
Attention and Program Knowledge in Visualising
Roles of Variables

Seppo Nevalainen

Licenciate Thesis

May 16, 2006

Department of Computer Science,
University of Joensuu, Finland

Abstract

One application area for visualisations in computer science is teaching of computer

programming. So far, the effectiveness of these visualisations has been evaluated em-

pirically mostly by measuring their long-term effects on learning programming, ex-

cluding possible short-term effects of visualisations andtheir relation to the long-term

effects. In our research, we will study short-term effects when visualising the roles

of variables with PlanAni program animator to novices learning programming. This

thesis presents the research methodology and its evaluation, and describes the first of

the experiments we will carry out during our research.

First, we conducted an experiment comparing the use of threeeye tracking devices

in the psychology of programming. On the basis of the results, we selected Tobii

1750 for measuring the eye movements in our research. Second, we analysed the

replicability of Good’s program summary analysis scheme. The investigation brought

forth some problems, that are reported. Third, we studied how a person targets her

visual attention, and what kind of a mental model she constructs concerning a computer

program, when the program and especially its variables are presented using either a

textual or a graphical program visualisation tool.

Preface
I would like to thank ...

My supervisors professor Jorma Sajaniemi and senior lecturer Marja Kuittinen for their

valuable guidance through these years without which the writing of this thesis would

not have been possible.

Pauli Byckling and Petri Gerdt for enjoyable and educational conversations about life,

the universe and everything, and for the collaboration in cognitive science studies and

various research questions.

People at the department office and at the department libraryfor making all the practi-

cal matters much easier.

Faculty of science at the University of Joensuu for providing a grant to support my post-

graduate studies, and the department of computer science atthe University of Joensuu

for providing several short-term positions to support my postgraduate studies.

This work was supported by the Academy of Finland under grantnumber 206574.

i

Contents

1 Introduction 1

2 Roles of Variables 6

2.1 Background on Roles of Variables 6

2.2 The Role Concept . 9

2.3 Visualising the Roles . 10

2.4 Roles of Variables in Teaching Elementary Programming 14

2.5 Empirical Evaluation of the Role Concept 15

3 Visual Attention and Eye Tracking 19

3.1 Introduction . 19

3.2 Eye Tracking Methodology . 20

3.3 Experiment . 23

3.3.1 Method . 24

3.3.2 Results . 27

3.4 Discussion . 28

3.5 Eye Tracking in Psychology of Programming Research 29

4 Mental Models and Program Summary Analysis 31

ii

4.1 Introduction . 31

4.2 Good’s Scheme . 33

4.3 Investigation . 36

4.3.1 Method . 36

4.3.2 Results . 39

4.3.3 Differences in Information Types 41

4.3.4 Differences in Object Description Categories 48

4.4 Discussion . 53

5 Short-term Effects of Graphical versus Textual Visualisation of Variables 56

5.1 Introduction . 56

5.2 Experiment . 57

5.2.1 Method . 58

5.2.2 Results . 61

5.3 Discussion . 65

6 Conclusion 69

Bibliography 72

Appendixes 81

A List of Roles of Variables (Sajaniemi and Kuittinen, 2003). 81

iii

Chapter 1

Introduction

People have used visualisations for achieving various tasks throughout their history.

For example generals have utilised maps in warfare and sailors have utilised star charts

during their travels. During the computer era, numerous visualisation tools have been

developed to be used in computer science education for taskssuch as teaching program-

ming and algorithms (e.g., ALADDIN (Helttula et al., 1989),ZEUS (Brown, 1991),

Jeliot (Haajanen et al., 1997), Eliot (Lahtinen et al., 1998), DISCOVER (Ramadhan,

2000), ANIMAL (Rössling and Freisleben, 2002)), and in the software industry for

tasks such as debugging and maintaining large programs (e.g., FIELD (Reiss, 1998),

ZStep 95 (Lieberman and Fry, 1998), SeeSoft (Eick, 1998), PV(Kimelman et al.,

1998)).

In computer science, the term visualisation can refer to situations, where people form

mental representations concerning for example algorithmsor computer programs on

the basis of information provided by a visualisation tool, or to the representation of

the information in the tool, depending on the context (Baecker and B.Price, 1998;

Hundhausen et al., 2002; Price et al., 1993).

One application area for visualisations in computer science is teaching of computer

programming, where the goal is to help students in evolving from programming

novices to experts. This is challenging, because programs deal with abstract entities—

formal looping constructs, pointers going through arrays etc.—that have little to do

with everyday issues, and that make learning to program difficult for many students.

Visualisation tools can be used for example to make programming language constructs

and program constructs more comprehensible (Hundhausen etal., 2002; Mulholland,

1

1998), and to illustrate expert programmers’ reasoning processes to the novices (Petre

et al., 1998).

A designer of an effective visualisation tool has to carefully choose the target of a vi-

sualisation, and decide how it should be presented to the viewer. Variables are a good

candidate for the target of visualisation, since they are central to the comprehension

of computer programs. Programs consist of variables, operations on variables, and

larger program constructs, such as functions, classes, andmodules. In a study by von

Mayrhauser and Vans (1995), information about variables was the most frequent infor-

mation need type among professional maintenance programmers. Several taxonomies

and frameworks (Myers, 1990; Stasko and Patterson, 1992; Price et al., 1993; Green

and Petre, 1996; Ainsworth and Labeke, 2002) can be utilisedin searching answers

for the question how information should be presented in order for a visualisation to be

effective.

Visualisation tools’ effectiveness depends on their ability to guide people’s thinking

into a desired direction by transforming information into ameaningful and useful (usu-

ally pictorial) representation, that helps the viewer to gain more understanding of the

target. Creating effective representations is not straightforward, since the human mind

is a “black box”, often even to the people themselves. The designer of the visualisa-

tions has to rely therefore on methods from for example psychology of programming

and cognitive psychology when evaluating the visualisations’ ability to produce the

desired mental representations in the viewer.

