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Abstract

Data-driven models are the basis of all adaptive systems. Adaption to the user
requires that the models are driven from real user data. However, in educational
technology real data is seldom used, and all general-purpose learning environments
are predefined by the system designers.

In this thesis, we analyze how the existing knowledge discovery methods could be
utilized in implementing adaptivity in learning environments. We begin by defining
the domain-specific requirements and restrictions for data modelling. These prop-
erties constitute the basis for the analysis, and affect all phases of the modelling
process from the selection of the modelling paradigm and data preprocessing to
model validation.

Based on our analysis, we formulate general principles for modelling educational
data accurately. The main principle is the interaction between descriptive and pre-
dictive modelling. Predictive modelling determines the goals for descriptive mod-
elling, and the results of descriptive modelling guide the predictive modelling.

We evalute the appropriateness of existing dependency modelling, clustering and
classification methods for educational technology, and give special instructions for
their applications. Finally, we propose general principles for implementing adaptiv-
ity in learning environments.
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Chapter 1

Introduction

In all empirical science we need paradigms – good instructions and practices, how
to succeed. Educational technology is still a new discipline and such practices are
just developing. Especially paradigms for modelling educational data by knowledge
discovery methods have been missing. Individual experiments have been made, but
the majority of research has concentrated on other issues, and the full potential of
these techniques has not been realized.

One obvious reason is that educational technology is an applied science and many
other disciplines of computer science are involved. Most of the researchers in the
domain have expertise in educational science, while few master machine learning,
data mining, algorithmics, statistics, and other relevant disciplines. The other rea-
son is domain-specific: the educational data sets are very small – the size of a class
– and specialized techniques are needed to model the data accurately.

This thesis tries to meet this need and offer a wide overview of modelling paradigms
for educational purposes. These paradigms concern both descriptive modelling – dis-
covering new information in educational data – and predictive modelling – predicting
learning outcomes. Special emphasis is put on selecting and applying appropriate
modelling techniques for small educational data sets.

1.1 Motivation: modelling ViSCoS data

University of Joensuu has a distance learning program ViSCoS (Virtual Studies of
Computer Science) [HSST01] which offers high-school students a possibility to study
university-level computer science courses. The program has been very popular, but
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2 CHAPTER 1. INTRODUCTION

the programming courses have proved to be very difficult and the drop-out and fail-
ing rates have been large. To handle this problem, we have begun researching ways
to recognize the likely drop-out or failure candidates in time. This is valuable infor-
mation for the course tutors, but also a critical element for developing adaptivity
in the learning environment.

After discussing with ViSCoS teachers, we have defined the following goals for this
research:

1. Identify common features for drop-outs, failed and skilled students:
Given the final results of the course, we should try to identify common fea-
tures shared by drop-outs, failed and skilled students. As a sub-problem, we
should discover whether these students fall into any homogeneous groups.

2. Detect critical tasks which affect course success:
Given the task points and final results, we should identify tasks that indi-
cate drop-out, failure or excellent performance. It is possible that the tasks
contain some ”bottle-neck” tasks, which divide the students.

3. Predict potential drop-outs, failed or skilled students:
Given the exercise task points in the beginning of course, we should predict
who will likely drop out, fail or succeed excellently. The predictions should
be made as early as possible, so that the tutoring could be adapted to stu-
dent’s needs. Predicting the drop-outs and failed students is the most critical,
because they should be intervened immediately. However, specially skilled
students would also benefit from new challenges.

4. Identify the skills measured by tasks:
Given the course performance data, we should try to identify the skills mea-
sured by the exercise tasks. According to course designers, the tasks measure
different skills, but such evaluations are always subjective. As a modest goal,
we could at least try to find groupings of tasks.

5. Identify student types:
Given the task points and grouping of tasks, we should try to discover, if the
students fall into any clear groups. Supposing that the task groups measure
different skills, we can further study the relations between skills and course
results.

In the following chapters, we will process this problem further. We will define the
modelling goals, select the appropriate modelling paradigms, analyze the available
data, preprocess it and finally construct various models.
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Figure 1.1: The hierarchy of modelling concepts with examples from Bayesian net-
works.

1.2 Research methods and contributions

The main problem of this research is to develop general principles for modelling
educational data. This probelm can be divided into five subproblems (the concepts
are defined in Table 1.1 and illustrated in Figure 1.1):

1. Selecting the modelling paradigm.

2. Defining the model family: the set of possible model structures is restricted
by defining the variables and optionally some constraints on their relations.

3. Selecting the model structure: the optimal model structure is learnt from data
or defined by an expert.

4. Selecting the model: the optimal model parameters are learnt from data.

5. Validation: the descriptive or predictive power of the model is verified.

The scientific paradigm in computer science contains general principles how to per-
form optimally in each of these subproblems. However, each domain has its own
requirements and restrictions. The general principles should be applied and revised
and new principles created according to domain-specific needs. In educational tech-
nology, such principles have been missing. This is exactly the goal of this research.
First we should determine the specific requirements and restrictions of data mod-
elling for educational purposes. Then we should select, apply and revise the existing
modelling principles for our needs.

The principles proposed in this thesis have been derived from three components
(Figure 1.2): general modelling principles, and the specific requirements and re-
strictictions in educational technology.



4 CHAPTER 1. INTRODUCTION

Table 1.1: The basic concepts concerning modelling.

Concept Definition
Model A model M = (S, θ) is defined by a model structure S and assigned

parameter values θ.
Model structure Model structure S defines the variables and their relations in the

model. E.g. in a Bayesian network model, the structure consist of
a graph, whose nodes define variables and edges define the
dependencies between variables.

Model parameters Model parameters θ are assigned numerical values, which measure the
variables and their relations in the model. E.g. in a Bayesian network
model, the parameters define the prior probabilities of the root nodes
and conditional probabilities associated to edges.

Model family A model family is a set of models, whose model structure belongs to
some fixed set T : {Mi | Mi = (Si, θi) | Si ∈ T}.
E.g. all Bayesian networks with variables A, B and C.

Model class Model class is a set of models, which have the same structure S:
{Mi | Mi = (S, θi)}.

Modelling Modelling paradigm is a set of definitions, assumptions, and methods
paradigm for constructing and using certain kind of models. E.g. Bayesian

networks, neural networks, decision trees, multiple linear regression.
The paradigms can be divided into several sub-paradigms, like
different types of neural networks.



1.2. RESEARCH METHODS AND CONTRIBUTIONS 5

in educational
technology

Requirements

principles

General
modelling

Restrictions

technology
in educational

Modelling principles for
educational technology

Figure 1.2: The main components of the research.

The main requirement in educational systems is that the model is robust, i.e. it is
not sensitive to small variations in data. This is crucial, because the data changes
often. The model should adapt to new students, new teachers, new exercise tasks
or updated learning material, which all affect the data distribution. For the same
reason, it is desirable that the model can be updated, when new data is gathered. A
special requirement in educational technology is that the model is transparent, i.e.
the student should understand, how the system models her/him (e.g. [OBBE84]).

The main restrictions cumulate from educational data. According to our analy-
sis, the educational data sets are typically very small – only 100-300 rows. The
attributes are mixed, containing both numeric and categorial values. In additon,
there are relatively many outliers, exceptional data points, which do not fit the
general model.

Based on these assumptions, we have selected the most appropriate modelling
paradigms for educational applications. We have applied them to ViSCoS data
and created new methods for our needs. We have collected and derived several
good rules of thumb for modelling educational data. All these principles are com-
bined into a general framework for implementing adaptivity in educational systems
in a data-driven way.

The main contributions of this thesis are the following:

� Giving a general overview of possibilities and restrictions of applying knowl-
edge discovery to educational domain.

� Constructing a general framework for implementing adaptivity in learning
systems based on real data.
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� Evaluation of alternative dependency modelling, clustering and classification
techniques for educational purposes.

� Constructing accurate classifiers from small data sets of ViSCoS data for pre-
dicting course success during the course.

Most of the methods have been implemented by the author. If other tools are used,
they are mentioned explicitely.

Some of the results have been represented in the following articles:

� Hämäläinen, W.: General paradigms for implementing adaptive learning sys-
tems [Häm05].

� Hämäläinen, W., Laine, T.H. and Sutinen, E., H. Data mining in personalizing
distance education courses [HLS06].

� Hämäläinen, W., Suhonen, J., Sutinen, E. and Toivonen, H. Data mining in
personalizing distance education courses [HSST04].

� Hämäläinen, W. and Vinni, M.: Comparison of machine learning methods for
intelligent tutoring systems [HV06].

The third article was accepted, but not published in the conference proceedings due
to technical problems. The author has been the main contributor in all papers.

1.3 Organization

The organization of this thesis is the following: In Chapter 2, previous work on
applying knowledge discovery techniques in educational domain is presented. In
Chapter 3, we discuss about the general modelling principles and give guidelines for
modelling educational datasets. In Chapter 4, typical educational data is analyzed
and guidelines for feature extraction, selection and other preprocessing techniques
are given. In Chapter 5, we evaluate the most appropriate dependency modelling
techniques for educational data. In Chapter 6, the existing clustering methods for
educational purposes are analyzed and our own clustering method is introduced. In
Chapter 7, we analyze the suitability of existing classification methods for educa-
tional data. The best methods are compared empirically with the ViSCoS data.
In Chapter 8, a general framework for constructing an adaptive educational system
from data is introduced. The final conclusions are drawn in Chapter 9. The basic
concepts and notations are introduced in Appendix 9.



Chapter 2

Background and related research

In this chapter, we describe the main ideas of knowledge discovery and its appli-
cations in educational technology. We report previous experiments on applying
knowledge discovery methods in the educational domain.

2.1 Knowledge discovery

Knowledge discovery in databases (KDD), or briefly knowledge discovery, is a sub-
discipline of computer science, which aims at finding interesting regularities, pat-
terns and concepts in data. It covers various techniques from traditionally separated
disciplines of machine learning, data mining and statistics. However, knowledge dis-
covery is not just a combination of data mining and machine learning techniques,
but a larger iterative process, which consists of several phases (Figure 2.1).

Understanding the domain is the starting point for the whole KDD process. We
should understand both the problem and data in a wider context: what are the needs
and goals, what kind of and how much data is in principle available, what policies
restrict the access, etc. The preprocessing phase is often very worksome. We have
to select suitable data sources, integrate heterogeneous data, extract attributes from
unstructured data, try to clean distorted data, etc. The educational data exists in
many forms and often we have to do some manual work. Discovering patterns is
the actual data mining or machine learning task. Given a good preprocessed data
set it is quite straight-forward, but often we have to process in a trial and error
manner, and return back to prepare better data sets. In the postprocessing phase
the patterns are further selected or ordered and presented (preferably in a visual

7
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1. Understanding domain

3. Discovering patterns

5. Application

2. Preprocessing data

4. Postprocessing results

Figure 2.1: Knowledge discovery process.

form) to the user. Finally, the results are taken into use, and we can begin a new
cycle with new data.

In the current literature, concepts ”knowledge discovery”, ”data mining” and ”ma-
chine learning” are often used interchangeably. Sometimes the whole KDD process
is called data mining or machine learning, or machine learning is considered as a
subdiscipline of data mining. To avoid confusion, we follow a systematic division to
descriptive and predictive modelling, which matches well with the classical ideas of
data mining and machine learning1. This approach has several advantages:

� The descriptive and predictive models can often be paired as illustrated in Ta-
ble 2.1. Thus, descriptive models indicate the suitability of a given predictive
model and can guide the search of models (i.e. they help in the selection of
the modelling paradigm and the model structure).

� Descriptive and predictive modelling require different validation techniques.
Thus the division gives guidelines, how to validate the results.

� Descriptive and predictive models have different underlying assumptions (bias)
about good models. This is reflected especially by the score functions, which
guide the search.

1It matches also the division to unsupervised and supervised learning used in machine learning
literature.
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Table 2.1: Examples of descriptive and predictive modelling paradigm pairs. The
descriptive models reveal the suitability of the corresponding predictive model and
guide the search.

Descriptive paradigm Predictive paradigm
Correlation analysis Linear regression
Associative rules Probabilistic rules
Clustering Classification
Episodes Markov models

We will return to the interaction between descriptive and predictive modelling in
Chapter 3. Now we will give a brief historical review of classical data mining and
machine learning to illustrate the differences of these two approaches. The main
differences are summarized in Table 2.2.

Table 2.2: Summary of differences between classical data mining and machine learn-
ing.

Data mining Machine learning
Assumptions: Data is primary, it does not Data is secondary, produced by some

necessarily have any structure underlying global model, which should
or only local patterns. be learnt.

Goals: To find all interesting patterns. To learn one or few carefully defined
which describe the data set models, which can be used to predict

future events.
Models: Simple models or local patterns. Relatively complex, global models.
Emphasis: The whole KDD process. Only the learning step.
Source of data: Often collected as a side product Specially selected for the given learning

of some other project. task.
Amount of data: Huge data sets, even millions of Only hundreds or thousands of examples

rows. in a training set.

The main difference of data mining and machine learning concerns the goals of
modelling and the underlying ontological (and epistemic) assumptions. In machine
learning the main goal is to learn a model, which can be used to predict future events.
The underlying assumption is that there is a model, which has produced the data.
The model is global, because it explains the whole data set, but more important is
that it generalizes to new data. By contrast, in data mining, the main goal is to
discover new interesting information which describes the current data set. Often, we
do not even try to find global models, but only local patterns, which describe some
parts of data. Now the data itself is primary, and we do not assume the existence of
any models, before they are discovered. According to these emphases, the primary
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task of machine learning is called prediction task or model-first approach, while the
primary task of data mining is called descriptive task or data-first approach.

The other differences between machine learning and data mining are more practical.
In machine learning, we can search more complex models, because the task is more
focused. We want to learn only one or few carefully defined models, which predict
the variable in question. In data mining, the task is less focused, because we want
to discover all interesting patterns. The patterns are usually quite simple, because
we have no a priori assumptions what kind of patterns to search, and we have to try
all possible patterns. In addition, the data sets in traditional data mining are huge,
and we could not search complex models efficiently. Typically, the origin of data
sets is also different: in machine learning, the training set has been specially selected
for the learning task, while in data mining, the data may be originally collected for
some other purpose.

Both data mining and machine learning owe a great deal to statistics, and many
new ideas have born in the interaction between the disciplines. Data mining and
machine learning have naturally more emphasis on computational issues and they
have been able to develop efficient search methods for complex models (machine
learning) and exhaustive search in large data sets (data mining). The volume of
data can be seen as one difference, although both data mining and machine learning
methods can be applied to small data sets, as well, as we will demonstrate in this
thesis. Statistics has also an important role in validation of results both in data
mining and machine learning. This topic is further discussed in Chapter 3.

2.2 Knowledge discovery in educational technol-

ogy

One of the main main goals of educational technology is to adapt teaching to in-
dividual learners. Every teacher knows that learning is most effective, when the
teacher knows all her/his students and can differentiate the teaching to their indi-
vidual needs. In large classes and distance learning this is not possible, and new
technology is needed.

In the simplest form, a learning system gives the teachers more information about
students. For example, in our ViSCoS project, the most acute need is to predict
potential drop-outs and failing students as early as possible. The actual tutoring
actions are left for the teacher’s responsibility. In the other extreme are intelli-
gent tutoring systems (ITS) (see e.g. [dB00, KV04, CCL03, Was97, Web96, SA98,
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CHZY03]), where the whole tutoring is automated. This is achieved by two compo-
nents: a student model and a tutoring module. The student model consists of a set
of features describing the student’s current state. Typically, it contains cognitive
information (knowledge level, prerequisite knowledge, performance in tests, errors
and misconceptions), user preferences (learning style, goals and habits), action his-
tory, and maybe some additional information about learner’s attitudes, emotions
and motivation. Some features can be directly observed, but most of them are
derived from observations. Given the student model, the tutoring module selects
the most suitable actions according to some rules. These actions involve generat-
ing tests and exercises, giving hints and explanations, suggesting learning topics,
searching learning material and collaborative partners, etc.

The problem of current intelligent tutoring systems is that they are stable. The
student model and actions are usually determined by fixed rules. Even if more
sophisticated methods like Bayesian networks are used, the model is predefined
by the system designers. According to our literature review, none of the existing
intelligent tutoring systems learns the model from real student data. Thus, the
adaptivity of such systems means that the students are adapted to some existing
model or theory, instead of adapting the model to reality of students.

Implementing the whole intelligent tutoring system based on real data can be im-
possible. The available data sets are very small, typically the size of a class, and
complex models cannot be learnt accurately from data. However, half-automated
learning systems or elements of adaptive learning environments can be learnt from
data. In simple, single-purpose systems we can collect large amounts of data, be-
cause the same task occurs again and again in different variations. This data can be
used to learn a model, which predicts the student’s success in the next task, for ex-
ample the next error ([MM01]) or the next help-request ([BJSM03]). The student’s
general knowledge level can be approximated by her/his expected course score. In
a coarse level (e.g. fail/success), the score can be predicted quite accurately already
in the beginning of course ([KPP03]). The students’ typical navigation paths in the
learning material can be analyzed and used to suggest appropriate material for new
students ([SB03]). The students’ knowledge-level errors or misconceptions can be
revealed by analyzing their solutions ([SNS00]). This is important information for
the teachers, but also for automatic feedback generation.

2.3 Related research

Current adaptive educational systems are very seldom based on real data. However,
there has been some research to this direction. To get a complete picture of the
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current state of affairs, we have performed a meta-analysis on research literature
addressing either predictive or descriptive modelling on educational data. For this
review, we have systematically checked all proceedings of Intelligent Tutoring Sys-
tems and volumes of International Journal of Artificial Intelligence in Education
since 1998. In addition, we have searched papers in ACM, IEEE and Elsevier dig-
ital libraries with appropriate keywords, and checked all relevant references. This
massive search resulted over 100 candidate papers, which promised to apply ma-
chine learning, data mining or other intelligent techniques on educational data, but
only 23 of them described actual experiments using real data. 15 of them address
predictive modelling and the rest 8 descriptive modelling.

2.3.1 Predictive models learnt from educational data

In Table 2.3, we have summarized all experiments, which have learnt predictive
models from educational data. In some cases, the data was artificially generated,
and the applicability to real data remained uncertain.

Predicting academic score or success in studies

In the first five experiments the goal was to predict the academic score or success
in studies.

In [KPP03], drop-out was predicted based on demographic data (sex, age, mari-
tal status, number of children, occupation, computer literacy, job associated with
computers) and the course data in the first half of the course (scores in two writing
assignments and participation to group meetings). Six classification methods (naive
Bayes, decision tree, feed-forward neural network, support vector machine, 3-nearest
neighbour and logistic regression) were compared with different attribute sets. All
the methods achieved approximately the same accuracy. In the beginning of the
course, given only demographic data, the accuracy was 63%, and in the middle of
the course, given all attributes, it was 80%. Naive Bayes classifier achieved the best
overall accuracy, when all results in all test cases were compared.

In [MBKKP03], the goal was to predict the course score, but now the drop-outs were
excluded. The data was collected from the system log and contained attributes con-
cerning each task solved (success rate, success at first try, number of attempts, time
spent on the problem, giving up the problem, etc.) and other actions like participat-
ing in the communication mechanism and reading support material. Six classifiers
(quadratic Bayesian classifier, 1-nearest neighbours, k-nearest neighbours, Parzen
window, feed-forward neural network, and decision tree) and their combination were



2.3. RELATED RESEARCH 13

T
ab

le
2.

3:
S
u
m

m
ar

y
of

ex
p
er

im
en

ts
w

h
ic

h
h
av

e
le

ar
n
t

p
re

d
ic

ti
ve

m
o
d
el

s
fr

om
ed

u
ca

ti
on

al
d
at

a.
A

b
b
re

v
ia

ti
on

s
fo

r
th

e
m

os
t

co
m

m
on

m
et

h
o
d
s

ar
e:

D
T

=
d
ec

is
io

n
tr

ee
,
B

N
=

B
ay

es
ia

n
n
et

w
or

k
,
N

B
=

n
ai

ve
B

ay
es

cl
as

si
fi
er

,
F
F
N

N
=

fe
ed

-f
or

w
ar

d
n
eu

ra
l

n
et

w
or

k
,

S
V

M
=

su
p
p
or

t
ve

ct
or

m
ac

h
in

e,
k
-N

N
=

k
-n

ea
re

st
n
ei

gh
b
ou

r
cl

as
si

fi
er

,
L
R

=
lo

gi
st

ic
re

gr
es

si
on

.
In

V
al

id
at

io
n

fi
el

d
,

th
e

va
li
d
at

io
n

m
et

h
o
d

(C
V

=
cr

os
s-

va
li
d
at

io
n
,

T
S
=

te
st

se
t)

an
d

th
e

b
es

t
ac

cu
ra

cy
(c

la
ss

ifi
ca

ti
on

ra
te

)
ar

e
re

p
or

te
d
.

In
so

m
e

ex
p
er

im
en

ts
,
ot

h
er

va
li
d
at

io
n

m
et

h
o
d
s

an
d

ac
cu

ra
cy

m
ea

su
re

s
w

er
e

u
se

d
.

R
ef

er
en

ce
P

re
di

ct
ed

at
tr

ib
ut

e
O

th
er

at
tr

ib
ut

es
D

at
a

si
ze

M
et

ho
ds

V
al

id
at

io
n

[K
P

P
03

]
D

ro
p-

ou
t

(b
in

ar
y)

11
D

em
og

ra
ph

ic
,

35
0

N
B

,D
T

,
F
F
N

N
,
SV

M
,

T
S,

83
%

co
ur

se
ac

ti
vi

ty
3-

N
N

,
L
R

[M
B

K
K

P
03

]
C

ou
rs

e
sc

or
e

6
So

lv
in

g
hi

st
or

y
22

7
qu

ad
ra

ti
c

B
ay

es
,
1-

N
N

,
C

V
,
87

%
(b

in
ar

y)
in

pr
ev

io
us

ta
sk

s
k
-N

N
,
P
ar

ze
n

w
in

do
w

,
F
F
N

N
,
D

T
,
co

m
bi

na
ti

on
[Z

L
03

]
C

ou
rs

e
sc

or
e

74
D

em
og

ra
ph

ic
,

30
0

B
oo

st
in

g
w

ea
k

T
S,

69
%

(b
in

ar
y)

pr
ef

er
en

ce
s,

ha
bi

ts
cl

as
si

fie
rs

[B
T

R
04

]
G

ra
du

at
in

g
in

6
56

D
em

og
ra

ph
ic

,
>

50
00

F
F
N

N
,
SV

M
C

V
,
63

%
ye

ar
s

(b
in

ar
y)

ac
ad

em
ic

,
at

ti
tu

di
na

l
[M

LW
+
00

]
N

ee
d

fo
r

re
m

ed
ia

l
D

em
og

ra
ph

ic
,
ea

rl
ie

r
ab

ou
t

60
0?

A
ss

oc
ia

ti
on

ru
le

s
T

S,
pr

ec
is

io
n

47
%

,
cl

as
se

s
(b

in
ar

y)
sc

ho
ol

su
cc

es
s

cl
as

si
fie

r,
N

B
re

ca
ll

91
%

[B
W

98
]

T
im

e
sp

en
t

to
so

lv
e

25
C

on
ce

rn
in

g
pr

ob
le

m
17

81
F
F
N

N
C

V
,
SS

E
33

%
sm

al
le

r
a

pr
ob

le
m

(n
um

er
ic

)
ty

pe
,
st

ud
en

t’
s

ab
ili

ti
es

th
an

in
ra

nd
om

gu
es

s
[B

JS
M

03
]

W
or

ds
,
w

he
re

th
e

20
C

on
ce

rn
in

g
w

or
d,

55
0

00
0

w
or

ds
D

T
,
N

B
T

S?
75

%
st

ud
en

t
as

ks
he

lp
st

ud
en

t,
le

ar
ni

ng
hi

st
or

y
53

st
ud

en
ts

[M
M

01
]

T
he

ne
xt

er
ro

rs
E

rr
or

ty
pe

s
in

pr
ev

io
us

33
00

B
N

T
S,

co
effi

ci
en

t
of

an
sw

er
s

(c
at

eg
or

ia
l)

de
te

rm
in

at
io

n
r2

=
0.

75
[J

JM
+
05

]
M

as
te

ri
ng

a
sk

ill
P

re
vi

ou
s

an
sw

er
s,

an
d

36
0

(s
im

ul
at

ed
H

M
M

M
od

el
pa

ra
m

et
er

s
(b

in
ar

y)
w

he
th

er
a

hi
nt

w
as

st
ud

en
ts

)
w

er
e

co
m

pa
re

d
to

sh
ow

n
(b

in
ar

y)
ac

tu
al

on
es

[V
om

04
]

M
as

te
ri

ng
a

sk
ill

P
re

vi
ou

s
an

sw
er

s
14

9
B

N
C

V
,
co

rr
ec

tl
y

(b
in

ar
y)

cl
as

si
fie

d
sk

ill
s

[D
P

05
]

T
es

t
sc

or
e

(b
in

ar
y)

A
ns

w
er

s
to

te
st

48
+

41
B

N
va

ri
at

io
n

C
V

,
co

m
pa

re
d

to
L
R

qu
es

ti
on

s
(b

in
ar

y)
(2

co
ur

se
s)

[C
G

B
03

]
A

pp
ro

pr
ia

te
m

at
er

ia
l

5
C

on
ce

rn
in

g
le

ar
ni

ng
40

0+
80

0
A

da
pt

iv
e

B
ay

es
T

S
20

0+
40

0,
89

%
fo

r
a

st
ud

en
t

st
yl

e,
m

at
er

ia
l
ty

pe
si

m
ul

at
ed

da
ta

[S
B

03
]

In
te

re
st

in
g

m
at

er
ia

l
L
as

t
ht

m
l
pa

ge
s

vi
si

te
d,

30
st

ud
en

ts
,

C
lu

st
er

in
g,

a
va

ri
at

io
n

St
ud

en
t

fe
ed

ba
ck

fo
r

a
st

ud
en

t
ke

yw
or

ds
in

ea
ch

pa
ge

13
3

pa
ge

s
of

D
T

[C
F
04

]
O

pt
im

al
em

ot
io

na
l

P
er

so
na

lit
y

ty
pe

13
7

P
ro

ba
bi

lis
ti

c
ru

le
s,

N
ot

re
po

rt
ed

st
at

e
fo

r
le

ar
ni

ng
(c

at
eg

or
ia

l)
D

T
[S

G
M

M
03

]
E

rr
or

or
L
og

da
ta

?
si

m
ul

at
ed

da
ta

,
F
F
N

N
N

ot
re

po
rt

ed
m

is
co

nc
ep

ti
on

si
ze

no
t

re
po

rt
ed



14 CHAPTER 2. BACKGROUND AND RELATED RESEARCH

compared. When the score variable had only two values (pass/fail), the accuracy
was very good. The combination of classifiers achieved 87% accuracy, and the best
individual classifier, k-nearest neighbours, achieved 82% accuracy. The accuracy
was further improved by optimizing the combined classifier by genetic algorithms,
but now only training error was reported.

In [ZL03], the approach was very similar: to combine several weak classifiers by
boosting to predict the final score. However, now the data was gathered by a
questionnaire. In addition to demographic data, it contained attributes concerning
the student’s network situation, surfing habits, teaching material applications, on-
line learning preferences and habits, overall opinion of the course, etc. Each weak
classifier used only one of 74 attributes to predict the course score. The combination
achieved only 69% accuracy. However, the boosting revealed the most influencing
factors for the course success.

In [BTR04], the goal was to predict, whether the student graduates in six years. The
data was gathered by a questionnaire, and contained 56 demographic, academic, and
attitudinal attributes. Feed-forward neural networks and support vector machines
were learnt from the data. Both methods achieved only 63% accuracy, despite of
the large data set (over 5000 rows). In addition, feature selection by principal
component analysis only decreased the accuracy.

In [MLW+00], the goal was to select students, who would need remedial classes.
The selection was made by comparing the predicted average course score in the next
semester to some threshold. The data was described only vaguely (demographic data
and school success in the previous year). The authors applied their own classification
method, described in [LMWY03]. The idea was to search all association rules, which
could be used for predicting the final score. In classification, all relevant rules were
applied and a score was calculated based on rule confidences and frequencies. The
method was compared to naive Bayes and decision tree classifiers by calculating
precision and recall measures. The new method outperformed both naive Bayes
and decision trees, although the precision was still low (47%). The problem in this
research was that some students had actually participated remedial classes, but
their success was estimated as they had been in the normal classes.

How the student succeeds in the next task?

The next four experiments concerned how to predict the student’s success, errors or
help request in the next task given data from the previous tasks. All experiments
were based on data collected from a real educational system. The systems had
been specialized to one simple task type, which was repeated in different variations.
Thus, large data sets could be gathered for training.
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In [BW98], neural networks were used to predict the time spent in solving an exercise
task. Each task concerned basic arithmetic operations on fractions. The data set
contained beliefs about student’s ability to solve the task, the student’s average
score in required sub-skills, the problem type and its difficulty, and the student’s
gender. First, a group model was learnt from the whole data. In cross-validation,
the model achieved 33% smaller SSE compared to a random guess. Next, the
model was adapted to each individual student by setting appropriate weights. Now
50% smaller SSE was achieved, compared to a random guess, but it was not clear,
whether these results were validated.

In [BJSM03] a system for teaching pupils to read English was used. The goal was
to predict on which word the student asks help. The data set contained student
information (gender, approximated reading test results of the day, help request
behaviour), word information (length, frequency, location in the given sentence)
and the student’s reading history of that word (last occurrence, how many times
read, average delay before reading, etc.). Only the poor students’ data was selected,
because they ask help most frequently. First, a group model was learnt from all data
and then the model was adapted using individual students’ data. Two classifiers,
naive Bayes and decision trees were compared. The group models were presumably
validated by a separate test set. (The authors tell that they could use only 25%
of data for training because of technical problems.) Naive Bayes achieved 75%
accuracy and decision trees 71% accuracy. When individual models were compared,
only the training errors were reported. Now decision trees performed better, with
81% accuracy. When the information about graphemes (letters or letter groups) in
words was taken into account, the accuracy increased to 83%.

In [MM01], a system for learning English punctuation and capitalisation was used.
The task was to predict the errors (error types) in the next task, given the errors
in the previous tasks. A correct answer should fulfill certain constraints, and each
broken constraint corresponded to an error type. The system contained 25 con-
straints, which occurred in 45 problems. 3300 records log data was collected, when
the system was in test use.

A bipartite Bayesian network was used to represent the relationships between con-
straints in the previous and the next tasks. Given this general form of a graph
structure, both the model structure and parameters were learnt from data. This
group model was adapted to the individual student, by updating the conditional
probabilities after every task. The group model was validated by a separate test set.
The coefficient of determination, which described the number of correctly predicted
constraints as a function of the number of all relevant constraints, was r2 = 0.75.
The individual models could not be validated (there was continual training), but
they had a positive effect on the students’ scores.
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Computerized adaptive testing

Some researchers have considered the problem of estimating the student’s knowledge
(mastering a topic), given a task solution (correct or incorrect). This is an important
problem in ITSs, but also in computerized adaptive testing (CAT), where we should
select the next question according to the student’s current knowledge level. The
problem in defining probability P (Topic = mastered|Answer = correct) is that
we cannot observe mastering directly. Even if the task measures only one skill, the
student can guess a correct answer or make a lapse. In practice, the tasks usually
measure several inter-related skills. The next experiments introduce data-driven
solutions to this problem.

In [JJM+05], the goal was to predict, whether a student answers correctly to the
next task, given the previous task solutions (correct or incorrect) and information,
whether a hint was shown. It was assumed that each task measures only one skill.
For each skill, a hidden Markov model was created. Each Markov model contained
a sequence of hidden state variables (mastering a skill), connected to observation
variables (answer and hint). All variables were binary. Artificial data of 360 stu-
dents was generated, assuming some model parameters. The data was used for
model construction and the parameters were compared. All conditional probabili-
ties could be estimated correctly with one decimal precision. However, most of the
probabilities were just 0 or 1, based on unrealistic assumptions (e.g. a skill could
not be mastered, if no hints were shown).

In [Vom04], the same problem was solved by a Bayesian network. The data was
gathered from 149 students, who solved questions on arithmetic operations on frac-
tions. The tasks tested 19 skills and seven error types were discovered in students’
solutions. The relevant skills and error types for each task were analyzed. Then a
Bayesian network which described the dependencies between the skills was learnt
from data. Some constraints like edges and hidden nodes were imposed according to
the expert knowledge. Finally, the model parameters were learnt from the data for
the best model structures. The models were compared by cross-validation. In each
model, the states of skills (mastered or non-mastered) were determined after each
task. The differences were very small, and nearly all models could predict correctly
90% of skills after nine questions.

In [GC04], the problem was solved in a more traditional way, based on item response
theory (IRT) [Lor80]. The probability that a student with certain knowledge level
answers the item correctly was described by an item characteristic curve. In [GC04],
the item characteristic curve was estimated by a logistic function. The parameters
were determined experimentally, but the parameters could be learnt from data, as
well.
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In [DP05], a new variation of belief networks was developed. It was assumed (unre-
alistically) that all dependencies were mutually independent, i.e. P (Y |X1, ..., Xk) =∏

i P (Y |Xi), where Xis are Y ’s parent nodes. With this simplification the model
structure could also be learnt from data, by determining the binary conditional de-
pendences. The model was compared to a traditional IRT system, where the logistic
regression parameters were also learnt from data. The evaluation was based on the
number of questions needed to classify the examinees as mastering or non-mastering
the topic. This was determined by comparing the estimated final score to a given
threshold value. Real data from two courses was used to simulate adaptive ques-
tioning process. In the first data set, both methods could classify correctly over
90% of examinees after 5-10 questions, but in the second data set the new method
performed much better. It could classify over 90% of examinees correctly after 20
items, while the traditional method required nearly 80 items.

Individually recommended material for students

The problem of adapting learning material or guiding the navigation in www ma-
terial is speculated in several sources (e.g. [Bru00, Sch98]). Most systems use fixed
rules, but the ideas of general recommendation systems can be easily applied to
educational material. However, the underlying idea of recommending similar ma-
terial for similar users is not necessarily beneficial in the educational domain. The
students should be recommended material, which supports their learning, and not
only material which they would select themselves. In the following two experiments
the recommendations were learnt from real data.

In [CGB03], the goal was to recommend students the most appropriate material
according to their learning style. The material was first preselected according
to its difficulty and the student’s knowledge level. The student’s learning style
was defined by a questionnaire, which measured three dimensions (visual/verbal,
sensing/conceptual, global/sequential). The material was characterized by two at-
tributes, learning activity (explanation, example, summary, etc.) and resource type
(text, picture, animated picture, audio, etc.). A variation of naive Bayes, called
adaptive Bayes, was used for predicting the most appropriate material, given learn-
ing the style and material attributes. The model was otherwise like a naive Bayes,
but the conditional probabilities were updated after each new example. The idea
was that all actually visited pages were interpreted as appropriate material. The
model was compared to traditional naive Bayes and an adaptive Bayes with fading
factors, where smaller weights were given to older examples. The test data con-
sisted of two simulated data sets, where students’ preferences changed 2-3 times.
The best results (89% training error) were achieved with an adaptive Bayes using
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fading factors.

In [SB03], the goal was to recommend interesting www pages for students. Now
the recommendations were based on keywords that occurred in the pages. First,
the last 10 pages visited by the student were clustered according to their keywords.
The cluster with the most recent page was selected and a decision tree was learnt
to classify new pages into this cluster. The authors developed a new version of the
classical ID3 decision tree algorithm, which created decision trees in three dimen-
sions. In the new SG-1 algorithm, several decision trees were created, when several
attributes achieved the same information gain. The method was tested with real
students, but the students followed the recommendations rarely and argued that
the system suggested irrelevant links. The problem was further analyzed by clus-
tering all 133 pages according to their keywords. The clustering revealed one large,
heterogeneous cluster as a source for unfocused recommendations.

Other work

The last two experiments in the table are very vaguely reported, and not validated.

In [CF04], the goal was to determine the most optimal emotional state for learning,
given the student’s personality type. 137 students answered a questionnaire, which
determined their personality type (extraversion, people with high lie scale, neuroti-
cism, psychoticism), and selected their optimal emotional state from 16 alternatives.
The authors reported that they used naive Bayes classifiers for rule construction,
but in fact they just used the same parameter smoothing technique which is used in
estimating parameters for Bayesian networks. In addition, they reported that they
could learn the current emotional state from a colour series by decision trees with
58% accuracy, but no details were given.

