusilovsky & Su, 2002).

The visualization could be adaptive in real time, based on the data collected
from the user, for example, via an eye tracker. With an eye tracker, one can
track the gaze path during a comprehension task and therefore can obtain
insights into the user’s allocation of visual attention and attention switching
between different areas in an interface. Knowledge of gaze-related patterns
provides us with important aspects of the underlying cognitive processes and
could be a hint as to the needs of the users. As it has also been argued elsewhere
(Cross et al., 1999), supporting those cognitive processes that are beneficial to

228 BEDNARIK et al.

program visualization, and therefore also to comprehension, can yield better
effects on learning. Thus, one of the aims of the research presented in this paper
was to discover the basic patterns of eye movements during program
comprehension supported by dynamic visualization and thereby provide the
research community with a starting point and means of adapting and tailoring
the visualizations to personal needs. Till now, the eye- movement research has
mainly concentrated on utilization of voluntary eye movements as an
alternative gaze-based selection and pointing technique for HCI, but little has
been done to exploit the gaze direction during complex dynamic visualizations.

CONCLUSION

We conducted an empirical experiment to discover the similarities and
differences between experienced and novice programmers in interaction, in the
comprehension process, and in the gaze behavior during program
comprehension aided by a visualization tool. We employed non-intrusive
remote eye tracking equipment to record the eye movements of programmers.

Our results in terms of attention switches between representations and
distribution of fixations show no significant difference in behavior between
novice and expert groups of programmers during program animation. The
focus of visual attention seems to be distributed in space and also most of
the time evenly, regardless of previous experience with programming. When
the level of processing required to attend to the animation is measured as the
duration of fixations over the main areas of interest and overall, our results
show a significant difference.
Acknowledgements

We thank all participants for taking part in this study. We acknowledge
Andrés Moreno for help with preparation of this study. We thank the
reviewers for comments to improve the manuscript.

REFERENCES

Aaltonen A., Hyrskykari A., Räihä, K.-J. (1998). 101 Spots, or How Do Users Read Menus? In
Proceedings of the CHI'98 (pp.132–139), NY, ACM.

Basili, V. R., Mills, H. D. (1982). Understanding and Documenting Programs. IEEE
Transactions on Software Engineering, 8(3), (pp. 270–283).

Bednarik, R., Tukiainen, M. (2004). Visual attention tracking during program debugging. In
Proceedings of NordiCHI’04 (pp. 331–334), NY: ACM.

ANALYZING INDIVIDUAL DIFFERENCES IN PROGRAM COMPREHENSION 229

Bednarik, R., Myller, N., Sutinen, E., Tukiainen, M. (2005) Effects of Experience on Gaze
Behaviour during Program Animation. Proceedings of the 17th Annual Psychology of
Programming Interest Group Workshop (PPIG'05) (pp. 49-61), Brighton, UK, June 28 -
July 1, 2005.

Ben-Ari, M., Myller, N., Sutinen, E., Tarhio, J. (2002). Perspectives on Program Animation
with Jeliot. In S. Diehl (Ed.), Software Visualization (pp. 31–45), Berlin: Springer-Verlag.

Ben-Bassat Levy, R., Ben-Ari, M., Uronen, P.A. (2003). The Jeliot 2000 Program Animation
System. Computers & Education, 40(1), (pp. 1–15).

Boroni, C. M., Eneboe, T.J., Goosey, F.W., Ross J. A., Ross, R. J. (1996) Dancing with Dynalab
- Endearing the Science of Computing to Students. In Proceedings of the 27th SIGCSE
Technical Symposium on Computer Science Education (pp. 135–139), NY: ACM.

Brusilovsky, P. and Su, H.-D. (2002). Adaptive Visualization Component of a Distributed Web-
based Adaptive Educational System. In Proceedings of 6th International Conference on
Intelligent Tutoring Systems 2002 (pp. 229–238), Berlin: Springer-Verlag.