So far, visualisations have been evaluated empirically mostly by measuring the perfor-

mance of participants that have been shown the visualisation in relation to other par-

ticipants, who have been shown similar material without visualising it. Performance

has been measured either by comparing the scores of participants after the viewing, or

by comparing the change in the scores of the participants between before and after the

viewing. These post-tests and pre- versus post-tests of participants’s performance have

resulted in a body of evidence suggesting that properly designed visualisations can

have beneficial effects on the learning in the students (Hundhausen et al., 2002; Byrne

et al., 1999b; Hansen et al., 2000; Kann et al., 1997). However, these post-test or pre-

versus post-test evaluations do not provide clear insight into the possible short-term

effects of visualisations and their relation to the long-term effects. In other words, the

results tell us if the visualisations of an individual visualisation tool are being helpful

of unhelpful, but they do not tell us much about what effects take place during the use

2

Figure 1.1: Interaction between visualisation, visual attention and mental model. The

content of the mental model may be influenced both by the content of the visualisation,

and by the distribution of the visual attention between different parts of the visualisa-

tion.

of the visualisation tool and how these effects build up intothe overall helpfulness or

unhelpfulness of the tool.

In our research, we will study these short-term effects whenvisualising the roles of

variables. Roles of variables is a cognitive concept that has been developed by Sa-

janiemi (2002), and that can be utilized in teaching programming to novices. Roles of

the variables can be visualised with PlanAni program animator (Sajaniemi and Kuit-

tinen, 2004), in which the data contained in the variables and the code of a computer

program are animated concurrently. The goal of the visualisation is to portray expert’s

tacit knowledge concerning the behavior of variables during program execution in a

way that is accessible to novice programmers.

Earlier research has found support for positive long-term effects of the visualisation

of roles for learning (Byckling and Sajaniemi, 2005; Sajaniemi and Kuittinen, 2005).

Our aim is to find answers to the questions what short-term effects the visualisation of

roles has on the viewer and how these relate to the overall benefit of the visualisation.

This would help us understand better the detailed mechanisms through which the visu-

alisation of roles gains its usefulness and would provide some possible answers to the

general question of which visualisations are truly helpfulfor learning programming.

The context in which we conduct our research will be the visualisation of the roles of

variables during introductory programming courses. The viewers of the visualisations

3

will be novice-level students, who are at the start of their programming studies. We

will concentrate on investigating the interaction betweenthe form of visualisations,

the visual attention of the students, and the mental models students form concerning

computer programs when they view programs with PlanAni program animator (Figure

1.1). As Figure 1.1 indicates, the content of the mental model may be influenced both

by the content of the visualisation, such as images used to represent the roles, and by

the distribution of the visual attention between differentparts of the visualisation, such

as animations and code.

Information concerning visual attention will be measured using eye tracking, and it

can be used to provide insight into what the students found interesting, and possibly

even to provide a clue as to how they perceived whatever scenethey were viewing

(Duchowski, 2003). The contents of the students’ mental models will be investigated

by using Good’s program summary analysis scheme (Good, 1999) to analyse the pro-

gram summaries students form concerning the visualised programs. The contents of

the students’ mental models can be used to characterize the quality of comprehension

(Byckling et al., 2004).

In this thesis, I will give a description of the roles of variables that will be used as the

main target of visualisation in our research. I will also present our research method-

ology, that is eye tracking and program summary analysis. During our research, I will

conduct a series of experiments, in which the interaction between visual attention and

program knowledge in visualising roles of variables will beinvestigated in detail. In

this thesis, first of these experiments is described.

My research contributions are to:� Provide an empirical analysis concerning the appropriateness of eye tracking as

a psychology of programming research method.� Evaluate the inter-rater reliability of Good’s program summary analysis scheme.� Conduct an empirical investigation of the short-term effects of visualising vari-

ables with a textual and a graphical visualisation tool.

The rest of the thesis is organised as follows. In chapter 2 I will present the roles of

variables, PlanAni program animator that visualises them,and earlier results concern-

ing the long-term effects of visualising the roles. Chapter3 focuses on visual attention,

4

on utilisation of eye tracking in measuring visual attention, and on the question how

appropriate eye tracking is as a psychology of programming research method. Chap-

ter 4 speaks about mental models, about program summaries asa means for studying

mental models, and about Good’s program summary analysis scheme, that will be a

part of our research methodology. In chapter 5 I will describe an empirical experiment

that we carried out in order to study the short-term effects of visualising the roles of

variables and will present the results. Chapter 6 contains the conclusion.

5

Chapter 2

Roles of Variables

The roles of variables are chosen as the main target of visualisations in our research on

visual attention and program knowledge. The purpose of thischapter is to give reasons

that support this choice and to familiarise the reader with the role concept. First, I will

provide some background for the roles of variables and present its central ideas. Then

I will discuss the visualisation of the roles and their use inteaching elementary pro-

gramming. I will end the chapter with a presentation of the main results from the em-

pirical evaluation of the roles of variables concept as a pedagogical tool. This chapter

is based on the work of Sajaniemi (2002), Sajaniemi and Kuittinen (2003), Sajaniemi

and Kuittinen (2004), Kuittinen and Sajaniemi (2004), Sajaniemi and Kuittinen (2005),

Byckling and Sajaniemi (2005), and Sajaniemi et al. (Submitted).

2.1 Background on Roles of Variables

The knowledge about variables is central to the comprehension of computer programs.

Programs consist of variables, operations on variables, and larger program constructs,

such as functions, classes, and modules. The importance of variables in comprehension

of programs is supported by for example a study by von Mayrhauser and Vans (1995),

in which information about variables was found to be the mostfrequent information

need type among professional maintenance programmers.