In [SGMM03], the goal was to diagnosize the student’s errors and misconceptions
related to basic physics. The data was collected with a simulation tool, where
students were asked to draw gravitation and contact forces, which affect the given
objects. The teacher planned a set of simulated students and determined their
knowledge levels in different categories. In addition, each student’s behaviour was
described by some fuzzy values. Then a feed-forward neural network was trained
to classify the errors. 87% training accuracy was achieved, but the results were not
validated.

In addition, there has been some general discussion, how to apply machine learn-
ing methods in educational technology. For example, [LS02] discusses in a very
superficial level, how to apply machine learning in intelligent tutoring systems.
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2.3.2 Descriptive models searched from educational data

Descriptive data modelling techniques (other than basic statistics) are more sel-
domly applied to educational data than predictive techniques. One reason may be
that data mining is still quite a new discipline. In Table 2.4, we have summarized all
experiments, which have searched descriptive models from educational data. Some
of the methods could be used for predictive modelling as well, but the intention
has been descriptive analysis. For example, decision trees are often used to discover
decision rules. These rules are interpreted – and sometimes even called – as asso-
ciation rules. However, this is misleading, because the decision rules can be very
rare (i.e. non-frequent) and decision trees reveal only some subset of rules affecting
the class variable. The reason is that the decision tree algorithms find only a local
optimum and sometimes the attributes are selected randomly. Thus, a full search
of real association rules should be preferred.

Analyzing factors which affect academic success

The first three researches in the Table analyze the most influencing factors on aca-
demic success or failure (academic average score or drop-out).

In [SK99], the factors which affect average score and drop-out among distance learn-
ers were analyzed. The data was collected by a questionnaire. The questions con-
cerned job load, social integration, motivation, study time, planned learning, and
face-to-face activities. First, all correlations were analyzed, and a path model was
constructed. According to this model, the most influencing factors on average score
were study time, planned learning and face-to-face activities. In the second exper-
iment, a logistic regression model for predicting drop-out (enrollment in the next
semester) was constructed. Now social integration and face-to-face activities were
the most significant factors.

In [SAGCBR+04], a quite similar analysis was performed. The task was to ana-
lyze the factors which affect academic average mark, desertion and retention. The
data set consisted of nearly 23 000 students, described by 16 attributes, including
age, gender, faculty, pre-university test mark, and time length of stay at univer-
sity. First, the dependences were determined by regression and contingency table
analysis. Then the data was clustered, resulting 79 clusters. The clusters with the
highest academic average score, the lowest academic average score, and the longest
period of stay were further analyzed. Finally, decision rules for predicting good or
poor academic achievement, desertion or retention were searched by C4.5 algorithm.
The confidences of rules were determined and the strongest rules were interpreted.
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In [BTR04], only the factors which affect drop-out in distance learning were ana-
lyzed. The data set consisted of 100 students, described by six attributes: age, gen-
der, number of completed courses, employment status, source of financial assistance
and ”locus of control” (belief in personal responsibility for educational success).
The data was analyzed by correlation analysis, linear regression and discriminant
analysis. The analysis revealed that the locus of control could alone predict 80% of
drop-outs and together with financial assistance 84% of drop-outs.

Mining navigation patterns in log data

In adaptive hypermedia systems the main problem is to define recommendation rules
for guiding students’ navigation in the learning material. One approach is to base
these rules on students’ actual navigation patterns. The following two experiments
have addressed this problem.

In [KB05], the aim was to find recommendation rules for navigation in hyperme-
dia learning material. The data consisted of 1170 sessions of log data. For each
action, the action type, time-stamp, user id, and target object (concepts and frag-
ments) were recorded. 90% of data was used for the pattern discovery and 10% for
verifying the results. In the first experiment, temporal order was ignored, and as-
sociation rules between visited concept were discovered. In the second experiment,
the temporal order was taken into account, and segmential and traversal patterns
were discovered. Segmential patterns (serial episodes) described typical orderings
between actions, which were not necessarily adjacent. In traversal patterns it was
required that the actions were adjacent. The discovered patterns were used to pre-
dict the actually visited concepts in the test data. Sequential patterns achieved the
best accuracy, about 51%, but slightly better results were achieved when all pattern
types were combined.

In [RVBdC03], a new way to discover interesting association rules in log data was
proposed. The goal was to find relations between the student’s knowledge level in a
concept, time spent to read material associated to that concept, and the student’s
score in a related task. The data consisted of visited pages and timestamps, the
student’s current knowledge level and success in tasks. The association rules were
discovered by a new method based on genetic algorithms, where an initial set of
rules was transformed by genetic operations, using a selected fitness measure. The
method was tested in the course data of 50 students, and compared to the traditional
apriori algorithm. The apriori algorithm worked faster and found more rules, as
expected. However, the authors speculated that their method could find more
interesting rules, because the fitness measure and other parameters could be selected
according to modelling purposes.
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Analyzing students’ competence in course topics

Some researchers have made preliminary experiments to analyze students’ compe-
tence in course topics, based on exercise or questionnaire task points. The problem
in such an analysis is that a task can require several skills, but not in equal amounts.
This is especially typical for computer science, where majority of knowledge is cu-
mulative and interconnected. Some solution ideas have been discussed in [WP05].

[MSS02] described the first experiment to cluster data gathered in the ViSCoS
project. The data consisted the weekly exercise points in Programming courses,
but it was gathered earlier than our current data set. The goal was to cluster
the students according to their points in different skills. The exercise tasks were
analyzed and weights for 14 concepts were defined by experts. Because the task
points were recorded on weekly basis, it was assumed that the students had got
equal points in all tasks during one week. For each student, a weighed sum of
exercise points in each skill was calculated and normalized to sum 1. Then the
students were clustered to five groups by a probabilistic clustering method. The
resulting clusters were analyzed by comparing the mean values of attributes and
total skills in each cluster. It turned out that the individual skill means diverged
only in the cluster of the poorest students (low total skills). In all other clusters no
difference was found, but the grouping was simply based on total skills.

In [VC03], the students’ questionnaire answers were analyzed by ”association rules”.
In fact, the rules were simple decision rules learnt by C4.5 algorithm, and only the
rule confidences were reported. The data set consisted of 436 students, whose
knowledge in 15 topics and final scores were given. The topic values were deter-
mined according to related question answers. However, the same topic could be
covered in several questions, and thus several data rows, one per each possible an-
swer combination, were generated for each student. The final score was simply the
sum of questionnaire points, classified as good, average or poor. A decision tree was
learnt to predict the student’s final score, given her/his skills in topics, and decision
rules were extracted from the tree. The training error was about 12%. However,
both the topic attributes and final scores were derived from the same attributes,
and the dependency was trivial.

Analyzing students’ errors in program codes

[SNS00] described a method for identifying knowledge-level errors in students’ er-
roneous Prolog programs. The motivation was that the method could be used to
construct an error library and assist in student modelling.
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The described method worked in two phases. First, the student’s intention (a cor-
rect program, which the student has tried to implement) was identified. Then all
erroneous programs with the same intention were hierarchically clustered to form
an error hierarchy. The assumption was that the main subtrees in such a hierarchy
corresponded to knowledge-level errors.

The method was tested in two simple programming tasks. In both tasks about
60 erroneous programs were achieved. The differences between programs were de-
fined by the number of remove, add, replace and switch operations needed to
transform a program to another. Clustering was implemented by two methods, ei-
ther ignoring the error dependencies or using heuristic rules to model the causal
relationships. The resulting cluster hierarchies were analyzed by experts, who had
defined the knowledge-level errors in each program. The clustering with causal de-
pendencies achieved clearly better results. In task 1, 84%, and in task 2, 70% of
knowledge-level errors in students’ programs were detected. In task 1, 95%, and in
task 2, 75% of discovered errors corresponded to real knowledge-level errors.

Other work

In addition, we have found a couple of small analyses, which were only vaguely
reported. In [CMRE00], nine tutoring sessions with a human tutor were analyzed.
The goal was to identify the discussion protocols and their changes. Decision trees
were used to find rules which described the protocol changes. In [MLF98], a human
expert’s problem solving paths were analyzed. A class regression tree was somehow
used to identify the action sequences which led to success or failure. In [MBKP04],
an idea for discovering interesting association rules from log data was proposed. A
small experiment was made, but the results were not reported.

In [DSB04], it was discussed in a very general level, how educational systems could
benefit from ”data mining” (both predictive and descriptive methods). In [HBP00],
general ideas of applying web mining in distance learning systems were discussed.
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Chapter 3

Modelling

The main problem in modelling educational data is to discover or learn robust and
accurate models from small data sets. The most important factor which affects the
model accuracy is the model complexity. Too complex models do not generalize
to other data sets, while too simple models cannot model the essential features in
the data. Model complexity has an important role in robustness, too, but there
are several other factors which affect robustness. Each modelling paradigm and
model construction method has its own inductive bias – a set of conditions, which
guarantee a robust model. These conditions should be checked when we select the
modelling paradigm, model structure, and model parameters.

In the following, we will first define the basic modelling terminology. Then we
analyze the main factors – model complexity, inductive bias and robustness – which
affect the model selection. We formulate principles for selecting an appropriate
modelling paradigm and a model in the educational domain. Finally, we summarize
the main techniques for model validation.

3.1 Basic terminology

The main problem of modelling is to find a model, which describes the relation be-
tween target variable Y and a set of other variables, so called explanatory variables,
X. In all predictive tasks and most of the descriptive tasks, the target variable
values t[Y ] = y are given in the data. In machine learning, such tasks are called
supervised learning, because the true target values ”supervise” the model search.
In unsupervised learning, the target values are unknown, and the goal is to learn
values which optimize some criterion. For example, in clustering we should divide

25
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all data points into clusters such that the clustering is optimal according to some
criterion. In the following, we will concentrate on supervised modelling. We will
return to clustering in Chapter 6

In data-driven modelling the models are learnt from a finite set of samples called
a training set. Because the training set has only a limited size, we seldom find the
true model, which would describe all possible data points defined in the relational
schema. Thus, the learnt model is only an approximation.

Definition 1 (True and approximated model) Let R be a set of attributes and
r according to R a relation. Let X = {X1, ..., Xk} ⊆ R be a set of attributes in R and
Y ∈ R the target attribute. Then the true model is a function F : Dom(X1)× ...×
Dom(Xk) → Dom(Y ) such that t[Y ] = F (t[X]) for any tuple t defined in R. The
approximated model is a function approximation M : Dom(X1)× ...×Dom(Xk) →
Dom(Y ) such that t[Y ] ≈ M(t[X]) for all tuples t ∈ r.

In machine learning literature (e.g. [Mit97][7]), true models are often called as target
functions, and approximated models as hypotheses. In the following, we will call the
approximated models simply models.

In descriptive modelling, the models are often only partial, and we cannot define
them by ordinary functions. However, we can define partial models by restrictions
of functions:

Definition 2 (Partial model) Let R, r ∈ R, X ⊆ R and Y ∈ R be as before,
and r′ ( r. Model M is partial, if M |r′ : Dom(X1) × ... × Dom(Xk) → Dom(Y )
such that t[Y ] ≈ M(t[X]) for all tuples t ∈ r′.

The accuracy of the model is defined by its true error. The same error measure is
used to measure how well the model fits the training set. Some examples of common
error measures will be discussed in Section 3.7. The following definition is derived
from [Mit97][130-131]:

Definition 3 (Training error and true error) Let d(M(X), Y ) be an error be-
tween the predicted value M(X) and the real value of Y . Then the training error of
model M in relation r, |r| = n, is

error(M, r) =

∑
t∈r d(M(t[X]), t[Y ])

n
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and the true error of model M is

errortrue(M) = lim
|r|→∞

error(M, r).

If the true error is small, the model is called accurate. The relative accuracy mea-
sures how well the model generalizes to new data.

If the error measure d is

d(M(X), Y ) =

{
1, when M(X) 6= Y
0, otherwise

then the true error is the probability to make an error in prediction. Often we express
the accuracy of the model as probability 1 − p, where p is the error probability.
Notice that the true error is unobservable, although we can try to estimate it. We
will return to this topic in Section 3.7.

In model selection, the main goal is to minimize the true error. Because the true
error is unobservable, a common choice is to use some heuristic score function.
Typically the score function is based on training error and some additional terms,
which guide the search. An important criterion is that the score function is robust,
i.e. insensitive to small changes in the data.

Given the score function, we can define the optimal model:

Definition 4 (Optimal model) Let M be a model, r a relation, and score(M, r)
a function, which evaluates the goodness of model M in relation r. We say that the
model is optimal, if for all other models M ′ 6= M , score(M ′, r) ≤ score(M, r).

In many problems searching a globally optimal model is intractable, and the learning
algorithms produce only a locally optimal model.

3.2 Model complexity

The desired model complexity is an important choice in model construction. On
one hand, we want to get as expressive and well-fitting model as possible, but on
the other hand, the more specialized the model is, the more training data is needed
to learn it accurately.
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A special problem in educational domain is the small size of data. The smaller the
training set is, the more the training error can deviate from the true error. If we
select the model with the smallest training error, it probably overfits the data. The
following definition is derived from [Mit97][67]:

Definition 5 (Overfitting) Let M be a model and r ∈ R a relation as before. We
say that M overfits data, if there exists another model M ′ such that error(M, r) <
error(M ′, r) and errortrue(M, r) > errortrue(M

′, r).

In overfitting the model adapts to the training data so well that it models even
noise in the data and does not generalize to any other data sets. Overfitting can
happen even with noise-free data, if it does not represent the whole population. For
example, if a prerequisite test is voluntary, only the most active students tend to
do it, and we cannot generalize the results to other students.

The best way to avoid overfitting is to use a lot of data. A small training set is
more probably biassed, i.e. it does not represent the real distribution. For example,
the attributes can have strong correlations in a sample, even if they are actually
uncorrelated. When large amounts of data are not available, the best we can do is
to select simple models. In practice, the attribute set can be reduced by selecting
and combining original attributes. This is also an important option when selecting
the modelling paradigm. Descriptive modelling paradigms impose usually very sim-
ple patterns, but in predictive modelling, the paradigm may require too complex
models. For example, decision trees require much more data to work than naive
Bayes classifier. We will return to this topic in Chapter 7.

The other extreme, concerning model complexity, is to select too simple models.
A simple model generalizes well, but it can be so general that it cannot catch any
essential patterns in the data. We say that the model has weak representational
power. Sometimes this phenomenon is called underfitting. It means that the model
approximates poorly the true model or there does not exist any true model. In
predictive modelling such a model causes poor prediction accuracy. In descriptive
modelling it describes only trivial patterns, which we would know even without
modelling. In descriptive modelling, this happens easily, because we perform an
exhaustive search of all possible patterns. If we try enough many simple patters, at
least some of them will fit the data, even if there are actually no patterns at all.

As a compromise, we should select models which are robust and have sufficient
representational power. Such models have the smallest true error and they are
accurate. In practice, we should select simple models, which still explain the data
well. Very often, this happens through trial and error, in an iterative process of
descriptive and predictive modelling.
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3.3 Inductive bias

Inductive bias or inductive principles (see e.g. [Mit97, EC02]) mean a set of assump-
tions under which the model generalizes to new data. These assumptions concern
the properties of training data (e.g. the size and the distribution of the training set),
properties of the desired model (e.g. the model family or the model class, where it
belongs) and successful learning (e.g. the learning style, score functions). Inductive
bias occurs in all phases of the modelling process. The most general bias is ex-
pressed in the modelling paradigm, while others concern the learning style, method
or algorithm.

Some of the biasses are explicitly expressed in the method and the user can manip-
ulate them. For example, in probabilistic clustering, the user can decide the form of
the distribution. However, most of the biasses are implicit and unchangeable, and
the user should just be aware of them.

Mitchell [Mit97][64] divides the inductive bias into two types:

1. In restriction bias we restrict the search space (model family). This kind
of bias is also called representational or syntactic, because it restricts what
kind of models we can represent. The restriction can be inherent already
in the modelling paradigm. For example, linear regression model supposes
that the target function is linear, and rules out all other functions. Inside a
modelling paradigm, we can restrict the search space by selecting the number
of attributes (model size). The bias can also concern the learning style. The
stricter the restrictions, the more efficiently we can learn the model – if the
reduced search space contains the true model any more.

2. In preference bias we do not rule out any models, but instead put preferences
on them. For example, we can prefer more special models to general ones,
or favour the simplest models like in Occam’s Razor Principle. Preference
biasses are frequently used in heuristic optimization algorithms to navigate in
the search space and find good models efficiently.

The restriction bias concerns the selection of the model structure by fixing the
model family or the model class. On the other hand, preference bias concerns the
selection of the model structure and the parameters by suggesting the preferrable
model classes and guiding the search in them. Preference bias is usually more
recommendable, but sometimes we cannot avoid restriction bias. The effects of bias
are very domain-specific, and the same bias can be either beneficial or undesirable,
depending on the domain. In fact, prior knowledge about the domain can work
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as an efficient bias. This kind of semantic bias can be expressed in the form of
either restriction or preference bias. This idea is occupied in our general principle
of descriptive and predictive modelling, where we first learn domain knowledge
through descriptive modelling.

Both of the previous bias types concern only model selection. In addition, we can
separate a third kind of bias which concerns the properties of data. We call these
bias as data bias. Data bias is usually expressed in the learning algorithm. The
learning algorithm is guaranteed to work correctly, only if these assumptions are
met. An example of such bias is an assumption that the training set represents the
whole population and thus the distribution is also the same. If the future examples
have very different distribution, the method does not work. A more restrictive data
bias is the assumption of normal distribution, which in practice holds very seldom.
If the training set is very large, the error is small, but for small data sets the error
can be significant. In clustering, there is a vast number of different methods with
different biasses. These will be discussed later in Chapter 6.

In Table 3.1, we list examples of inductive biasses. We have classified the biasses
as restrictive bias, preference bias or data bias. Some of the example biasses are
consequences of other, more general assumptions. For example, if we assume that
the training error of the model is zero, it also implies that the data set does not
contain outliers and the data is consistent.

3.4 Robustness

Robustness is a very important property of a model. Intuitively, it means that the
model is stable and small variations in data do not have dramatic effects on results.
For example, a robust model tolerates better outliers (exceptional data points),
noise (small errors in attribute values) or missing attribute values in the training
data. An unrobust model is sensitive to such variations, and does not generalize to
future data as well.

Definition 6 (Robust model) Let r1 ∈ R and r2 ∈ R be two training sets and
M1 and M2 be two models learnt from r1 and r2 by the same learning algorithm.
Let d1 measure the difference between data sets and d2 the difference between true
errors. We say that model M1 (M2) is robust, if for all ε1 > 0, there is a small
ε2 > 0 such that

If d1(r1, r2) < ε1 then d2(errortrue(M1), errortrue(M2)) < ε2.
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Table 3.1: Examples of inductive bias. For each assumption, we give the type of the
bias (R=restrictive, P=preference, D=data bias) and examples, where it is used.

Assumption Type Examples
Consistent learning: The true model is fully R Learning algorithms
representable in the selected model family,
and the model has zero training error.
Occam Razor principle: Simpler models are P Learning algorithms
preferred to more complex ones
Greedy heuristic: Selecting always the locally P Learning algorithms
optimal model leads to global otpimum.
Linear dependency: The dependency can be R Linear regression
described by a linear function
Conditional independence: the explanatory R Naive Bayes
variables are conditionally independent from
each other.
Linear decision boundary: the decision R Perceptron,
boundary between class values is linear. naive Bayes
Normality assumption: The data is normally D Learning algorithms
distributed
Valid sampling: The training set represent D Learning algorithms
the whole population and the distribution is
the same.
Data consistence: there are no such rows D Decision trees
t1, t2 ∈ r that t1[X] = t2[X] but t1[Y ] 6= t2[Y ].
Occurrence of outliers: There are no serious D Linear regression,
outliers in data clustering with

SSE score function
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The robustness of the model depends on the relative size of ε2 compared to ε1.
Notice that the robustness depends on the learning algorithm, and ultimately, the
modelling paradigm, which have their own inductive biasses. Each learning algo-
rithm produces robust models, if the underlying assumptions hold. In practice, some
learning algorithms are more tolerable to the violations of their inductive bias than
others. Such algorithm are often called robust (e.g. [STC04][13]). Similarly, mod-
elling paradigms, which make less restrictive assumptions or which tolerate better
the violation of these assumptions are robust.

Some modelling paradigms and learning algorithms have very restrictive semantic
bias. I.e. they require precise domain knowledge to work correctly. For example, in
the back-propagation algorithm for learning feed-forward neural networks we should
know the ideal number of hidden nodes, type of activation function and stopping
criterion. Often these parameters are not known, and the resulting model can be
very unstable.

Robustness depends on also the size of data set and the model complexity. Thus, it
is also related to the overfitting problem: if the model is very sensitive to data, it
overfits easily and describes even errors in the data set. On the other hand, a robust
model can tolerate errors and does not overfit so easily. As a result, it generalizes
better to new data.

3.5 Selecting the modelling paradigm

Selecting the modelling paradigm has a critical role in data modelling. An unsuitable
modelling paradigm can produce false, unstable or trivial models, even if we use
the best available learning algorithms. Often, we have to try several modelling
paradigms, and learn several models, before we find the optimal model for the given
data. The number of alternative modelling paradigms can be pruned by analyzing
the following factors:

� Properties of data.

� The inductive bias in the modelling paradigm.

� The desired robustness and the representational power of the model.

The problem is to find such a modelling paradigm that the properties of the data
match the inductive bias of the paradigm and the resulting models are accurate. We
recall that in accuracy, we often have to make a compromise between the robustness
and the representational power.
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3.5.1 Data properties

The first question is the type and the size of the given data. Some modelling
paradigms require only numeric or only categorial data, while others can combine
both. Numeric data can always be discretized to categorial, but categorial data
cannot be transformed to numeric. The only exception is the transformation of
categorial attributes to binary values. However, this transformation increases the
number of attributes significantly and the model becomes easily too complex.

In educational domain, the most critical factor of data is the size of the data relative
to the model complexity. As a rule of thumb, it is often suggested that we should
have at least 5-10 rows of data per each model parameter. The number of model
parameters depends on the number of attributes and their domain sizes. Often, we
can reduce the number of attributes and/or their domain sizes in the data prepro-
cessing phase. We will return to this topic in Chapter 4. In addition, we should
select a modelling paradigm, which produces simple models. In practice, we recom-
mend to take the simplest modelling paradigms like linear regression or naive Bayes
as a starting point, and analyze whether they can represent the essential features
in the data. Only if the data requires higher representational power (e.g. non-linear
dependencies, or non-linear class boundaries), more powerful modelling paradigms
should be considered.

The representational power is part of data bias in the modelling paradigm. The
other assumptions in data bias should be checked as well. For example, our analysis
suggests that the educational data is seldom normally distributed. One reason is
the large number of outliers – exceptional and unpredictable students. If we want
to use a paradigm, which assumes normality, we should first check how large is the
deviation from normality and how sensitive the paradigm is to the violation of this
assumption.

When the goal is predictive modelling, we recommend to analyze the data properties
first by descriptive modelling. According to our view (Figure 3.1), descriptive and
predictive tasks are complementary phases of the same modelling process. This view
is especially useful in adaptive learning environments, in which the model can be
developed through several courses. The existing data is analyzed in the descriptive
phase and a desirable modelling paradigm and model family are defined. An initial
model is learnt, and applied to new data in the prediction phase. In the same time
we can gather new features from users, because the descriptive modelling often
reveals also what data we are missing. After the course, the new data is analyzed,
and the old model is updated or a new better model is constructed. As a result,
our domain knowledge increases and the predictions improve in each cycle.
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Descriptive Predictive
modelmodel

new data

application

data

Figure 3.1: Iterative process of descriptive and predictive modelling. Descriptive
modelling reveals the underlying patterns in the data and guides the selection of the
most appropriate modelling paradigm and model family for the predictive modelling.
When the predictive model is applied in practice, new data is gathered for new
descriptive models.

3.5.2 Inductive bias in the modelling paradigm

Data bias is only a part of inductive bias in the modelling paradigm. Each modelling
paradigm contains several assumptions, under which it works optimally. Unfortu-
nately, these assumptions are often implicit, and thus difficult to check. In this
thesis, we have analyzed the inductive bias in the main modelling paradigms and
evaluated their general validity in the educational domain. The summaries of this
analysis are presented in Sections 5.7.3, 7.7 and 6.6.

Usually the learning style is defined in the paradigm level. Different learning styles
have their own bias. In the coarse level, the learning styles can be divided into
eager and lazy (instance-based) learning (see e.g. [Mit97][244-245]). An eager learner
constructs one global model during the training and the model cannot be changed
afterwards. In pedagogical terms, an eager learner is like a student, who already
considers how to apply the theory to new problems, before it is actually asked. On
the other hand, a lazy learner tries to postpone learning as long as possible. The
learning algorithm stores all training examples, and approximates the function value
for a new instance locally, according to previous examples. Thus, a lazy leaner is
like a student, who collects all given material, but does not try to construct any
general principles. Given a new problem, s/he tries to apply the most similar old
examples and interpolates the answer. The most common variation of lazy learning
is k-nearest neighbours method. For every new data point the method calculates
mean, median or some other function of k nearest neighbours’ attribute values.

In eager learning, the inductive bias is the assumption that a global model can be
learnt from the training example. In lazy learning, the inductive assumption is that
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the new point is similar to the closest previous examples. Eager learner takes more
time in the learning phase, but the application is very fast. In contrast, in lazy
learning the training is fast, but application is more worksome. In addition, lazy
learning requires a lot of training data to work. In educational applications, eager
learning is preferable, because we do not have enough data. In addition, it is not
critical if the learning phase takes time, but the actual predictions should me made
in real time.

3.6 Selecting the model

Model selection consists of three steps: defining the model family, selecting the
model class and selecting the model parameters. In some algorithms, the model
class and model parameters are learnt in the same step.

The model family is usually defined by the human expert. By selecting the model
family, the expert defines what can be expressed in the model. In the largest
model families, only the available variables are defined, and all relations are learnt
from data. This is always recommendable, when we search simple patterns like
association rules. When we search more complex models, the resulting model family
is often too large for exhaustive search, and the learning algorithm produces only
a locally optimal model. More accurate models can be learnt, if we can restrict the
search space (model family) by a semantic bias. In practice, the expert can define
some restrictions or preferences on the possible model structures. The best way
to decide the restrictions is to perform first descriptive analysis (e.g. dependency
modelling) and then select the meaningful restrictions.

The model class and model parameters are usually learnt from data, although in
educational applications, the model class is often predefined. This is justified, if the
structure is so complex that it cannot be learnt accurately from the data. However,
there is always a danger that the predefined model structure does not fit the data,
because the expert’s domain knowledge is incorrect or insufficient. For example, it
is often hard to decide which exercise tasks are dependent. If strong dependencies
are missing from a Bayesian network model, it cannot represent the real joint prob-
ability distribution. On the other hand, if the model contains several unnecessary
dependencies, the model becomes too complex, and the parameters cannot be learnt
accurately.

Once again, a better alternative is to define the model structure according to de-
scriptive analysis. Descriptive models can already define the whole model structure
for predictive models. For example, if the goal is to learn a naive Bayes model,
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it is enough to discover all important dependencies between the class variable and
explanatory variables and check that the explanatory variables are conditionally
independent, given the class variable. If we discover strong dependencies between
the explanatory variables, we can add them to the model.

The expert can also define preference bias in the form of a score function, which is
used to evaluate the goodness of alternative models. For example, the preference
for simple models can be expressed by minimum description length (MDL) score
function, which favours models which can be described by shortest code. However,
it should be noticed that the description length depends on the representation, and
MDL does not give an absolute measure for simplicity. In addition, several heuristic
overfitting avoidance methods have been developed, with varying success. In some
domains they can achieve great improvements, while in others they can lead to even
poorer performance [DHS00, Sch93].

3.7 Model validation

The aim of model validation is to give insurance that we have found a good model,
or at least that we do not accept a poor model. The same techniques can also be
used for comparing alternative models and selecting the best one. However, it is
good to remember that the methods are just insurance policies, and they do not
eliminate chance and variability in data. In the following, we will briefly introduce
the most common validation techniques for descriptive and predictive modelling.
For further reading we recommend e.g. [MA03, Kar01, Mit97, HMS02].

3.7.1 Statistical tests

In descriptive modelling we want to verify that the discovered patterns are mean-
ingful and not only due to chance. This is a real danger especially with small data
sets, because often we perform an exhaustive search for quite simple patterns. It is
quite probable that some of the discoveries are spurious and could have occurred in
totally random data, as well. It is always good to follow Smyth’s [Smy01] instruc-
tion and imagine how the method would have worked with totally random data.
This is exactly the goal of statistical significance tests.

The statistical significance tests follow the general schema of proof by antithesis.
First we formulate a hypothesis H which describes our discovery and a null hypothe-
sis H0 = ¬H. In the null hypothesis it is assumed that the discovery is insignificant.
Then we evaluate some test measure X from the data and calculate the probability
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P(X > t) = a

t

Figure 3.2: The idea of the significance test. The distributional form depends on the
given test measure X. Value P (X > t) = a is the significance level, typically 0.01,
and t is the corresponding critical value, given the test distribution. If the value
of the test measure, X = x, lies on the shaded area (i.e. x > t), the observation is
statistically significant at the given level a.

P (X ≥ x) = p that the observed value X = x could occur by chance1. If this prob-
ability is very small, we can reject the null hypotheses H0 and accept the hypothesis
H at the level of significance p. The idea of significance test is illustrated in Figure
3.2.

Typical levels of significance p are:

0.05 nearly significant
0.01 significant
0.001 very significant

The corresponding test measure values t0.05, t0.01, t0.001 are called critical levels.
For common distributions, the critical values are given in the statistical tables and
it is enough to compare the test measure to the critical values of the given test
distribution. The distribution parameter(s) k (or k1, k2) is called the number of
the degrees of freedom and the corresponding critical value is notated by tp(n) (or
tp(k1, k2)).

Example 1 Let us consider a data set of 100 students, who have participated Dis-
crete mathematics course. Attributes gender (female, male) G ∈ {F, M} and final
results (failed, passed) FR ∈ {0, 1} have uniform distribution: P (G = F ) = P (G =

1This so called right-tail test is used, when the test measure is larger than expected. If the
measure is smaller than expected, the left-tail test P (X < x) is used instead. In the two-tailed test
we calculate probability P (X < x1 ∨X > x2).
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M) = P (FR = 1) = P (FR = 0) = 0.5. We observe that 34 male students (68% of
all male students) have failed the course. Is this discovery significant?

Now the null hypothesis is that the attributes G and FR are independent. The
test measure X is the frequency of failed male students. The data follows binomial
distribution with parameter p = 0.5. The probability is P (X ≥ 34) = 0.028, which
is statistically not significant at significance level p = 0.01. However, if 35 male
student had failed the course, the discovery would be significant P (X ≥ 35) = 0.01.

If we test only a few patterns, the statistical significance tests can be used as such.
However, in knowledge discovery, we often search all possible patterns, and the
probability to find spurious patterns increases. For example, a correlation efficient
which is significant at level 0.05, occurs once in every 20 efficients by chance. If we
test 100 correlation coefficients, we are likely to find five spurious correlations. This
has been historically one of the main reasons to criticize data mining. As Sullivan et
al. [STW99] state it: ”Data snooping occurs when a given set of data is used more
than once for the purposes of inference or model selection. When such data reuse
occurs, there is always the possibility that any satisfactory results may simply be due
to chance rather than to any merit inherent in the method yielding the results”.

As a solution, we should use the stricter bounds for significance, the more patterns
we test. Some authors (e.g. [Gar05]) suggest to use significance level p/k, where
k is the number of patterns to be tested. For example, if we test 20 patterns and
want them to be significant at 0.01 level, then we should test them at 0.005 level.
However, this rule is so strict that there is a risk that we do not recognize all
significant patterns.

3.7.2 Testing prediction accuracy

In predictive modelling we have slightly different aims. We would like to ensure
that the model has not overfitted and generalizes well. Small training error does
not give any guarantees about good prediction accuracy in the future, because we
can often achieve zero training error, if we just select sufficiently complex model.
Instead, we should try to estimate the generalization error on unseen data. As a
solution, different kind of testing schemas are used.

In the ideal case, we can reserve part of data as a validation or test set and use the
rest for training. Now the validation set gives good outlines how well the model
works with unseen data. However, if the original data set is very small, this only
increases the risk of overfitting. In this case, k-fold cross-validation is a better
solution. The idea is that we partition the original data set to k disjoint subsets of
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size n/k. Then we reserve one subset for validation and learn the model with other
k − 1 subsets. The procedure is repeated k times with different validation sets and
finally we calculate the mean of prediction errors. The same method can be applied
for comparing different models.

The most popular error functions for measuring prediction error are the sum of
squared errors (SSE) and classification rates. SSE is defined as

SSE =
n∑

i=1

(yi − f(xi))
2,

in which yi is the real value and f(xi) the predicted value of data point xi (i =
1, ..., n). If we want to take into account the data size n, mean squared error (MSE)
is used instead:

MSE =
SSE

n
.

SSE can be used to measure prediction error of any numeric-valued target function
f . In addition, it is often used as a score function in learning phase.

In classification, where the predicted values are typically categorial, classification
rates are often used. Let us first consider the case of two classes, positive class c1

and negative class c2:

true positive false negative Σ =
m(f(x) ∈ c1 ∧ y ∈ c1) m(f(x) ∈ c2 ∧ y ∈ c1) m(y ∈ c1)
false positive true negative Σ =
m(f(x) ∈ c1 ∧ y ∈ c2) m(f(x) ∈ c2 ∧ y ∈ c2) m(y ∈ c2)
Σ = m(f(x)) ∈ c1) Σ = m(f(x) ∈ c2) Σ = n

Now the rate
true positive + true negative

n

tells the classification accuracy (proportion of correctly classified examples), and

false positive + false negative

n

tells the classification error. When we have more classes, we simply calculate true
positive and false negative rates for all classes.
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3.7.3 Testing in practice

The final test for the model is how well it works in practice. However, testing models
with real students is problematic. Blind tests are not recommendable, because the
system should be transparent – i.e. the student should know, how the system has
classified her/him. This leads to a counterpart of Heisenberg uncertainty principle
in education technology: the measuring itself affects the measurements. The better
we can predict the student’s current state, the more it affects her/his proceeding,
and the outcomes are unpredictable. Thus, a good system can perform the worst
in the real learning context! The situation does not differ much, if the influence is
indirect, and only the course tutors know the predictions. However, the ultimate
measure should be, how well the system improves learning – not how well it succeeds
in prediction. In this sense a system which reduces drop-outs performs well, and a
system which increases drop-out works poorly.



Chapter 4

Data

Data is the main subject of knowledge discovery. The selection of attributes, their
types and domains have a strong influence on the model accuracy. In this the-
sis, we demonstrate that with careful data preprocessing we can model even small
educational data sets accurately.

In the following, we will define the main concepts concerning data, analyze typical
characteristics of educational data, and propose appropriate preprocessing tech-
niques. First, we will describe the ViSCoS data, which is used as an example in the
whole Chapter.

4.1 Motivation: ViSCoS data

In the ViSCoS-project, the first problem was to gather data from several sources and
determine the best attributes for our modelling purposes, especially for detecting
drop-outs and potential failures.

The available data sets contained information from two programming courses, Pro-
gramming 1 (Prog.1) and Programming 2 (Prog.2) from academic years 2002-2003
and 2003-2004. In the academic year 2002-2003, 56 students had participated to
Prog.1 course, and 46 students to Prog.2 course. In the academic year 2003-2004,
the corresponding numbers were 69 and 42. The course content (learning material
in Internet) had stayed the same during both academic years, but some exercise
tasks had been changed and some had been given in a different order.

Prog.1 data sets contain students’ exercise task points for 9 weeks and Prog.2 data
sets for 10 weeks. Only the sum of weekly exercise points have been recorded, and

41
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the individual task points are not available. The exercise task points gave students
0..4 bonus points, which were added to the total points.

In both courses, the students had to participate a final exam. Most of the exam
tasks were different in the consecutive academic years, but the topics and dif-
ficulty were approximately the same. Only the sum of exam points (max 30)
and sum of total points (max 34) were recorded, but the individual task points
were available in students’ solution papers. The final grades for accepted stu-
dents were recorded into a separate file. The final grades were expressed by values
{1−, 1, 1+, 2−, 2, 2+, 3−, 3+}, where 1- is the lowest and 3 the highest grade. The
student was accepted, if the total points were at least 15.

The students had agreed that their Programming course data can be used anony-
mously for research purposes. The researchers did not have access to students’
personal data. The students’ names and students numbers were removed in the be-
ginning of the project, and replaced by anonymous student identifier. Before that,
the student’s gender was derived from the first name. Demographic data like age,
school, and home town, as well as course data in the other courses could be valuable
information, but we should get students’ agreement before they could be used.

4.2 Basic concepts

In the following, we define the main concepts which characterize data.