Byckling, P., Kuittinen, M., Nevalainen, S., Sajaniemi, J. (2004). An Inter-Rater Reliability
Analysis of Good's Program Summary Analysis Scheme. In Proceedings of the 16th
Annual Workshop of the Psychology of Programming Interest Group (pp. 170–184).

Crosby, M. and Peterson, W., (1991). Using eye movements to classify search strategies. In
Proceedings of the Human Factors Society 35th Annual Meeting (pp. 1476–1480).

Crosby, M. E., Scholtz, J., Wiedenbeck, S. (2002). The Roles Beacons Play in Comprehension
for Novice and Expert Programmers. In J. Kuljis, L. Baldwin, R. Scoble (Eds.),
Proceedings of the 14th Annual Workshop of the Psychology of Programming Interest
Group (pp. 58–73).

Crosby, M. and Stelovsky, J. (1989). The influence of user experience and presentation medium
on strategies of viewing algorithms. In Proceedings of 22nd Annual Hawaii International
Conference on System Sciences (pp. 438–446).

Crosby, M. and Stelovsky, J. (1990). How do we read algorithms? A case study. IEEE
Computer, 23(1), (pp. 24–35).

Cross, J. H., Hendrix, T. D., Mathias, K. S., Barowski, L. A. (1999). Software Visualization and
Measurement in Software Engineering Education: An Experience Report. In Frontiers in
Education Conference FIE '99 (vol. 2, pp. 12B1/5–12B110).

Detienne, F. (2002). Software Design – Cognitive Aspects. Springer-Verlag London.

Duchowski, A.T., Shivashankaraiah, V., Rawls, T., Gramopadhye, A. K., Melloy, B., Kanki, B.
(2000). Binocular eye tracking in virtual reality for inspection training. In Tracking
Research & Applications Symposium 2000 (pp. 89–96).

Duchowski, A. T., Medlin, E., Cournia, N., Gramopadhye, A. K., Melloy, B., Nair, S.
(2002). 3D eye movement analysis for VR visual inspection training. In Tracking
Research & Applications Symposium 2002 (pp. 103–110).

Ericsson, K. & Simon, H. (1984). Protocol Analysis. Cambridge, MA: MIT.

Gestwicki, P., Jayaraman, B. (2002). Interactive visualization of Java programs. In
Proceedings of IEEE Symposia on Human Centric Computing Languages and
Environments 2002 (pp. 226–235).

Goldberg, J. H., Kotval, X. P. (1998). Eye Movement-Based Evaluation of the Computer
Interface. In S. K. Kumar (Ed.), Advances in Occupational Ergonomics and Safety
(pp. 529–532), Amsterdam: IOS.

Goldberg, J. H., Kotval, X. P. (1999). Computer Interface Evaluation Using Eye
Movements: Methods and Constructs. International Journal of Industrial Ergonomics,
24(6), (pp. 631–45).

Good, J., Brna, P. (2004). Program comprehension and authentic measurement: a scheme

230 BEDNARIK et al.

for analysing descriptions of programs. International Journal of Human-Computer
Studies, 61, (pp. 169–185).

Hoadley, C. H., Linn, M. C., Mann, L. M., Clancy, M. J. (1996). When, Why and How Do
Novice Programmers Reuse Code? In W. D. Gray and D. A. Boehm-Davis (Eds.),
Empirical Studies of Programmers: Sixth Workshop (pp. 109–129), NJ: Ablex.

Hoc, J.-M., Green, T.R.G., Samurcay, R., Gilmore, D.J. (Eds.) (1990). Psychology of
programming. Academic Press.

Hundhausen, C. D., Douglas, S. A., Stasko, J. T. (2002). A Meta-Study of Algorithm
Visualization Effectiveness. Journal of Visual Languages & Computing 13(3), (pp.
259–290).