In the research literature, the knowledge about variables has been presented either as

related to unique variables in unique programs or as relatedto variables on a general

6

PROGRAM BlueAlpha;

var Sum, Count, Num : INTEGER;

Average : REAL;

Counter Variable BEGIN

Plan ---------> Count := 0;

| ---> Sum := 0; Running Total Loop Plan

| | Read(Num); <-------------------

Running Total | | WHILE Num <> 99999 DO <-------|

Variable Plan | | BEGIN |

| -------> Sum := Sum + Num; <-------|

-------------> Count := Count + 1; |

Read(Num); <--------

END Skip Guard Plan

If Count > 0 THEN <----------------------------

BEGIN <------------------------|

Average := Sum/Count; <------|

Writeln(Average); <----------|

END <--------------------------|

ELSE <---------------------------|

Writeln(’no legal inputs’); <---|

END

Figure 2.1: A sample program: The running total loop plan (Ehrlich and Soloway,

1984).

programming knowledge -level, in such a way that the knowledge applies to theoreti-

cally all variables in all programs. For example Brooks (1977, 1983), von Mayrhauser

and Vans (1995), and Pennington (1987b) have used the first approach. General de-

scriptions of the latter type are typically referred as programming plans, or schemas

(von Mayrhauser and Vans, 1995; Ehrlich and Soloway, 1984; Pennington, 1987b).

7

Prior to the research on the roles of variables by Sajaniemi (2002), programming plans

and schemas related to variables have been studied by for example Ehrlich and Soloway

(1984), Rist (1991), and Green and Cornah (1985).

According to Ehrlich and Soloway (1984), variable plans consist of such aspects as

the variable’s role in the program (i.e. the function it serves), the way the variable

is initialised and updated, and a guard that possibly protects the variable from invalid

updates. A program example with variable plans is given in Figure 2.1.

In the example program, the variableCountserves as a counter variable, keeping track

of the number of numbers read in, andSumhas a role of a running total variable, be-

cause it is accumulating the sum of the numbers read in.Numberserves as a new

value variable, holding the new number read in each time through the loop. Variables

CountandSumare initialised to 0. However,Countis updated by 1 through an assign-

ment, andSumis updated by the value of the new value variable through an assigment;

Numberis initialised and updated through a Read command.CountandSumneed to

be protected from including the sentinel value (99999) in their respective totals. This

guard is implemented by the test in the “while” loop of the program.

Table 2.1: Basic Pascal plan schemas (Rist, 1991).

Initialization Calculation Output

Prompt write (‘Enter...’); read (number); value of number

Label write (‘Output is...’); write (number); display

Running total count := 0; count := count + 1; value of count

Found found := false; iftestthen found := true; value of found

Loop for i := 1 to 30 do read(rainfall); all rainfall values

Rist (1991) has developed the idea further and defines a plan as a set of actions, that

achieve a specific goal. Goal is defined by Rist as a state to be achieved, for example

when calculating a value or a series of values. Rist defines five plans concerning the

actions related to variables:Prompt planto obtain input,label planto produce output,

running total planto accumulate information,found planto register an event, andloop

plan to achieve iteration using loop counter variable. These basic plans are shown in

Table 2.1. Neither Ehrlich and Soloway nor Rist claim their lists of examples to be

exhaustive.

8

The approaches presented above have a strong cognitive basis and they are supported

by empirical experimentation. A more practical approach tocategorise variables has

been given by Green and Cornah (1985), who have presented Programmer’s Torch -

tool with an effort to clarify the mental processes of maintenance programmers. One

of the goals of the tool was to reveal different roles of variables. The variables were

tentatively listed as: constant, counter, loop counter, most-recent holder, best-of holder,

control variable, and subroutine variable.

The approaches discussed above consider both utilisation and behaviour of a variable

in their descriptions. Later, Sajaniemi (2002) has defined the role of a variable to be

dependent purely on the behaviour, not the use, of the variable, and found the following

nine roles in novice-level procedural programs: constant,stepper, most-recent holder,

most-wanted holder, gatherer, follower, one-way flag, temporary, and organizer. The

role list has been supplemented later with a role called transformation (Ben-Ari and

Sajaniemi, 2004).

2.2 The Role Concept

The roles of variables (Sajaniemi, 2002) is a new concept, bywhich the tacit knowledge

experts have concerning the behaviour of variables can be presented explicitly. The

roles of variables describe the use of variables on a generalprogramming knowledge

level, in such a way that it applies to theoretically all programs.

The purpose of the research on the roles of variables has beento develop a small but

at the same time extensive list of roles, that covers in a concrete way all the variables

found in novice-level programs, and which could be used for example in teaching

elementary programming, or in analyzing large-scale programs.

The variables are used to handle the dataflow of a program. Thepurpose of an in-

dividual variable in a computer program is to work as a dynamic data element, that

typically receives new values depending on other variablesand external events. The

role describes the nature and the behaviour of the variable during its lifetime and is not

related to the use of the variable. Each role describes one stereotypical behaviour. In

short, the role of a variable can be defined to be the dynamic character of a variable

embodied by the succession of values the variable obtains, and how the new values

9

assigned to the variable relate to other variables (Sajaniemi, 2002).

To illustrate the roles of variables concept, consider following two lines of code, that

output a one-dimensional array:

for i := 1 to 12 do

write(Array[i]);

Here, variable i receives values from 1 to 12, known in advance, when the value of

the variable is incremented in the for-loop. The role of a variable i, stepping through a

systematic, predictable succession of values, is called stepper.

In another example, the two lines of code illustrate a typical way of collecting total

sum:

TotalRainfall:=0

...

TotalRainfall:= TotalRainfall + Rainfall

Here, the TotalRainfall variable receives a new value when another value is added to

its previous value. In other words, the variable gathers a total amount equal to the sum

of several individual values. Therefore, the TotalRainfall variable can be said to have

the role of a gatherer.

Ten roles presented in the Table 2.2 cover 99% of all variables found in novice-level

imperative programs.

2.3 Visualising the Roles

There exists several different visualisation and animation tools that have been devel-

oped for facilitating teaching of programming (e.g., ZEUS (Brown, 1991), Jeliot (Haa-

janen et al., 1997), Eliot (Lahtinen et al., 1998), DISCOVER(Ramadhan, 2000), AN-

IMAL (Rössling and Freisleben, 2002)). The notion that these tools help the student

in her struggle to learn programming is supported by for example Mayer (2001), who

suggests that the power of animation in enhancing learning is based on its ability to

10

Table 2.2: The role set for novice-level programming (Sajaniemi et al., Submitted).