4.2.1 Structured and unstructured data

The main division of data is to structured and unstructured data (see e.g. [Kan02][10-
11]). In structured data, all data items can be represented as a set of attribute–value
pairs, like name=”Kitty Catfish”, age=23, can program=true. Unstructured data
like text, sounds and images do not have any attributes, but a data item is just one
atomic entity, a string of characters.

In knowledge discovery, it is assumed that all data is structured. The complexity of
structures depends on the representation. In this thesis, we assume that all data is
represented in the relational schema, and the data structure consists of attribute-
value pairs. In other data representations, the structures can be more complex (e.g.
attribute hierarchies or aggregates of attributes).

In educational domain, the data is often structured, but sometimes we cannot avoid
unstructured data. For example, if we want to analyze students’ program codes or
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learning diaries, we should first extract all interesting features. Feature extraction
means a transformation, where raw data set D is transformed to a relation r ∈ R:

Definition 7 (Feature extraction) Let R = {A1, ..., Ak} be a set of attributes,
D a data set, and r a relation according to R. Feature extraction is a mapping
fe : D → r, which maps each data item d ∈ D into a tuple t ∈ r:

t = fe(d) = {(A1 = ai), ..., (Ak = ak)}, ai ∈ Dom(Ai).

Feature extraction techniques for unstructured data go out of the scope of this study.
Generally, the same techniques can be applied in educational domain than in other
domains. For example, in pattern recognition (see e.g. [DHS00]) several sophisticated
methods have been developed for extracting features from low-level unstructured
data like images, sounds, and video. On the other hand, extracting features from
text documents falls under scope of information retrieval (see e.g. [BYRN99]). The
roles of pattern recognition and information retrieval for knowledge discovery are
illustrated in Figure 4.1 1

4.2.2 Basic data types

Data types classify the attributes according to their domains. The basic division is
to numerical (quantitative) and categorial (qualitative) data types (see e.g. [Kan02,
JD88]). Numerical data has meaning as numbers and we can measure order, distance
and equality of two numerical variables. In contrast, categorial data has no meaning
as numbers, and generally we can measure only equality between two categorial
variables. The general classification is presented in Figure 4.2.

Numeric data can be further classified as discrete or continuous. Discrete data
can get only countably many values, and if the domain is pictured on the num-
ber line, it consists only of isolated points. Discrete numbers are not necessar-
ily integers, but also decimal numbers with a predefined precision. For exam-
ple, in the ViSCoS data, the total course points could get any values in the set

1We note that our view is simplified and emphasizes the role of knowledge discovery. Some
researchers interpret pattern recognition as a total process, which includes knowledge discovery.
On the other hand, pattern recognition methods can be used in information retrieval, if the goal is
to retrieve multimedia documents. Some researchers include information retrieval into knowledge
discovery.
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Figure 4.1: The roles of pattern recognition and information retrieval for knowledge
discovery process.

{0.00, 0.25, 0.50, ..., 33.50, 33.75, 34.00}. All exercise task points were also given in
0.25 point precision. On the other hand, continuous data can in principle get any
value in the given interval 2

The categorial variables can be further classified as nominal or ordinal. The nominal
values are only names for categories and have no other meaning than categorizing.
If numerical symbols are used, they can always be replaced by other symbols (e.g.
gender: 1=female, 2=male). The ordinal values have a natural ordering, but the
differences have no meaning. For example, in ViSCoS data, the grades {1−, ..., 3}

2Note that in computer system the continuous values cannot be represented with exact preci-
sion, but they are always discretized to some precision.
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Figure 4.2: Classification of data types.

have an order, but the meaning of difference between two grades depends on the
interpretation. Sometimes the difference between 3− and 2+ is interpreted as 0.5,
sometimes as 0.33. Interpreting the difference between values excellent and good is
even harder.

It should be remarked that categorial data is also discrete in the sense that categorial
variables can get only countably many values. When we are analyzing categorial
data, we will typically work with counts or percentages of objects or individuals
which fall within certain categories.

According to our analysis, most of educational data is discrete. Numeric attributes
measure typically points or scores. Physical devices, which are typical sources for
continuous data, can gather data for educational systems, but handling such low-
level data does not differ from other domains. The same techniques for extracting
discrete features from physical measurements can be used in learning environments
as well.

The most important characteristics of data types are the relations which hold for
them. In Table 4.1, based on [Kan02][19-20], we have summarized whether the most
common relations – order, distance and equality – hold for a given data type. These
properties have a strong influence on what kind of modelling paradigms and score
functions we can use. For example, in clustering we have to define a metric, which
measures the distance or similarity between data points. For numeric data this is
trivial, but categorial data is more problematic. This topic is further discussed in
Chapter 6.
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Table 4.1: Summary of basic data types and relations which hold for them. Signs
+ and − indicate whether the relation holds for the given data type or not.

Data type Order Distance Equality
Numerical + + +
discrete + + +
continuous + + +
Categorial +/− − +
nominal − − +
ordinal + − +

The numeric variables can be further described according to their measuring scale.
If the data is measured in the interval scale, there is no absolute zero point and
the ratio relation does not hold. For example, if we measure temperature in Celsius
temperature scale, +30 � does not indicate twice as warm as +15 �. The ratio
relation holds only, if the data is measured in the ratio scale. Quantities like age,
exercise and exam points are measured in this type of scale. This is a very useful
property, because now we can compare two students according to their exam points
and draw conclusions like ”Type A students have got twice as many points as type B
students in the exam”. However, if the attributes are in different scales, we usually
have to transform them into the same scale before modelling.

4.2.3 Static and temporal data

The data can be classified as static or temporal (dynamic) according to its behaviour
with respect to time [Kan02][20-21]. In static data, the attribute values do not
change in time, while in temporal data, the same tuple can have different attribute
values, when the time proceeds.

Example 2 A hypermedia learning system keeps record on all actions executed by
the user. The actions are recorded as 4-tuples < userid, actiontype, target, time >.
The action type can be login, logout, load material, load exercise or return exercise.
The target identifies the page or exercise to be loaded or the solution to be returned.
For login and logout operations the target is empty.

Each session from login operation to logout operation is saved as a sequence of
actions. For each user, the log contains several sessions, and in each session, the
action type and target values vary in time.
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In the educational context, static data is more commonly available, and most mod-
elling paradigms are also designed for the static data. However, there are poten-
tially interesting sources of temporal data, which should be further studied. For
example, if we collect log data described in the previous example, we can ana-
lyze the students’ typical navigation patterns through the topics, and even pre-
dict the best order for topics. This kind of experiments have been reported in
[CGB03, SB03, KB05, RVBdC03]. We will return to this topic in Chapter 8.

4.3 Properties of educational data

In the following, we will analyze typical educational data according to our literature
review (Chapter 2) and our own observations. We conclude that the educational
data is typically sparse, skewed and contains relatively many outliers.

4.3.1 Data size

The most critical property of the educational data is the data size. The data sets
in the educational domain are typically much smaller than in other domains where
knowledge discovery has been applied. The problem is that we cannot learn the
model accurately, if we do not have sufficiently data relative to the number of model
parameters. As a rule of thumb (see e.g. [JDM00, Dui00]), we have sufficiently
data, if for each model parameter we have at least 5-10 rows data. The number
of parameters depends on the number of attributes and their domain sizes. In the
simplest modelling paradigms, like linear regression and naive Bayes using binary
data, the number of parameters is O(k), where k is the number of attributes. Thus,
we can simply check that n/k > 5. In the more complex modelling paradigms, the
number of parameters can be an exponential function of the number of attributes.
For example, in a general Bayesian network, containing k v-valued attributes, the
number of parameters is in the worst case O(vk), and we should have at least 5vk

rows data.

The relative amount of data is measured by the density of data. It tells the average
number of data points in a cell of attribute space (data space).

Definition 8 (Attribute space) Let R = {A1, ..., Ak} be a set of attributes, whose
domains are Dom(A1), ..., Dom(Ak). We say that S = Dom(A1) × ... ×Dom(Ak)
is an attribute space spun by attributes A1, ..., Ak. Attributes A1, ..., Ak are called di-
mensions of the space. The volume of the attribute space is |S| = |Dom(A1)|...|Dom(Ak)|.
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|Dom(A)|=12

|Dom(B)|=14

|Dom(C)|=12

Figure 4.3: Attribute space spun by three attributes A, B and C. A tells the
student’s exercise points in basic programming skills, B the points in loops and
arrays and C in applets.

In Figure 4.3, we give an example of 3-dimensional attribute space, whose volume
is 12 × 14 × 12 = 2016. Notice that if the data contains nominal attributes, the
attribute space does not have a unique representation, because the order of nominal
values is not fixed.

Definition 9 (Density of data) Let R = {A1, ..., Ak} be a set of attributes, which
spin an attribute space S. Let |r| = n be the size of relation r ∈ R. Then the average
density of data is

density(r) = n
|S| .

If the average density is low, we say that the data is sparse. Otherwise it is dense.
The exact thresholds for sparse and dense data depend on the context, but generally
density(r) should be at least 5 for predictive modelling.

In descriptive modelling, the problem is that we do not find any frequent patterns,
if the data is very sparse. Once again, clustering is a special case. Sparsity is not
a problem for clustering, but on the contrary, the clusters are harder to separate if
the data is too dense. However, the distance metrics are usually very sensitive to
high dimensions, and in practice we have to reduce the number of attributes.

According to our analysis, the educational data sets are typically too sparse for
complex modelling paradigms. In Table 4.2, we have summarized the data sizes
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and number of attributes in the previous experiments on applying knowledge dis-
covery to educational data (Chapter 2). We have divided the experiments into three
categories, according to the research scope. In the university level researches the
data was collected from several courses and often during several years. The goal was
to model the general academic success. In the course level researches the data was
collected from one course and usually from one class. The goal was to model the
course success. In the task level researches the data contained students’ solutions
to a set of tasks. The goal was to model the success in the next task.

Table 4.2: Summary of data sizes in the previous research on applying knowledge
discovery to educational data. On each level, we report the minimum, maximum
and average size (Avg.n) of data sets and the average number of attributes (Avg.k).
The number of data sets in each category is given in parenthesis.

Scope [Min,Max] Avg.n Avg.k
University level (5) [100, 22969] 6113 25
Course level (9) [41, 350] 181 26
Task level (4) [149, 55000] 15058 22

The most interesting category is the course level researches, because most edu-
cational systems are designed for one course. In such systems, the data size is
restricted by the size of the class. Student data from several classes can be pooled
only, if the whole course content has remained unchanged. In the previous research,
the average data size was n = 181 rows, but the average number of attributes was
relatively high, k = 26. The upper bound for the average data density is n/k = 7.
The density is so low that only simple models could be learnt/discovered accurately.

In the other two categories we have sufficiently data. Especially, in the university
level, the data sets are generous relative to the number of attributes (n/k = 225).
The task level researches are more difficult to evaluate, because the same attributes
can be learnt for several tasks or concepts. For example, in [BJSM03] nearly 20
attributes were learnt for all words in the system, but the number of words was not
reported. However, the size of the data set (555 818 read words) was so large that
even tens of thousands of words could be estimated accurately. In all task level
studies the data was collected from a system, which had specialized in one simple
task type. The same skills were tested in all tasks, and thus a small student group
(in [BJSM03] only 53 students) could produce sufficiently data. Unfortunately, this
kind of systems are restricted to practicing elementary skills and they are hardly
applicable in the university level.

Temporal data sets like system logs are often large and give impression that we
have sufficiently data. However, now the number of attributes k is also large and
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the number of model parameters is exponential O(2k). The following examples
illustrate the problem.

Example 3 Let us consider a learning environment, which models the student’s
skills in m concepts C1, ..., Cm. Each concept is binary-valued and describes whether
the student masters the skill according to her/his task solutions. At each time step,
the student can be any of 2m states described by the concept value combinations. If
we want to predict the student’s success in the next task, we should evaluate in the
worst case 22m transition probabilities between the states.

In practice, we can simplify the model, because an individual task does not measure
all skills. Still, we would need O(2n) rows of data.

Example 4 Let us consider a simple hypermedia learning system, which contains
20 html pages. The system log records only the page visits < user, page > in the
time order. The data sets contains 2000 sessions made by 100 students. A average
session length is 19 page visits.

We would like to discover all sequences of 5 pages which occur frequently. Now the
number of all possible five page sequences (5-permutations) is 205 = 3200000. Each
session defines approximately 15 five page sequences. Now each possible five page

sequence has 1 − (
3199999
3200000

)1
5 = 0.0000047 probability to occur in the given session.

The pattern frequency follows a binomial distribution with parameters n = 1000 and
p = 0.0000047. Probability that a sequence occurs in one session is 0.0047, but
probability that the same sequence occurs in two sessions is only 0.0000011. It is
likely that we do not find any frequent patterns!

In practice, we should reduce the number of possible actions by grouping the html
pages according to their contents. Then we could search temporal patterns between
the page groups. In addition, we could search action sequences, where actions occur
in the same order but are not necessarily adjacent. Both tricks reduce the number
of possible patterns and patterns become more frequent.

4.3.2 Data distribution

The density of data is usually not uniform, but varies in different parts of the
attribute space. If the deviation from the uniform density is relatively large, we say
that the data is skewed [BMFH97][5]. Note that only ordinal – either numeric or
ordinal categorial – data can be skewed.
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Definition 10 (Skewed data) Let S, be an attribute space spun by a set of ordinal
attributes R, |R| > 1. Let r ∈ R be a relation and density(r) its average density.
Let us denote the density of r in a subspace T ⊆ S by densityT (r). If S contains a
subspace T ⊆ S such that for some user-defined thresholds θ > 0, γ > 0

|T |
|S| > θ, and

(density(r)− densityT (r))2

density(S)
> γ,

we say that r is skewed.

The skewness depends on two domain-dependent factors, γ and θ, which state that
the deviation from the overall density in subspace T is high enough and the subspace
T is large enough.

Note that the above given definition refers to “skew in frequency”. In statistics,
skewness often refers to a deviation from a symmetric density distribution (”skew in
value”). Skew in value implies skew in frequency, but the opposite is not necessarily
true [BMFH97][5].

Skewness is not necessarily a negative phenomenon, but vice versa. We cannot find
any patterns in a totally uniform data. All models assume that the data is somehow
skewed and the variations in the data density reflect the underlying model. Skewness
becomes problem only when it does not fit the distributional form assumed in the
modelling paradigm.

Educational data is often skewed, because the attributes are typically mutually
dependent.

Example 5 Let us consider the data in Figure 4.4. Attribute A tells the student’s
exercise points in basic programming skills and B the points in loops and arrays.
A and B are clearly dependent. Students, who have achieved only a little of points
in A, have not performed any better in B category. This can be seen as a sparse
area in the left top corner. On the other hand, most students have achieved a lot of
points in both categories. This can be seen as a dense area in the right top corner.

Especially dense areas in the attribute space are not a problem for modelling, but
they can reveal interesting tendencies in the data. Sparse areas are more problem-
atic, because the model parameters cannot be estimated accurately in those areas.
In the extreme, some areas are nearly empty, and we have no guarantees how the
model behaves in those areas. Such areas are sometimes called gaps in the data.
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Figure 4.4: An example of skewed data. Attribute A tells the student’s exercise
points in basic programming skills and B in loops and arrays.

Another typical phenomenon for educational data is relatively large number of ex-
ceptional points, outliers. According to a classical definition, outlier is ”an observa-
tion that deviates so much from other observations as to arouse suspicion that it was
generated by a different mechanism” [Haw80]. Other definitions refer to ”abnormal
behaviour”, a point which does not fit the model, or a deviation from the probability
distribution. The definitions depend on the context and in the the following we give
a very general definition:

Definition 11 (Outlier) Let P (D|M) be the probability of data D and P (o|M)
the probability of point o ∈ D given model M . Let γ < 1 be a user defined constant.
If P (o|M) < γP (D|M), we say that o is an outlier.

The problem in the definition and detection of outliers is the assumption of a model,
which the data should fit. In reality, there may be no model at all or the discovered
model can be spurious. Especially, if the sample is small and not random (e.g.
students who have answered a prerequisite query), the reality can be just the op-
posite: the discovered pattern represents abnormal behaviour and the few outliers
are normal in the whole population.

In Figure 4.5, we illustrate the difficulty of defining outliers. In the model, we
assume that the course total points TP1 are linearly dependent on exercise points
in B category. Now the number of outliers depends on how large deviation from
the regression line is accepted.
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Figure 4.5: Examples of outliers, when we assume a linear regression model TP1 =
f(B). The number of outliers depends on how large deviation T from the regression
line f(B) is accepted.

4.4 Preprocessing data

The tasks of preprocessing phase can be divided into three categories: 1. feature
extraction, 2. feature selection and 3. processing distorted data.

In feature extraction, the goal is to produce new better attributes from the original
ones. In the previous, we have already defined the feature extraction from the
unstructured data. Similarly, we can transform a structured data set (i.e. a relation)
into a new relation, defined by new attributes. In feature selection, the goal is
to determine the best subset of attributes for modelling purposes. In literature,
feature extraction and feature selection are often used interchangeably [JDM00].
Some methods like principal component analysis combine both feature extraction
and selection. They produce new features from the old ones, but at the same time
they suggest the most relevant features to be selected. The third preprocessing task
concerns how to process distorted data containing different anomalies like missing
values, errors, and exceptional data values.

The main goal of feature extraction and selection is to find a good set of relevant
features. The only problem is how to define relevance or utility. Very often the
utility of features is discovered after modelling, and we should test all possible sub-
sets of features, transformed in different ways, which is generally intractable. The
dilemma is that for the optimal feature set we would already need the guidance of
models – like a clustering or a classifier – but without a good set of features we
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cannot learn such a model. As Duda & al. [DHS00][581] state it: ”The division of
pattern recognition into feature extraction followed by classification is theoretically
artificial. A completely optimal feature extractor can never be anything but an opti-
mal classifier.” As a solution, several heuristic methods have been developed, and
the modeller should select the best ones according to the domain knowledge. This
is a matter of art, but in the following, we try to give some general instructions for
the educational domain.

The suggested techniques are based on our observations and the analysis of exist-
ing literature. Data preprocessing is unfortunately quite a neglected topic in the
knowledge discovery literature and we have tried to fill this shortage in this thesis.
Normalizations and some other preprocessing techniques as well as outlier detection
are briefly described in [Kan02][22-28,33-36]. Feature extraction and selection are
mostly discussed in pattern recognition literature (e.g. [JDM00, JZ97, DHS00]).

4.4.1 Feature extraction

Very often the educational data set consists of different types of attributes – both
numerical and categorial, ordinal and nominal – in varying scales and measuring
intervals. The goal of feature extraction is to remove these differences so that
the attributes could be used in the same model. Another goal is to reduce the
data volume by reducing the sizes of attribute domains, and thus produce simpler
models. In addition, the minor differences in the attribute values are smoothed,
which reduces the influence of noise in the data.

In the following we list common feature extraction methods. The methods have
been divided into four categories, according to how much they change the original
attributes. Scaling methods do not change the attributes or their domain types, but
only the attribute values. In domain reduction techniques we create a new attribute
from an old one by reducing the attribute domain. In the last two methods we create
a totally new set of attributes by combining the original ones either based on domain
knowledge or attribute transformations.

Scaling

Scaling is the most frequently used feature extraction technique for numeric data.
The simplest form is linear scaling, in which new attribute value x′ is a linear
function of original value x: x′ = αx + β. For example, in decimal scaling we just
shift the decimal point: x′ = 10ix. If the attribute is not in ratio scale (i.e. it does
no have an absolute zero point), the constant β is also needed.
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If the goal is to scale all attributes into the same scale (the same domain), the
method is called normalization. In min-max normalization the attribute values are
normalized to interval [0, 1] by equation

x′ =
x−min(X)

max(X)−min(X)
,

where min(X) 6= max(X).

Another popular method is known as standard deviation normalization or simply
standardization. It is especially useful, if the variables should also have the same
dispersion (standard deviation). The new attribute values are calculated by sub-
tracting the mean and dividing by the standard deviation:

x′ =
x−mean(X)

stdev(X)
,

where stdev(X) > 0. As a result, all variables will have zero mean and unit standard
deviation. This transformation is often recommended, when Euclidean metric is
used (e.g. in clustering or linear regression) and the data contains several outliers.

Domain reduction

In the educational domain data reduction techniques are often needed, because the
data sets are small and sparse. With more dense data the model parameters can
be evaluated more accurately. In addition, reduction enables simpler models, and
the danger of overfitting decreases. However, there is always a danger of over-
generalization. Important information can be lost and even new inconsistencies can
appear [Xia03].

The size of the attribute domain can be reduced efficiently by aggregating the at-
tribute values into groups, which are given new labels. For numeric data this is called
aggregation and for categorial data generalization. Discretization is an important
special case of data reduction, which transforms numeric (continuous) values into a
smaller set of discrete (either numeric or categorial) values. Discretization and data
reduction can be implemented in several ways, but most often the original domain
is simply divided into equal-sized intervals. If the equal-sized intervals have very
different frequencies, a better approach is to select intervals which contain equally
many tuples. This method produces more robust models, because all model param-
eters are estimated from equally many data points. However, the resulting model
can be more difficult to interpret.
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Ordinal data can be generalized similarly, by defining value intervals. For example,
the course grades 1−, ..., 3 can be replaced by new values satisfactory = [1−, 2−],
average = [2−, 2+]), and excellent = [3−, 3]. Nominal values can be combined by
logical operations like disjunctions. More sophisticated techniques like [Xia03] use
χ2 -test and entropy to determine which attribute values or intervals should be
combined.

Sometimes it is desirable to reduce all data to binary-valued 0/1 data. For example,
the efficient algorithms for searching association rules assume that the data is binary.
If the attribute domain contains only a couple of values, the data can be transformed
to binary by creating new attributes (attribute A = {a1, ..., an} is replaced by n
binary attributes). However, if the domain is larger (e.g. numeric), this is no more
feasible and discretization is needed.

Combining attributes by domain knowledge

In educational data sets the feature selection is often based on the domain knowl-
edge. The domain experts have either intuitive or theoretical knowledge about the
main factors which affect the learning process. The goal is to calculate these at-
tribute values from the data. The decisions are always problem-dependent. In the
following, we give an illustrative example.

Example 6 In the ViSCoS data, the main part of data consisted of weekly exercise
task points. Prog.1 consisted of 9 exercise weeks and Prog.2 10 exercise weeks.
The number of attributes was too high relative to data sizes and, in addition, the
compositions of weekly exercises were not the same in two academic years. Before we
could pool the data sets from both years, we should first abstract away the differences.

As a solution, we analyzed the topics covered in the exercise tasks. In Prog.1 the top-
ics fell into three categories: 1) basic programming structures, 2) loops and arrays,
and 3) applets. In Prog.2, we could also recognize three categories: 1) object-oriented
programming, 2) graphical applications, and 3) error handling. The new attributes
A,B,C,D,E, F are defined in Table 4.3.

The new attribute values were defined by summing the exercise points in each cate-
gory and normalizing them to the same scale. Normalization was required, because
the maximum points varied in the consecutive years. Because the minimum point
values were 0 in all categories, we could perform min-max normalization by simply
multiplying with maxnew

maxold
, where maxnew was the maximum of maximum points in two

years.
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Table 4.3: Exercise task categories.
Cat. Description
A Basic programming structures (Prog.1, weeks 1-3)
B Loops and arrays (Prog.1, weeks 4-6)
C Applets (Prog.1, weeks 7-9)
D Object-oriented programming (Prog.2, weeks 1-3)
E Graphical applications (Prog.2, weeks 4-8)
F Error handling (Prog.2, weeks 9-10)

The resulting data set consisted of 8 numeric attributes, which were also discretized
to binary-valued data. The decision of binary data was based on trial-and-error. We
tried also discretization to three values, but the the resulting data set was too sparse
to reveal any statistically significant patterns.

The exercise points A, ..., F were discretized by dividing the attribute domains into
two equal size intervals. I.e. for all X = A, ..., F , the binary attributes X ′ were
derived by rule:

X ′ = little, if X < max(X)
2

, and X ′ = lot, otherwise.

This discretization was selected for its simplicity and quite likely it is not optimal.
In the point distributions (Figure 4.6 and Figure 4.7) we observe that the data is
very skewed. In the future research we will test discretizing the data by searching
optimal segmentations.

The total points were discretized in another manner, because the goal was to predict
the final results (pass/fail). The new attributes FR = FR1, FR2 were derived from
total points TP = TP1, TP2 by rule:

FR = fail, if TP < 15, and FR = pass, otherwise.

In addition, we created binary attribute TP1, which measured whether a student who
had passed the Prog.1 course has achieved a little or a lot of total points in Prog.1.
This attribute could be useful for modelling Prog.2 data, because only the students
who had passed Prog.1 could participate Prog.2. A similar attribute was defined also
for TP2, although it was not needed for modelling Programming courses. The new
attributes TP ′ = TP1′, TP2′ were derived from TP = TP1, TP2 by rule

TP ′ = little, if TP < 23, and TP ′ = lot, otherwise.

The resulting attributes and their numeric and binary-valued domains are summa-
rized in Table 4.4. Notice that the binary data can be represented as 0/1 data, and
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in the following we will often use abbreviations ¬X and X for X = little (fail) and
X = lot (pass).

Table 4.4: Selected attributes, their numeric domain (NDom), binary-valued quali-
tative domain (QDom), and description.

Attr. NDom. QDom. Descr.
A {0, .., 12} {little, lot} Exercise points in A.
B {0, .., 14} {little, lot} Exercise points in B.
C {0, .., 12} {little, lot} Exercise points in C
D {0, .., 8} {little, lot} Exercise points in D
E {0, .., 19} {little, lot} Exercise points in E
F {0, .., 10} {little, lot} Exercise points in F
TP1 {0, .., 34} {little, lot} total points of Prog.1
TP2 {0, .., 34} {little, lot} total points of Prog.2
FR1 {0, 1} {fail, pass} final result of Prog.1
FR2 {0, 1} {fail, pass} final result of Prog.2

Linear transformations: PCA and ICA

Attribute transformations can be used for extracting and selecting features from
numeric data. In the classical approaches the new attributes are produced as linear
combinations of the original ones. Usually the main goal is dimension reduction,
i.e. to produce a new smaller set of attributes, which would still represent the data
well. The underlying idea is that the number of real dimensions of the data can
be smaller than the apparent number of dimensions, and in fact the features can
be represented in a lower dimensional space. The educational data is often sparse
and skewed, and it is quite likely that it could be represented by fewer but more
descriptive attributes.

The most popular transformation technique is principal component analysis (PCA)
(e.g. [HMS02][74-84]). The goal of PCA is to produce a new set of attributes (prin-
cipal components), which catch the main sources of variance. It is assumed that
such attributes describe the data best. The new attributes are uncorrelated and
PCA suits for removing harmful correlations from the data. That is why PCA
is often performed before linear regression or clustering analysis. If PCA is used
for dimension reduction, we select only those components which have the highest
variance.

PCA has also some restrictions and disadvantages [Agg01, AGGR98, TPP+02].
The main problem is that the new attributes are not necessarily the same as the
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Figure 4.6: Point distributions in Prog.1 course. To illustrate the distributions
better we have represented the attributes in different scales.
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Figure 4.7: Point distributions in Prog.2 course. To illustrate the distributions
better we have represented the attributes in different scales.
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most discriminatory features. PCA can produce really poor results, if the data
consists of several ”noise attributes”, which contain large but meaningless variance.
A pathological example is an attribute, which has a uniform distribution and which
does not correlate with any other attribute. PCA considers this attribute as the
most important, while it is actually the most meaningless one.

Another problem is that PCA assumes normal distribution. The sparser and more
skewed the data set is, the more it deviates from normality. In addition, the data
size should be large enough. Different rules of thumb have been proposed for the
minimal size of data (see. e.g. [OC02]), but there is no consensus. Sometimes it
is required that the data size is at least 100 or 200 rows, while other rules require
that there are at least 5 or 15 rows of data per each original attribute. These rules
indicate that PCA is appropriate for the educational data sets only in special cases,
but the potential benefits are so valuable that the topic should be further researched.

Independent component analysis (ICA) (e.g. [Com94, AAG03]) is another well-
known transformation technique. It can be considered as a generalization of PCA,
because now the resulting new attributes (independent components) are not merely
uncorrelated but statistically as independent as possible. The statistical indepen-
dence is measured by mutual information between the new attributes. If the data is
normally distributed, ICA produces exactly the same attributes as PCA. In practice,
ICA produces more discriminatory features and thus it is preferred in classification
tasks. In addition, it can be used for removing statistical dependencies between
explanatory variables, which is desirable in naive Bayes classifier.

ICA does not assume normally distributed data, which makes it more flexible. The
effects of data size have not been studied, but it is quite likely that ICA requires
large data sets to work correctly [AAG03].

Finally, we note a special problem concerning applications of PCA and ICA in
the educational domain. In the educational domain the models should be easy to
interpret, but PCA and ICA produce often incomprehensive models, because the
new attributes do not have their natural meaning anymore.

4.4.2 Feature selection

In the educational domain the feature selection is especially important. The motive
is the same as in feature extraction: we should reduce the data volume to increase
its density. In feature extraction the volume was reduced by domain reduction, but
now we should select the best subset of attributes, X ⊆ R, for modelling purposes.
The problem is to recognize irrelevant attributes from relevant ones.
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In descriptive modelling we usually perform an exhaustive search over all possible
patterns, and then select the best ones according to some goodness criterion. There
is not necessarily any need for feature selection, because all attribute sets will be
tested. The only exception is clustering, where irrelevant attributes can corrupt the
distance measures and real clusters are not discovered. In high dimensions (already
with 10-15 attributes) the contrast between distances to the nearest and furthest
data points often blurs [BGRS99] and clusters become hard to separate. This occurs
especially with the Euclidean distance metric L2 and higher-order metrics Lp, p > 2
[HK98, AHK01]. As a solution, we can use Manhattan metric, L1, or fractional
metrics Lp, 0 < p < 1. This makes clusters better separable, but it does not take
into account the meaningful directions. Often the clusters can be found more easily
in a new subspace of transformed attributes.

In predictive modelling feature selection is more crucial, because the models are
more complex and we cannot try all possible models. In addition, the prediction
accuracy can suffer for irrelevant attributes, because the model becomes unnecessary
complex and overfits the data. If the data set is large, the irrelevant features are less
harmful for the prediction accuracy, but working in high dimensions is inefficient.

The goodness of attributes depends on the modelling goals, but generally we try
to identify the most discriminatory or the most descriptive or expressive attributes.
Discriminatory features refer to the attributes which classify the data well, while
descriptive or expressive features produce models which describe essential patterns
in the data. In practice, the optimal feature set is selected according to some
criterion J , which depends on the modelling purpose. For example, in classification
a common criterion is the classification accuracy J = 1 − error(M, r), where M is
the model learnt with selected attributes X from a data set r.

The only way to guarantee an optimal attribute subset is to try all dimensionalities
l < k, where |R| = k, and all

(
k
i

)
l-attribute combinations, and select the one which

maximizes the criterion J . The search can be pruned by branch-and-bound tech-
nique, but still exhaustive search cannot be avoided [CC78]. In practice the problem
becomes intractable even with moderate k, and local optimization techniques are
needed (see e.g. [JZ97]). The simplest technique is to test all attributes sepa-
rately and select the set of individually best attributes. However, if the attributes
are strongly dependent, the technique can select irrelevant attributes. Another ap-
proach is to merge or divide attribute sets iteratively in a greedy manner, but the
resulting attribute set is only locally optimal.

Once again, the problem can be solved by a combination of descriptive and predictive
modelling. In descriptive modelling we search all interesting patterns, and then
select the best attribute combinations for predictive modelling.
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In some cases we can recognize the irrelevant attributes more easily. Derived at-
tributes, which have been calculated from other ones, contain no new information
and can be always pruned. For example, in the ViSCoS data we had several at-
tributes which were derived from exercise points (total exercise points, their propor-
tion from the maximum exercise points, and bonus points). If the derived attributes
are not known by the domain experts, they can be recognized by comparing distri-
butions: if the distributions of two attributes are the same, then the other one can
be dropped. If the distributions are very similar, the attributes can be combined
simply by taking a normalized sum of attribute values.

4.4.3 Processing distorted data

Processing distorted data is often called ”data cleaning”. The goal is to remove or
reduce the influence of different anomalies like missing or erroneous values, dupli-
cates, inconsistencies (contradictory data), noise, and outliers.

In the educational domain we can suppose that the data is quite clean. The attribute
values are often entered manually, but with special care, and students usually check
them, too. However, when we combine data from several sources there are always
some tuples which occur in one record but not in the other, resulting missing at-
tributes. The true attribute value is also missing, when an attribute value is clearly
erroneous, e.g. the student has got more than maximum points (which the student
does not complain). In both cases there are two basic solutions: we can either delete
the whole tuple or replace the missing value with some constant (”unknown”), or
mean value in the whole population or in some subclass. In an extreme case, we
can learn a classifier and predict the most probable value. If we are learning a
classifier and the class value is missing, the tuple is usually deleted. However, if
we have only a little data, we cannot delete too many tuples. On the other hand,
replaced values are never the same as correct values. Substitution with mean val-
ues decreases artificially the variation and it can considerably change the model
(for example correlation and linear regression). If all the missing values are in the
same attribute, it may be better to drop the whole attribute. For example Agrawal
[AGGR98] recommends this solution for clustering with several missing attribute
values. Finally, it is should be remarked that several missing attribute values can
also indicate some interesting pattern in the data. For example, it is typical that
only the most active students participate in voluntary activities.

Duplicates are an easier problem. Usually the tuples are identified by student num-
bers and duplicates are easy to recognize. In addition, duplicates are not necessarily
problem in some models. For example, in clustering they have usually no effect.
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Sometimes different data sources are inconsistent, i.e. they contain tuples which
concern the same data point but some attribute values are different. The inconsis-
tencies may be due to different formats, updates, or errors. Usually it is best to use
domain knowledge or ask an expert (teacher) to correct the values. For example,
the ViSCoS data contained some students whose final points and grades were not
consistent. Probably the students had participated in several exams, and the points
were not updated to all records. Because these inconsistencies could not be solved,
the only solution was to delete them.

Noise is a general term used to refer to different kinds of random errors in data.
Noise is usually present in physical measurements, where other signals from the
device or environment are mixed with the measured ones. In the educational domain
the data is seldom noisy in this sense, but we can imagine other sources for noise.
For example, if the exercises are evaluated by different teachers, their subjective
tendencies can add bias or ”noise” to the points. The main solutions for noisy
data are ”data smoothing” and robust models. Data smoothing can be performed
by scaling, discretization and other domain reduction techniques, which lift the
abstraction level and smooth out the minor differences. On the other hand, robust
models do not overfit to represent noise, but only the main structures in the data.

We have already noted that the educational data contains often relatively many
outliers, which decrease the model accuracy. The problem is two-fold: first we
should detect the outliers and then decide how to handle them. The problem is
difficult, because the same techniques – e.g. linear regression and clustering – which
can reveal outliers, are themselves especially sensitive to outliers. The reason is that
linear regression and most clustering algorithms use SSE score (i.e. they minimize
the sum of squared errors), which is very sensitive to outliers. Generally, all measures
which use mean and variance suffer for outliers. Median is a more robust measure
than mean, if there are only a few outliers [Hig00].

One-dimensional outliers, which differ significantly from other data points only in
one attribute, are relatively easy to detect by univariate tests. The outlier is defined
as a function of mean and variance, e.g. a data point x is an outlier in dimension
A, if |x[A]−mean(A)| > γstdev(A) for some coefficient γ > 1. The only restriction
is that we should assume some data distribution, before we can set an appropriate
coefficient γ.

Visual checking (scatter plots) is often a useful technique, but it suits only for 2-
dimensional data. For higher dimensional data all attribute distributions can be
checked separately, but the outliers can also ”hide” in higher dimensions. This kind
of outlier has no extreme values in any one dimension, but is very distant from other
points in the whole attribute space.
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For multidimensional outlier detection a common approach is to define some dis-
tance or similarity function, and search for very distant or dissimilar data points.
In distance-based techniques we define some distance function d, a threshold γ and
proportion p. If d(x, y) > γ for at least p % of data points y, x is considered as an
outlier. The obvious problem is how to define appropriate parameter values γ and
p. In addition, this methods suits only for numeric data, for which we can define
a distance function. For other data types we can define a similarity or dissimilar-
ity function, and define outliers as a minimal set of data points, whose removal
minimizes (maximizes) dissimilarity (similarity) function.