Jacob, R. J. K. (1993). Eye Movement-Based Human-Computer Interaction Techniques:
Toward Non-Command Interfaces. In H. R. Hartson, D. Hix (Eds.), Advances in
Human-Computer Interaction (Vol. 4, pp. 151–190).

Just, M. A. and Carpenter, P. A. (1976). Eye fixations and cognitive processes. Cognitive
Psychology, 8, (pp. 441–480).

Just, M. A. and Carpenter, P. A. (1980). A theory of reading: From eye fixations to
comprehension. Psychological Review, 87(4), (pp. 329–354).

Just, M. A. and Carpenter, P. A. (1984). Using Eye Fixations to Study Reading
Comprehension, in D. Kieras & M. Just (eds), New Methods in Reading
Comprehension Research, Lawrence Earlbaum Associates, Hillsdale, New Jersey, (pp.
151-182).

Kasarskis, P., Stehwien, J., Hickox, J., Aretz, A., and Wickens, C. (2001). Comparison of
expert and novice scan behaviors during VFR flight. In Proceedings of the 11th
International Symposium on Aviation Psychology.

Majaranta, P., Räihä, K-J. (2002). Twenty Years of Eye Typing: Systems and Design Issues.
In Eye Tracking Research & Applications Symposium 2002 (pp. 15–22).

Matin, E. (1974) Saccadic suppression: a review and an analysis. Psychological Bulletin,
81(12), (pp. 889–917).

Moreno, A., Myller, N., Sutinen, E., Ben-Ari, M. (2004). Visualizing Programs with Jeliot
3. In Proceedings of Advanced Visual Interfaces, AVI 2004 (pp. 373–376).

Nodine, C., Mello-Thoms, C. (2000). The nature of expertise in radiology. In J. Beutel, H. Kundel,
R. Van Metter (Eds.), Handbook of Medical Imaging, WA: SPIE.

Oechsle, R., Schmitt, T. (2002). JAVAVIS: Automatic Program Visualization with Object and
Sequence Diagrams Using the Java Debug Interface (JDI). In S. Diehl (Ed.), Software
Visualization, Vol. 2269 of LNCS, (pp. 176–190). Berlin: Springer-Verlag.

Pennington, N. (1987). Comprehension Strategies in Programming. In G. M. Olson, S. Sheppard,
E. Soloway (Eds.), Empirical Studies of Programmers: Second Workshop (pp. 100–113), NJ:
Ablex.

Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research.
Psychological Bulletin, 124(3), (pp. 372–422).

Romero, P., du Boulay, B., Cox, R., Lutz, R. (2003). Java debugging strategies in multi-
representational environments. In Proceedings of the 15th Annual Workshop of the
Psychology of Programming Interest Group (pp. 421–434).

Romero, P., Lutz, R., Cox, R., du Boulay, B. (2002). Co-ordination of multiple external
representations during Java program debugging. In Proceedings of the Empirical Studies of
Programmers symposium of the IEEE Human Centric Computing Languages and
Environments Symposia 2002 (pp. 207–214).

Sajaniemi, J., Kuittinen, M. (2003). Program animation based on the roles of variables. In
Proceedings of the 2003 ACM symposium on Software visualization (pp. 7–16), NY: ACM.

ANALYZING INDIVIDUAL DIFFERENCES IN PROGRAM COMPREHENSION 231

Shneiderman, B., and R. Mayer. (1979) Syntactic Semantic Interactions in Programmer Behavior:
A Model and Experimental Results. International Journal of Computer & Information
Sciences, 8(3), (pp. 219–238).

Sibert, L. E., Jacob, R. J. K. (2000). Evaluation of eye gaze interaction. In Proceedings of CHI
2000 (pp. 281–288), NY: ACM.

Zeller, A. and Lütkehaus, D. (1996). DDD, A Free Graphical Front-End for UNIX Debuggers.
ACM SIGPLAN Notices, 31(1), (pp. 22–27).

232 BEDNARIK et al.