Role Informal description

Fixed value A variable that does not get a new proper value after its initial-

ization.

Stepper A variable stepping through a systematic, predictable succes-

sion of values.

Most-recent holder A variable holding the latest value encountered in going

through a succession of values, or simply the latest value ob-

tained as input.

Most-wanted holder A variable holding the best or otherwisemost appropriate value

encountered so far.

Gatherer A variable accumulating the effect of individual values.

Follower A variable that gets its new value always from the old value of

some other variable.

One-way flag A two-valued variable that cannot get its initial value once the

value has been changed.

Temporary A variable holding some value for a very short timeonly.

Transformation A variable that gets its new value always with the same calcu-

lation from value(s) of other variable(s).

Organizer An array used for rearranging its elements.

provide both verbal and pictorial information that are integrated in working memory

to provide deeper understanding. Other suggested benefits that visualisations can pro-

vide for learning include for example the illustration of expert programmers’ reasoning

processes to the novice (Petre et al., 1998) and making the programming language con-

structs and program constructs more comprehensible (Hundhausen et al., 2002; Mul-

holland, 1998).

Current program visualisation tools can be divided into twocategories: semi-automatic

tools and hand-crafted tools (Sajaniemi and Kuittinen, 2004). This division is based

on how much a program visualisation tool allows the user to influence the visual ap-

11

Figure 2.2: Two variable roles, most-recent holder (data) and stepper (count), and

animations representing the comparison operation “some_variable > 0” (Sajaniemi

and Kuittinen, 2004).

pearance of variables. In semi-automatic tools, users select visualisations for variables

from a set of ready-made visualisations. In hand-crafted tools, users make choices to

reflect the value of a variable by choosing for example the appropriate size, color, and

orientation for the visualisation. Program visualisationtools can use also predefined

visualisations selected by the designer of the visualisation. The main effect of allow-

ing users to participate in deciding the visual appearance of the visualisations is the

increased interaction between the visualisation tool and the user; there is no guarantee

of the appropriateness of the visualisation.

Many of the current visualisation tools represent variables and operations on variables

in the program or programming language level. That is, they show what variables a

program includes and the change of the values of these variables during program ex-

ecution, treating each variable as an individual having at most programming language

level abstractions (such as the type of the variable). According to Petre and Blackwell

(1999), visualisations should not, however, work in the programming language level

because within-paradigm visualisations, i.e., those dealing with programming language

constructs, are uninformative.

The roles of variables represent knowledge that is not within the programming lan-

guage paradigm but at an upper level, and they can be visualised with PlanAni program

animator (Sajaniemi and Kuittinen, 2004). In PlanAni, visualisations of variables are

predefined: each variable has a role image which is used also for the animation of op-

erations on the variable. These role images represent the salient, stereotypical features

of variables’ behavior, and animations are focused on the role-like behavior of vari-

ables. For example, the role images of two roles, most-recent holder and stepper, and

animations representing the comparison operation “some_variable > 0”, are shown

12

Figure 2.3: Graphical user interface of PlanAni.

in Figure 2.2.

PlanAni is designed to illustrate expert programmers’ tacit knowledge related to the

variables’ behaviour during program execution in pictorial form, alongside the pro-

gram code. These stereotypical features of behaviour are identified also by program-

ming experts, who used them as one of their criteria, when grouping variables together

(Sajaniemi and Navarro Prieto, 2005). The role images used in PlanAni have been eval-

uated empirically and found to enhance learning when compared with neutral control

images (Stützle and Sajaniemi, 2005).

Figure 2.3 shows the user interface of PlanAni. The program code is located on the

left side of the display. The role images and their animated operations are placed on

the right side of the program code. The current phase of the program execution is

higlighted with a blue rectangle, which is connected to the variable that is operated on

with a blue arrow. The inputs and outputs of the program are displayed by a paper

and a plate in the I/O area located on the bottom part of the display. The animation in

PlanAni is controlled by buttons that are located below the I/O area. The buttons can

be used to start, pause, stop or restart the animation, to execute the program lines one

13

at a time, and to change the speed of the animation.

2.4 Roles of Variables in Teaching Elementary Pro-

gramming

Knowledge about computer programming covers the followingthree categories (Sa-

janiemi, 2004):� programming language knowledge:the syntax and semantics of some certain

language (e.g., how an assignment statement is written and what effect it has).� program knowledge: knowledge about a specific program.� programming knowledge: how to construct programs from abstract concepts

within the programming paradigm in use (e.g., variables, iteration etc. in proce-

dural programming). The most important type of knowledge for a programmer.

At the elementary stage of her studies, a student needs to increase her knowledge in

several of the above levels. Usually, however, teaching of programming to novices con-

centrates around the syntax and semantics of a specific programming language, which

can be categorised as low-level knowledge. The higher-level programming knowledge

is usually not explicitly taught. The roles of variables represent higher-level program-

ming knowledge and they can be applied to teaching elementary programming. Fur-

thermore, the roles have been found to be easy to adopt in teaching (Kuittinen and

Sajaniemi, 2004).

Figure 2.4 illustrates the relationships between the different roles of variables. Literal

and constant are structures of a programming language, and other nodes in the figure

represent different roles. When roles are used in teaching,a constructivist approach,

suggested by the order present in the figure, can be applied. In this approach, new infor-

mation is constructed upon previously learned information, as can be seen from Figure

2.4. For example, if variables’s value does not change afterit is set in initialisation, it

can be described as a fixed value. However, if variable’s values are set repeatedly in a

loop, the variable can be described as a most-recent holder.Further, if the values set in

the loop form a series, whose values are known in advance (forexample in the case of

14

Most−recentMost−recent
holderholder

FollowerFollower

TransformationTransformation

TemporaryTemporary

StepperStepper

checkingcheckingpickingpicking

calculatingcalculating

delayingdelaying

GathererGatherer

Most−wantedMost−wanted
holderholder

One−wayOne−way
flagflag

LiteralLiteral

ConstantConstant

Fixed valueFixed value OrganizerOrganizer

namingnaming

setting at run timesetting at run time

repetitionrepetition

collectingcollecting requiresrequires

countingcounting

accumulatingaccumulating

Figure 2.4: Relations between the roles (Kuittinen and Sajaniemi, 2004).

counting the number of some objects), the variable can be described as a stepper. The

roles of variables have been used in teaching elementary programming as a part of a

classroom experiment. The results supporting the usefulness of the roles of variables

as a teaching aid are presented and discussed in Section 2.5.The use of the roles of

variables as a teaching aid in elementary programming courses is discussed in more

detail by Kuittinen and Sajaniemi (2004).