In the educational domain the outliers are of special interest, because they usually
reveal interesting information. Both exceptionally poor and excellent students need
a special attention. Thus, the outliers should not be removed from the data, if they
are not clear errors. If this is not clear, it is recommended (e.g. [Sto96]) to model
the data both with suspected outliers and without them. In clustering a natural
solution is to separate the outliers into their own cluster. In predictive modelling
we can define the outliers as data points which do not fit the model, and search an
optimal model for the majority of data. Now the majority of data can be predicted
accurately, but for outliers we should invent special prediction rules or leave them
unpredicted.

Usually better than deleting outliers is to soften their influence by data smooth-
ing and use of robust models. The large differences in attribute values can be
smoothed in the preprocessing phase by different transformations like logarithms,
square roots, and PCA, but these transformations also blur the natural interpre-
tation of attributes. Domain reduction is an efficient way to deal with outliers.
For example, if we replace numerical values by ordinal categorial values, the large
attribute values do not matter any more. However, radical reductions can lead to
over-generalization. Once again, the best solution is to use robust models, which are
not sensitive to outliers. We will return to this topic, when we compare clustering
and classification methods in Chapters 6 and 7.
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Chapter 5

Modelling dependencies between
attributes

The main goal of predictive modelling is to predict a target attribute Y from a
set of other attributes X = {X1, ..., Xk} ⊆ R. Variables X are called explanatory,
because they explain Y . The existence of such model requires that Y depends on X.
Thus, the first step of the modelling process is descriptive analysis of dependencies
between Y and X. The task is two-fold: First, we should select an attribute set X
which best explains Y . Then we should analyze the type of dependency. Given this
information, we can select an appropriate predictive modelling paradigm and define
restrictions for the model structure.

In the following we define the main types of dependencies for categorial and numeric
data. We introduce three techniques (correlation analysis, correlation ratios, and
multiple linear regression) for modelling dependencies in numeric data and four tech-
niques (χ2 independence test, mutual information, association rules, and Bayesian
networks) for categorial data. In both cases, we begin by analyzing pair-wise depen-
dencies between two attributes, before we analyze dependencies between multiple
attributes X1, ..., Xk and target attribute Y . This approach has two benefits: First,
we can avoid testing all 2k dependencies between subsets of {X1, ..., Xk} and Y , if
Y turns out to be independent of some Xi. Second, this analysis can reveal impor-
tant information about suitable model structures. For example, in some modelling
paradigms, like multiple linear regression and naive Bayes model, the explanatory
variables should be independent from each other. Finally, we analyze the suitability
of described modelling techniques for the educational domain.

67
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5.1 Dependencies

Dependencies between attributes fall into two main categories. Dependencies be-
tween discrete attributes are measured by satistical dependency, based on the ob-
served probability distribution. The dependencies between numeric attributes are
measured by functional dependency, based on individual data points.1

Statistical dependency between variables X and Y is usually defined through statis-
tical independency. The reason is that we can always observe absolute independency,
but it is much more difficult to determine when the dependency is significant.

Definition 12 (Statistical independency) Let R be a set of discrete attributes,
and X ∈ R and Y ∈ R be attributes defined in R. Attributes X and Y are statisti-
cally independent in relation r ∈ R, if P (X,Y ) = P (X)P (Y ), where probability P
is the relative frequency in r.

Statistical independency can be generalized to multiple attributes: Attributes X1, ..., Xk

are mutually independent, if P (X1, ..., Xk) = P (X1)...p(Xk).

If X and Y are not independent, they are more or less dependent. The strength of
the statistical dependency between X and Y is defined by comparing P (X, Y ) and
P (X)P (Y ). Sometimes the dependency between X and Y can be explained by a
third attribute Z. Once again, we can define unambigiously only the conditional
independency:

Definition 13 (Conditional independency) Let R be a set of discrete attributes,
X ∈ R, Y ∈ R attributes and Z ⊆ R a set of attributes defined in R. X and Y
are conditionally independent given Z, if P (Y |X, Z) = P (Y |Z) and P (X|Y, Z) =
P (X|Z).

The (unconditional) statistical independency can be interpreted as a special case of
conditional independency, when Z = ∅. I.e. X and Y are statistically independent,
if P (X|Y ) = P (X) and P (Y |X) = P (Y ).

Functional dependency is a special kind of dependency, where the dependency re-
lation is defined by some function:

1Some authors use term ”statistical dependency” to refer to any kind of dependency observed
by statistical means. In this thesis we follow a more common interpretation.
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Definition 14 (Functional dependency) Let X = {X1, ..., Xk} ⊆ R be a set of
attributes, r a relation according to R, and Y ∈ R an attribute defined in relational
schema R. Y is functionally dependent on X in relation r, if there is a function
f : Dom(X1)× ...×Dom(Xk) → Dom(Y ) such that for all t ∈ r t[Y ] = f(t[X]).

In relational databases the attributes are always discrete, and the function is not
continuous. In addition, we are seldom interested in the actual dependency function.
In such a case we can simply define that Y is functionally dependent on X, if for all
t ∈ r t1[X] = t2[X] ⇒ t1[Y ] = t2[Y ]. However, when the attributes are numeric, we
can approximate a continuous function, which fits our data points. The quality of
such an approximation depends on how representative our data set is. If the data
is sparse or contains several gaps, we cannot approximate the function accurately.

5.2 Correlation analysis

In the following we recall the most common measure for correlation, Pearson cor-
relation coefficient. We discuss about restrictions and extensions of the common
correlation analysis. Finally, we analyze the ViSCoS data by Pearson correlation
and correlation ratios to reveal linear and non-linear dependencies.

5.2.1 Pearson correlation coefficient

Correlation analysis (see e.g. [Gar05, Sta04])is the simplest descriptive technique,
which reveals linear dependencies between two variables2. It is recommendable
to perform correlation analysis for all numeric data before any other modelling,
because undesirable correlations can corrupt the whole model. The same holds for
other dependencies, but correlations are easiest to compute and they already reveal
if the variables are not independent. In addition, if the data is normally distributed,
the lack of correlation means also statistical independence3, and no other tests are
required. According to our experiments, the assumption of normality does not hold
for educational data (students’ task points), but still the dependencies are quite
linear.

The most well-known measure for correlation is Pearson product-moment correla-
tion coefficient, which measures the degree of linear dependency between numeric
variables.

2Sometimes term ”correlation” is used to refer to any kind of functional dependency, but we
follow the most common interpretation of correlation as a linear relationship.

3This can be easily seen, when we assign r = 0 in the 2-dimensional normal density function.
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Definition 15 (Pearson correlation coefficient) Let X and Y be numeric vari-
ables and stdev(X) and stdev(Y ) be finite and nonzero. Then the correlation coef-
ficient r = corr(X, Y ) between X and Y is

corr(X,Y ) =
cov(X, Y )

stdev(X)stdev(Y )
=

∑n
i=1(xi −mean(X))(yi −mean(Y ))√∑n

i=1(xi −mean(X))2
∑n

i=1(yi −mean(Y ))2
.

Very often, the square of correlation coefficient, r2, is reported instead of r. It has
a natural interpretation as a proportion of variance in X explained by Y (or vice
versa).

The values of correlation coefficient fall between [−1, 1]. The sign defines the direc-
tion of the relationship. We say that the correlation is either negative or positive de-
pending on the sign of the correlation coefficient. The negative correlation between
X and Y means that Y decreases while X increases and the positive correlation
means that both variables increase simultaneously. The absolute value of the cor-
relation coefficient measures the strength of the relationship. Value corr(X,Y ) = 0
indicates that X and Y are linearly independent, and |corr(X, Y )| = 1 indicates a
perfect linear relationship. However, in practice, the correlation coefficient achieves
very seldom values +1 or −1. According to [DD03], this can happen only if the
attribute distributions diverge at most in the location and/or the scale.

An important question is when the correlation is significant. General guidelines are
sometimes given for defining weak, moderate, or strong correlation but they are
rather arbitrary, because the significance depends on the context. One important
criterion is the size of the data set: the smaller the data set is, the stronger the cor-
relation should be to be significant. In statistics, the significance of the correlation
efficient is usually determined by t-test. The correlation is significant at level p, if

t =
r
√

n− 2√
1− r2

≤ tn−2,p,

where tn−2,p is the critical value with n−2 degrees of freedom. In Table 5.1, we have
calculated the thresholds for significant (p = 0.01) and very significant (p = 0.001)
correlation, when the data size is 80,...,120. If we test only a couple of correlation
coefficients, we can use lower bounds, but the more correlations we test, the more
probably we will encounter spurious correlations. Thus, it is recommended (e.g.
[Gar05]) to use stricter bounds, the more correlations we test. For example, if we
test 50 correlations and want to find all correlations which are significant at level
0.05, then each individual correlation should be significant at level 0.001.
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Table 5.1: The critical values of correlation coefficient r in significant (p = 0.01)
and very significant (p = 0.001) correlation according to t-test, given data size n.

n p = 0.01 p = 0.001
80 0.26 0.34
90 0.24 0.32
100 0.24 0.31
110 0.22 0.29
120 0.21 0.28

5.2.2 Restrictions and extensions

The correlation coefficient can be distorted or misleading for various reasons. The
main assumption is that the relationship can be described by a linear curve. Pear-
son correlation coefficient does not tell anything about the strength of non-linear
relationships. The correlation coefficient can be zero, even if there is functional
dependency between variables. The following example is imaginary, but similar
situations can occur in practice.

Example 7 Let’s consider the students’ total points and satisfaction in Theory of
computation course. The total points TP ∈ {0, ..., 100} are approximately normally
distributed with mean(TP ) = 50. The students have evaluated their satisfaction
SAT with the course in scale [0, ..., 100] %. The satisfaction is a function of total
points

f(SAT ) =
−(TP − 50)2

25
+ 100.

I.e. the students with average total points have been very satisfied with the course,
but the students with extremely low or high total points have been very unsatisfied.
Now the correlation coefficient is r = 0.0, even if the dependency is fully functional.

Another important note is that the correlation is not the same as causation. Corre-
lated variables may or may not have causal relationship. In addition, the connection
between variables may be indirect, due to a third unknown variable.

The main restriction of correlation analysis is that the variables should be numeric
and measured in the interval scale. The only exception is dichotomous categorial
variables like 0=female, 1=male. However, it can be hard to evaluate the sig-
nificance of correlation between different data types or even between two numeric
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variables measuring different quantities. In this case other measures like Spearman’s
ρ or Kendall’s τ are recommended (e.g. [Gar05, Sta04]). Both of them apply for
measuring correlation between two ordinal variables or an ordinal and a numeric
variable.

Data preprocessing can have remarkable influence on the correlation coefficients.
For example, domain reduction often restricts the variance and the correlation co-
efficients become attenuated. On the other hand, scaling is not needed, because the
Pearson correlation performs an implicit standard deviation scaling. One problem
is that the Pearson correlation is very sensitive to noise and outliers. This can be
problematic in the educational data, where outliers are typical. In addition, the
results can be misleading, if the relationship varies depending on the values. This
phenomenon is known as the lack of homoscedasticity.

Finally, the significance tests assume that the variables are at least approximately
normally distributed. In the educational data this assumption holds rarely, but,
fortunately, the violation of this condition is not critical, if the data sets are large
enough. According to several researchers (e.g. [Sta04]), the normality assumption
can be ignored, if the data size is more than 100.

Correlation ratio [Kel35] is an effective measure, which can detect nearly any func-
tional dependency between variables. Correlation ratio η can be interpreted as a
generalization of the Pearson correlation coefficient for measuring non-linear rela-
tionships. It measures the proportion of the variability of Y for fixed values of X
and the variability of Y across the whole data set. For numeric data the most com-
mon measure for the statistical variability is standard deviation and for categorial
data entropy. Assuming the standard deviation measure, we define:

Definition 16 (Correlation ratio) Let X be a discrete numeric attribute and Y
any numeric attribute. Let x be a value of X, nx the number of data points having
value X = x, V arx(Y ) the variance of Y , when X = x, and V ar(Y ) the variance
of Y in the whole data set. Then the square of the correlation ratio between X and
Y , η2(X, Y ), is given by

η2(X,Y ) =
nV ar(Y )− ΣxnxV arx(Y )

nV ar(Y )
.

Now η2 has a natural interpretation as a proportion of Y ’s variance explained by in-
dividual variances in discrete values of X. Contrary to correlation, this relationship
is not symmetric, and generally η(X, Y ) 6= η(Y,X). If the relationship is purely lin-
ear, then η2 = r2. Otherwise the difference η− |r| tells to which extent the relation
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is non-linear. This is especially useful, when we should decide whether the data can
be modelled by linear models or whether we need a more powerful model.

Finally, we should note that the correlation ratio is sensitive to the precision used to
represent decimal numbers. This phenomenon was first observed in our experiments
with the ViSCoS data, but soon we realized also the reasons: If the precision is
very high, there is only one Y value per each X value, and V arx(Y ) is zero for
all x. The resulting η2(X, Y ) is one, which indicates non-linear dependency, unless
r2 = 1. However, when we discretize X with appropriate precision, the non-linearity
decreases.

5.2.3 Pair-wise functional dependencies in ViSCoS data

In the ViSCoS project we also started with the correlation analysis. In addition,
we calculated the correlation ratios between all attribute pairs in the Prog.1 and
Prog.2 data sets. The goal was to discover all pair-wise dependencies in the data
and evaluate how linear they are. The results are represented in Table 5.2. The
thresholds for significant correlations have been defined according to t-test, using
Table 5.1.

We observe that the exercise points in B category (loops and arrays) correlate
strongly with total points TP1 in Prog.1 and moderately with total points TP2 in
Prog.2. The latter correlation can be partially reduced to the correlation between
B and E, which suggests that skills in loops and arrays are important prerequisites
for graphical applications. The exercise points in category E have a very strong
correlation with TP2 in Prog.2 course. These observations suggest that the student’s
performance in the middle of the course has a strong impact on the final results.

The strong correlation between TP1 and TP2 can either tell about the general
learning tendencies, or prove the importance of managing basic programming skills
before proceeding to more difficult topics.

Gender (G) was excluded from the correlation table, because it did not have any sig-
nificant correlations with other attributes. For example, the correlation coefficients
between gender and TP1/TP2 were only approximately 0.16.

When we analyze the correlation ratios, we observe that most of dependencies are
quite linear. The most non-linear dependencies hold between attribute pairs, where
the first attribute belongs to Prog.1 and second one to Prog.2. Especially, attribute
A has only weak correlation with Prog.2 attributes, but the non-linear dependencies
are very strong. This suggests that managing the basic programming structures (A)
is important prerequisite for all other skills. Dependency between C and TP2 is
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also strongly non-linear. This suggest that we could use it as a background variable
for predicting the Prog.2 final results, but not in a linear model.

When we compare correlation ratios η(X, Y ) and η(Y, X), we observe that most non-
linear dependencies follow a temporal order. Prog.2 attributes are more dependent
on Prog.1 attributes than vice versa. This is uniform with our assumption that
Prog.1 skills are prerequisites for Prog.2. It should be further researched if this
condition holds generally, and correlation ratios identify prerequisite dependencies
between the course topics.

5.3 Linear regression

The natural counterpart of correlation in predictive modelling is linear regression
(see e.g. [MA03][ch. 11-12],[HMS02][368-390][Sta04]). The idea of linear regression
is to find the best linear model (function), which can relate the dependent variable
Y to various explanatory variables X1, ..., Xk. The explanatory variables are called
independent variables, because they should be linearly independent from each other.
In the simplest case, Y depends linearly on just one independent variable X. When
there are more variables, the model is called multiple linear regression. Multiple
linear regression is also a useful descriptive technique, because it generalizes the
correlation coefficient for multiple variables, and reveals the relative importances of
individual explanatory variables.

In the following, we will first give the basic definitions. Then we will discuss about
the restrictions (inductive bias) of linear regression. Finally, we will demonstrate
multiple linear regression by the ViSCoS data.

5.3.1 Multiple linear regression model

The main idea of multiple linear regression is to model target variable Y as a
linear function of explanatory variables X1, ..., Xk. In real data sets this function
holds seldom, because the data set often contains inconsistent data points t1, t2 for
which t1[X] = t2[X], but t1[Y ] 6= t2[Y ]. However, if the linear dependency holds
approximately, we can predict the expected value of Y at point X1 = x1, ..., Xk = xk,
ŷ, quite accurately.

Definition 17 (Multiple linear regression) Let X = {X1, ...., Xk} and Y be
numerical variables, where Y is linearly dependent on Xis and Xis are linearly
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Table 5.2: Correlation coefficients r = corr(X, Y ), correlation ratios η(X, Y ),
η(Y, X), and the differences η − |r| for all variable pairs (X,Y ) in the ViSCoS
data. The strongest correlations (significant at level p = 0.001) and non-linearities
(η − |r| > 0.450) have been emphasized. The first six rows have been calculated
from the Prog.1 data and the rest from the Prog.2 data.
(X, Y ) r = corr(X, Y ) η(X, Y ) η(X,Y )− |r| η(Y,X) η(Y,X)− |r|
(A,B) 0.528 0.836 0.308 0.735 0.207
(A,C) 0.354 0.829 0.475 0.644 0.290
(A,TP1) 0.602 0.850 0.248 0.852 0.250
(B,C) 0.667 0.847 0.180 0.852 0.185
(B,TP1) 0.750 0.857 0.107 0.917 0.167
(C,TP1) 0.683 0.819 0.136 0.828 0.144
(A,D) 0.164 0.856 0.692 0.700 0.536
(A,E) 0.240 0.783 0.542 0.754 0.514
(A,F) 0.194 0.805 0.611 0.508 0.314
(A,TP2) 0.236 0.798 0.563 0.700 0.465
(B,D) 0.418 0.733 0.315 0.691 0.272
(B,E) 0.630 0.832 0.202 0.812 0.182
(B,F) 0.378 0.782 0.403 0.622 0.243
(B,TP2) 0.462 0.755 0.293 0.750 0.288
(C,D) 0.527 0.832 0.305 0.815 0.288
(C,E) 0.442 0.830 0.388 0.859 0.417
(C,F) 0.262 0.702 0.440 0.480 0.218
(C,TP2) 0.304 0.772 0.468 0.840 0.535
(TP1,D) 0.412 0.771 0.358 0.792 0.380
(TP1,E) 0.453 0.797 0.344 0.752 0.299
(TP1,F) 0.335 0.748 0.414 0.563 0.228
(TP1,TP2) 0.562 0.805 0.243 0.742 0.181
(D,E) 0.591 0.805 0.214 0.859 0.268
(D,F) 0.421 0.706 0.286 0.676 0.255
(D,TP2) 0.597 0.801 0.205 0.879 0.282
(E,F) 0.729 0.897 0.168 0.848 0.120
(E,TP2) 0.732 0.905 0.173 0.924 0.192
(F,TP2) 0.610 0.862 0.252 0.925 0.315
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independent from each other. Then for all x = (x1, ..., xk) ∈ Dom(X) the expected
value of Y given X = x, ŷ, is defined by linear equation

ŷ = α + β1x1 + β2x2 + ... + βkxk,

in which α and β1, ..., βk are real-valued regression coefficients.

An important note is that the multiple linear regression model does not reveal the
linear depency, but merely defines the form of the linear dependency, if such exists.
It is easy to fit a linear equation to any data, but the validity of such a model
depends on whether the relationship is actually linear.

The regression coefficients are usually determined by the least squares method [MA03][448-
457]. The idea is to solve the equations

y1 = α + β1x11 + β2x12+ ... + βkx1k + ε1

y2 = α + β1x21 + β2x22+ ... + βkx2k + ε2

...

...

...
yn = α + β1xn1 + β2xn2+ ... + βkxnk + εn,

given data rows (xi1, ..., xik, yi) ∈ r, such that the sum of squared errors,
∑n

i εi, is
minimal.

Now the linear tendency can be estimated by the square of multiple correlation
coefficient [MA03][475]

r2 =
V ar(Y )−MSE

V ar(Y )
,

where MSE = SSE
n

is the mean squared sum of errors. r2 tells how much of Y ’s
variance is explained by the linear model. The nearer r2 is to 1, the more linear
the dependency is. Often this is reported as percents r2 *100%, which is called the
coefficient of determination.

To analyze the validity of a linear regression model, we should analyze the errors or
reciduals εi. Since the data usually contains several data points which share their
X values, we should analyze variables Ei,

Dom(Ei) = {ej | ej = yj − α + β1xi1 + β2xi2 + ...βkxik}

for all xi ∈ Dom(X).
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The linear model is appropriate, if Eis are mutually independent, normally dis-
tributed, have zero mean, and the same variance. These properties are violated,
if the data does not have linear tendency or contains outliers. The easiest way to
check these properties is to plot the residuals and check that the residuals scatter
symmetrically around zero and are in the same scale. If we were careful, we should
also check the normality by statistical tests.

Finally, we should check how well the given model fits the data. The most common
way to validate a linear regression model is the F-test. The idea is to measure
how large proportion of the prediction error (SSE) can be explained by the linear
model. The larger the F -value, the better the linear model describes the data. A
more informative measure is the significance of the observed F -value. It tells the
probability that the observed linear model could have occured by chance, and the
smaller the probability the more certain we can be that the observerd pattern is
real.

In addition, several other significance tests can be applied to linear regression. If the
model is used for describing relationships, it is best to validate the significance of
coefficients separately. We can also calculate a confidence interval, which contains
the true line with given p % probability, or a prediction interval, which contains p
% of data points. If we want to estimate the real prediction accuracy, then it is
recommended to calculate the standard error in the predicted Y value for a test set
or using cross-validation.

5.3.2 Restrictions and extensions

Multiple linear regression is a good candidate for modelling numeric educational
data, because it does not require large data sets. However, it is also easy to misuse,
if we are not aware of the inductive bias – the underlying assumptions concerning
the data.

The main assumption is that the data has a linear tendency. In practice, small
deviations from linearity are not serious, but strong non-linearity can lead to errou-
neous models. Especially, if the data contains large ”gaps”, we have no guarantees
that the data would follow linear tendency in those areas. If the gaps are small, we
can usually interpolate the curve between sample points, but extrapolating values
outside the sample is always risky. This concerns especially the educational data,
which is often sparse and skewed.

If the relationship between the target variable and explanatory variables is clearly
non-linear, we can try general regression models. In such models we can can allow
higher order terms and interactions between components Xi. The problem is that
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the resulting model is often too complex and overfits to small data sets like those in
the educational domain. In addition, it is very hard to decide the appropriate form
of the non-linear function, if the data has a larger dimensionality than two.

The second assumption is that the data does not contain outliers. Linear regression
model – as well as all models based on SSE score function – is especially sensitive
to outliers (see e.g. [Hub81][162]). The outliers are not necessarily a problem, if
they happen to lie on the linear curve, but very far from other points. In this case it
is a matter of interpretation whether they are really outliers or whether there is just
a gap in the data. The real outliers can corrupt the whole model, because the large
values (deviations to any direction) dominate the SSE score function. Sometimes
it is suggested to delete all outliers or at least all zero values, which are often special
cases. However, a better approach is to smooth their influence. For example, in
robust or biweight regression [Hub64] the data points have different weights in SSE,
according to their deviation from the current predictions. The new deviations are
calculated and the model is updated, until it does not improve any more. As an
alternative, we suggest to use other, less sensitive distance functions like L1 metric
for calculating SSE. These alternatives are discussed in Chapter 6.

On the other hand, linear regression model can be used for detecting outliers. We
have designed a simple technique for this purpose. For each data point (xi, yi) we
test

OL =
ei

2 −MSE

MSE
≥ mino,

where mino is a user-defined threshold. Because the outliers are always data depen-
dent, we cannot give any absolute values for mino. In practice, the threshold should
be defined by trial-and-error. For example, in the ViSCoS data, we have achieved
good results with threshold mino = 3 in both Prog.1 and Prog.2 data sets.

The third assumption is that the independent variables are linearly independent.
In the educational data we often have the problem that the independent variables
are correlated. This phenomenon is called collinearity (see e.g. [Far02][117-120]). It
is an especially serious problem when a linear regression model is used for descrip-
tive modelling, but also the prediction accuracy can suffer for collinearity. As a
result of collinearity, the estimated regression coefficients βi become imprecise and
unreasonable. The model cannot differentiate the influence of correlated variables
on dependent variable, but their magnitudes and signs are rather arbitrary. In the
extreme case, the coefficients are so unstable that they cannot be estimated at all.

Relatively small correlations are not necessary harmful for prediction purposes. The
smaller the data set and the more noise in Y values, the bigger influence collinearity



5.3. LINEAR REGRESSION 79

has. In addition, the influence on the prediction accuracy is stronger at points which
are far from the training set. The problem is to identify when collinearity is serious.
The simplest way to detect collinearity is correlation analysis, but it is not very
informative. As a rule of thumb, it is sometimes (e.g. [Xyc06]) recommended
to consider collinearity harmful, if for any two independent variables X1, X2 and
dependent variable Y holds corr(X1, X2) > 0.9 or corr(X1, X2) > corr(X1, Y ) or
corr(X1, X2) > corr(X2, Y ).

Principal component analysis is an efficient way to detect and also remedy collinear-
ity. Low eigenvalues (lengths of principal components) and big differences in eigen-
values usually indicate harmful collinearity [Far02, Xyc06]. Principal component
analysis can give advice, which variables are spurious and should be removed. Cor-
relations can also be removed by replacing some or all of the attributes by their
principal components, which are orthogonal and thus uncorrelated. This is also the
underlying idea of ridge regression [LS72].

5.3.3 Multiple linear regression models for ViSCoS data

In the correlation analysis we found several linear dependencies between the course
variables. These dependencies suggested that total points TP1 and TP2 can be
predicted by linear regression from other variables. To test this assumption, we
constructed several multiple linear regression models from the ViSCoS data by Gnu-
meric program. The best models are described in Table 5.3. We tried also to predict
TP2 using A, B and C instead of TP1, but the results were much poorer, equivalent
to using just Prog.2 variables for the prediction.

The quality of models is analyzed by three statistical measures: the square of mul-
tiple correlation coefficient, r2, the significance of F -value, and the standard error.
According to r2 values, the best model is TP1 = f(A,B,C). However, all models
but TP2 = f(TP1, D) received reasonably high r2 values, which indicates that lin-
ear models fit quite well our data. The significance of F -value gave similar results,
as expected, and confirmed that all models are statistically significant, i.e. all of
them have very small probability to have occured by chance.

The standard error in predicted Y describes the average error in the predictions.
The average errors are 6-8 points, which means that we cannot predict the exact
points accurately even in the training set. However, when the goal is to predict only
the final results (FR = 1, if TP ≥ 15, and FR = 0, otherwise), we can achieve
much better accuracy. To test the classification accuracy on new data points, we
performed 10-fold cross-validation and calculated the general classification rate. In
Prog.1 course, we could predict the finals results with nearly 90% accuracy, but



80 CHAPTER 5. MODELLING DEPENDENCIES BETWEEN ATTRIBUTES

Table 5.3: Multiple Linear regression models for predicting the total points in the
Prog.1 and Prog.2 courses. The regression coefficients are represented only with
two decimal precision. The first two models are learnt from the Prog.1 data and
last three from the Prog.2 data. For each model we report the square of multiple
correlation coefficient (r2), the significance of F -value (F sign.), and the standard
error (sterr). The last column (crate) tells the classification rate in 10-fold cross-
validation, when the model was used to predict final results.

Model r2 F sign. sterr crate
TP1 = 1.29A + 1.46B − 5.19 0.62 2.1 e-26 7.18 0.865
TP1 = 1.28A + 0.93B + 1.08C − 5.26 0.68 7.6 e-30 6.62 0.896
TP2 = 0.82TP1 + 1.43D − 16.02 0.48 1.8 e-8 8.39 0.807
TP2 = 0.55TP1 + 0.64D + 0.89E − 11.67 0.63 1.8 e-14 7.13 0.795
TP2 = 0.54TP1 + 0.65D + 0.68E + 0.72F − 11.53 0.64 2.9 e-15 7.05 0.795

in Prog.2, we achieved only 80% accuracy. An interesting phenomenon was that
knowing F attribute did not increase the classification accuracy. This is explained
by the strong collinearity between E and F attributes (r2 = 0.729). This collinearity
is observable in the other validation measures, too. It indicates that the regression
coefficients of model TP2 = f(TP1, D, E, F ) do not suit for descriptive analysis.

Finally, we searched outliers in both Prog.1 and Prog.2 data sets with our own
method. The measure for outliers was

OL =
(t[TP ]− t[PRED])2 −MSE

MSE
≥ mino,

where t[PRED] is the predicted total points. In Prog.1 we used linear regression
model TP1 = f(A,B, C) and in Prog.2 model TP2 = f(TP1, D,E, F ). With
mino = 3.0, we found in Prog.1 seven outliers, and in Prog.2 four outliers. The
discovered outliers are reported in Table 5.4. We observe that the discovered outliers
with high OL values have clear interpretation: seven of them are students, who have
achieved a lot of task points but still failed, and two of them are students, who have
gained only a little of task points, but still performed very well. Only three of the
discovered students, with smallest OL values, did not have any clear interpretetion.
This suggests that the used mino value was too small. With smaller mino values
we did not find any clearly interpretable outliers.

This analysis revealed the most problematic group of students in the Programming
courses. We recall that the main goal of our research was to predict students, who



5.4. DISCOVERING PAIR-WISE STATISTICAL DEPENDENCIES 81

Table 5.4: The discovered outliers in the Prog.1 and Prog.2 data. For each outlier,
we report the attribute values, OL measure, and interpretation. In interpretation,
we have divided the outliers into three types: ”Surprising fail” means that the
student has achieved a lot of task points but still failed the course; ”Surprising
success” means that the student has achieved only a little of task points, but still
succeeded; ”Not a clear outlier” means that the point has no clear interpretation.
Data point OL Interpretation
A = 11.6, B = 9.0, C = 3.0, TP1 = 3.0 6.80 Surprising fail.
A = 12.0, B = 4.5, C = 0.0, TP1 = 29.5 4.44 Surprising success.
A = 9.4, B = 7.0, C = 3.0, TP1 = 31.0 3.90 Not a clear outlier.
A = 10.5, B = 8.8, C = 1.4, TP1 = 3.0 4.19 Surprising fail.
A = 12.0, B = 0.0, C = 0.0, TP1 = 28.0 6.52 Surprising success.
A = 9.5, B = 10.3, C = 0.0, TP1 = 2.0 3.92 Not a clear outlier.
A = 11.8, B = 11.3, C = 0.0, TP1 = 2.5 6.44 Surprising fail.
TP1 = 29.5, D = 9.0, E = 17.8, F = 7.0, TP2 = 4.0 10.65 Surprising fail.
TP1 = 32.0, D = 4.5, E = 5.5, F = 4.0, TP2 = 1.5 3.11 Surprising fail.
TP1 = 28.5, D = 12.0, E = 8.0, F = 0.0, TP2 = 2.0 3.87 Surprising fail.
TP1 = 25.8, D = 5.0, E = 7.5, F = 1.0, TP2 = 25.3 3.05 Not a clear outlier.

either fail or drop out. Unfortunately, most of the discovered outliers fall into this
category. They cannot be predicted by the multiple linear regression model, and
quite likely the other modelling techniques do not perform any better. Some of the
dicovered outliers are so pathological cases (a lot of points in all task categories, but
failed course) that they cannot be explained by the existing attributes.

5.4 Discovering pair-wise statistical dependencies

The previous dependency detection techniques apply only for numeric data. Now we
introduce techniques for discovering dependencies in categorial data. The techniques
themselves can be generalized to numeric data, but the analysis is much simpler,
if we first transform the numeric data to categorial. In the same time the data
becomes denser and we can find patterns which would not appear in the sparser
data.

In the following we will first introduce two alternative techniques, χ2-independence
test and mutual information, for discovering statistical dependences between two
attributes. Then we introduce two general techniques which model statistical de-
pendencies between target variable Y and a set of variables X1, ..., Xk. The first
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Table 5.5: A 2 × 2 contingency table containing frequencies of X and Y attribute
values in a data set of size n.

Y = 1 Y = 0 Σ
X = 1 m(X = 1, Y = 1) m(X = 1, Y = 0) m(X = 1)
X = 0 m(X = 0, Y = 1) m(X = 0, Y = 0) m(X = 0)
Σ m(Y = 1) m(Y = 0) n

technique, association rules, detects only partial dependencies, i.e. dependencies
between some attribute values, while the second technique, Bayesian networks, de-
scribes the whole dependency structure among attributes.

5.4.1 χ2-independence test and mutual information

In statistics, the significant dependencies between attributes are detected by χ2-
independence test (see e.g. [MA03][627-633]). For binary-valued attributes the test
is the following:

Definition 18 (χ2-independence test) Let R be a set of attributes, r a relation
according to R, and X ∈ R and Y ∈ R two binary-valued attributes in R. Let
m(X = i, Y = j) (i = 0, 1, j = 0, 1) be the observed frequencies in relation r. X
and Y are statistically independent with probability 1− p, if

χ2 =
1∑

i=0

1∑
j=0

(m(X = i, Y = j)−m(X = i)m(Y = j))2

m(X = i)m(Y = j)
< χp

2(1), (5.1)

where χ2
p(1) is the critical χ2 value at level p and 1 degree of freedom.

The idea of χ2-independence test is to compare the observed frequencies of X = i,
Y = j, i, j = 0, 1 (Table 5.5) to the expected frequencies under independence
assumption. The test measure follows χ2-distribution, and the critical values for
the selected significance level can be checked from statistic tables. For example, at
level p = 0.01 χ2

0.01(1) = 6.63. If condition 5.1 does not hold, then X and Y are
considered dependent at significance level p.

The test can be easily generalized for non-binary attributes. The only difference
is the number degrees of freedom, which is (r − 1)(c − 1), if |dom(X)| = r and
|dom(Y )| = c. If the frequencies are very small, the test cannot be used and we
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should use Fisher’s exact test [Bra68], instead. As a rule of thumb, it is suggested
(e.g. [MA03]) that all of the expected frequencies should be at least 5, before the
χ2-independence test can be used. When we test just two binary attributes, this
condition usually holds for educational data sets, but the validity of the general
independence test should always be checked.

Mutual information (see e.g. [DHS00][632]) is an information-theoretic measure for
detecting dependencies. It measures how much information two variables X and Y
share. If X and Y are independent, then X contains no information about Y and
vice versa, and thus their mutual information is zero. In the other extreme, when
X and Y are identical, all the information is shared. Otherwise mutual information
measures the distance between the joint distribution and the product of the marginal
distributions of X and Y .

Definition 19 (Mutual information) Let R be a set of attributes and X ∈ R
and Y ∈ R be two categorial attributes in R. The mutual information of X and Y
is

I(X, Y ) = ΣxΣyP (X = x, Y = y) log
P (X = x, Y = y)

P (X = x)P (Y = y)
. (5.2)

Equation 5.2 can be expressed equivalently as

I(X, Y ) = H(X) + H(Y )−H(X,Y ),

where H(Z) is the entropy in Z:

H(Z) = −
∑

zi∈Dom(Z)

P (Z = zi) log P (Z = zi).

The entropy measures uncertainty of Z and is usually counted in bits (2-based
logarithm). If X and Y share all their information, the mutual information is the
same as X’s (or Y ’s) entropy: I(X,Y ) = H(X).

5.4.2 Pair-wise statistical dependencies in the ViSCoS data

In this analysis we computed the χ2-independence measures and the mutual infor-
mation measures for all attribute pairs in the Prog.1 and Prog.2 data. The results
are presented in Tables 5.6 and 5.7. In the χ2-independence test we used critical
value χ2

0.01(1) = 6.63. In mutual independence test no critical values are available,
but I values tell only the relative strength of dependencies. We used threshold
I ≥ 0.100 for strong mutual dependencies.
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In both data sets, (Prog.1 and Prog.2), we can find several significant dependencies.
In Prog.1 data, only A and C (basic programming structures and applets) can be
considered statistically independent. They are also the most independent accord-
ing to the mutual information measure. All the other attribute pairs have strong
dependencies. Especially, B and FR1 are strongly dependent according to both
measures, which was already observed in the correlation analysis.

Table 5.6: The dependencies in Prog. 1 data measured by χ2 independence test
and mutual information I. The strongest dependences (χ2 ≥ 6.63, I ≥ 0.100) are
emphasized.

Attr. χ2 I
(A,B) 20.28 0.106
(A,C) 1.18 0.005
(A,FR1) 19.10 0.085
(B,C) 16.21 0.106
(B,FR1) 47.08 0.278
(C,FR1) 18.23 0.136

In Table 5.7 we observe interesting relations between Prog.1 and Prog.2 variables.
A is statistically independent from all Prog.2 variables and B has only a light de-
pendency with E. On the other hand, C is statistically dependent with all Prog.2
variables. This indicates the importance of managing applets in Prog.2 course which
was confirmed by the course teachers. The total points in Prog.1, TP1, have strong
dependencies with all but F variable in the Prog.2 data. This suggests that Prog.1
skills do not help in the last tasks of Prog.2. The tasks in the F category concerned
mostly error handling, but also various extra topics.

All Prog.2 variables are statistically dependent on each other. The strongest de-
pendencies are between D and FR2, E and FR2, and E and F according to both
measures. The last dependency between E and F (graphical applications and er-
ror handling) remained unexplained. However, it is so strong that it should be
taken into account in the models, which assume independence between explanatory
variables.
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Table 5.7: The dependencies in Prog. 2 data measured by χ2-independence test
and mutual information I. The strongest dependences (χ2 ≥ 6.63, I ≥ 0.100) are
emphasized.

Attr. χ2 I
(A,D) 0.45 0.004
(A,E) 2.25 0.027
(A,F) 0.80 0.011
(A,FR2) 0.70 0.006
(B,D) 0.96 0.008
(B,E) 8.32 0.082
(B,F) 4.28 0.058
(B,FR2) 3.02 0.025
(C,D) 19.99 0.171
(C,E) 10.60 0.088
(C,F) 8.46 0.070
(C,FR2) 12.10 0.103
(TP1,D) 10.26 0.090
(TP1,E) 9.72 0.089
(TP1,F) 4.56 0.047
(TP1,FR2) 27.23 0.243
(D,E) 16.31 0.138
(D,F) 8.19 0.070
(D,FR2) 23.02 0.200
(E,F) 20.38 0.178
(E,FR2) 32.01 0.296
(F,FR2) 13.06 0.130

5.5 Discovering partial dependencies by associa-

tion rules

The previous techniques modelled statistical dependencies between two attributes.
Now we will introduce association rules for searching dependencies between a tar-
get attribute and a set of attributes. The discovered dependencies are only partial,
which means that they concern only certain attribute values. This kind of depen-
dencies cannot be discovered by global modelling techniques, which require that
the dependency holds for all attribute values. For example, we can find association
rules which hold only for the failed students or male students.
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5.5.1 Association rules

Association rules (see e.g. [MT02]) are a special case of probabilistic rules of form
”90% of students who take Data Mining course take also Educational Technology
course”. If only five students of 500 had taken the Data Mining course, the previous
rule would not have much weight. But if 400 students had performed Data Mining
course, it would be remarkable that 360 of them had also studied Educational tech-
nology. These two aspects, the commonness and the strength of the rule are defined
by frequency and confidence.

Definition 20 (Association rule) Let R be a set of categorial attributes and r a
relation according to R. Let X = {X1, ..., Xk} ⊆ R and Y ∈ R, Y /∈ X, be attributes
defined in R. Let us denote the value combination (X1 = x1), ..., (Xk = xk), xi ∈
Dom(Xi), by X = x. Then the confidence, cf , of rule (X = x) ⇒ (Y = y) is

cf(X = x ⇒ Y = y) =
P (X = x, Y = y)

P (X = x)
= P (Y = y|X = x)

and the frequency, fr, of the rule is

fr(X = x ⇒ Y = y) = P (X = x, Y = y).

Given the user-defined thresholds mincf ,minfr ∈ [0, 1], rule (X = x) ⇒ (Y = y) is
an association rule in r, if

(i) cf(X = x ⇒ Y = y) ≥ mincf , and

(ii) fr(X = x ⇒ Y = y) ≥ minfr.

The first condition requires that an association rule should be confident (strong
enough) and the second condition requires that it should be frequent (common
enough).

The simplest way to discover all association rules is to determine all frequent value
combinations (X1 = xi), .., (Xk = xk), and then test for all Xi ∈ X, whether
(X1 = x1), ..., (Xi−1 = xi−1), (Xi+1 = xi+1), ..., (Xk = xk) ⇒ (Xi = xi) is confident.
The search space can be pruned by observing that the frequency is monotonic
property, i.e. if X = x is frequent, then also all its subsets are frequent [Toi96][15-
16]. However, finding all association rules is still a time-consuming process. If all
attributes Xi ∈ R, i = 1, ..., k, have v values, then there can be (1+v)k frequent value
combinations, and from each value combination we can construct k different rules.
So, for example, if k = 8 and v = 3, we can find in the worst case 65536 frequent
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value combinations and we have to check 524288 rules! This is still computable, but
when the number of attributes and the domain sizes increase, the problem becomes
intractable. That is why most applications concentrate on finding rules without
negations in binary-valued data. In the educational domain the negations are also
important. For example, in the ViSCoS project we are interested in dependencies
which describe failed or dropped students. Fortunately, the data sets are typically
small, which means that in practice we also have to select attributes and reduce the
attribute domains.

An important question in association rules is how to define interesting rules. Inter-
estingness is a very subjective property, and there is no consensus how to define it.
Intuitively, an interesting or important rule should have a high frequency and high
confidence, but it is difficult to decide how they should be weighed.

Some researchers in educational technology ([SAGCBR+04, VC03]) report only the
rule confidence. The problem in this approach is that rule X ⇒ Y has always
high confidence, if Y has high frequency. In an extreme case, when X and Y
are statistically independent, cf(X ⇒ Y ) = fr(Y ). For example, if 450 from
500 students have taken Educational technology course and 5 of the remaining 50
students have taken Signal processing course, then the confidence of rule ”Students
who study Signal processing, study also Educational technology” is 0.90, even if there
is no dependence. That is why we cannot ignore the frequency.

Table 5.8: Measures for ranking association rules, given their frequency and confi-
dence. For simplicity, all measures have been defined for binary-valued attributes.
Abbreviation X = x corresponds to value assignment (X1 = x1), ..., (Xk = xk).

Measure Definition

I-measure I = fr(X ⇒ Y ) log cf(X⇒Y )
fr(X)fr(Y )

J-measure J = fr(X ⇒ Y ) log cf(X⇒Y )
fr(X)fr(Y )

+ fr(X ⇒ ¬Y ) log cf(X⇒¬Y )
fr(X)fr(¬Y )

χ2-measure χ2 =
∑

∀x∈Dom(X)

∑1
y=0 χ2(X = x, Y = y)

Partial χ2 χ2(X = x, Y = y) = (m(X=x,Y =y)−nfr(X1=x1)...fr(Xk=xk)P (Y =y))2

nfr(X1=x1)...fr(Xk=xk)P (Y =y)

In Table 5.8 we list four measures which take into account both frequency and
confidence. For simplicity, we have defined all measures for binary-valued data, but
they can be generalized for any categorial data. I-measure computes simply the
mutual information of rule X ⇒ Y . J-measure ([SG92]) is the sum of the mutual
information of rules X ⇒ Y and X ⇒ ¬Y . J-measure was originally designed
for classification purposes, but is sometimes used for ranking association rules (e.g.
[MT02]). It measures frequency and confidence both in X ⇒ Y and its negation,
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X ⇒ ¬Y . For classification purposes this is adequate, but if the goal is to find
all interesting partial dependencies, we can miss some interesting rules, if their
negations are rare or unconfident.

The third measure is a generalization of the χ2-measure for attribute sets. The
χ2-measure of a rule can be compared to the critical value at the desired level of
significance. An alternative suggested in [BMS97] is to rank the rules according to
their χ2 values. The restriction of the χ2-measure is that the expected frequencies
of attribute combinations should be large enough. As a general rule of thumb, it
is recommended (e.g. [MA03]) that each expected frequency should be > 1 and at
least 80% of expected values should be > 5. This condition is often broken, when
the antecedent of a rule, X, contains more than one attribute. In addition, the
χ2-test measures the statistical dependency between attributes Xi ∈ X and Y , and
interesting association rules can be missed, if the dependency holds only between
some attribute values.

As a solution, we propose partial χ2-measure, which calculates the χ2 value only
for the values which occur in the rule. Now the expected frequencies are always
high, because the association rules have already been selected according to their
frequency. The partial χ2 values cannot be compared to the critical χ2 values as
such, because the contribution of other value combinations is missing. Instead, the

partial χ2 value can be compared to
χ2

p

2k , where |X| = k and p is the desired level of
significance. This value is the average χ2 value of each attribute combination in a
significant rule.

5.5.2 Association rules in the ViSCoS data

For the discovery of association rules we used the binary-valued versions of the ViS-
CoS data. In Table 5.10 we have listed all frequent rules for predicting the final
results of Prog.1 and Prog.2 courses. The minimum frequency thresholds were de-
fined according to partial χ2 measure to catch only those rules which are statistically
significant at level 0.01 (i.e. there is 1% probability that the association rule could
have occured by chance). The corresponding minfr values are given in Table 5.9.
For the minimum confidence threshold we used value mincf = 0.7.

The most interesting rule is TP1 = lot ⇒ FR2 = 1, which means that we can
predict the Prog.2 final results quite well, when we only know the Prog.1 total
points. The contrary rule TP1 = little ⇒ FR2 = 0 is even stronger, with confidence
cf = 0.91, which means that nearly all students who have got only a little of points
in Prog.1, have failed in Prog.2. However, this rule is very rare (only fr = 0.227),
and it cannot be considered as statistically significant in the χ2 sense. The same
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Table 5.9: minfr values for association rules in the Prog.1 (n = 125) and Prog.2
(n = 88) data sets. The thresholds are calculated according to χ2 values at 0.01
significance level. k = |X, Y | tells the number of attributes in rule X ⇒ Y .

k n = 125 n = 88
2 0.35 0.37
3 0.20 0.22
4 0.12 0.13
5 0.07 0.08
6 0.04 0.05

problem concerns rule C = lot ⇒ FR2 = 1 (fr = 0.330, cf = 0.784). Rule
B = lot ⇒ FR2 = 1 (fr = 0.511, cf = 0.608) is relatively frequent, but the
confidence is relatively low.

Most of the rules concern students who have passed the course. The reason is that
the number of failed students was much smaller, and the rules concerning them
are not frequent. In the Prog.1 data we did not find any rules concerning failed
students. In Prog.2 we found four rules. Attribute F occurs in all of them, which
indicates that F attribute is important for predicting the final results in Prog.2.

The association rules can already be used for prediction. E.g. we can predict that
students who have done a lot of A and B tasks will pass the Prog.1 course with 92%
probability. However, the frequent rules cover only some subsets of students, and
for general prediction purposes we would need a global model.

5.6 Bayesian models

Association rules describe only a partial probabilistic model and thus they do not
suit for general prediction purposes. Bayesian networks describe the joint prob-
ability distribution of all variables. Thus, we can predict the probability of any
attribute we are interested in. In additon, they describe a dependency structure of
all variables in one model.

In the following we will describe the main idea of Bayesian networks and construct
a couple of example models from the ViSCoS data. We will return to Bayesian
networks in Chapter 7, when they are used for classification.
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Table 5.10: The strongest frequent rules, and their frequencies and confidences
for predicting final results for Prog.1 and Prog.2. The first five rules have been
calculated from the Prog.1 data and the rest from Prog.2 data. The minfr values
were selected according to partial χ2-test to guarantee significance at level 0.01, and
mincf was 0.7.

Rule fr cf
A = lot, B = lot, C = lot ⇒ FR1 = 1 0.270 1.000
A = lot, B = lot ⇒ FR1 = 1 0.582 0.922
A = lot ⇒ FR1 = 1 0.697 0.773
B = lot ⇒ FR1 = 1 0.598 0.924
A = lot ⇒ B = lot 0.631 0.713
TP1 = lot,D = lot, E = lot, F = lot ⇒ FR2 = 1 0.121 0.846
TP1 = little, E = little, F = little ⇒ FR2 = 0 0.198 0.947
TP1 = lot,D = lot, E = lot ⇒ FR2 = 1 0.275 0.926
TP1 = lot,D = lot ⇒ FR2 = 1 0.363 0.846
TP1 = lot, E = lot ⇒ FR2 = 1 0.363 0.943
A = lot, B = lot, F = lot ⇒ FR2 = 1 0.473 0.956
B = lot, F = lot ⇒ FR2 = 1 0.473 0.956
C = littleD = little ⇒ E = little 0.407 0.974
D = little, E = little, F = little ⇒ FR2 = 0 0.308 0.824
D = little, F = little ⇒ FR2 = 0 0.363 0.744
E = little, F = little ⇒ FR2 = 0 0.404 0.720
TP1 = lot ⇒ FR2 = 1 0.539 0.727
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5.6.1 Bayesian network model

In Bayesian networks (see e.g. [Pea88] the statistical dependencies are represented
visually as a graph structure. The idea is that we take into account all information
about conditional independences and represent a minimal dependency structure of
variables. Formally we define:

Definition 21 (Bayesian network model) A Bayesian network model is a pair
(G, θ), in which G is the structure of the network and θ is a set of parameters
associated with it. G is a directed acyclic graph, in which the vertices correspond
to variables in the problem field and the edges represent the dependencies between
variables. If we denote parents of X by F (X) and children of X by D(X), then for
every variable X in the network holds

i) P (X|Y, F (X)) = P (X|F (X)) for all Y /∈ D(X), and

ii) P (X|F ′(X)) 6= P (X|F (X)) for all F ′(X) ⊆ F (X).

The set of parameters θ consists of conditional distributions of form P (X|F (X)),
where F (X) = ∅ for all root nodes X.

The first condition states that every variable is independent from all variables which
are not its children, given its parents. The second condition states that the set of
parents is minimal.

The Bayesian network structure can be defined by an expert, but if the model is
used for descriptive purposes, we should learn it from data. If the goal is prediction,
we can utilize the expert knowledge by restricting the search space (model family).
If expert knowledge about existing dependencies and independencies is uncertain or
unavailable, we can collect more domain knowledge by descriptive modelling, like
association rules. For example, the dependency analysis of the ViSCoS data revealed
that TP1 has the strongest depenendency with FR2 from all Prog.1 attributes.
Thus, we can exclude the other Prog.1 variables from Prog.2 models.

The most common score function for Bayesian networks is minimum description
length (MDL), which in the same time maximizes the log likelihood of the model,
given data, and prefers simple model structures. Learning a globally optimal
Bayesian network structure is generally an NP-hard problem [Coo90], and in prac-
tice, the learning algorithms find only a local optimum.
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Often the same joint probability distribution can be represented by several alterna-
tive networks. If all arrows in a Bayesian network describe causal relationships, the
model is called a causal network. For a human interpreter, this kind of representa-
tion is more intuitive, but when the model becomes more complex, the non-causal
model may be simpler to construct. Especially, if we have k attributes B1, ..., Bk

such that A and Bi are dependent for each i and Bis are mutually independent,
it is much easier to estimate probabilities P (Bi|A) separately than the distribution
P (A|B1, ..., Bk). For example, if A and Bi are binary-valued, we have to estimate
only 2k conditional probabilities and k prior probabilities P (Bi), while the latter
model requires 2k conditional probabilities and one prior probability P (A). In ad-
dition, often the data does not contain all value combinations B1, ..., Bk and we
cannot estimate all probabilities from the data. In this case, the simpler and more
robust non-causal model is preferrable.

In the extreme, the whole model can be represented as a two-layer network with
one root node and a set of leaf nodes. This model is called naive Bayes model
(see e.g. [DP97]), because it makes Naive Bayes assumption that all leaf variables
B1, ..., Bk are conditionally independent, given the root variable A. In practice, this
assumption holds seldom, but the model still works well. Especially in classification
this kind of Naive Bayes classifiers are popular, and we will return to this topic in
Chapter 7.

5.6.2 Bayesian models for the ViSCoS data

Figure 5.1 represents two Bayesian networks, B1 and B2, for modelling Prog.1
and Prog.2 course data. The associated probabilities are given in Tables 5.11 and
5.12. Both models have been learnt from data by minimum message length (MML)
principle using CAMML software [WNO]. Before learning we have imposed some
restrictions on the graph structures, based on the temporal order of variables. In B1
it was required that node A precedes B and B precedes C. In B2 all Prog.1 variables
(B, C, TP1) had to precede all Prog.2 variables (D,E, F, FR2). In addition, the
temporal order of variables D, E and F was given.

In model B1 we observe that A,B and C are not directly dependent on each other,
but through node FR2. This is new information, which we could not obtain by
analyzing binary dependencies. Another observation is that the model is nearly
equivalent to naive Bayes model NB1 (Figure 5.2). The only difference is the
direction of relation A − FR1, which we can always change in Bayesian models.
Both models produce exactly the same predictions for all data points. They would
produce different predictions only, if we did not estimate the prior probabilities
P (A) and P (FR1) from the data but using domain knowledge. For example, if
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Figure 5.1: Bayesian networks B1 (left) and B2 (right) for modelling Prog.1 and
Prog.2 course data. The model structures have been learnt by MML principle, after
imposing some temporal order restrictions on variables.

Table 5.11: Probabilities for Bayesian network B1 modelling Prog.1 course data.
P (A) 0.87698
P (FR1|A) 0.77027
P (FR1|¬A) 0.28125
P (B|FR1) 0.81667
P (B|¬FR1) 0.17568
P (C|FR1) 0.04054
P (C|¬FR1) 0.41667

the teachers know that the current student group is better than in previous years
(but the course is otherwise the same), they can give higher prior probability for
P (FR1) in NB1 or P (A) in B1. However, in B1 the prior estimate has no influence
on predictions, after we know A. In NB1 model the domain knowledge is taken
into account in all predictions, because we update P (FR1) three times according to
evidence on A, B and C. This is clearly an advantage, when we have some domain
knowledge and want to use it in predictions.

B2 model reveals also interesting information. The learning algorithm has dropped
variable A as irrelevant. In addition, the model contains the same dependencies
between C and D, B and E, E and F and TP1 and FR2, which we have already
found by correlation analysis, but explains them better. When Prog.2 course be-
gins, we already know B, C and TP1, and the relation TP1 − C has no influence.
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Table 5.12: Probabilities for Bayesian network B2 modelling Prog.2 course data.
P (TP1) 0.74719
P (B) 0.83708
P (C|TP1) 0.54478
P (C|¬TP1) 0.06522
P (FR2|TP1) 0.72388
P (FR2|¬TP1) 0.10870
P (E|FR2, B) 0.75000
P (E|FR2,¬B) 0.08333
P (E|¬FR2, B) 0.08333
P (E|¬FR2,¬B) 0.15000
P (D|FR2, C) 0.85000
P (D|FR2,¬C) 0.47727
P (D|¬FR2, C) 0.38889
P (D|¬FR2,¬C) 0.14516
P (F |E) 0.43421
P (F |¬E) 0.04808

FR2

TP1

D E F

FR1

A B C

Figure 5.2: Naive Bayes models NB1 and NB2 for modelling Prog.1 and Prog.2
course data. In NB2 we have used TP1 as a background variable, which determines
the prior probability of FR2.

However, B and C are taken into account, when we update FR2 in the light of
D and E. Compared to naive Bayes model NB2 (Figure 5.2), the model contains
more information, but it has a more complex structure, which increases the risk of
overfitting and poor generalization.
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5.7 Comparison and discussion

In the previous we have described several techniques for modelling dependencies
between attributes. The main techniques for numeric attributes are (multiple) cor-
relation analysis and linear regression, and for categorial attributes association rules
and Bayesian networks. Correlation analysis and association rules are descriptive
techniques and linear regression and Bayesian networks are primarly predictive tech-
niques.

Now we will give a deeper analysis of the relations between these four paradigms
and give some guidelines for selecting the most appropriate modelling technique for
a given problem in the educational domain. The final selection depends on two
things: the purpose of modelling (what kinds of relationships we want to model)
and the properties of data.

5.7.1 Modelled relations

In the basic form all four techniques model binary relationships between two vari-
ables. Multiple linear regression, association rules and Bayesian networks define
also relationships between one variable Y and a set of other variables X1, ..., Xk.
The Pearson correlation coefficient is defined only for two variables, but we can cal-
culate the multiple correlation coefficient between one variable and a set of variables
indirectly, from a multiple linear regression model.

Correlation differs from the others also in another aspect: it describes a symmetric
relation between two variables, while all the others describe non-symmetric relations.
However, we can often conclude the opposite model Y → X from X → Y . In
simple linear regression we can define the inverse function x = f−1(y) = y−α

β
from

y = f(x) = α+βx, if coefficient β 6= 0. In Bayesian networks, we can always change
the direction of an arrow, calculate new probabilities, and the model remains the
same. However, we cannot change conjunctive rule X1, ..., Xk → Y to a set of binary
rules Y → Xi, unless Xis are conditionally independent given Y . In association
rules the direction is critical. Both X ⇒ Y and Y ⇒ X have the same frequency
P (X,Y ), but the confidences depend on different factors, in the first rule on P (X),
and in the second on P (Y ). It is still quite possible that both rules are confident.
Sometimes we can find confident rules which seem to be contradictory. For example,
let us consider the following rules:

”If the student’s major is computer science, then s/he has not passed course x.”
”If the student has passed course x, then her/his major is computer science.”
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In fact, these rules just tell that very few students have passed course x, but most
of them are computer science students. There is no reason why both P (¬X|Y ) and
P (Y |X) could not be high simultaneously.

We have already observed that association rules and probabilistic models have higher
representational power than correlation and linear regression. Correlation and lin-
ear regression can describe only linear dependencies, while conditional probabilities
reveal general dependencies. This means that we can find rule X ⇒ Y with 1.0
confidence, even if correlation corr(X,Y ) = 0. Thus, correlation analysis can re-
veal only dependencies but not independences. Only when the joint distribution
P (X,Y ) is normally distributed, the zero correlation imposes independence.

The general regression models can in principle model any kinds of dependencies.
The problem is to find the form of the function needed. If we knew the joint density
function f(x, y), then we could derive the regression function y = f(x) [MA03][176].
In practice, these density functions are seldom known, and we have to approximate
the regression function from the data. On the other hand, we could also derive
the probability function from a regression model. Logistic regression (e.g. [HL89])
defines the probabilities P (Y = y), when Xis are known. When Y is a binary-valued
variable, the function is

P (Y = 1) =
1

1 + eb0+b1x1+b2x2+...+bnxn
.

This is in fact a non-linear transformation of the multiple linear regression model:

log
P (Y = 1)

P (Y = 0)
= b0 + b1x1 + ..bnxn.

This model is sometimes used in computerized adaptive testing (e.g. [DP05]).

5.7.2 Properties of data

An important aspect for selecting the modelling paradigm is the type of the data we
have. Pearson correlation and linear regression have been defined only for numeric
(either discrete or continuous) data. Other correlation measures like Spearman’s ρ or
Kendall’s τ can be used for ordinal categorial data. On the other hand, association
rules are defined only for categorial data. If the original data is numeric, we have
to discretize it to appropriate value intervals (see e.g. [RS01, SA96]). The Bayesian
models are originally defined for any discrete data, but they can be generalized for
continuous data (see e.g. [Neo04][ch 4]). However, learning a model with density
functions is a much more difficult task.



5.7. COMPARISON AND DISCUSSION 97

There are also other properties of data which we should consider. In the educational
data it is typical that all variables are dependent on each other, the data contains
several outliers, and there are gaps in the data. Let us first consider the problem of
mutually dependent Xi variables. In correlation analysis this is not any problem,
because all binary relationships are studied separately. However, in linear regression
collinearity – linear dependencies between Xis – can be a serious problem. It ruins
the descriptive power of the model and can affect also the predictions. In the general
Bayesian models all statistical dependencies are implicitely described in the model,
and the only disadvantage of several dependencies is that the model becomes more
complex. This means that we need more data to define all parameters accurately
and the reasoning becomes more complex. A more serious problem arises in naive
Bayes model, where we expect that all variables Xi are conditionally independent,
given Y . The more Xis are dependent, the more erroneous results the model yields.
For association rules these dependencies constitute no problem.

Outliers are especially problematic, when we measure distances between numeric
data points. Outliers can corrupt the correlations and produce either too weak or too
strong correlation coefficients. Linear regression is especially sensitive to outliers and
relatively small number of outliers can ruin the whole model. The resulting model
is inaccurate both for descriptive and predictive purposes. Bayesian models and
association rules are more immune to outliers. This is partly due to use of categorial
data, but the more important reason is the way of measuring dependencies. An
outlier, t = [x1, ..., xk, y], affects only one parameter, P (Y = y|X = xi, ..., Xk = xk),
and not the whole model. In addition, the influence is relatively small – proportional
to the number of other data points having the same values X1 = x1, ..., Xk = xk.
Very often, none of the ”normal” points share the same values, and the outlier has
no effect on predicting other, ”normally behaving” data points. The most serious
case is when we should determine a parameter from a few normal values and an
outlier. In association rules these rare patterns would not be represented at all, and
outliers have no influence on results. On the other hand, searching exceptionally
rare rules can reveal outliers.

Gaps in data are not necessarily any problem, if the data is representative and we can
expect that none of the future points will fall into gaps. However, in the educational
domain we cannot be so optimistic. More often, the gaps are a sign of unknown
areas, where we cannot make any conclusions. In addition, when gaps are occupied,
they tend to be occupied by outliers, and the problem becomes only worse. In
correlation analysis and linear regression the problem is that we cannot even expect
the relationship to be linear in those areas. In linear regression we can interpolate
across gaps, but it is risky and the validation measures become unreliable. In
Bayesian models we cannot interpolate probabilities for missing attribute values.
The common approach is to assign equal distribution for unknown values, but it
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can be seriously misleading.

5.7.3 Selecting the most appropriate method

We have summarized the properties of the four methods in Table 5.13. In addition to
modelling purpose and data properties we have considered the efficiency of model
construction. Correlation analysis and linear regression are very fast techniques,
while the other two are much slower. Searching all possible association rules in a
large data set can be intractable, but fortunately the educational data sets are quite
small. Learning the Bayesian network structure is an NP-hard problem, but usually
we can restrict the search space by domain knowledge, and the parameters can be
estimated fast.

Table 5.13: Comparison of correlation analysis, linear regression, association rules
and Bayesian networks.

Corr. Lin.reg. Ass. Bayes
Purpose descr. pred. descr. pred.
Type of dependency linear linear statistical statistical
Data type numeric numeric categorial any
Dependencies between no effect serious no effect harmful in
explanatory variables naive Bayes
Influence of outliers sensitive very sensitive no influence quite robust
Model construction fast fast slow parameters fast,

structure slow



Chapter 6

Clustering

In this and the next chapter we will consider two ways to group data, namely
clustering and classification. The idea in both is similar, and sometimes clustering
is called as unsupervised classification, i.e. classification when the class variable is not
known. Clustering is a representative of descriptive modelling, in which we try to
find groupings which occur naturally in the data. On the other hand, classification
is predictive modelling, in which we give a pre-defined grouping and try to predict
the group of a new data point.

While clustering has importance for its own sake, it can also guide the classifier
construction. For example, in the ViSCoS project we would like to discover whether
students or exercise tasks constitute any groups. However, the ultimate goal is to
learn a classifier which would predict the course outcomes based on other attributes.
Thus, a natural goal is to search a clustering of students to two clusters based on
exercise data and check whether the clusters correlate with the course outcomes.
If we cluster the data in different attribute spaces, the best clustering reveals the
most relevant feature combinations for the prediction task. Thus, clustering can be
used for feature extraction and selection.

In the educational domain the data imposes several restrictions and criteria for a
good clustering method. Educational data is often skewed and contains several
outliers. Thus, we cannot suppose any specific cluster form or distribution. The
outliers should not blur the real clusters, but instead it is desirable that the method
could reveal the outliers as a side-product. Deciding the number of clusters is also
difficult, because we do not know beforehand how many clusters should be reserved
for the outliers. Clear, well-separated clusters are always ideal, but in practice we
expect that the student groups will be overlapping. In this case, we would also
like to measure the relative strength of cluster membership, Member(p, c), for data

99
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point p and cluster c.

In the following, we will first define the clustering problem and the related distance
or similarity measures. Then we introduce the main approaches for clustering.
All methods are illustrated by clusters discovered in 2-dimensional ViSCoS data.
We analyze the suitability of the existing clustering methods for the educational
domain and give guidelines how to cluster educational data. Finally, we report our
experiment on clustering the whole ViSCoS data.

6.1 Clustering problem

The main problem of clustering is how to define a cluster. The intuition is that we
would like to get dense, well-separated groups, in which the data points are similar
to each other and different from the data points in the other groups. If the data is
metric, the goal is to find dense regions in the attribute space, which are separated
by sparser areas. However, ”similarity” or ”closeness” are very subjective measures
and the exact definition depends on the selected features and the modelling purpose.
For example, let us consider how we could group a cat, an owl, and a hen. If we
are interested in the biological relations, a natural grouping is to put the owl and
the hen into the class of birds and the cat into the class of mammals. On the other
hand, the cat and the hen are domestic animals, but we could also group the cat
and the owl together as predators.

In the following, we give a general definition of the clustering problem:

Definition 22 (Clustering problem) Let D = {p1, ..., pn} be a set of data and
C = {c1, ..., ck} a set of clusters. Let sim : S×S → R+∪{0} be a similarity measure
such that sim(p1, p2) measures the similarity between p1 and p2 for all p1, p2 ∈ S.
Let member : S × C → [0, 1] be a function such that member(p, c) measures the
strength of membership of point p in cluster c.

The clustering problem is to define the set of clusters, C = {c1, ..., ck}, such that

i) for all p ∈ D there is a cluster c ∈ C such that member(p, c) is maximal across C,

and for all ci ∈ C holds

ii) sim(p1, p2) is high for all p1 ∈ ci and p2 ∈ ci, and
iii) sim(p1, p2) is low for all p1 ∈ ci and p2 /∈ ci.

If member(p, c) = 1 for exactly one c ∈ C and member(p, c′) = 0 for all c′ 6= c, the
clustering is called strict or partitive. Otherwise, it is called soft or non-partitive.
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Condition i) defines for each data point the best cluster or clusters, condition ii)
measures the inter-cluster similarity and condition iii) the intra-cluster dissimilarity.

The most important decision is how to define a cluster and select suitable measure
sim for similarity. When the measure has been selected, we just have to maximize
the inter-cluster similarity and/or maximize the intra-cluster dissimilarity in the
data. Unfortunately, the optimal solution is NP-hard [GJ79] and intractable even
for small sets of educational data1. Thus, in practice, we have to be satisfied with an
approximate solution. Several heuristic clustering algorithms have been developed
to encounter this problem. The algorithms themselves contain certain inductive bias
as discussed in Chapter 3, but the main source of bias is the optimized metric [EC02].
Both biasses should be taken into account when selecting the most appropriate
clustering method for the educational data.

The first problem is to decide what kind of clusters we prefer. Often, we have to
select between compact and well-separated clusters. If the goal is to find compact
and homogeneous clusters, then the choice is to maximize intra-cluster similarity.
On the other hand, if want to find well-separated clusters, then the goal is to
minimize inter-cluster similarity. In practice, the most often used score function is
squared sum of errors, SSE, which minimizes the sum of squared distances from the
cluster centroids. As a result, it produces both homogeneous and well separated
clusters. However, homogeneous clusters are not necessarily compact, and if we
preferred compactness, we should minimize the sum of all pairwise distances between
the data points in a cluster.

In addition, the representation of clusters affects on what kinds of clusters we can
find. Two common choices are to represent a cluster by its centroid (central point) or
by its boundary points. Centroid representation works well, when clusters are com-
pact or isotropic, but it cannot fully represent elongated or non-isotropic clusters.
On the other hand, boundary representation works well for non-isotropic clusters.

In the following, we will first describe different measures for similarity and analyze
the underlying inductive biasses. After that we will introduce the main clustering
methods, which can be divided into three categories2:

1. Hierarchical methods construct a hierarchy of (typically) nested clusters.

2. Partitioning methods try to find an optimal partitioning into a specified num-
ber of clusters.

1According to our experiments, computing the optimal solution with the branch-and-bound
method becomes unfeasible already when we have ≥ 30 rows of 2-dimensional data and the number
of clusters is ≥ 3.

2The taxonomy of clustering methods follows [HMS02]. Other taxonomies and comparisons of
clustering methods can be found e.g. in [JMF99] and [Ber02].
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3. Probabilistic model-based clustering tries to find the underlying probabilistic
model, which has produced the data.

The first two approaches are partitive and the resulting clusters are separate, while
probabilistic clustering is non-partitive and produces overlapping clusters3. In prob-
abilistic methods, the cluster membership is measured by the posterior probability
of a cluster given the data point: member(p, c) = P (c|p). Another difference is that
the first two approaches learn a global model, while probabilistic clustering can be
interpreted as a collection of local models – or equivalently, as one very complex
model. On the other hand, hierarchical clustering differs from the latter two, be-
cause it creates a hierarchy of clusters and we can select the appropriate number
of clusters afterwards. In the latter two approaches, the number of clusters, k, is
fixed, and we have extra difficulty to define optimal k. In addition, outliers will also
be clustered, but we do not know beforehand how many clusters we should reserve
for the outliers. In practice, the best solution is to try with several values of k and
select the best clustering.

6.2 Measures for distance and similarity

In clustering, we need some function sim to measure the similarity between two data
points. Selection of such measure is critical, because it defines what we consider
as a cluster. For numeric attribute spaces, the distance between data points is
a natural choice, but for categorial attributes we need other kinds of similarity
measures. When the similarity measure sim has been defined, the inter-cluster
similarity between clusters ci and cj, D(ci, cj), can be calculated from similarities
sim(p1, p2), where p1 ∈ ci and p2 ∈ cj.

We will first consider the distance measures d for numeric data. It is required that
the distance function should be a metric (e.g. [HMS02][32]):

Definition 23 (Metric) Let S be an attribute space. Distance function d : S →
R+ ∪ {0} is a metric, if the following conditions hold for all x, y, z ∈ S:

1. d(x, y) = 0 ⇔ x = y (reflexivity)

2. d(x, y) = d(y, x) (symmetry)

3Fuzzy clustering methods (see e.g. [JMF99]) are another example of non-partitive methods. In
fuzzy clustering, the member function gets fuzzy values.
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3. d(x, y) ≤ d(x, z) + d(z, y) (triangular inequality)

If we can find such a metric, the corresponding attribute space S is called a metric
space. With numeric data, the most common selection is Lp metric (Minkowski
distance):

Lp(x, y) = (
k∑

i=1

(xi − yi)
p)1/p,

where p ∈ R+, x = (x1, ..., xk) and y = (y1, ..., yk). When p = 2, this corresponds
to Euclidean distance, but also other values of p can be used. For example, in high
dimensions, Manhattan distance L1 produces better results [HAK00, AHK01]. In
fact, it has been observed (e.g. [AGGR98]) that the smaller p is, the more robust
and the less sensitive to outliers the method is. The reason is that with small p
the distance distribution becomes more homogeneous and clusters can be better
separated.

Generally, Lp metrics work well, if the clusters are compact and well-separated, but
they fail, if the attributes are in different scales. This is often the case with edu-
cational data, where attributes can measure very different things like age, exercise
points, or average studying time per week. As a solution, the data should be stan-
dardized to one norm or some attributes should be weighed. If the attributes are
strongly correlated, we should first remove correlations by PCA or use Mahalanobis
metric, which takes the dependencies into account [JMF99].

The main problem with categorial data is the lack of metrics. For ordinal data we
can define the order and equality relations, but for nominal data only the equality
relation holds. As a solution, several alternative similarity measures have been
proposed (see e.g. [HMS02][31-38], [Kan02][120-125]):

� In overlap metric the idea is to calculate the number of common attribute
values which two data points share: OM(x, y) = |{Ai | πAi

(x) = πAi
(y)}|,

when we have k attributes A1, ..., Ak. Overlap metric is actually not a metric
(triangular inequiality does not hold), but its complement k − OM(x, y) is a
metric.

� In mutual neighbourhood distance (MND) we consider the neighbourhood points
and rank them according to closeness:

MND(x, y) = NN(x, y) + NN(y, x),

in which NN(x, y) = i, if x is the ith nearest point to y.
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� String values are a special case of categorial data and several distance measures
have been developed for measuring distance or similarity between two strings.
Hamming distance is a special case of overlap metric, where we calculate the
number of character positions, where the strings differ. In minimum edit
distance we define the minimum number of edit operations (e.g. insertion,
deletion, substitution) needed to transform one string to another.

Similarity measures for categorial and mixed data have been described in [WM97,
CLKL04, IY94].

6.3 Hierarchical clustering

In hierarchical clustering (see e.g. [JD88][58-88]) we search a hierarchy of clusters,
called a dendrogram. Dendrogram is a binary tree structure, where each node t
contains a cluster, and the subtree of node t describes a clustering of t’s cluster into
subclusters.

Definition 24 (Dendrogram) Let S = {p1, ..., pn} be a data set. Let node t be a
record which contains three fields: content(t) is the data content of t, and rchild(t)
and lchild(t) refer to t’s left and right child nodes.

A dendrogam T is a set of nodes T = {t1, ..., tl} such that

1. for the root node t ∈ T , content(t) = S,

2. for all leaf nodes t1, ..., tn ∈ T , content(ti) = {pi}, and

3. for each non-leaf node t ∈ T having lchild(t) = t1 and rchild(t) = t2 holds
content(t) = content(t1) ∪ content(t2).