2.5 Empirical Evaluation of the Role Concept

The roles of variables concept has been evaluated empirically in several studies (Ben-

Ari and Sajaniemi, 2004; Sajaniemi and Navarro Prieto, 2005; Sajaniemi and Kuitti-

nen, 2005; Byckling and Sajaniemi, 2005). In this Section, Iwill shortly describe the

main results of these studies.

Ben-Ari and Sajaniemi (2004) studied understandability and acceptability of roles of

variables as seen by teachers of procedural programming, and found that teachers

learn and internalise the role concept quickly and effortlessly. Similar results have

been found by Byckling et al. (2005), who repeated the study with teachers of object-

oriented programming, and by Kulikova (2005), who repeatedthe study with teachers

of functional programming.

In another study, Sajaniemi and Navarro Prieto (2005) investigated the roles of vari-

ables as a part of expert programmer’s tacit knowledge and found evidence suggesting

that expert programmers did group variables according to their behaviour, and that the

15

Figure 2.5: Mental representation of programs in three groups (Sajaniemi and Kuitti-

nen, 2005).

roles used in the experimental materials existed in the groupings the participants made.

The studies presented above suggest that the roles of variables can be regarded as a

part of experts’ tacit programming knowledge.

Sajaniemi and Kuittinen (2005) have carried out a classroomexperiment in order to

analyse the effects of teaching roles of variables on learning of programming. In the

experiment, 91 students in an introductory Pascal programming course were divided

evenly into three groups. The traditional group was given normal lectures without the

introduction of the role concept and had exercises with animation that was not role-

based. The roles group was given lectures that introduced the role concept, but had

exercises with animation that was not role-based. Finally,the animation group was

given lectures that introduced the role concept, and had exercises, in which role-based

animation was used.

Based on the classroom experiment, both Sajaniemi and Kuittinen (2005), and Byck-

ling and Sajaniemi (2005) have found results suggesting that visualisation of roles with

PlanAni has positive long-term effects on learning programming when compared with

textual Turbo Pascal environment. The results of these analyses are summarised in

Table 2.3, and in Figures 2.5 and 2.6.

16

Table 2.3: Number of roles used by pairs of students in a program construction protocol

task (Byckling and Sajaniemi, 2005).

Pair MRH TRN MWH ONE STP OTH Total Optimal

TRAD-E1 2 1 - - - - 3 no

TRAD-E2 2 2 2 2 - - 8 no

TRAD-E3 2 1 - - 1 - 4 no

ROLE-E1 2 1 - - - - 3 no

ROLE-E2 2 1 2 1 - 1 7 no

ROLE-E3 2 2 1 - - - 5 no

ANIM -E1 2 1 1 1 - - 5 yes

ANIM -E2 2 1 1 1 - - 5 yes

ANIM -E3 2 1 1 1 - - 5 yes

ANIM -E4 2 1 1 1 - - 5 yes

OPTIMAL 2 1 1 1 - - 5

In their analysis, Sajaniemi and Kuittinen (2005) sorted program summaries into three

types depending on the amount of domain versus program statements in object descrip-

tions. Summaries with at least 67% domain statements (indirect and unclear statements

excluded) were calleddomain-level summaries, summaries with at least 67% program

and program only statements were classified asprogram-level summaries, and all oth-

ers were calledcross-referenced summariesbecause they had a more even distribution

of domain and program information. As can be seen from Figure2.5, the roles and an-

imation groups used significantly more cross-referenced program summaries than the

traditional group. According to Pennington (1987a), thesekind of program summaries

are typical to high comprehension programmers.

Table 2.3 shows that the animation group was able to use the optimal amount of vari-

ables when constructing a new program more often than the other two groups, in-

dicating the possession of more programming schemas. Animation group also used

forward development in writing new programs more often thanthe traditional or roles

group (Figure 2.6). This can be seen as indication of skilledprogramming (Rist, 1989).

17

Figure 2.6: Use of forward development in a program construction protocol task in

three groups (Byckling and Sajaniemi, 2005).

18

Chapter 3

Visual Attention and Eye Tracking

In our research, we will use eye tracking for collecting information about the visual

attention of participants when they are viewing visualisations. This information can be

used to investigate cognitive processes of participants, even though visual attention is

not a direct implication of the focus of participants’ cognitive activities. In this chapter,

I will consider the role of visual attention in studying cognitive processes of program-

mers, utilisation of eye tracking in measuring visual attention, and the appropriateness

of eye tracking as a psychology of programming research method. This chapter has

been published in proceedings of the 16th Annual Workshop ofthe Psychology of Pro-

gramming Interest Group (PPIG 2004) as a joint paper by Nevalainen and Sajaniemi

under the title “Comparison of Three Eye Tracking Devices inPsychology of Program-

ming Research” (Nevalainen and Sajaniemi, 2004).

3.1 Introduction

In the focus of psychology of programming research is the understanding of mental

representations and cognitive processes of programmers when they are writing, reading

and learning computer programs. The cognitive processes can’t be observed directly.

Instead, the researcher has to collect secondary data through which the processes can

be inferred, for example by making observations of the participant’s actions. These ob-

servations can consist of for example errors the participant makes, time the participant

uses or location of the point of gaze (POG) of the participant.

19

In eye tracking, the collection of POG data can be performed without the need of

the participant performing any action. This can be seen as a benefit when studying

cognitive processes that can be easily disturbed. The collected POG data provides

information of participant’s attention, and it can be used as supportive evidence when

studying cognitive processes.