The dendrogram can be constructed until the desired number of clusters is left or
we can select the best clustering afterwards, after analyzing the dendrogram.

In agglomerative methods we begin from clusters of single data points and merge
subclusters until only one cluster is left. Divisive methods work in the opposite way
and divide superclusters, until all points are in their own clusters. The clusters to
be merged or split are defined by some score function D, which measures similarity
of clusters. The agglomerative methods are easier to implement and more popular.
The basic algorithm for agglomerative clustering is given in Alg. 1.
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Alg. 1 HierarchicalClustering(D,n)

Input: Data set D = {p1, ..., pn}, n = |D|
Output: Dendrogram T

1 begin
Initialization:

2 C = ∅, T = ∅
3 for all pi ∈ S
4 begin
5 C = C ∪ {{pi}}
6 Create ti such that content(ti) = {pi} and

lchild(ti) = rchild(ti) = Null
7 T = T ∪ {ti}
8 end
9 k = n
10 while (k > 1)
11 begin

Search step:
12 Select c1 ∈ C and c2 ∈ C such that D(c1, c2) is minimal

Merge step:
13 begin
14 Create a node t
15 lchild(t) = t1 and rchild(t) = t2 where

content(t1) = c1 and content(t2) = c2

16 c1 = c1 ∪ c2

17 C = C \ c2

18 content(t) = c1

19 T = T ∪ {t}
20 k = k − 1
21 end
22 end
23 output T
24 end

Hierarchical methods have several advantages: they are simple to implement, the
resulting dendrogram contains information about hierarchy of clusters, and we do
not have to know the number of clusters beforehand. In addition, several similarity
measures can be used, and the methods can be applied to categorial data, too.
However, it is not clear, which level of the dendrogram is the final clustering, and
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when we could stop the search. For large datasets the hierarchical methods are
not efficient (with complexity of at least O(n2 log n) [JMF99]) and storing the n×n
distance matrix takes space. In addition, they do not scale well for large-dimensional
data. The main disadvantage is the static nature of greedy combinations. In the
basic form the data points are not moved to other clusters, once they have been
assigned to one cluster4. In addition, most hierarchical methods are dependent on
data order and produce different clusterings with different data orders.

The results of hierarchical clustering depends strongly on the measure of similarity
used. This inter-cluster distance is often called a linkage metric. It is calculated
from distances between some or all points in two clusters. The choice of linkage
metric defines the shape, size and density of clusters we can find. Most metrics
produce hyperspherical (isotropic) clusters. In Table 6.1, we have listed the most
common inter-cluster measures and types of clusters they tend to produce.

Table 6.1: Common measures for inter-cluster distance D(ci, cj), given the distance
between points d(p1, p2). Cluster type describes what kinds of clusters the measure
tends to produce.

Metric D(c1, c2) Cluster type
Single-link minp1∈c1,p2∈c2{d(p1, p2)} elongated, straggly, also concentric

clusters
Complete-link maxp1∈c1,p2∈c2{d(p1, p2)} small, compact clusters; cannot

separate concentric clusters

Average-link
P

p1∈c1,p2∈c2
d(p1,p2)

|c1||c2| quite compact, dense clusters
Minimum variance SSE(c1 ∪ c2) compact, quite well-separated, isotropic

clusters; cannot find elongated clusters
or clusters of very different size

Distance of centroids d(centroid(c1), centroid(c2)) approximates SSE, if clusters are
of equal size

Single-link method is flexible in the sense that it can find non-isotropic clusters
(with unsymmetrical shapes) and the clusters can be concentric. On the other
hand, it has tendency to produce elongated and straggly clusters. This is called
the ”chaining effect”: the measure combines clusters through other external points
and the clusters become chain-like. As a result, it works best for well-separated,
non-spherical clusters. One advantage of the single-link metric compared to other
linkage metrics is that it is independent from data order and the resulting clustering
is always unique. Single-link metric is also quite efficient to compute.

4This restriction is solved in the more sophisticated implementations. For example, when
hierarchical clustering is implemented by neural networks, the points can be moved from a cluster
to another during clustering [KL05].
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Complete-link metric works usually better, but it is slower to calculate and does
not suit for large data sets. It produces small and compact clusters, but it cannot
separate concentric clusters. The main disadvantage of complete-link metric is the
dependency on the data order.

Example 8 Let as consider the following situation: X and Y are two numeric
variables, which spin the attribute space S, and p1 = (x, 2y), p2 = (x, 4y), p3 =
(x, 6y), p4 = (x, 9y) are the only data points in S. The goal is to cluster the data
points into two clusters by complete-link clustering. The distance between data points
is measured by squared Euclidean distance d(x, y) = (L2(x, y))2 and the distance
between clusters is D(c1, c2) = maxq1∈c1,q2∈c2{d(q1, q2)}.
Let d(p1, p2) = d(p2, p3) = 4y2 be the minimal distance between data points in S
and d(p3, p4) = 9y2 the second minimal distance. In the first step we can combine
either p1 and p2 or p2 and p3. If we combine first p1 and p2 into cluster c1, then
we should combine p3 and p4 next, because D(c1, {p3}) = d(p1, p3) = 16y2. The
resulting clusters are c1 = {p1, p2} and c2 = {p3, p4}. However, if we first combine
p2 and p3 to cluster c1, then we should combine p1 to c1 next, because D(c1, {p1}) =
d(p3, p1) = 16y2, while D(c1, {p4}) = d(p2, p4) = 25y2. Now the resulting clusters
are c1 = {p1, p2, p3} and c2 = {p4}.

Average-link metric produces clusters which are between single-link and complete-
link in their compactness. It produces dense clusters, letting larger clusters to be
sparser than the smaller ones. In practice, it has produced good results, but it is
inefficient for really large data sets. In addition, it also suffers for the dependency
on the data order.

Minimum variance metric is famous and it is used e.g. in the classical Ward’s method
[War63]. It minimizes the variance in the clusters through SSE score function. The
resulting clusters are always isotropic and quite compact, but it is not possible to
find elongated clusters. SSE score function is computationally efficient, because
we can calculate SSE(c1 ∪ c2) from SSE(c1) and SSE(c2), given the centroids and
sizes of c1 and c2. In practice, minimum variance metric works very well, although
it is also sensitive to the data order. In addition, SSE function is very sensitive to
outliers.

Distance of centroids is sometimes used to approximate the minimum variance met-
ric. The metric is really efficient to calculate, but results can be quite poor. In fact,
we have shown that distance of centroids works well (in minimum variance sense)
only, when the alternative clusters to be combined are of equal size. In addition,
we have observed that the metric is less sensitive to the data order than minimum
variance.
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In educational data, the clusters are not necessarily well-separated and they can
have various shapes. Still, we would like to find compact and well-separated (not
concentric) clusters if possible. Outliers are typical, and they should not distort
the clustering, but on the other hand, it would be very useful to detect them. The
computation time is not a limiting factor, unlike in most other domains. According
to these criteria, complete-link and average-link measures seem to be best candi-
dates, although they can produce different results with different data orders. As a
solution, we should identify all ambiguous selections and try all alternatives to find
the best clustering.
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Figure 6.1: Results of hierarchical clustering to three clusters with different linkage
metrics. The data consists of A and B exercise points in the ViSCoS data.

Figures 6.1 and 6.2 present the results of clustering A and B attributes in Prog.1
data to three and two clusters with four linkage metrics: distance of centroids,
single-link, complete link, and average-link metrics. The actual goal was to find
two clear clusters, but three clusters were tried to check, whether algorithms can
detect outliers. However, single-link metric was the only one which recognized the
most obvious outlier. point (4.29, 13.00). Otherwise the result was quite insensible.



6.3. HIERARCHICAL CLUSTERING 109

 0

 2

 4

 6

 8

 10

 12

 14

 0  2  4  6  8  10  12

B

A

Metric: distance of centroids

 0

 2

 4

 6

 8

 10

 12

 14

 0  2  4  6  8  10  12

B

A

Metric: single-link

 0

 2

 4

 6

 8

 10

 12

 14

 0  2  4  6  8  10  12

B

A

Metric: complete-link

 0

 2

 4

 6

 8

 10

 12

 14

 0  2  4  6  8  10  12

B

A

Metric: average-link

Figure 6.2: Results of hierarchical clustering to two clusters with different linkage
metrics. The data consists of A and B exercise points in the ViSCoS data.

Distance of centroids found two larger clusters and a small group of points which
had large A values but zero B value. In the figure, we can see just two points on
A-axes between 10 and 11, but actually there are five points. In the corresponding
dendrogram we observed that the most obvious outlier, (4.29, 13.00), was in its own
cluster, when the number of clusters was 9, but was then fused to neighbouring
cluster. Complete-link and average-link metrics were not able to detect any outliers
even when number of clusters was 10.

Clustering to two clusters produced better results. Once again, single-link metric
separated just the most obvious outlier from other points. This was expected,
because the clusters were not clear. However, all the other metrics produced more
or less similar results with one big cluster in the top-right. Especially, the results
by distance of centroids and average-link metric are very similar to each other.
Visually checking, both of them are quite reasonable. To test the predictive power of
these clusterings, we calculated the proprotion of students, who had actually passed
the course in both clusters (Table 6.2). The results were compared to 2-means



110 CHAPTER 6. CLUSTERING

clustering. According to this test, average-link metric performed best, because the
cluster of failed students was also homogenous. However, all clustering methods
produced surprisingly good results, which means that we can at least in principle
predict the course outcomes very well, when only A and B attributes are known.

Table 6.2: Comparison of three clustering methods according to the final results in
the course.

Method c1 c2

Centroids 88% failed 86% passed
Average-link 96% failed 85% passed
2-means 85% failed 86% passed

6.4 Partitioning methods

Partitioning methods (see e.g. [JD88][]89-133) produce directly the partitioning into
given k clusters. These methods are also called relocation methods, because they
proceed by assigning data points from a cluster to another, until the score function
converges. The clusters are represented by their centroids, which are typically either
mean or median values of data points in clusters. Concept ”medoid” is used, if
we select the median among data points. These kinds of methods are also called
representative-based clustering. The basic algorithm is given in Alg. 2.

The most common partitioning clustering method is k-means clustering. k-means
defines centroids as cluster means. Now the inductive principle is to minimize intra-
cluster variance or the sum of squared errors [EC02]

SSE =
k∑

j=1

∑
pi∈cj

d2(pi, centroid(cj)).

k-means works well, if the real clusters are hyperspherical, compact and well-
separated. The method is easy to implement and quite efficient even with large
data sets, because we have to update only the means. However, the method is
very sensitive to irrelevant attributes. Especially in high dimensions the irrelevant
attributes dominate the distance measure and the method produces erroneous clus-
ters. As a solution, irrelevant attributes should be deleted or have less weight in
the distance calculation.
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Alg. 2 PartitioningClustering(D, n, k)

Input: Data set D = {p1, ..., pn}, n = |D|, number of clusters k
Output: Centroids c1, ..., ck

1 begin
2 Select randomly k data points p1, ..., pk ∈ D
3 for i = 1 to k
4 ci = pi

5 while (not converged)
6 begin
7 for i = 1 to k
8 Ci = {ci}
9 for all pi ∈ D
10 begin
11 Search cj such that d(pi, cj) is minimal
12 Cj = Cj ∪ {pi}
13 end
14 Update centroids ci

15 end
16 end

Another restriction is the use of distance metric d. The commonly used Euclidean
distance L2 is sensitive to outliers and does not work well in high dimensions. In
such situations Lp-metrics with p < 2 are more recommendable [HAK00, AHK01].
However, all distance metrics require numeric data, and it is very difficult to apply
k-means for categorial or mixed data. The search method is also problematic,
because it is sensitive to the selection of the initialization parameters (the number
of clusters, initial centroids, and the convergence condition). It is very likely that
the method produces only a locally optimal clustering, unless we run it several
times with different initializations. With large data sets, k-means can converge
very slowly, depending on the termination criterion. Finally, k-means can produce
unbalanced clusters, including even empty ones.

k-medians clustering solves some of these restrictions. It is otherwise similar than
k-means, but now we define centroids as medians instead of means. The inductive
principle is to minimize the absolute error of clustering [EC02]. This method works
with all ordered data types and it is less sensitive to outliers. However, calculating
medians is quite unfeasible. As a solution, in k-medoid it is required that the median
point should be one of the data points. This can be implemented efficiently in O(n2)
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time [EC02].

Figure 6.3 represents the clustering results for A and B exercise points in Prog.1
data by k-means algorithm, when k = 3 and k = 2. The cluster centroids are
given in Tables 6.3 and 6.4. In 3-means clustering, the total SSE was 3102.7 and
in 2-means clustering 3357.3. The results of 3-means clustering are quite similar
to those of complete-link algorithm, and the method was not able to detect any
ouliers. However, 2-means clustering produced nearly the same clustering as dis-
tance of centroids, except of one point, (8.0, 4.0). This supports our assumption
that the distance of centroids approximates SSE quite well. Table 6.2 shows that
2-means performed slightly poorer than the centroid-method, when the clusters were
compared according to their predictive power.
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Figure 6.3: Results of 3-means and 2-means clustering. The data consists of A and
B exercise points in the ViSCoS data.

Table 6.3: The clustering of A and B exercise points in the ViSCoS data by 3-means
algorithm.

Cluster mean(A) mean(B)
c1 10.77800 2.716667
c2 10.60378 6.261111
c3 5.419500 1.562500

6.5 Probabilistic model-based clustering

Probabilistic model-based clustering (see e.g. [FR00, BR93, SS04, FR98]) is an exam-
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Table 6.4: The clustering of A and B exercise points the in ViSCoS data by 2-means
algorithm.

Cluster mean(A) mean(B)
c1 6.968966 1.603448
c2 10.64896e 6.135417

ple of eager learning. It does not only produce a probabilistic clustering, but learns
the model, which best describes the data. Now we can also predict clusters for new
data points and update the model. The underlying idea is that the data comes from
a mixture of probabilistic models (multivariate distributions). Each cluster has a
prior probability and its own probability distribution. The whole model is typically
represented as a multivariate finite mixture model:

Definition 25 (Multivariate mixture model) Let S be a numeric attribute space
and k the number of clusters. Let fj(p, θj) be the density function of the jth clus-
ter with parameters θj and πj be the prior probability of the jth cluster. Then the
multivariate mixture model is defined by function f : S → [0, 1] such that for all
p ∈ S

f(p) =
k∑

j=1

πjfj(p, θj).

Now fj(p, θj) defines the probability that data point p belongs to cluster cj, and
f(p) describes the posterior probability of data point p given the whole model. If
f(p) is very low, the point does not fit the model, and we can interprete it as an
outlier.

The density function fj describes the data distribution in cluster cj. In principle,
we can define a different type of density function for each cluster. This is useful,
when the data is very skewed. However, in practice, it is very difficult to define
the appropriate distributional form without any prior knowledge. That is why it is
usually assumed that the density in all clusters has the same distributional form,
and only the distribution parameters are different. A common choice is to assume
normal distribution.

Example 9 Let S be an attribute space spun by two numeric attributes X and Y .
Then the density function fj in cluster cj is defined by
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fj(x, y) =
1

2πσXσY

√
1− r2

e
−( 1

1−r2 ((
x−µX

σX
)2−2r(

x−µX
σX

)(
y−µY

σY
)+(

y−µY
σY

)2))
,

where µX = mean(X), µY = mean(Y ), σX = stdev(X) > 0, σY = stdev(Y ) > 0,
and r = corr(X,Y ).

If X and Y are uncorrelated (r = 0), the density function fj reduces to

fj(x, y) =
1

2πσXσY

e
−(

x−µX
σX

)2−(
y−µY

σY
)2
.

The whole clustering process consists of four steps:

1. Determine the number of clusters k.

2. Choose the density functions fj for all clusters cj.

3. Determine the cluster probabilities πj and parameters θf from data.

4. Assign each point p to the most probable cluster, i.e. select such cj that

member(p, cj) = P (cj|p) =
πjfj(p)

f(p)
is maximal.

Probabilistic clustering has several advantages. The clustering is not strict, but for
each data point p, we define a probability distribution P (c1|p), ..., P (ck|p). Now we
can represent overlapping clusters, where the same data point belongs to several
clusters with different probabilities. In two-dimensional case, the densities have
a nice visual representation as contours, and outliers are easily recognized. The
method is very flexible and can describe even complex structures. For example,
every cluster can have different size and density, even different type of distribution.
In addition, it has been observed that several other clustering methods are special
cases of probabilistic clustering.

Example 10 Let X and Y be two numeric variables, which follow normal distri-
bution with parameters X ∼ (µX , σ2), and Y ∼ (µY , σ2). If X and Y are mutually
independent, then the density function is

fj(x, y) =
1

2πσ2
e
−(x−µX )2−(y−µY )2

2σ2

for all clusters j = 1, ..., k.
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Each data point (x, y) is joined to cluster cj, for which fj(x, y) is maximal. Now
fj(x, y) is maximal, when (x − µX)2 + (y − µY )2 is minimal, which is the same
criterion as in k-means clustering.

However, the flexibility of probabilistic clustering has also a drawback: the resulting
clustering depends strongly on the initial parameters – especially the form of the
distribution and the number of clusters – which can be hard to define without any
prior knowledge. These two parameters depend on each other and, typically, the
simpler probabilistic models we assume, the more clusters we need, and vice versa.
The outliers can be described well as improbable data points, but if we assume a
multinormal distribution, the method is not robust under outliers, which have a
strong effect on variance. The method can be applied to categorial data, but mixed
numeric and categorial data can be problematic to handle.

The best number of clusters is usually selected according to some score function
like Minimum Description Length (MDL) or Bayesian Information Criterion (BIC)
[FR00]. Both of them maximize the log-likelihood of data with some penalty terms
for large k. Techniques based on cross-validation have also been applied successfully
[Smy00]. According to [SR00], both BIC and cross-validation methods converge to
the global optimum, when the sample size grows, but BIC is faster to compute.

Probabilistic clustering method is very sensitive to initial parameter settings and
often the data is first clustered with another method. For example, initialization
by hierarchical clustering has produced good results and at the same time the ideal
number of clusters could be determined [DR98, FR98]. Another alternative is to
implement the entire probabilistic clustering in a hierarchical way [MR84, BR93].

Usually the parameters are selected by Maximum likelihood (ML) principle, to max-
imize data (log-)likelihood given the model. This can be approximated by Expecta-
tion Maximization (EM) method, but other score functions and optimization meth-
ods can be used as well (see e.g. [RG97]). Probabilistic clustering by EM method is
described in Alg. 3

Unfortunately, the EM method is quite time-demanding. For example, if we sup-
pose multivariate normal distribution, then each step takes O(kv2n) time, in which
v is the number of attributes [HMS02]. Convergence can also take time, and the
method is not feasible for large data sets. In practice, probabilistic clustering with
the EM algorithm has produced varying results. Fraley and Raftery [FR00] have re-
ported good results with multivariate normal distribution, when the attributes were
extracted from eigenvalue decompositions. On the other hand, the EM algorithm
can produce poor results, when some clusters contain only a few data points or
when the attributes are strongly correlated. In addition, it should be remembered
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Alg. 3 EMProbabilisticClustering(D, n, k)

Input: Data set D = {p1, ..., pn}, n = |D|, number of clusters k
Output: Cluster probabilities π = (π1, ..., πk),
cluster parameters θ = (θ1, ..., θk)

1 begin
2 for all j = 1 to k
3 Initialize πj and θj

4 while (not converged)
5 begin
6 E-step: for all pi ∈ D and for all j = 1 to k

7 zij =
πjfj(pi,θj)Pk

j=1 πjfj(pi,θj)

8 M-step: for all j = 1 to k
9 Update πj and θj such that∑n

i=1

∑k
j=1 zij log(πjfj(pi, θj)) is maximal

10 end
11 output π, θ
12 end

that the EM-algorithm can get stuck at a local optimum and, as a solution, several
tricks have been suggested to improve the results.

Table 6.5 represents the probabilistic clustering of A and B exercise points to six
clusters. The clustering was implemented by Weka-tool [Wek], which suggested
(according to cross-validation test) that the most likely number of clusters is six.
Unfortunately, it is not possible to set another number of clusters, so that we could
have compared the results with previous examples. In addition, Weka assumes that
the cluster distribution is normal and the attribute dependencies are not taken into
account. In the educational data these are often unrealistic assumptions, because
the data is seldom normally distributed and the attributes are often mutually de-
pdendent. In the future research, we will implement probabilistic clustering which
allows other distributional forms and considers the dependencies.

Figure 6.4 visualizes the clusters in two ways. The first figure (on the left) presents
only the cluster centroids and boundaries defined by stdev(A) and stdev(B). In
the second figure (on the right), we have drawn the density contours by Matlab.
The latter figure reveals that there is a dense area in the top-right corner. In fact,
clusters c1, c3, and c4 compose one cluster. However, the cluster is so irregular that
it was not possible to recognize it assuming the normal distribution. Cluster c2
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in the top is also dense but small. All the other clusters are so sparse that it is
questionable whether they compose any clusters at all.

Table 6.5: Result of probabilistic clustering of A and B exercise points to six clusters.
P (C) tells the prior probability of cluster C, and the size tells how many data points
belong to the cluster.

Cluster mean(A) stdev(A) mean(B) stdev(B) P (C) Size
c1 12.00 2.565 13.64 0.435 0.119 15 (12%)
c2 7.24 1.306 13.09 0.258 0.055 8 (6%)
c3 11.43 0.476 10.911 2.388 0.385 50 (40%)
c4 11.41 0.656 2.832 2.802 0.08 9 (7%)
c5 5.05 1.693 0.92 1.229 0.12 15 (12%)
c6 8.53 1.643 6.30 2.649 0.24 28 (22%)
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Figure 6.4: Probabilistic clustering of A and B attributes by the EM algorithm. The
left figure represents the six clusters, discovered by Weka. The ellipsoids represent
the standard deviations in A and B. The righ figure represents the corresponding
density contours calculated by Matlab.

6.6 Comparison of clustering methods

Selecting the most appropriate clustering method for a given problem is always
difficult. In practice, it is often recommendable to try several methods. We can also
combine different methods. For example, we can first use some hierarchical method
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Table 6.6: Comparison of clustering methods. + indicates that the method supports
the property, and − that it does not. (+/−) indicates that the general method lacks
the property, but its extensions can overcome the problem.

Hier. Relocation Partitioning
Prob. k-medoids k-means

Good clustering quality − + + +
Independent from data order − + + +
Robust to initial parameters + − − −
Resistant to outliers + +/− + −
Flexible cluster shape +/− + − −
Number of clusters unfixed + − − −
Easy interpretation + + (+/−) (+/−)
Works with categorial data + + +/− −
Computational efficiency − − + +/−

to find the number of clusters and approximate centroids, and then improve the
results by k-means or probabilistic clustering.

In Table 6.6 we have compared the main approaches according to the most impor-
tant criteria for clustering educational data sets. Some of the criteria are desirable
in other domains as well, while others have a special importance in clustering edu-
cational data. The analysis is based on several sources, e.g. [HMS02, JDM00, JD88,
JMF99, EC02, Ber02, FR00, SS04, FR98, KL05, Fox96].

Clustering quality is very difficult or even impossible to define. The resulting clusters
depend on the inductive bias – how the cluster is defined – and methods with
different bias cannot be compared. Often compact and well-separated clusters are
preferred, but only if such clusters really exist in the data. The problem is that
all clustering methods find some clusters, even if the data itself does not have
any clustering. Thus, the first question should be whether the data has clustering
tendency – i.e. if it really contains k > 1 clusters.

One way to compare clustering methods with the same bias (e.g. SSE) is to test
how good local optimum it converges to. In this sense probabilistic EM is better
than k-means, which is better than Ward’s method, even if all of them use the same
metric with certain assumptions.

The next two properties, independence from data order and robustness to initial
parameters have also influence on the clustering quality. Most of the hierarchical
methods are sensitive to the data order, while the other methods are sensitive to the
selection of the initial parameters. As a result, they can produce different clusterings
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with different data orders or initial parameters. In probabilistic clustering, it is
especially difficult to decide the form of the distribution. Small, real word data sets
hardly contain normally distributed clusters, as is often assumed.

Resistance to outliers is an important property for the educational data, which typ-
ically contains exceptional data points. It is desirable that the method recognizes
the outliers and leaves them to their own clusters. However, outliers depend on
the definition, like clusters, and there is no absolute measure to detect them. For
example, a point can be an outlier locally, in the context of the closest clusters. For
a dense cluster even a loose point can be an outlier, while a sparse cluster can con-
tain even remote points. Probabilistic clustering can model such outliers, because
each cluster has its own distribution. However, normal distribution is sensitive to
outliers, and the overall clustering can be corrupted. k-means is especially sensi-
tive to outliers, if we use the common Euclidean metric. k-medoids is more robust,
because it uses L1-metric. Hierarchical methods are often resistant to outliers, but
they cannot detect local outliers.

Flexible cluster shape is a desirable property for all real world applications. We
cannot expect that the data would fall into nice hyperspherical clusters. However,
most clustering methods restrict the shape of clusters we can find. Partly this is due
to cluster representation. If we represent the cluster by its centroid (k-means), all
the other points should lie in a hypersphere around it. If we know also the standard
deviations in clusters, the shape can be hyperellipsoidal. Finally, if we take into
account the attribute correlations (probabilistic clustering using covariance matrix
and Mahalanobis metric), then the orientation can also vary. Hierarchical linkage
methods, which approximate SSE, produce more or less hyperspherical shapes. The
single-link method does not have this restriction, and the clusters can be arbitrary
shaped, but it suffers for the chaining effect.

Unfixed number of clusters is also a desirable property, because we seldom know the
ideal number of clusters beforehand. Especially, if the data contains several outliers,
we do not know how many clusters should be reserved for them. In hierarchical
methods, the number of clusters is not fixed, and we can select the appropriate
number by analyzing the dendrogram. In all other methods we have to fix the
number of clusters beforehand.

All the methods have easy interpretation given two-dimensional data. Dendrograms
of hierarchical methods and contours of probabilistic methods are the most infor-
mative, while k-means and k-medians give just a strict clustering, even if the actual
clusters were overlapping. Dendrograms can be presented in higher dimensions, too,
but they become too large and complicated for visual representation, when the size
of the data increases.
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For the educational data, it is often required that the method works also with
categorial data. This means that we should be able to define and combine different
similarity measures in clustering. In hierarchical methods this is easy, because
most linkage metrics do not require a distance metric. For example, in single-
link, complete-link, and average-link methods it is enough that we can define the
similarity between two data points. Distance of centroids method applies to ordinal
data, where we can define the cluster centroids. k-means works only with numeric
data, but we can apply the general idea of partitioning clustering for other similarity
measures. k-medoids works with any ordinal data. Probabilistic methods can be
defined for categorial data, too, but mixing numeric and categorial data is very
difficult.

Computational efficiency has minor importance in the educational domain, where
data sets are typically small and low-dimensional. However, finding the globally
optimal clustering is a heavy process even for the educational data sets. In the
table the efficiency is measured by the time complexity on the number of rows n in
small dimensional data. However, many clustering methods scale poorly to higher
dimensions, in the sense of their efficiency and clustering quality.

6.7 Clustering the numeric ViSCoS data

In this experiment we clustered the whole Prog.1 and Prog.2 data sets, except
the total points which were saved for testing the predictive power of clusterings.
We selected probabilistic clustering method, because it can detect also outliers.
The clustering was implemented by Weka tool using the EM algorithm. Weka
assumes that the distribution in each cluster is normal and the dependencies between
attributes are not considered, which decreases the clustering quality. In addition,
the user cannot decide the number of clusters, but it is selected in Weka by cross-
validation.

The resulting clusters for the Prog.1 and Prog.2 data sets are given in Tables 6.7 and
6.8. In Prog.1, the number of clusters was five, and the log likelihood of clustering
was -6.88129. In Prog.2, the number of clusters was two, and the log likelihood of
clustering was -17.15895. For each cluster ci, we report the cluster probability πi,
the mean vector µi, standard deviation vector σi, and the probability to pass the
course P (FR = 1|C = ci).

In Prog.1 clustering, clusters c1 and c5 have the clearest interpretation. In c1 all
students have achieved only a little of points in all categories A,B,C and the prob-
ability to pass the course is only 0.053. In c5 all students have achieved a lot of
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exercise points in all categories and the probability to pass the course is 1.00. Clus-
ter c5 is also the most homogenous cluster, measured by the standard deviation. In
addition, it covers about 31% of students. In clusters c2 and c4 the probability to
pass the course is also high (> 0.81) and the mean exercise points are relatively high
in all categories A,B,C. Cluster c3 has the lowest predictive power, but it is also
the smallest cluster. The students in c3 have achieved a lot of points in A category,
but ony a little of points in B and C. We assume that the cluster contains several
outliers, the most unpredictable students.

Table 6.7: Probabilistic clustering of attributes A, B, C in the Prog.1 data. πi gives
the cluster probability, µi the mean vector, σi the standard deviation vector, and
P (FR1 = 1|C = ci) the probability to pass Prog.1 course in the given cluster ci.

π1=0.165
c1 µ1=(6.63,1.54, 0.00)

σ1=(2.75,1.88,3.50)
P (FR1 = 1|C = c1)=0.053
π2=0.170

c2 µ2=(7.20,9.16,5.34)
σ2=(1.43,3.85,2.99)
P (FR1 = 1|C = c2)=0.818
π3=0.090

c3 µ3=(10.33,3.43,1.61)
σ3=(1.40,2.41,1.52)
P (FR1 = 1|C = c3)=0.385
π4=0.260

c4 µ4=(11.07,8.29,3.47)
σ4=(0.87,2.17,2.14)
P (FR1 = 1|C = c4)=0.812
π5=0.315

c5 µ5=(11.70,13.10,7.28)
σ5=(0.41,1.06,2.73)
P (FR1 = 1|C = c5)=1.000

In Prog.2 clustering, all students were divided into two nearly equal size clusters.
Cluster c1 is a clear cluster of succesfull students. The mean points in attributes
A,B,C, TP1, D, and E are high, and the probability to pass the course is 0.933.
Cluster c2 is less clear. The students in c2 have succeeded relatively well in Prog.1
course, but in Prog.2 their mean points are relatively low. The predictive power of
the cluster is very low, P (FR2 = 1) = 0.379.
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Table 6.8: Probabilistic clustering of attributes A,B, C, TP1, D, E, F in Prog.2
data. πi gives the cluster probability, µi the mean vector, σi the standard devi-
ation vector, and P (FR2 = 1) the probability to pass Prog.2 course in the given
cluster ci.

π1=0.495
c1 µ1=(11.13,12.95,7.47,29.11,8.13,13.37,3.87)

σ1=(1.60,1.24,2.67,3.14,2.94,4.80,2.68)
P (FR2 = 1|C = c1)=0.933
π2=0.505

c2 µ2=(10.25,8.44,3.81,23.63,3.67,3.54,0.87)
σ2=(1.90,3.03,3.03,5.56,2.43,3.34,1.37)
P (FR2 = 1|C = c2)=0.379

Next, we analyzed outliers in the Prog.1 and Prog.2 data sets, given the previous
clusterings. We calculated the probability of each data point p by defining the
density function f(p) for the given clustering. The results are given in Tables 6.9
and 6.10. In Prog.1 all data points had relatively high density and the cut-off value
was f(p) < 0.00002. In Prog.2 the points had lower densities and the cut-off value
was f(p) < 1e − 30. The cut-off values were defined by trial and error, to cover
at most 10% of data points such that the deviation to the next non-outlier was
maximal.

In Table 6.9 we observe that none of the discovered outliers is a real outlier. The
only common thing between the points was that none of them belonged to cluster
c3, which we assumed to contain most of outliers. However, we recall that all points
in Prog.1 clustering were relatively probable, which indicates that the clustering had
overfitted.

On the other hand, in Table 6.10, 8/9 of the discovered outliers are clear outliers.
They are students, who have performed well in the course, but still failed. The most
interesting discovery is that the total points, TP2, were not used in the clustering,
but still the clustering could reveal the students, whose final results are unpre-
dictable. This is an important discovery, because it indicates that we can recognize
the unpredictable students already during the course.

When we compare the previous outliers to those dicovered by the linear regression
method (Table 5.4), we observe that only two data points are common. In the Prog.1
data the common point is (9.5, 10.3, 0.0, 2.0), which has no clear interpretation as
an outlier, and in Prog.2 point (4.3, 13.0, 12.0, 28.5, 12.0, 8.0, 0.0), which describes
a surprising fail. This is quite understandable, because linear regression defines
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Table 6.9: Discovered outliers in the Prog.1 data. The data point has been defined
as an outlier, if f(p) < 0.00002. The points are interpreted as “Surprising success”,
“Surprising failure”, or “Not a clear outlier”.

Data point p f(p) Interpretation
(4.3,13.0,12.0,28.5) 6.75e-08 Not a clear outlier
(10.5,13.5,11.0,26.5) 1.33e-06 Not a clear outlier
(10.3,10.8,9.5,27.5) 2.37e-06 Not a clear outlier
(12.0,5.0,8.0,33.0) 3.73e-06 Not a clear outlier
(10.5,0.0,5.0,9.0) 1.60e-05 Not a clear outlier
(9.5,10.3,0.0,2.0) 1.78e-05 Not a clear outlier
(12.0,12.0,0.0,32.0) 1.96e-05 Not a clear outlier

Table 6.10: Discovered outliers in the Prog.2 data. The data point has been defined
as an outlier, if f(p) < 1e− 30. The points are interpreted as “Surprising success”,
“Surprising failure”, or “Not a clear outlier”.

Data point p f(p) Interpretation
(12.0,14.0,12.0,30.0,12.0,19.5,7.0) 3.09e-49 Surprising failure
(10.5,13.5,11.0,26.5,12.0,19.5,2.0) 1.14e-43 Surprising failure
(4.3,13.0,12.0,28.5,12.0,8.0,0.0) 2.26e-39 Surprising failure
(12.0,14.0,6.0,34.0,12.0,15.5,2.0) 4.10e-39 Surprising failure
(12.0,14.0,9.0,32.0,11.8,17.5,6.0) 5.22e-38 Surprising failure
(12.0,10.0,7.0,24.5,12.0,8.8,5.0) 1.17e-35 Surprising failure
(12.0,13.3,8.0,34.0,12.0,7.0,2.0) 2.30e-34 Surprising failure
(12.0,13.5,8.5,22.0,12.0,4.0,1.5) 1.90e-32 Not a clear outlier
(12.0,13.8,12.0,33.0,11.5,15.8,8.0) 6.72e-32 Surprising failure

outliers as exceptions from the global linear model, while probabilistic clustering
defines outliers as exceptions from local clusters. In the future research, we will
study this problem further and try to develop suitable outlier detection methods for
the educational data sets.

6.8 Clustering the categorial ViSCoS data

In the other experiment we clustered categorial (binary-valued) ViSCoS data. The
goal of clustering was to find two separate and dense clusters, which would cover as
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many data points as possible. Our expectation was that the failed students would
fall into one cluster and the successful students into the other one.

For this purpose, we have designed a new heuristic algorithm called BinClust. The
underlying inductive bias consists of the assumptions that the data is skewed and
the clusters are separate, dense and large. In addition, the quality of clustering
depends on the initial discretization to binary data. In discretization we have al-
ready grouped the data points in each dimension. Each binary valued data point
represents several numerical data points, and it can be interpreted as a subcluster.
When binary data is clustered, these subclusters are combined into larger clusters.
Because the discretized data set is smaller than the original one, it is possible to
search the globally optimal clustering of binary data.

In our algorithm, the distance between two data points is defined by Hamming dis-
tance for bit vectors (i.e. the sum of disagreeing bits): d(p1, p2) =

∑k
i=1 xor(p1[i], p2[i]).

In addition, we need a measure for the distance between data point p and clus-
ter C. This is defined as an average distance of p from all data points in C:

D(p, C) =
P

q∈C d(p,q)

|C| . The BinClust algorithm is given in Alg. 4.

We observe that the algorithm is similar to the existing hierarchical clustering al-
gorithms. In the initialization phase, we require that the distance between data
point pi and cluster core sj is at most 1 like in centroid-methods. In addition, we
observe that all data points in one cluster can differ from each other by at most 2
bits like in complete-link methods. In the enlargement phase, the data points are
added to clusters according to average-link method. The difference is that we want
to get only two but large clusters, and thus we select the largest cluster candidates
from the first phase. In addition, our algorithm is not order-sensitive (like centroid,
complete-link and average-link methods), because we calculate the distance from
the current cluster core, and not from the whole cluster under construction.