An overview of eye tracking as a research method is given for example in Duchowski

(2003) and in Hyönä et al. (2003). Eye tracking has been used in several usability stud-

ies (Goldberg and Kotval, 1999; Byrne et al., 1999a; Sibert and Jacob, 2000; Goldberg

et al., 2003), studies related to eye-based interactive systems (Jacob, 1990; Majaranta

et al., 2004; Ashmore et al., 2005), and cognitive psychology studies related to differ-

ent search and reading strategies (Rayner, 1992, 1998; Findlay, 1992; Kennedy, 1992).

In psychology of programming research, eye tracking has been used by Crosby and

Stelovsky (1989), who studied the code viewing strategies of the participants. Bed-

narik and Tukiainen (2004) have compared eye tracking with blurred display.

Despite the potential usefulness of eye tracking in psychology of programming re-

search, there exists only few instances where eye tracking has actually been used.

Therefore experience concerning the benefits, disadvantages and problems of eye

tracking in psychology of programming research is needed. In the experiment reported

in this chapter, we used three eye tracking devices to recordparticipants’ POG when

studying short computer programs using PlanAni program animator. We studied the

easiness of use and accuracy of the three devices. We also observed and estimated the

amount of disturbance the devices caused to the participants.

The rest of the chapter is organized as follows. Next Sectiongives an introduction to the

eye tracking process and to the devices used in this experiment. Then the experiment

is described and results are presented and discussed.

3.2 Eye Tracking Methodology

Eye tracking process can be divided roughly into the following steps: participant set-

up, adjustments, participant calibration, and monitoring.

In the participant set-up phase, the participant is seated and her location in relation to

the eye-tracking device is adjusted. If head mounted opticsis used, the eye tracking

20

device is placed on participant’s head and its position is adjusted.

The adjustments phase includes adjusting the settings of the eye tracking program,

detecting and ensuring the recognition of the participant’s eye(s), and opening the file

used for the recording of the eye tracking data.

In the calibration phase, a calibration pattern consistingof a number of calibration

points is shown to the participant. The participant is askedto direct her gaze to each of

the calibration points and the location of the POG for each calibration point is recorded.

The values from the calibration are used in calculating the locations of points of gaze

from the values received from the eye tracking device. The calibration phase is re-

peated until satisfactory calibration values are recordedfor each calibration point. One

significant problem in eye tracking is the drift effect, which indicates a deterioration

of the calibration over time (Tobii 2003). The drift effect can be reduced by ensuring

the stability of the light conditions of the environment andthe equal light intensity

between calibration stimuli and the experiment stimuli.

The monitoring phase consists of viewing the status of the eye tracking and, if neces-

sary, readjusting the settings during the tracking of the actual experiment tasks.

In the experiment we used the following three devices: Tobii1750 from Tobii Technol-

ogy, ASL 504 Pan/Tilt Optics from Applied Science Laboratories and ASL 501 Head

Mounted Optics from Applied Science Laboratories. All three devices use video based

combined pupil and corneal reflection eye tracking.

In Tobii 1750 (Tobii, 2004), the eye tracking device is embedded into the panels of

the monitor that the participant is viewing (Figure 3.1). The device uses a wide-angle

camera to capture images of the participant and near infrared light emitting diodes for

eye illumination. The device uses both eyes of the participant for tracking. Tobii 1750

records data at the rate of 30 Hz (30 gaze data points/second). When the device does not

detect the participant’s eye(s), the recording rate is slowed down until proper detection

is regained. The theoretical accuracy of POG coordinates provided by the device is 1

degree visual angle (approximately 1 cm error when the participant is seated at 50 cm

distance from the display).

In ASL 504 Pan/Tilt Optics (ASL, 2003b), the eye tracking device is placed below

the monitor the participant is viewing (Figure 3.2). The device has an adjustable wide

angle camera that repositions itself according to the movements of the participant. The

21

Figure 3.1: Tobii 1750.

device uses the wide angle camera to capture an image of the participant’s eye and

near infra-red light emitting diodes for eye illumination.The device uses one eye

for tracking. ASL 504 Pan/Tilt Optics records data at the rate of 50 or 60 Hz. The

theoretical accuracy of POG coordinates provided by the device is 0.5 degree visual

angle (approximately 0.5 cm error when the participant is seated at 50 cm distance

from the display).

In ASL 501 Head Mounted Optics (ASL, 2003a), the optics device is placed on partic-

ipant’s head (Figure 3.3). The device uses one wide angle camera to capture image of

the participant’s eye and another wide angle camera to capture the participant’s field of

view (the scene camera). The device uses near infra-red light emitting diodes for eye

illumination. The device uses one eye of the participant fortracking. ASL 501 Head

22

Figure 3.2: ASL 504 Pan/Tilt Optics.

Mounted Optics records data at the rate of 50 Hz. The theoretical accuracy of POG

coordinates provided by the device is 0.5 degree visual angle.

3.3 Experiment

In the experiment, we studied the easiness of use of eye tracking devices by measuring

the total amount of time needed for the preparations of the participant. The prepa-

rations consist of participant set-up, adjustments and calibration. We also observed

and estimated the effort these activities required from theparticipant. The accuracy of

the devices was measured by calculating mean distances between recorded points of

gaze (in the data files) and requested points of gaze (measured with the eye tracking

software). The experimenters were using eye-tracking devices for the first time.

23

Figure 3.3: ASL 501 Head Mounted Optics.

3.3.1 Method

Design: A within-subject design was used with one independent variable (the eye

tracking device used for collecting the data) and two dependent variables (the time

needed for the preparation of the participant, and the accuracy of the device).

All participants were measured using all three eye trackingdevices (Tobii 1750, ASL

504 Pan/Tilt Optics, and ASL 501 Head Mounted Optics) and theorder of the devices

was counterbalanced. Each device occurred in each of the chronological position (1st,

2nd or 3rd measuring device) equal number of times. In the experiment we used two

24

Figure 3.4: PlanAni with code view only.

different versions of PlanAni. The order of the versions wasvaried so that with each

tracking device and each of the viewed programs two of the four participants used the

animator with code view first and the other two used the animation view first.

Participants: Twelve participants, eight male and four female, participated in the ex-

periment. The participants were required to have at least basic programming skills

and some experience in programming. They were recruited from third year courses in

computer science and were given a coffee ticket for their participation.

Materials: For the purpose of the experiment, PlanAni was modified so that it showed

either only the code-view that is located on the top left corner of the animator (Figure

3.4) or only variable animation-view that is located on the top center of the animator

(Figure 3.5). All variables were depicted by the same neutral image. Both versions

showed notifications for the participant and the input/output area. For the task of fo-

cusing at specific targets on the screen, screenshots of PlanAni were used. The PlanAni

version was v0.53.

Procedure: The participants used PlanAni to comprehend six short computer

programs—two programs with each eye tracking device. They were allowed to view

each program one time step by step. The POG of participants during these tasks was

25

Figure 3.5: PlanAni with animation view only.

measured. With each device, the participant was first seatedand the eye tracking de-

vice’s location in relation to the participant was adjusted(participant set-up phase). The

movement of the participant was minimized by using a chair without wheels, by set-

ting the chair close enough to the desk to minimize the horizontal rotation and advising

the participant to avoid quick and wide movements of her head. The participant was

not explicitly demanded to stay perfectly immobile during the task. After set-up, the

settings of the interface program were adjusted, detectionof the participant’s eyes was

performed and the file used for storing the POG data was opened(adjustments phase).

Then the calibration of the participant was performed (calibration phase). Time needed

for these preparations was measured by the experimenter using a special program that

required a single key-press to start and stop time measuring. With each device, the par-

ticipant performed two program comprehension tasks so thatshe used both versions

of PlanAni. After each viewing task, the participants were asked to give a short pro-

gram summary. The program summaries were collected for the purpose of motivating

the participants to study the program but they were not analyzed further in this exper-

iment. After studying the programs, participants were asked to look at eight specific

targets on the screen before proceeding to the next eye tracking device.

26

Table 3.1: Times (means in seconds and standard deviations)needed for the preparation

and execution phases of the tasks.

Phase Device

Tobii 1750 ASL 504 ASL 501

Mean SD Mean SD Mean SD

Preparation 471.8 128.9 548.3 126.8 953.5 164.4

Execution 502.6 112.1 525.0 122.9 476.6 68.4

Table 3.2: Amount of valid, uncertain and invalid data from all collected gaze data and

the percentage of invalid data.

Amount of Device

Tobii 1750 ASL 504 ASL 501

Valid data 104101 182177 198812

Uncertain data 16486 - -

Invalid data 10629 17722 6099

Percentage of invalid data 8.1 8.7 3.0

3.3.2 Results

Table 3.1 gives the mean times (in seconds) needed for the preparation phase and the

execution phase of the program comprehension tasks. The preparation time is mea-

sured from the beginning of the set-up to the end of calibration. The difference in

preparation times between Tobii 1750 and ASL 501 (pairedt -test, t = 8:187,df = 11, p < 0:0001), and the difference between Tobii ASL 504 and ASL 501

(pairedt -test,t = 6:417, df = 11, p < 0:0001) are both statistically significant.

Table 3.2 gives the amounts of valid, uncertain and invalid data as reported by the

devices, and the percentage of invalid data. Tobii 1750 provides validity codes 0-4

(0 = valid, 1-3 = uncertain and 4 invalid) for the data. For theASL devices, the validity

of the data is determined by value in the pupil size field (0 = invalid, otherwise valid).

Table 3.3 gives the mean distances (in centimeters) of measured points of gaze from

the requested points of gaze, and the corresponding visual angle when the participant

is seated at 50 centimeters distance from the display. The distance was measured for

points within a threshold of 2.5 cm from the center point of the target. The thresh-

27

Table 3.3: Distances (means in centimeters and standard deviations) of measured points

of gaze from the requested points of gaze, and the corresponding degrees of visual

angle.

Device

Tobii 1750 ASL 504 ASL 501

Mean SD Mean SD Mean SD

Distance 1.134 0.203 1.391 0.351 1.609 0.314

Visual Angle 1.3 1.6 1.8

old was selected so that the theoretical accuracies of the devices and the microscopic

movements of the eye fitted within the threshold. ASL 501 provides the POG coordi-

nates on a plane that is in relation to the field of view of the participant, while the other

two devices provide the coordinates on a fixed plane. With ASL501, the location of

the screen in the field of view shifts when the participant turns her head. This shift was

visually detected and measured, and the corresponding corrections were calculated and

applied to the coordinates before calculating the distances. The difference between To-

bii 1750 and ASL 501 (pairedt -test,t = 3:707, df = 8, p = 0:006) is statistically

significant.

3.4 Discussion

The time needed for preparation when using 501 was approximately twice as long as

the time needed for Tobii 1750 or ASL 504 (see Table 3.1). In our experience, there are

two main reasons that explain this difference. Firstly, theparticipant set-up phase with

ASL 501 consisted of more steps and required more effort thanwith Tobii 1750 or ASL

504. One time consuming step was locating the image of the participant’s eye through

the visor so that it was in correct angle and the visor was not in front of the participant’s

field of view. Secondly, the calibration with the ASL 501 was more troublesome and

needed to be repeated more often than with Tobii 1750 or ASL 504, mainly because

the participants were required to keep their heads perfectly still during the calibration

phase. One possibility to make the calibration easier and faster with the ASL 501 is

to use a bite bar or chin rest during calibration. This may, however, cause discomfort

to the participant and its applicability in a psychology of programming experiment is

28

questionable.

Table 3.2 shows the amounts of collected valid, uncertain and invalid data. All the

devices reported invalid data under 10%. The difference between ASL 501 compared

to Tobii 1750 and ASL 504 occurred most probably because the two last mentioned

devices lost the eye easily when the participant used the keyboard to provide input to

the program and the eye moved out of the reach of the devices’ cameras. ASL 504 also

had difficulties in automatically relocating the eye and in some cases it needed to be

aided by relocating the eye manually.