It should be remarked that in the initialization phase, it is possible that we find
several equally maximal but overlapping sets. In this case we suggest that all alter-
natives are considered separately. After enlargement, we can select the clustering
which covers more data points. The underlying assumption is that the data is so
skewed that in practice we have only few alternatives. In the worst case, when the
data has a uniform distribution, we should check all 2k alternatives, where k is the
number of attributes.

The clusterings of the Prog.1 and Prog.2 data sets are given in Tables 6.11 and 6.12.
For each cluster, we give the cluster size, mean vector, and proportion of accepted
students. In Prog.1 we used attributes A,B, C and in Prog.2 B, C, TP1, D,E, F .
We dropped attribute A, because it was independent from all Prog.2 attributes
(D,E,F and FR2).
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Table 6.11: Results of clustering the binary-valued Prog.1 data by BinClust algo-
rithm. Mean vector gives the mean values for A,B and C attributes. P (FR1 = 1)
gives the relative frequency (probability) of passing the course in the given group.

Group Size Mean P (FR1 = 1)
c1 44 [0.45,0.00,0.00] 16/44=0.364
c2 57 [1.00,1.00,0.82] 53/57=0.930
Others 24 [0.29,0.50,0.88] 21/24=0.875

Table 6.12: Results of clustering the binary-valued Prog.2 data by BinClust algo-
rithm. Mean vector gives the mean values for B,C, TP1, D, E and F attributes.
P (FR2 = 1) gives the relative frequency (probability) of passing the course in the
given group.

Group Size Mean P (FR2 = 1)
c1 33 [0.73,0.00,0.39,0.06,0.06,0.00] 5/33=0.152
c2 36 [0.94,0.83,1.00,0.92,0.81,0.42] 33/36=0.917
Others 19 [0.84,0.37,0.90,0.37,0.32,0.16] 12/19=0.632

In Prog.1 the clusters covered only 54% of students. Cluster c1 consisted of clearly
weak students, but still 36% of them had passed the course. Cluster c2 was more
homogenous. The students in c2 had achieved a lot of points in all categories, and
93% of them had passed the course. In the group of unclustered students, the
passing probability was also relative high, 88%. The overall clustering quality was
quite poor, which suggests that the Prog.1 data is heterogenous and more clusters
are needed. We recall that five clusters were needed to cluster the numeric Prog.1
data. However, it is also possible that the discretization has failed to catch the
important differences in the numeric data.

On the other hand, clustering the Prog.2 data was very successful. We discovered
two large and homogenous clusters, which covered 78% of data. Cluster c1 described
clearly weak students, who had got a little of points in all attributes except B. In
this group 85% of students had failed the course. On the other hand, cluster c2

described clearly successful students, who had got a lot of points in all categories
except in F , which was hard for all students. 92% of students in c2 had passed the
course. The group of unclustered students was more heterogenous and the predictive
power was poor (P (FR2 = 1) = 0.63).
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Alg. 4 BinClust(D,n, F, k)

Input: Data set D = {p1, ..., pn}, n = |D|, frequencies F = {|p1|, ..., |pn|},
number of seeds k
Output: Clusters c1, c2

1 begin
2 Initialization:
3 Sort D into ascending order
4 for i = 1 to k
5 begin
6 Select si = pi

7 D = D \ pi

8 end
9 k = k + 1
10 for pi ∈ D
11 for j = 1 to k
12 if (D(sj, pi) == 1))
13 begin
14 sk = sj ∪ pi

15 k = k + 1
16 end
17 Select c1 = si, c2 = sj such that si ∪ s2 = ∅ and

|si| and |sj| are maximal
18 for all pi ∈ D
19 if (pi ∈ c1 or pi ∈ c2)
20 D = D \ pi

21 Enlargement:
22 for all pi ∈ D
23 if (D(c2, pi)−D(c1, pi) ≥ mind)
24 begin
25 c1 = c1 ∪ pi

26 D = D \ pi

27 end
28 else if (D(c1, pi)−D(c2, pi) ≥ mind)
29 begin
30 c2 = c2 ∪ pi

31 D = D \ pi

32 end
33 output c1, c2

34 end



Chapter 7

Classification

Classification is the main problem of adaptive learning environments. Before we can
select any adaption actions like selecting tasks, learning material, or feedback for
the given learner in her/his current situation, we should first classify the student’s
current situation. Usually, all information is given in the student model, SM , whose
properties determine the appropriate action. The actions are usually selected by
rules ”If SM is of type X, then select action Y ”. The same pattern occurs in human
tutoring, as well. For example, in the ViSCoS project, the rule is ”If the student
will likely fail the course, then intervene”. The form of intervention is up to course
tutors, but predicting who will likely fail is often difficult for the teachers. In this
case, we can base the classifications on the existing course data.

In the following, we will define the classification problem and analyze the appro-
priateness of the main classification methods for the educational domain. We give
several guidelines for selection of the classification method for the given problem.
Finally, we will report the empirical comparison of the best classifiers for the ViSCoS
data.

7.1 Classification problem

The general classification problem is the following:

Definition 26 (Classification problem) Let R = {A1, ..., Ak, C} be a set of at-
tributes, where C is a discrete valued class attribute. Let the values of C be Dom(C) =
{c1, ..., cl}. Let S be an attribute space spun by R.

127
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The classification problem is to find a mapping f : Dom(A1) × ... × Dom(Ak) →
Dom(C) such that for all data points p ∈ S, f(p[A1, ..., Ak]) = p[C].

In practice, we can seldom discover function f which would define f(p) correctly
for all current and future data points p. Especially, in the educational domain the
data sets often contain inconsistent data points p1 and p2 for which p1[A1, ..., Ak] =
p2[A1, ..., Ak] but p1[C] 6= p2[C]. For example, the binary Prog.1 data set contained
14 inconsistent data points (11% of the data), and the projection of the binary Prog.2
data set to attributes TP1, D, E, F, FR2 contained 12 inconsistent data points (14%
of the data). One solution is to define for all data points p a probability distribution
P (C = ci|p) for all classes ci, and then select the most probable class or classes.
These kinds of classifiers are called probabilistic classifiers.

Definition 27 (Discriminative and probabilistic classification) Let R, C, and
S be as before, and M a classifier.

If M defines a mapping M : Dom(A1)× ...×Dom(Ak) → Dom(C) such that for all
p ∈ S M(p[A1], ..., p[Ak]) ∈ C, we say that M performs discriminative classification.

If M defines a mapping M : Dom(A1) × ... × Dom(Ak) → [0, 1]l such that for all
p ∈ S M(p[A1, ..., Ak] = [P (C = c1|p), ..., P (C = cl|p)], we say that M performs
probabilistic classification.

The first decision is to define the representative power required for the model. In
classification this depends on the form of decision boundaries, i.e. the class borders
(see e.g. [DHS00][216-219]). In the simplest case, the decision borders are linear
combinations of attributes Ai. In 2-dimensional data this corresponds to a straight
line, in 3-dimension a plane, and in higher dimensions a hyperplane. In this case,
we say that the classes are linearly separable. However, the boundaries can be
also non-linear, involving higher order terms or ratios. A more complex classifier
is required to represent such decision boundaries, but in the same time the model
becomes more risky for overfitting, especially when the data set is small. That is
why it is often better to assume a simpler model, even if the actual boundaries are
only approximately linear.

In the ViSCoS-project our main goal is to the predict potential dropouts and failures
as early as possible. In addition, it would be nice to recognize excellent students,
who might desire more challenges, but currently we will concentrate on simple binary
class variable FR = {pass, fail}. Obviously, probabilistic classification suits better
for our purposes. Currently even the training data is not consistent and we cannot
expect that the course outcomes are deterministically predictable, when human
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factors are involved. In addition, the probabilities contain more information about
the chances to pass or fail the course than the pure class values.

In linear regression analysis we observed that the course outcomes can be predicted
quite well assuming linear dependency. This indicates that the class boundaries are
quite linear. Multiple linear regression models can already be used as classifiers,
if we interpret the results as class values: TP < 15 corresponds to FR = 0, and
TP ≥ 15 corresponds to FR = 1. This is a very simple model, but in practice it is
one of the best models for our small data sets. The only problem is that the linear
regression cannot handle categorial data and, very often, we have to combine both
numeric and categorial data. Naive Bayes model is a good candidate to compete
with the linear regression, because it is also a simple model, which recognizes linear
boundaries, but it can handle categorial data. In addition, we will analyze more
complex models like decision trees, general Bayesian networks, neural networks, and
nearest neighbour classifiers.

7.2 Tree models

The idea of tree models (see e.g. [HMS02][343-347]) is to represent a set of decision
rules in a tree form. On each level of the tree the attribute space is partitioned to
smaller subspaces, until the predicted variable – typically the class – is known. The
most common tree model is a decision tree (see e.g. [Mit97][52-80]), which is used
for classification. Similarly, regression trees can be used for predicting a continuous
variable. In the following, we will concentrate only on the decision trees.

7.2.1 Decision trees

A decision tree has a very simple structure. Each inner node contains an attribute
test and leaf nodes tell the class. When we have binary data, the tree is also binary
and each test simply checks the truth value of the given attribute. Thus, each
path in the tree is equivalent to logical conjunction T1 ∧ T2 ∧ ... ∧ Tk, where each
attribute test Ti is of form Ai = 1. If we have non-binary categorial variables, we can
either use higher order trees (with more than two children per node) or use logical
disjunction in the test: Ai = a1 ∨ ...Ai = al. For numerical attributes, a threshold
test Ai < a is used instead. In principle, we could discretize the data first, but the
resulting intervals are not necessarily optimal for classification purposes.

The earliest decision trees were constructed by human experts, but nowadays they
are commonly learnt from data. The basic idea in all learning algorithms is to
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partition the attribute space until some termination criterion is reached in each leaf.
Usually, the criterion is that all points in the leaf belong to one class. However,
typically data contains inconsistencies, i.e. there are data points which share all
other attribute values but not the class value. This may be due to several reasons:
the data may contain noise (errors), the attributes do not contain all the necessary
information for deterministic classification, or the domain is truly nondeterministic.
In this case we usually select the class, into which the most of data points in the
node belong. This principle is known as majority vote principle (see e.g. [SL91]).
An alternative is to report the class probabilities according to relative frequencies
in the node. The class probability is in fact the same as confidence (conditional
probability) of the corresponding decision rule.

The attribute-value tests are selected in the order of their discriminatory power,
i.e. the features which divide most of data points to correct classes are set at the
top. This is in fact an application of Occam’s Razor Principle, which assumes that
shorter trees are better than high [Mit97][65-66]. In practice, some score function
is needed. For example, we can minimize the entropy or the probability of an error
in each branch. An overview of available score functions is given in [SL91].

The problem of this basic approach is that it produces easily too complex models,
which have seriously overfitted. There are two alternative solutions to this problem:
early stopping and post-pruning [Mit97][68-69]. In early stopping approach we stop
the tree construction before the model has become too complex. The problem of
this approach is to decide the optimal point to stop (greedy) growing. In practice,
the pruning approach works better. In pruning approach (e.g. in C4.5 algorithm
[Qui93]) we let the tree to overfit and prune it afterwards. Usually, pruning is
performed by merging leaf nodes one by one or replacing a subtree by a leaf. An
alternative is to consider the corresponding set of decision rules and remove all re-
dundant (irrelevant) conditions from the rules. This approach has some advantages,
but it is not recommended for noisy and non-deterministic domains [DHS00] like
our educational data sets. In all approaches we need some criterion to decide the
appropriate complexity. This criterion can be based on the cross-validation, χ2-test,
or some other measures like minimum description length (MDL) [Mit97][69].

Decision trees have many advantages: they are simple and easy to understand, they
can handle mixed variables (i.e. both numeric and categorial variables), they can
classify new examples quickly, and they are flexible. Enlargements of decision trees
can easily handle small noise and missing attribute values. Decision trees have
very high representational power, because they can approximate highly non-linear
decision boundaries, even if the boundaries are everywhere piecewise parallel to
attribute axes. However, it should be remembered that the resulting model can be
seriously overfitted, especially if we have a small training set.
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However, decision trees have also serious disadvantages. The main restriction is the
assumption that all data points in the domain can be classified deterministically
into exactly one class. As a result all inconsistencies are interpreted as errors.
Thus decision trees do not suit for intrinsically nondeterministic domains. This
restricts their applicability for modelling educational data, which contains often
several outliers. Class probabilities have sometimes been suggested as a solution, but
the resulting system is very unstable, because each leaf node has its own probability
distribution [HMS02][346]. Thus even a minor change in one of the input variables
can change probabilities totally, when the data point is assigned to another leaf
node.

Another problem is that decision trees are very sensitive to overfitting, especially in
small data sets. Small variations in the training data can produce totally different
decision trees. In the educational applications the future data very seldom follows
the same distribution as the training set and we would need more robust models. For
example, Domingos and Pazzani [DP97] recommend to use naive Bayes instead of
decision trees for small data sets (less than thousands of rows), even if the attributes
were not independent, as naive Bayes assumes.

Often overfitting can be avoided if we learn a collection of decision trees and average
their predictions. This approach is generally called model averaging or ensemble
learning (see e.g. [VM02]). In ensemble learning we can combine several models
with different structures, and even from different modelling paradigms. The most
well-known ensemble learning method is boosting [Sch02]. In practice, these methods
can improve classification accuracy remarkably and their applicability to educational
domain should be further studied.

Finally, we should remark that learning a globally optimal decision tree is an NP-
complete problem [HR76]. That is why the common decision tree algorithms employ
some heuristics and can sometimes produce suboptimal results. One reason for the
suboptimal partitions is that each node is split on just one variable [HMS02][347].
In practice, the class variable can change most rapidly with a combination of input
variables. As a solution, we can split the input space along linear combinations of
the input variables, but this of course complicates the building process. Pruning
can also be very time-consuming, when the training set is large. Fortunately, the
educational data sets are often small and we do not have to worry about complexity
issues.
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7.2.2 Decision trees for the ViSCoS data

In this example we demonstrate some restrictions of decision trees. We have con-
structed decision trees T1 and T2 for predicting final results FR1 and FR2 in
Prog.1 and Prog.2 courses. The decision trees are represented in Figure 7.1. The
trees have been learnt from the categorial ViSCoS data using Weka tool [Wek]. In
Weka decision trees are learnt by the id3 algorithm [Qui86], which does not prune
the trees, and thus we have pruned the decision trees manually afterwards. The
same decision trees are represented as classification rules in Tables 7.1 and 7.2. In
addition, we have calculated the confidence and frequency for each rule.
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Figure 7.1: Decision trees T1 and T2 for classifying students in Prog.1 and Prog.2
courses. The models have been constructed by id3 algorithm from categorial ViSCoS
data.

Both decision trees have quite reasonable training errors. In Prog.1 course, the
classification error is 16% and in Prog.2 11%. However, the training error does
not tell very much about the real accuracy. Further analysis of frequencies and
confidences reveals that the models – especially T2 – are not very reliable. In T1
only the first two rules are strong and common enough. The latter two rules are
useless, because one of them is too weak and the other one is extremely rare. Model
T2 is so strongly overfitted that it hardly works outside the training set. The only
useful rules are E = lot∧TP1 = lot ⇒ FR2 = 1 and E = little∧TP1 = little∧C =
little ⇒ FR2 = 0. All the other rules are based on just a couple of instances. This
is the reason for the counter-intuitive rules in the bottom of the right subtree. In
addition, the class labels are decided by the majority vote principle, which gives
arbitrary results when both classes are equally common in a leaf node.

It is quite obvious that decision trees do not suit for our modelling task. The course
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Table 7.1: Prog.1 classification rules, their frequencies, and confidences.
Rule Freq. Conf.
B = lot ⇒ FR1 = 1 73/125=0.58 0.92
B = little ∧ A = little ⇒ FR1 = 0 12/125=0.10 0.86
B = little ∧ A = lot ∧ C = little ⇒ FR1 = 0 18/125=0.14 0.60
B = little ∧ A = lot ∧ C = lot ⇒ FR1 = 1 2/125=0.02 1.00

Table 7.2: Prog.2 classification rules, their frequencies, and confidences.
Rule Freq. Conf.
E = lot ∧ TP1 = lot ⇒ FR2 = 1 33/88=0.38 0.97
E = lot ∧ TP1 = little ∧D = lot ⇒ FR2 = 1 1/88=0.01 1.00
E = lot ∧ TP1 = little ∧D = little ⇒ FR2 = 0 2/88=0.02 1.00
E = little ∧ TP1 = little ∧ C = lot ⇒ FR2 = 1 1/88=0.01 1.00
E = little ∧ TP1 = little ∧ C = little ⇒ FR2 = 0 18/88=0.20 1.00
E = little ∧ TP1 = lot ∧ F = lot ⇒ FR2 = 1 2/88=0.02 1.00
E = little ∧ TP1 = lot ∧ F = little ∧D = lot
∧B = little ⇒ FR2 = 1 3/88=0.03 0.75
E = little ∧ TP1 = lot ∧ F = little ∧D = lot
∧B = lot ∧ A = little ⇒ FR2 = 0 1/88=0.01 1.00
E = little ∧ TP1 = lot ∧ F = little ∧D = lot
∧B = lot ∧ A = lot ⇒ FR2 = 1 4/88=0.05 0.67
E = little ∧ TP1 = lot ∧ F = little ∧D = little
∧C = lot ⇒ FR2 = 0 4/88=0.05 0.80
E = little ∧ TP1 = lot ∧ F = little ∧D = little
∧C = little ∧B = little ⇒ FR2 = 1 2/88=0.02 0.50
E = little ∧ TP1 = lot ∧ F = little ∧D = little
∧C = little ∧B = lot ⇒ FR2 = 0 6/88=0.07 0.67

outcomes are not deterministically determined by the given attributes. In addi-
tion, it is very implausible that we could ever model the domain deterministically,
whatever attributes we would gain. Of course more discriminatory attributes would
improve the accuracy, but at the same time we should prune some of the current
attributes to avoid overfitting.
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7.3 Bayesian classifiers

We have already introduced Bayesian networks in Chapter 5. In this section, we
first analyze different variations of Bayesian networks for classifying educational
data. Then we report our experiment on classifying the ViSCoS data by naive
Bayes classifiers.

7.3.1 General Bayesian models vs. naive Bayes models

The general idea of Bayesian classifiers (see e.g. [Mit97][ch 6]) is the following: Given
a set of explanatory attributes X = X1, .., Xk, which can have values x ∈ Dom(X) =
Dom(X1)× ...×Dom(Xk), we estimate the class-conditional distributions P (X =
x|C = c) for all x ∈ Dom(X) and all class values c from data. Then, given a new
data point p ∈ Dom(X), we update the class probabilities P (C = c|p) by the Bayes
rule.

In practice, the problem is the large number of probabilities we have to estimate. For
example, if |Dom(Xi)| = v for all i = 1, ..., k and all Xis are mutually dependent,
we have to define O(vk) probabilities. This means that we also need a large training
set to estimate the required joint probability accurately.

Another problem which decreases the classification accuracy of Bayesian networks
is the use of MDL score function for model selection [FGG97]. MDL measures the
error in the model over all variables, but it does not necessarily minimize the error in
the class variable. This problem occurs especially, when the model contains several
attributes and the accuracy of estimate P (A1, ..., Ak) begins to dominate the score.1

The naive Bayes model solves both problems. The model complexity is restricted
by a strong independence assumption: we assume that all attributes X1, ..., Xk are
conditionally independent, given the class variable C, i.e. P (X|C) =

∏k
i=1 P (Xi|C).

1Let the data be D = {p1, ..., pn}, where pi = (xi, ci) and ci is the class value of point pi. The
minimal description length of model M given data D is

MDL(M |D) =
log n

2
|M | − LL(M |D),

where LL(M |D) is the log likelihood of model given data. Since

LL(M |D) =
n∑

i=1

log P (ci|xi) +
n∑

i=1

log P (xi),

the second term in LL(M |D) begins to dominate over the first one, when the number of attributes
increases. However, only the first term evaluates the model as a classifier. [FGG97]
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This Naive Bayes assumption can be represented as a two-layer Bayesian network
(Figure 7.2), with the class variable C as the root node and all the other variables
X1, ..., Xk as leaf nodes. Now we have to estimate only O(kv) probabilities per class.
The use of MDL score function in the model selection is also avoided, because the
model structure is fixed, once we have decided the explanatory variables Xi.

X1 ...X2

C

Xk

Figure 7.2: A naive Bayes model with class variable C and input variables X1, ..., Xk.

In reality the Naive Bayes assumption holds very seldom, but in practice the naive
Bayes classifiers have proved to work well. In fact, Domingos and Pazzani [DP97]
have shown that Naive Bayes assumption is only a sufficient but not a necessary
condition for the optimality of the naive Bayes classifier. In addition, if we are only
interested in the ranked order of the classes, it does not matter if the estimated
probabilities are biassed.

As a consequence of Naive Bayes assumption, the representational power of the
naive Bayes model is lower than that of decision trees. If the model uses nominal
data, it can recognize only linear decision boundaries. However, it cannot recognize
even some linear boundaries, for example m-of-n decision rules, which require that
at least m of n Boolean attributes are true [DP97]. If numeric data is used, then
the model can represent even quite complex non-linear boundaries.

Otherwise, the naive Bayes model has many advantages: it is very simple, efficient,
robust to noise, and easy to interpret. It is especially suitable for small data sets,
because it combines small complexity with a flexible probabilistic model. The basic
model suits only for discrete data and the numeric data should be discretized. Alter-
natively, we could learn a continuous model by estimating densities instead of distri-
butions. However, this latter approach assumes some general form of distribution,
typically normal distribution, which is often unrealistic. In addition, discretization
simplifies the model and the resulting model is more robust to overfitting.

When Xi attributes are clearly dependent, we would expect that a general Bayesian
network classifier would perform better. However, a more complex model is also
more sensitive to overfitting, and the actual performance can be even poorer. The
problem is that we cannot estimate all parameters accurately in a more complex
model; in an extreme case, some attribute combinations do not occur at all in
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TP1

D E F

FR1

A B C

Figure 7.3: Naive Bayes models for predicting final results of Prog.1 course, given
the task points in A, B and C (left), and final results of Prog.2 course, given the
task points in D, E and F (right). TP1 (total points of Prog.1) has been used as a
background variable, which defines the prior probability distribution of FR2.

the training set and we have the zero count problem. As a solution, Friedman et
al. [FGG97] suggest two enlargements of naive Bayes model. In the tree-augmented
naive Bayes model the Xi attributes can depend on at most one another Ai attribute
in addition to the class variable. In the Bayesian multinet [GH96] a different, simple-
structured Bayesian network is conctructed for each class ci. According to [FGG97],
the classification accuracy especially in small data sets can be further improved by
estimating the parameters using Laplace smoothing. In our initial experiments
[HV06] the enlargements performed only sligthly better that the naive Bayes model
and the Laplace smoothing had no effect on the accuracy.

7.3.2 Naive Bayes models for the ViSCoS data

In this experiment we constructed two naive Bayes models, NB1 and NB2, for both
Prog.1 and Prog.2 courses. The model structures are presented in Figure 7.3 and
the parameters are given in Table 7.3.

Nodes FR1 and FR2 tell the probability of passing/failing the course and the leaf
nodes are used to update the probabilities, when exercise task points are gathered.
Actually, the exercise task points in different categories depend on each other, but
this is not taken into account.

In NB1 the prior probability of passing the course is simply assigned to 0.500.
In NB2 we use TP1 as a background variable, and define the prior probability of
passing the course given that the student has got a lot/little of total points in Prog.1.
This proved to be the most frequent rule for predicting FR2 according to Prog.1
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performance. The conditional probabilities have been simply calculated from the
data with rule P (Y |X) = P (X,Y )

P (X)
. The complement probabilities can be obtained

by rule P (¬Y |X) = 1− P (Y |X).

Table 7.3: Probabilities for naive Bayes models NB1 and NB2.
P (FR1) 0.500 P (FR2|TP1) 0.727
P (A|FR1) 0.955 P (FR2|¬TP1) 0.091
P (A|¬FR1) 0.694 P (D|FR2) 0.700
P (B|FR1) 0.820 P (D|¬FR2) 0.184
P (B|¬FR1) 0.167 P (E|FR2) 0.680
P (C|FR1) 0.416 P (E|¬FR2) 0.079
P (C|¬FR1) 0.028 P (F |FR2) 0.340

P (F |¬FR2) 0.026

When the course proceeds, the prior probabilities are updated in the light of new
evidence (exercise points in X = A,B, C, D, E, F ) by the Bayes rule:

P (FR|X) =
P (FR)× P (X|FR)

P (X)
.

The classification rates after each new piece of evidence are presented in Table
7.4. The classification rates have been calculated by zero-one loss rule, i.e. the
student’s status is classified as passing, if the passing probability is ≥ 0.5, and
failing, otherwise. The actual probabilities contain of course more information, but
they are no more comparable with the deterministic classifiers. The accuracies are
determined by 10-fold cross-validation.

In the beginning of Prog.1 course nearly all students had done a lot of exercises
and thus they were predicted to pass the course. However, when the exercise points
in B category were added, the predictions became already quite accurate, both for
passing and failing. C points did not improve the results much, because only few
students had done a lot of those tasks.

In Prog.2 course, we can predict the outcomes already before the course has begun,
based on Prog.1 outcomes. These predictions are already surprisingly good – better
than Prog.1 predictions, when A points were known. An important observation is
that we can predict the failed students very well, when just TP1 and D points are
known. In fact, these predictions do not improve any more, when E and F are added
to the model. With F points we recognize a strange phenomenon: the classification
accuracy slightly decreases, even if we have got more evidence! This is totally
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Table 7.4: Classification accuracies of naive Bayes models. The accuracies have
been defined by 10-fold cross-validation.

Model true pos. true neg.
A ⇒ FR1 0.96 0.31
A,B ⇒ FR1 0.80 0.81
A,B, C ⇒ FR1 0.83 0.81
TP1 ⇒ FR2 0.96 0.53
TP1, D ⇒ FR2 0.76 0.61
TP1, D, E ⇒ FR2 0.82 0.87
TP1, D, E, F ⇒ FR2 0.80 0.87

correct, because F and E are highly correlated and thus the Naive Bayes assumption
is clearly violated. This is the only case, when we have met the restrictions of naive
Bayes model, and in practice these last predictions (when the course is over) are
not so important. However, this demonstrates that the naive Bayes model should
be used with care, when the attributes are correlated.

7.4 Neural networks

Artificial neural networks are commonly used in pattern recognition. They have
achieved good results in solving complex problems with noisy data. In addition,
they have higher representational power than other classifiers, and in principle any
other system can be implemented by a neural network. Thus, it is natural to
question whether they could solve all problems in the educational domain, too. Our
answer is conditional ”No”, for the reasons explained in the following.

Feed-forward neural networks (FFNN) or Feed-forward multilayer perceptrons (see
e.g. [DHS00][ch 6]) are the most widely used type of neural networks. The FFNN
architecture consists of layers of nodes: one for input nodes, one for output nodes,
and at least one layer of hidden nodes. On each hidden layer the nodes are connected
to the previous and next layer nodes and the edges are associated with individual
weights. The most general model contains only one hidden layer (Figure 7.4). This
is usually sufficient, because in principle any function can be represented by a three-
layer network, given sufficiently many hidden nodes [HN89, Cyb89]. This implies
that we can also represent any kind of (non-linear) decision boundaries. However,
in practice learning a highly non-linear network is very difficult or even impossible.
For linearly separable classes it is sufficient to use a FFNN with no hidden layers.
This kind of neural network is known as a perceptron [DHS00][ch 5].
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Figure 7.4: An example of FFNN structure of input nodes, hidden nodes, and an
output node on successive layers. The model was constructed for predicting the
final results in Prog.2 course, given attributes TP1, D,E and F .

The learning algorithm is an essential part of the neural network model. In FFNN
the back-propagation algorithm [DHS00][288-296], based on gradient descent search
is used. Since this algorithm is an essential part of the model, we will describe it
briefly.

In classification we construct a network of k input nodes, one for each attribute
X1, ..., Xk, and l output nodes for l class values 2, C = c1, ..., cl. The output nodes
can be interpreted as binary variables C = ci, having values [0, 1]. These values as
such tell the confidence on each class, but with appropriate modifications they ap-
proximate posterior probabilities P (C|X) [DHS00][304-305]. The number of hidden
nodes is selected and the weights are initialized. After that the training samples
are fed to the first layer nodes, one by one. Each node computes a weighed sum of
input values and performs a non-linear transformation, typically sigmoid function
f(x) = 1/(1 + e−x). The output values are further fed to the next layer, which
performs the same operations, until the output nodes are reached. Then the output
values are compared to the actual class value and the errors are computed. The
errors are propagated backwards through the network and all weights are updated.
This procedure is repeated, often several times for the same training examples, until

2For a binary class variable just one output node is sufficient.
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some termination criterion is met.

This algorithm leaves several parameters open and the user should select the number
of hidden layers, number of hidden nodes on each layer, initial weights, and the
termination criterion. Especially the selection of the architecture (network topology)
and the termination criterion are critical, because neural networks are very sensitive
to overfitting. Unfortunately, there are no foolproof instructions and often the
correct parameters are defined by trial and error. However, there are some general
rules of thumb, which restrict the number of trials needed.

Duda et al. [DHS00][317] suggest to use a three-layer network as a default and
add layers only for serious reasons. The number of hidden nodes depends on the
problem: if the classes are linearly separable or otherwise well-separated, less nodes
are needed, while overlapping classes require more nodes. However, we should also
take into account the model complexity. The number of nodes determines the
number of weights and thus the model complexity. As a rule of thumb, it is often
recommended (e.g. [DHS00]) that the number of weights should be roughly n/10
for a training set of size n. If we have k input variables and one class node, then the
number of hidden nodes should be approximately n

10(k+1)
. For example, to model

the Prog.2 data (using four input variables) we could use at most two hidden nodes.

The initial weights are usually selected randomly. It is recommended (e.g. [Mit97][104,111])
to assign small positive values, which define a linear model. When the weights in-
crease, the model becomes more and more non-linear. In this way, we search the
simple models first, which can prevent overfitting. Another important decision is
when to stop learning. If we stop it too early, the model cannot classify the training
set accurately, but if we let it specialize too much, it does not generalize any more.
Use of separate test set is a popular strategy [Mit97][111], but with small data sets
it is not possible, and cross-validation should be used instead.

Feed-forward neural networks have several attractive features. They can easily
learn non-linear boundaries and in principle represent any kind of classifiers. If
the original variables are not discriminatory, FFNN transforms them implicitly. In
addition, FFNNs are robust to noise and can be updated with new data.

However, neural networks have several disadvantages from our point of view. The
main restriction is that they would need a lot of data – much more than the typical
educational data sets. They are very sensitive to overfitting and the problem is even
more critical with small training sets. The data should be numeric and categorial
data must be somehow quantized, before it can be used. However, this increases the
model complexity and the results are sensitive to the quantization method used.

The neural network model is a black box and neither teachers nor the students
can understand the explanations for the outcomes. This is in serious contradiction
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with the requirement of transparency. In addition, neural networks are unstable
and achieve good results only in good hands – the user should have expertise to
define all open parameters. This is partly the reason for the variable performance
in comparative tests, as Duin [Dui00] observes: ”What effectively is evaluated is
not the neural networks as such, but the skills of the data analyst in using the
given neural network toolbox”. Finally, we should remember that finding an optimal
FFNN is an NP-complete problem [BR88] and back-propagation algorithm is just
an optimization method, which can get stuck at a local optimum. Still, the training
can be time consuming, especially if we want to circumvent overfitting.

Example 11 The FFNN described in Figure 7.4 was implemented by Matlab for
predicting the final results in Prog.2 course, given attributes TP1, D,E, F . The
model was tested with different initial parameters. The activation function was
sigmoid. The model proved to be very unstable: the classification accuracy measured
by cross-validation varied between 65% and 85% in consecutive executions with the
same parameter assignment. Other model topologies for the Prog.2 data as well
as Prog.1 models produced similar results. We conclude that the data is either
unsuitable to be modelled by neural networks or – refering to Duin [Dui00] – the
data analyst’s skills were not sufficient.

7.5 k-Nearest neighbour classifiers

k-Nearest neighbor classifiers (see e.g. [HMS02][347-352], [Mit97][231-236]) represent
a totally different approach to the classification problem. They do not build any
explicit global model, but approximate it only locally and implicitly. The main idea
is that we classify a new object by examining the k most similar data points and
making the class decision according to their class values. Usually we select the most
common class among the neighbours, but alternatively we could compute the class
probabilities in the neighbourhood.

Two practical issues concern how to select value k and a metric which defines the
”closeness”. Selecting appropriate k can be difficult and often we have to try several
values. If k is fixed, then the size of the neighbourhood varies. In sparse areas the
nearest neighbours are more remote than in dense areas. However, defining different
ks for different areas is even more difficult. If k is very small, then the neighbourhood
is also small and the classification is based on just a few data points. As a result
the classifier is unstable, because these few neighbours can vary a lot. On the other
hand, if k is very large, then the most likely class in the neighbourhood can deviate
much from the real class. For small dimensional data sets a suitable k is usually
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between 5 and 10. One solution is to weigh the neighbours by their distances. In
this case, the neighbourhood can cover all data points so far and all neighbourhoods
are equally large. The only disadvantage is that the computation becomes slower.

Defining the distance metric is another problem, which we have already discussed in
Chapter 6. The problem in classification is that the metrics usually take into account
all attributes, even if some attributes were irrelevant. This is a big problem, because
the actually most similar neighbours become remote and the ”wrong neighbours”
corrupt the classification. The problem becomes more serious, when the number of
dimensions and thus also the number of irrelevant attributes grows. As a solution,
it has been suggested (e.g. [HAK00])to give relevance weights for attributes, but
the relevant attributes can also vary from class to class. In practice, appropriate
feature selection can produce better results.

The nearest neighbourhood classifiers have several advantages: they are easy to
implement, no optimization or training is required, the classification accuracy can be
very good in some problems, and they are quite robust to noise and missing values.
Especially weighed distance smooths the noise in attribute values and missing values
can be circumvented by restricting to the available attributes. Nearest neighbour
classifiers have very high representational power, because they work with any kind
of decision boundaries, given sufficiently data.

However, nearest neighbour classifiers have also serious disadvantages and the ap-
plicability in the educational domain is restricted. First of all, they require large
data sets to work accurately. In addition, they are very sensitive to the curse of
dimensionality. The problem is that in high dimensions the input space becomes
sparse and the nearest neighbors are often far. Thus it is hard to recognize real
neighbours from other points and the predictions become inaccurate.

The lack of an explicit model can be either an advantage or a disadvantage. If the
model is very complex, it is often easier to approximate it only locally. In addition,
there is no training and a set of data is immediately ready for use. We can always
add and delete data rows without any modifications. However, this kind of ”lazy
methods” are slower in classification than model-based approaches. If the data set
is large, we need some index to find the nearest neighbours efficiently. It is also
noteworthy that an explicit model is useful for human evaluators and designers of
the system.
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7.6 Comparison of classification methods

Selecting the most appropriate classification method for the given task is a difficult
problem and no general answer can be given. In this section, we evaluate the
previously introduced classification methods according to the general requirements
of educational systems. In addition to decision trees, naive Bayes classifiers, feed-
forward neural networks and nearest neighbour classifiers, we have included multiple
linear regression, which can also be used as an classifier for simple problems. The
comparison is represented in Table 7.5. The analysis is based on several sources,
e.g. [DP97, Mit97, DHS00, HMS02, JDM00, Dui00, Qui94].

The first criterion concerns the form of decision boundaries. Decision trees, FFNNs
and nearest neighbour classifiers can represent highly non-linear boundaries. Naive
Bayes model using nominal data can represent only a subset of linear boundaries,
but with numeric data it can represent quite complex non-linear boundaries. Mul-
tiple linear regression is restricted to only linear boundaries, but it tolerates small
deviations from the linearity. It should be noticed that strong representational
power is not desirable, if we have only little data and a simpler, linear model would
suffice. The problem is that complex, non-linear models are also more sensitive to
overfitting.

The second criterion, accuracy on small data sets is crucial for the educational do-
main. The classifier should be learnt from a very small training set (around 100
rows of data) and still generalize well. This favours simple models, especially naive
Bayes classifiers and their variations. Multiple linear regression can also work accu-
rately, if the data has at least approximately linear tendency. On the other hand,
decision trees, FFNNs, and nearest neighbour classifiers require much larger data
sets (at least a thousand of rows of data, depending on the number of attributes)
to work accurately.

The third criterion concerns whether the paradigm can handle incomplete data, i.e.
noise and missing values. Educational data is usually clean, but missing values
occur frequently e.g. in the questionnaire data. Naive Bayes, FFNNs, and nearest
neighbour models are especially robust to noise in the data. Naive Bayes, nearest
neighbour models, and some enlargements of decision trees can handle also missing
values quite well. However, decision trees are generally very sensitive to small
changes like noise in the data. Multiple linear regression cannot handle missing
attribute values at all and serious noise (outliers) can corrupt the whole model.

Natural interpretation of the model is also an important criterion, since all educa-
tional models should be transparent. All the other paradigms except neural net-
works offer more or less understandable models. Especially tree structures (decision
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Table 7.5: Comparison of different classification methods. Sign + means that the
model supports the property, − that it does not. The abbreviations are FFNN=
feed-forward neural network and LR= multiple linear regression.

Decision Naive FFNN Nearest LR
trees Bayes neighbour

Non-linear boundaries + (+) + + −
Accurate on small training sets − + − − +
Works with incomplete data − + + + −
Works with mixed variables + + − + −
Natural interpretation + + − − +
Efficient reasoning + + + − +
Efficient learning +/− + − No learning +
Efficient updating − + + − +

trees and naive Bayes) have a comprehensive visual representation.

The last criteria concern the computational efficiency of classification, learning, and
updating the model. The most important is efficient classification, because the
system should adapt to the learner’s current situation immediately. For example, if
the system offers individual exercises for learners, it should detect when more easier
or challenging tasks are desired. Nearest neighbour classifier is the only one which
lacks this property. The efficiency of learning the model is not so critical, because
in our paradigm it is done only once after the course. It should be noticed that the
nearest neighbour methods do not build an explicit model and the learning criterion
is irrelevant. In some paradigms the models can be efficiently updated, given new
data. This is an attractive feature for the ViSCoS project, because we can add the
newest drop-outs into the data set, when the course results are still unknown.

An important observation is that there is always a wrestling between efficiency and
accuracy: with suitable independence assumptions and approximation techniques
we can speed up the model learning, but at the cost of accuracy. Efficiency and
accuracy also depend on the specific data set: some methods work very well with
low-dimensional data, but are intractable or poor with high-dimensional data. This
means that we can suggest only some guidelines concerning the efficiency and ac-
curacy of the given method.
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7.7 Empirical comparison of classifiers for the ViS-

CoS data

In this section we compare two of the most promising candidates for classifying the
ViSCoS data, multiple linear regression and naive Bayes models. The empirical
comparison has been reported in [HLS06]. In the same paper we demonstrate, how
results of descriptive analysis can be utilized in constructing classifiers. A similar
approach has been reported in [LHM98], where decision rules were inferred from
association rules.

Because generalization ability is more important than a small training error, we
have performed 10-fold cross-validation to estimate the classification accuracy on
new data points. The classification accuracy is estimated by true positive (TP ) and
true negative (TN) rates. The average TP and TN rates for all linear regression
(LR) and naive Bayes (NB) models are presented in Table 7.6. To evaluate the
general accuracy, we have calculated the relative operation characteristic (ROC)
score, ROC = TP

1−TN
(Table 7.7).

An important option is that we should be able to classify the course outcomes
as early as possible. Thus, the most important model structures are A → FR1,
A,B ⇒ FR1, TP1 → FR2, TP1, D ⇒ FR2, and TP1, D, E ⇒ FR2. In the end
of the course (when all task points are known) the predictions are of course more
accurate, but it does not benefit so much any more.

Table 7.6: Comparison of prediction accuracy of LR and NB models. The prediction
accuracy is expressed by the true positive TP and true negative TN rates. All
models have been evaluated by 10-fold cross-validation and the classification rates
have been averaged.

Model structure LR rates NB rates
TP TN TP TN

A ⇒ FR1 0.83 0.47 0.96 0.31
A,B ⇒ FR1 0.91 0.72 0.80 0.81
A,B,C ⇒ FR1 0.93 0.81 0.83 0.81
TP1 ⇒ FR2 0.70 0.68 0.96 0.53
TP1, D ⇒ FR2 0.78 0.84 0.76 0.61
TP1, D, E ⇒ FR2 0.76 0.89 0.82 0.87
TP1, D, E, F ⇒ FR2 0.70 0.92 0.80 0.87

The most interesting and encouraging result is that both modelling paradigms were
able to predict the course performance for more than 80% of students, when the
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Table 7.7: ROC scores for LR and NB models.
Model structure LR NB
A ⇒ FR1 1.566 1.391
A,B ⇒ FR1 3.250 4.211
A,B, C ⇒ FR1 4.890 4.368
TP1 ⇒ FR2 2.188 2.043
TP1, D ⇒ FR2 4.875 1.949
TP1, D, E ⇒ FR2 6.909 6.308
TP1, D, E, F ⇒ FR2 8.750 6.154

course was still on. This is especially surprising in the Prog.1 models, where no
previous information is available and the predictions are totally based on exercise
points. In the Prog.2 models the Prog.1 performance is already known. LR and NB
models TP1, D, E ⇒ FR2 give especially valuable information, because drop-out
and failing are bigger problems in Prog.2 course and these models are able to predict
the outcomes when only three weeks of the course has passed.

An important observation is that both modelling paradigms suffer from strong cor-
relations between B and C and E and F . Especially, adding the F attribute to the
previous model decreases the prediction accuracy in both LR and NB models.

When we compare the ROC scores, we observe that LR models have a better clas-
sification accuracy in all models but A,B → FR1. Linear regression outperforms
naive Bayes especially in models TP1, D → FR2 and TP1, D, E, F → FR2. This
is mainly due to NB’s over-simplified model structure – the attributes contained
only binary-valued information (whether a student had got a little or a lot of points
in a given category). In addition, the NB models can suffer for poor discretization
of numeric data. The Prog.1 data set contains 14 inconsistent data points and the
Prog.2 data set 12 inconsistent data points. This means that the upper bound for
classification accuracy in A,B, C → FR1 is 0.89 and for TP1, D,E, F → FR2 0.86
and no model can achieve better accuracy.

In the future we will study better discretization methods and enlargements of naive
Bayes models. Naive Bayes models are attractive, because they are more general
than the multiple linear regression and we expect them to adapt better to a new
course setting with different tasks and maximum points. In addition, they produce
probabilities, which are more informative than deterministic predictions.

According to our initial tests with those students who had filled the course pre-
requisite questionnaire, we expect even better classification accuracy in the future.
Currently only 60% of students had filled the query, but we could find strong de-
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pendencies between the previous programming skills and the course performance
in both courses. Another important factor that should be queried is the student’s
knowledge in mathematics, which is known [Pag03, Dev03] to have a strong corre-
lation with the programming skills.
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Chapter 8

Implementing adaptivity in
learning environments

In the previous chapters we have discussed methods for different modelling tasks.
We have applied the techniques to the ViSCoS data, which contains only exercise
points and final results. Now it is time to combine all these techniques and give
general principles for implementing adaptivity in learning environments. The main
task is to detect the learner’s current state (specific requirements and preferences)
and select the most appropriate action. The data set is much larger and diverse than
in the previous applications: for a fully adaptive system we have to gather more
data about the students, their previous knowledge, and preferences. The system log,
which contains the whole action history, is also a valuable source of information. In
addition, we assume that the system will be equipped with different kind of sensors,
which offer a flexible user interface but also more information for adaption.

In the following we will first introduce the general framework of context-aware com-
puting. Then we introduce three general principles for implementing adaptivity in
practice. The first two principles describe action selection in two situations. In the
first case we infer first the user’s situation and then select the most appropriate
action, while in the second case we infer the action directly by social filtering. The
third principle describes how temporal information can be utilized in adaption.

8.1 Adaption as context-aware computing

To restrict the future development of adaptive learning environments as little as
possible, we have adopted a wide (and visionary) view of context-aware computing
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(ubiquitous computing, ambient intelligence) (see e.g. [DA99, CK00]), in which the
whole context – the user, her/his actual situation and all relevant information –
is used for determining the most appropriate action. In the traditional learning
systems this information is gathered directly by the application, but in addition
several sensors can used.

The common personal computer can be equipped with microphone, camera, light-
pen, data-glove, etc. which recognize the user and observe her/his interaction with
the system. There are already applications which analyze voice and camera images
to infer the user’s current task, mood, or intention [SSP98, TSV03, SYW01].

Mobile devices are especially useful, because they are carried by the user. We can
get user’s location and near-by people by GPS (global positioning system). This
is a useful property for example in mobile learning. Indoors, the location can be
recognized by a network of ultrasonic or radio beacons. The change of orientation
(movements) can be recognized by inertial sensors (acceleration and rotation), mo-
tion sensors (change of motion) or camera. IR (infra-red) sensor reveals proximity
of humans or other warmth sources. Light level, temperature, pressure and CO gas
can be measured by simple sensors. In special education we can even utilize bio-
logical sensors, which measure pulse, blood pressure, and body temperature. For
example, dyslexia is affected by stress and emotional factors and it often causes
secondary symptoms like increase of body temperature.

Contexts are usually divided into primary and secondary contexts. The primary or
low-level context means the environmental characteristics which can be observed
directly by sensors: location, time, nearby objects, network bandwidth, orientation,
light level, sound, temperature, etc. They can either measure the physical parame-
ters in the environment or logical information gathered from the host (e.g. current
time, GSM cell, selected action) and the sensors are called physical or logical, cor-
respondingly [SAT+99]. The secondary or high-level context means a more abstract
context, which is derived from the primary context: the user’s social situation,
current activity, mental state, etc.

However, this division is quite artificial. The features which are secondary contexts
for some applications, can be further processed and combined to offer more high-
level contexts for the other applications. Thus, we have adopted a hierarchical view
(Figure 8.1), in which we have a continuum of contexts in different abstraction
levels. In small systems there may be no need to separate sensor processing and
context inference from the actual application, but generally it is more efficient to
separate these tasks. If the same contexts are used in several applications, the sensor
processing and extracting low-level contexts can be managed in one place. This also
reduces the data overload, when preprocessing and compressing the data has been
done on the low level.
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Figure 8.1: A hierarchy of contexts between sensors and applications.

In adaptive learning systems the hierarchical view is especially appropriate. The
special nature of educational applications is manifested only in the highest levels,
where we should define the high-level contexts and select the most suitable actions.
Most of data is originated from logical sensors and thus already higher-level data,
which does not require preprocessing. Typically we have small but clean data sets
containing discrete valued data. The physical sensors offer also valuable information,
but their processing does not differ from other applications and we can use general
context servers, which preprocess the sensor data and extract the low-level contexts.

8.2 Action selection

The main problem is the following: We are given a set of contexts, C = {c1, ..., ck}
and a set of actions A = {a1, ..., am}. The task is to determine the most appropriate
action, aj, in the given situation described by data point x. In the ideal case the
current situation x corresponds to one of the predefined contexts ci and it is enough
to select the optimal action, given ci. However, in practice the situation may contain
features from several contexts, but it does not fit any of them precisely.

There are basically two approaches: either we first infer the current context and then
select the action in it or we select the most appropriate action directly. The first ap-
proach is preferable in most educational applications, because the context contains
also important information and selecting the ”best” action is not so straightforward.
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The latter approach, known as social filtering or collaborative filtering, suits for sit-
uations, where we do not have any previous data and we can trust the users’ ability
to select the best actions.

8.2.1 Inferring the context and selecting the action sepa-
rately

In the first approach we assume that the set of possible contexts, C = {c1, ..., ck}, is
known. If it is unknown, we can cluster the data and identify the main clusters as
contexts. The user’s current context is determined by classification, and the action
is selected according to a given set of rules. Both classification and rule selection can
be performed either in a deterministic or probabilistic way. Deterministic approach
is used in traditional intelligent tutoring systems, although the classifiers are seldom
learnt from data. In some systems the actions are selected by probabilistic rules,
but the rules are predefined by system designers.

When the classifiers and action selection rules are learnt from the data, probabilis-
tic models are more realistic. In this approach the classifier produces a probability
distribution of contexts, P (C = ci|x), ..., P (C = ck|x), given data point x which de-
scribes the current situation. The actions are selected by probabilistic rules of form
”If context is ci, then select action aj with probability p”. These can be interpreted
as conditional probabilities P (A = aj|C = ci) = p, which give the probability of an
action to be most appropriate or desired in context ci.

Example 12 Let us have three possible contexts C = {a, b, c} and three possible
actions A = {action1, action2, action3}. For example, a, b, and c correspond to dif-
ferent reasons for an incorrect task solution, like a=”Student is frustrated”, b=”The
task is too difficult”, c=”The student is missing essential knowledge”. The actions
could be e.g. action1=”Show and explain the correct solution”, action2=”Generate
a new, easier task”, and action3= ”Give support material for reading”.

The current situation (data point x) has been classified probabilistically with values
P (C = a|x) = 0.5, P (C = b|x) = 0.3, P (C = c|x) = 0.2. I.e. context a is the
most probable one and would have been selected in the discriminative approach. The
associated actions and their probabilities are

a → action1 (0.6), a → action2 (0.4)
b → action3 (0.6), b → action2 (0.4)
c → action3 (0.6), c → action2 (0.4).

The deterministic policy would select action1, which is the most appropriate in
the most probable context (i.e. if the student is frustrated, the correct solution is
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shown). However, the other contexts do not support this action. If we calculate the
probabilities for all actions we get:

P (A = action1) = 0.5× 0.6 = 0.3
P (A = action2) = 0.5× 0.4 + 0.3× 0.4 + 0.2× 0.4 = 0.4
P (A = action3) = 0.5× 0.2 + 0.3× 0.6 + 0.2× 0.6 = 0.3.

So, in fact action2 (generate a new, easier task) is most probably the desired one,
and action1 and action3 are equally probable.

The best classification method is problem-dependent, but according to our analy-
sis (Table 7.5), simple Bayesian networks are most suitable for educational data.
Bayesian networks suit well for classifying high-level contexts, because the data is
typically discrete and the attribute domains are small. Another attractive feature
in Bayesian networks is that we can combine the probabilistic action selection rules
into the same model with the classifier.

There are several ways to learn the probabilistic rules for action selection. Typically
the personalized systems require a learning phase, where the user has to teach the
system. Often, the user is asked to fill an explicit query to give initial data for the
system, but most users prefer to teach the system on-line, when it is actually used.
That is why we will now concentrate on such continuous or on-line learning (see
e.g. [MCF+94]).

In the beginning, the user has to do everything manually and the system is only
observing and recording varying contexts and actions selected. When the learning
proceeds, the system begins to make suggestions. The learning continues, but be-
comes the more invisible the more data the system has collected. Finally, the system
becomes so adapted that the user has to intervene only in exceptional situations.

The main problem of this approach is that it cannot adapt to new situations. Ex-
plicit teaching is worksome and continuous learning takes time. In addition, the
system cannot suggest new actions, which may be more appropriate than the previ-
ously selected ones. Especially in educational applications the user may not select
her/himself the best actions for learning.

One solution is to set default values for actions. These default values can be defined
by system designers or learnt from previously collected action history. The best
way is to collect first data from test use and construct a descriptive model, which
reveals if there are typical selections in some situations (contexts). The simplest
way is to search association rules between high-order contexts and actions. This also
reveals the frequency of contexts (i.e. the most common and the rarest contexts),
in addition to most typical actions. In educational applications we may also want



154CHAPTER 8. IMPLEMENTING ADAPTIVITY IN LEARNING ENVIRONMENTS

to favour actions which produce good learning outcomes. For this purpose we can
select only those students’ data who have performed well compared to their starting
point.

8.2.2 Selecting the action directly

Social information filtering (see e.g. [SM95]) offers a way to select the most ap-
propriate action directly. In this approach we utilize the information about other
users’ actions and select the action which has been appropriate for other users in
the similar situations.

Social filtering methods are nowadays very popular in recommendation systems, for
example proposing personally selected learning material [CLC05, Lee01, PGMK02].
The idea is to recommend new items to the user based on other, similar users’
preferences. Typically, the similar users are determined by comparing user profiles.
An initial profile may be constructed according to an explicit query or it can be
learnt from the user’s previous selections. The user profiles can be compared in
several ways, for example by computing the mean square difference or Pearson
correlation of profiles. It should be noticed that we are partially clustering the users
by defining the nearest neighbours.

A similar method is used in HITS algorithm [Kle99] for searching most relevant
Internet pages. In HITS the pages are assigned hub and authority values, according
to how good pages (authorities) they refer and how good pages (hubs) they are
referred by. The principle idea is that good hubs refer to good authorities and good
authorities are referred by good hubs. There are several ways to select the initial
set of pages, V . A common way is to use another (content-based) search engine
results and add all pages referred by them and some or all of the pages referring
to them. The links construct a graph structure with edges E = {(p, q) | p, q ∈
V, p refers to q}.
In the beginning we initialize hub values x(p) and authority values y(p) for each
page p ∈ V such that

∑
p∈V x(p)2 =

∑
p∈V y(p)2 = 1. This normalization is repeated

after each update cycle. The hub and authority values are updated by equations

x(p) =
∑

(p,q)∈E y(q) (sum of authorities pointed by p)

y(p) =
∑

(q,p)∈E x(q) (sum of hubs pointing to p).

I.e. the hub values are updated according to the authority values and the author-
ity values according to the hub values, until the system converges and the best
authorities are output.
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The HITS method can be easily applied to other recommendation systems, too.
For example, Chen et al. [CLC05] have introduced a system, which recommends the
learner material, which corresponds to her/his knowledge level.

Example 13 Let us consider a system, in which students collect and recommend
good learning material for each other. We can define good material such that is
recommended by competent readers and competent readers such who recommend good
material. When we should recommend new material for a student, we construct an
initial graph from the material liked by the student her/himself, all other students
who have liked the same material, and other material liked by them. Material is
associated an authority value, according to the students who recommend it, and
students are associated hub values, according to which material they recommend.
Then we can run the HITS algorithm and output the best material with the highest
authority values.

The social filtering methods are especially useful, when we should define the most
appropriate action in a new situation. The idea is to find similar contexts (similar
users and/or similar situations) and select the most popular action in them. The
profile consists of lower-level contexts C1, ..., Cn (one of them possibly indicating the
user) with their assigned values. The similarity function can be simply the mean
squared difference or we can give more impact on some elements, e.g. favour the
profiles of the same user.

It should be noticed that these implicitly defined high-level contexts are very narrow:
we assume that each context contains only one action. It is very hard to select an
action, if a procedure of several actions is performed in one context. In such cases
we should first compose the atomic actions into larger procedures.

In the application of the HITS algorithm we cluster the contexts only according to
their actions. First, we construct a graph of current context, all actions selected in
it, all other contexts in which the same actions are used, and all their actions. This
set may be too large and we can prune it according to lower-level contexts. The
action values are initialized by the number of contexts in which they were selected
and the contexts are initialized by the number of actions used in them. The values
are normalized and updated by the normal manner, until the system converges.
Finally, the action or actions with the highest values are selected.

This system is easy to implement, it works in new situations, and quite probably
it pleases the user. But in educational environments we have one special problem:
what pleases the student, it not always the same as the best action. For example,
if a student has tendency for laziness, the system may recommend her/him to sleep
in the lecture, like the other similar students have done. Thus we should define the
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goodness of an action very carefully. This requires existing data about students’
actions and learning performance. For a lazy student, the best actions would be
such which have activated other similar students and led to good results. Thus, we
should give weight according to students’ success.

8.3 Utilizing temporal information in adaption

In learning environments we often have log data, which offers extra information for
context inference. Depending on the application and individual user, the context
changes can follow some temporal patterns. For example, after a lecture the student
goes for a coffee break and wants to switch the system off. After loading a new task,
s/he wants to read the related lecture slides, before solving the task.

The simplest approach is to use the data about the user’s previous contexts in
addition to currently observed data for predicting the current context. This can
be achieved by hidden Markov models (HMM) (see e.g. [DHS00][128-139]). In the
following we give instructions how to apply hidden Markov models in adaptation,
how to learn them from educational log data, and represent all variables in the form
of dynamic Bayesian networks.

8.3.1 Hidden Markov model

Definition 28 (1st order Hidden Markov model) Let C = {C1, ..., Ck} be a
set of binary-valued contexts and O = {O1, ..., Ol} a set of observed variables. The
1st order Hidden Markov model is a four-tuple (C,O, θ1, θ2), where θ1 describes
the transition probabilities P (Ci|Cj), i, j = 1, ..., k, and θ2 describes the observation
probabilities P (Oi|Cj), i = 1, ..., l, j = 1, ..., k.

In hidden Markov models it is assumed that the contexts cannot be observed di-
rectly, but we have to infer them from observations. That is why the variables
C1, .., Ck are called hidden. This is especially feasible assumption in learning en-
vironments, where the contexts often describe unobservable variables like the stu-
dent’s skills or motivation. The log data contains only observable variable values
O1(t), ..., Ol(t) at each time step t.

When we learn a hidden Markov model, we assume that at each time step the user
is in one context, C(t), and the value of variables O at time step t, O(t), depends
on only the current context C(t). In addition, we assume that the parameters θ1

and θ2 are constant for all time steps. Given only the number of contexts, k, the
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...

...

C(0) C(1) C(2) C(T)

O(T)O(2)O(1)O(0)

Figure 8.2: A Markov chain of contexts C(0), ..., C(T ) with associated observations
O(0), ..., O(T ).

task is to learn parameters θ1 and θ2 from the data. This is a difficult problem and
in practice we restrict the model space by additional assumptions. In the 1st order
HMM we assume the Markov property that the current state C(t) depends on only
the previous state C(t− 1):

P (C(t)|C(0), ..., C(t− 1)) = P (C(t)|C(t− 1)).

In the 1st order HMM the data can be represented as a Markov chain (Figure 8.2).
In the kth order HMM we generalize the Markov property and assume that the
current state depends on the previous k states, i.e.

P (C(t)|C(0), ..., C(t− 1)) = P (C(t)|C(t− k), ..., C(t− 1)).

Hidden Markov models can be generalized by allowing dependencies between obser-
vation variables (lower level contexts), e.g. O(t) depends on k previous observations,
O(t− 1), ..., O(t− k), in addition to the current context C(t). When the goal is to
select the most appropriate action, it is useful to add action variables A and de-
pendencies between them into the Markov model like proposed in Figure 8.3. This
model takes into account actions which typically proceed each other. It is especially
useful, when a context is associated by a procedure of actions, instead of a single
action. Once again it is possible that the actions depend on several previous actions
and a higher order model is needed.

Example 14 Let us consider a simple learning environment, in which students
can solve tasks, read learning material, write learning diary, and communicate with
other students. Thus, we have four high-level contexts and each of them can be
accompanied by several actions. When we have analyzed the log data, we have
found the following patterns: Students check the material very often, when they are
doing something else. Reading and communication with other students are typically
related, but the order is not fixed. When the student is writing a learning diary,
s/he very seldom communicates with other students. According to this information
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...

...

A(0) A(1) A(2) A(T)

C(0) C(1) C(2) C(T)

O(0) O(1) O(2) O(T)

Figure 8.3: A Markov chain of contexts C(0), ..., C(T ) with associated observations
O(0), ..., O(T ) and actions A(0), ..., A(T ). Now the actions depend on previous
actions, in addition to current context C(t).

and their related probabilities, we have constructed a HMM model in Figure 8.4.
Notice that we have not defined explicit time steps, but only the relative order of
contexts. A new action constitutes a new time step, but the length of time steps can
vary freely. The graph structure is complete, because the student can always enter
any context.

Task
solving Learning
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Figure 8.4: A 1st order hidden Markov model describing the change of contexts in
a learning system.

8.3.2 Learning hidden Markov models from temporal data

Learning a hidden Markov model accurately is a difficult problem, because the
model can be very complex. Because the educational data sets are typically small
and sparse, we recommend to use as simple Markov models as possible. In addition,
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we can restrict the search space by analyzing the temporal patterns first by de-
scriptive means. It is quite likely that only some contexts, observations, or actions
are statistically dependent and we do not have to model all possible relations. We
suggest to analyze the temporal data first by episodes (see e.g. [MT02]). In the
following we define the episode for any kind of events, which can be either observed
variable values or actions recorded into the log. In practice, the number of possible
variable value combinations or actions is often too large and we have to group them
according to their type.

Definition 29 (Episode) Let A1, ..., Al be a set of event types, and (A, t) an event,
which describes the event type at time step t. Given an event sequence,
s = ((A1, t1), ..., (An, tn)), a sequence of action types, Ei = (Ai1 , ..., Aik), and a
window width, win, we say that episode Ei occurs in s, if s contains a subsequence
w, |w| ≤ win and for all Aij ∈ Ej there is an event (Aij , t) ∈ w for some t.

If all Aij ∈ Ei occur in w in the same order than in Ei, the episode is called serial.
Otherwise it is parallel.

The frequency of episode Ei in s, given win, is

fr(Ei, s, win) =
|{w | Ei occurs in w, |w| ≤ win}|

tn − t1 + win− 1
.

If fr(Ei, s, win) ≥ minfr for some user-defined minfr > 0, we say that episode Ei

is frequent.

Now frequent serial episodes describe a sequence of contexts which typically succeed
each other (e.g. context ci succeeds context cj with probability p). If the contexts
succeed immediately, we can use 1st order HMMs, otherwise higher order HMMs
are needed. Parallel episodes describe a set of contexts which occur closely, but
the order is not fixed. In this case, the HMM should contain transitions to both
directions (from ci to cj and from cj to ci) and, once again, a higher order HMMs
may be needed. If a context does not have any typical successor, all other contexts
are equally probable.

8.3.3 Dynamic Bayesian networks

The idea of hidden Markov models can be enlarged by dynamic Bayesian networks
(DBNs) [Kja92]. The only difference is that the observations are organized as a
Bayesian network. DBNs offer a nice solution to embed the dynamic nature of the
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system into classification, by combining a hidden Markov model with a Bayesian
classifier.

A dynamic Bayesian model consist of a Markov chain of hidden state variables (1st
order HMM) and a series of Bayesian networks, each of them associated with one
hidden state. Any kind of Bayesian networks can be used for classification, but
general Bayesian networks are often too complex relative to the amount of data
available. Thus, we propose to use naive Bayes classifiers or other simple structured
Bayesian models. In dynamic naive Bayes model [HKLP99] both root variable X0

and leaf variables X1, ..., Xn of the naive Bayesian network can depend on hidden
state variable C. The model structure is represented in Figure 8.5.

X0(t−1)

X2(t)
Xn(t)

X0(t)

X1(t−1)
X2(t−1) X1(t+1)

X2(t+1)

Xn(t+1)
X1(t)Xn(t−1)

...
...

...

X0(t+1)

C(t−1) C(t) C(t+1)

Figure 8.5: A dynamic naive Bayesian model.

In context-aware applications we can catch the unknown and unmeasurable highest
level contexts like the student’s actual skills, intention, or motivation by hidden vari-
ables C(t). The root variable, X0(t), corresponds to the highest level context which
can be observed, e.g. the user’s current action, and leaf variables X1(t), ..., Xn(t)
correspond to lower level contexts. This model is especially attractive for context-
aware applications, because it separates predefined high-level contexts (X0(t)) and
real but unobservable contexts behind them (C(t)).

Example 15 Let us consider a personal digital assistant designed for university
students. In addition to normal calendar and communication services it contains
facilities for recording lectures, writing notes, drawing pictures, and storing learning
material. In the learning mode the highest level observable context is the user’s
action (reading, writing, drawing, talking, or listening), and the low-level contexts
are abstractions of the sensor measurements (e.g. position of hands, focus of eyes,
nearby people, sound volume). We assume that the user’s intentions would define
the highest level context, but they are hard or impossible to measure and classify. For
example, when the exam is coming the student wants to keep a complete record about
the last lecture, but in a group work session s/he is passive and writes down minimal
notes. The activity and intentions may depend on several factors like course, topic,
lecturer, other students, weekday, time of day, etc.
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Figure 8.6: A hidden Markov model and a naive Bayesian model for the university
student’s digital assistant.

The system can be modelled by a dynamic Bayesian network which consists of a
three state hidden Markov model and a naive Bayes model (Figure 8.6). This model
can already be used for prediction, but we can try to analyze what the hidden states
describe. In state S1 the student mostly listens, her/his eyes are sometimes closed,
and there are other people near by. This may be a passive lecture situation. In state
S2 s/he writes and draws actively, sometimes reads, but there are no other people.
This seems like active self-studying, e.g. solving exercises. In state S3 s/he talks
and listens, sometimes writes, and there are other people near by. This situation
suggests either an active group meeting or free time with friends. Thus, it seems that
the student is very passive in lectures, but active in self-studying and group works
(and/or social life with friends). Now we can also try to interpret the transitions of
the hidden Markov model. It looks like our student goes usually to lectures and have
breaks or group sessions between them. Sometimes she goes to study herself after
the lecture, but never after the group session and/or social activities.

In the same way we could add any other probabilistic classification methods to the
hidden Markov model. In this case, the HMM gives only the prior probabilities
for the contexts and otherwise the classification is done normally. The same can
be done, if we use probabilistic clustering in social filtering approaches. The only
difference is that now we have to learn the HMM for actions instead of contexts.
HMM gives the prior probability of an action, given the previous action(s), and the
probabilities are updated according to the actions used in the similar situations. All
three paradigms can be combined, if we use classification for context inference and
social filtering for action selection, with HMM dynamics added to both of them.
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Chapter 9

Conclusions

In this thesis we have given a wide overview of modelling educational data. The
main goal has been to define general principles for designing adaptive learning envi-
ronments. The core of such systems consists of predictive models, which determine
the situation and select the most appropriate action. For full adaptivity, such models
should be learnt from real data. However, the current systems use mostly prede-
fined ad hoc models. Sometimes the model parameters are learnt from data, but
in all general purpose systems the model structure is predefined. This is a serious
restriction to adaptivity; if we put it very strongly, the learners are fit to the model,
instead of fitting the model to the learners.

As a solution, we have proposed a dual principle of descriptive and predictive mod-
elling, in which descriptive data analysis guides the construction of predictive mod-
els. The idea is that descriptive modelling produces accurate domain knowledge,
which is used as a semantic bias in predictive modelling process. When the predic-
tive models are applied in practice, new data is gathered for descriptive modelling
and models evolve in an iterative manner. This principle is the main thread in this
thesis.

The main results of this research are the following:

� Systematic analysis of educational data sets revealed that educational data
sets are typically small, sparse, and skewed; they consist of mixed data types,
and contain relatively many outliers.

� The main criteria for selecting the modelling paradigm and a model is to pro-
duce accurate and robust models, which have comprehensive interpretation.
To achieve this goal, we have to analyze the inductive bias in the modelling

163



164 CHAPTER 9. CONCLUSIONS

paradigm, learning style, and learning algorithm and select methods which
match the properties in data.

� The analysis of clustering methods revealed that none of the existing methods
is optimal for educational data, but probabilistic clustering is the most useful.
In some cases we can get good results by discretizing the data to binary, and
clustering the binary-valued data.

� The analysis of classification methods proposed simple classifiers, multiple
linear regression for numeric data and naive Bayes classifier and its extensions
for categorial or mixed data.

� The empirical experiments on the ViSCoS data demonstrated that accurate
classifiers can be learnt from small and inconsistent data sets. This presup-
poses careful data preprocessing and model selection based on dependency
analysis. We were able to predict the course final results (pass/fail) with 80%
accuracy in the middle of course. In addition, we could detect outliers, whose
final results were unpredictable, given only exercise points in Prog.2 data.

The research has also revealed several important topics for further research:

� The effect of data preprocessing techniques on clustering quality and classi-
fication accuracy should be further researched. Especially, we should study
whether principal component analysis and independent component analysis
suit for educational data sets.

� The optimal discretization of numeric data is crucial for models which use
categorial or binary data. In the future, we will test discretization by segmen-
tation (1-dimensional clustering).

� Support vector machines are known to be good classifiers for small and sparse
data sets. Their applicability to educational data should be researched. In
addition, we should research how to represent the model in a comprehensive
way to teachers and students.

� Variations of probabilistic clustering should be further researched. Especially,
we should develop a method for analyzing the appropriate distributional form
for clusters.

� New clustering methods should be developed for detecting maximal homo-
geneous clusters in heterogeneous data. One option is to develop our new
BinClust method further. Outlier detection techniques should also be further
studied.
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� In this thesis we have assumed that all data is represented by attribute-value
pairs. In the educational domain we have at least one important source of data,
namely concept maps, which have a more complex structure. New techniques
are needed for analyzing and clustering such graph-based data.

� In the ViSCoS project we have already collected new data in prerequisite
questionnaires. This data should be analyzed and utilized in modelling. New
temporal data is also available for analysis in the form of system log.
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Appendix: Basic concepts and notations

Data representation

In this thesis we assume that the data is represented as relations. The basic concepts
and notations are defined by relational algebra (Table 9.1).

Table 9.1: Basic concepts and notations concerning data representation.

Notation Meaning
Ai An attribute (variable).
Dom(Ai) Domain of attribute Ai; i.e. the set of possible atomic values.

(The atomicity is defined in the given data model.)
R(A1, ..., Ak) A relation schema is a finite set of attributes R = {A1, ..., Ak}.
|R| = k Order of relational schema, i.e. number of attributes in R.
t = {(A1, t(A1)), ..., (Ak, t(Ak))} A tuple (row) is a set of attribute–value pairs. Formally,

t is a mapping t : R →
k⋃

i=1

Dom(Ai) for which

t(Ai) ∈ Dom(Ai) ∀i = 1, ..., k.
t = (a1, ..., ak) Tuple t = {(A1, a1), ..., (Ak, ak)}, when the order of attributes

is fixed.
r (given R) A relation according to R (an instance of R) is a finite set of

tuples according to R.
|r| Size of relation r, number of tuples in r.
t[X] = (t(A1), t(A2), ..., t(Ak)) Projection of tuple t onto attribute set X, i.e. values of
∀Ai ∈ X ⊆ R attributes X in tuple t.
πX(r) = {t[X] | t ∈ r} Projection of relation r onto attribute set X.
E(t) ∈ {0, 1} Condition E is a logical expression of attributes, attribute

values, comparison operations =, <,≤, >,≥, 6= and logical
operations ∧, ∨ and ¬. E(t) = 1, if conditon E holds for t,
and 0, otherwise.
E.g. E1 = (Gender = female) ∨ (20 ≤ Age ≤ 30).

σE(r) = {t ∈ r|E(t)} Selection of rows from relation r given condition E. The
results is a subset of tuples in r for which condition E holds.

In addition, it is often useful to suppose that all tuples have an identifier or a key
attribute Aid such that for all tuples t1, t2 ∈ r, t1 = t2 when t1[Aid] = t2[Aid]. If the
row order is fixed, the row number can simply be used as an identifier.

Frequencies and probabilities

The basic concepts and notations concerning frequencies and probabilities are sum-
marized in Table 9.2. Notice that in data mining literature concept ”frequency”
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usually refers to relative frequency.

Table 9.2: Basic concept and notations concerning frequencies and probabilities.
Notation Meaning
m(F ) = |σF (r)| The (absolute) frequency of feature F is the number of tuples, for which

feature F holds. E.g. m(credits in math ≥ 10) tells the number of students,
who have collected at least 10 credit units in math.

fr(F ) = m(F )
|r| Relative frequency of feature F tells the ratio of absolute frequency of F

and size of r.
P (X) Probability of X. In the frequentist interpretation P (X) ≈ fr(X).
P (X|Y )P (X,Y )

P (Y ) Conditional probability of X given Y . In the frequentist interpretation

P (X|Y ) ≈ fr(X,Y )
fr(Y ) .

We have adopted the frequentist interpretation of probabilities, where the probabil-
ity of feature F is approximated by the relative frequency of F in the given sample.
Although this is only an approximation, the relative frequency of F converges to
real probability P (F ), when the sample size n grows indefinitely. This result is
based on Bernoulli’s Theorem, which states that the probability that the observed
distribution deviates from the real probability approaches zero, when the sample
size grows indefinitely:

∀ε > 0 : lim|r|→∞ P (|m(F )
|r| − p| ≥ ε) = 0.

Satistical measures

The definitions and notations of basic statistical measures used in this tesis are
summarized in Table 9.3. Mean, standard deviation, variance, and covariance are
defined for discrete numeric variables and median for discrete numeric or ordinal
variables.
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Table 9.3: Statistical measures and their notations used in this thesis. Mean, stan-
dard deviation, variance, and covariance are defined for discrete numeric variables
X and Y , but median is defined also for ordinal (categorial) variables.

Notation Meaning
mean(X) The mean of X, mean(X) =

Pn
i=1 xi

n .

stdev(X) The standard deviation of X, stdev(X) =
√Pn

i=1(xi−mean(X))2

n

var(X) The variance of X, var(X) = stdev2(X)
cov(X, Y ) Covariance of X and Y , cov(X,Y ) =

Pn
i=1(xi−mean(X))(yi−mean(Y ))

n

median(X) Median of X, median(X) =
{

xn/2+1, when n is odd
xn/2, when n is even.
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