Table 3.3 shows the accuracies of the three devices. The values indicate that Tobii

1750 has the highest accuracy, ASL 504 provides second highest accuracy, and ASL

501 the lowest accuracy. Only the difference between Tobii 1750 and ASL 501 is,

however, statistically significant. One factor in the low accuracy of the ASL 501 is

probably an inaccuracy in the visually estimated correction due to head movements.

The need for this correction can be removed by using magnetichead tracker with ASL

501. Tobii 1750’s measured accuracy is quite near to the theoretical accuracy given in

Section 3.2. The measured accuracy is 1 - 1.6 degrees for a participant sitting at 40 -

60 centimeters distance from the screen. ASL 504 and ASL 501 fall clearly behind

the theoretical accuracy given in Section 3.2. For ASL 504 the measured accuracy is

1.3 - 2 degrees for a participant sitting at 40 - 60 centimeters distance from the screen.

For ASL 501 the measured accuracy is 1.5 - 2.25 degrees for a participant sitting at 40

- 0 centimeters distance from the screen

3.5 Eye Tracking in Psychology of Programming Re-

search

In psychology of programming research eye tracking can be used as an implication of

the focus of participants’ attention. The POG is not, however, the same as the focus of

attention, because attention is not necessarily always associated with the visual scene,

even though POG is. The participant can also voluntarily target his attention slightly

off the POG (Posner et al., 1980).

The general unobtrusiveness of an eye tracking device can beseen as a factor when

using this technology in psychology of programming research. Participants’ cognitive

29

processes can be easily disturbed with objects in the field ofview, sounds in the room,

and extra activities required by the experimental settings. Some of the participants

commented that the scene camera of the ASL 501, positioned according to the manual,

was disturbingly in their field of view. The visor of the ASL 501 remained in the lower

part of the participant’s field of view during the measuring.This did not, however,

invoke any comments from the participants. With ASL 504, theadjustable camera

produced a buzzing sound when it repositioned itself, causing the participant to be

aware of the device’s existence. Tobii 1750 looks like a normal display device and

makes no visible or audible interference.

When considering the required effort and caused disturbance, Tobii 1750 seemed to be

the most unobtrusive for the participants. With ASL 504, theparticipant was required

to keep her head perfectly still during the detection of the eye, since the auto-follow

property of the camera could be turned on only after the pupiland corneal reflection

were found. The positioning of the optics device of ASL 501 onthe participant’s head

was time consuming and caused physical discomfort to the participant.

Tobii 1750 enabled a participant to easily observe the tracking status before the calibra-

tion phase, and to take part in the detection of the eye. The calibration was not dictated

by the operator but the tracking program performed the calibration by showing the

participant calibration points in random locations at a slow pace.

In eye tracking, the quality and amount of recorded data is influenced by the amount

of participants’ motions. The more immobile the participant is, the better data eye

tracking devices usually record (Tobii 2003, ASL 2003a). When eye tracking is used

in psychology of programming research, however, the immobilising of the participant

can disturb the cognitive processes that are being studied.It seems that there is a

trade off between the accuracy and the ecological validity of data. With the participant

seating used in our experiment, we reached an accuracy that was quite near to the

theoretical accuracy of Tobii 1750. With ASL devices, however, the measured accuracy

was considerably behind the theoretical values.

Tobii 1750 and ASL 504 require the participant to be seated and tolerate limited move-

ments of the head, only. ASL 501 allows the participant to move around — an activity

needed in some experimental settings in psychology of programming.

30

Chapter 4

Mental Models and Program

Summary Analysis

Mental models of novice programmers will be evaluated in ourresearch with the help

of program summaries, which will be analysed using Good’s program summary anal-

ysis scheme (Good, 1999). Since the replicability of the Good’s scheme has not been

analysed earlier, we carried out an inter-rater reliability analysis on the scheme. In

this chapter, I will first consider shortly mental models of programmers, and program

summaries as a means for studying them. Then I will describe the investigation con-

cerning the inter-rater reliability of Good’s scheme. Thischapter has been published in

proceedings of the 16th Annual Workshop of the Psychology ofProgramming Interest

Group (PPIG 2004) as a joint paper by Byckling, Kuittinen, Nevalainen, and Sajaniemi

under the title “An Inter-Rater Reliability Analysis of Good’s Program Summary Anal-

ysis Scheme” (Byckling et al., 2004).

4.1 Introduction

In research into the psychology of programming and computerscience education one

central question is the problem of measuring the quality of learning and comprehension

of programming concepts. There is no universally agreed-upon measure of comprehen-

sion (Dillon and Gabbard, 1998) but the following methods have been applied: written

or verbal tests on recall, recognition (e.g., multiple-choice questions), and relationships

31

between concepts; problem solving exercises (i.e., programming tasks); essays evalu-

ated by their correctness or by qualitatively analyzing students’ mental models; and

interviews. In the context of programming, essays may also be program summaries,

i.e., free-form explanations of programs.

Program summary analysis has been used in the psychology of programming and

computer science education to characterize mental models of novice (Corritore and

Wiedenbeck, 1991) and expert (Pennington, 1987a) programmers attaining high lev-

els of comprehension; to characterize mental models of students capable of reusing

program code (Hoadley et al., 1996); to describe how mental models depend on under-

lying programming paradigm (Good, 1999) or task type of the programmer (O’Shea

and Exton, 2004); and to evaluate learning outcome in noviceprogrammers (Hughes

and Buckley, 2004; Sajaniemi and Kuittinen, 2005). These studies suggest that pro-

gram summary analysis can be utilized in revealing novice and expert programmers’

mental models and that the contents of the mental models can be used to characterize

the quality of comprehension.

The basic idea of program summary analysis is to ask participants to provide a free-

form explanation, or summary, of a program just studied. By omitting detailed instruc-

tions about the form of the summary, participants’ own preferences guide the selec-

tion of information in the summary and a wide variation in theresponses is usually

achieved. The program summary methodology avoids the problems of false positive

results often associated with binary choice questions, andthe difficulties in designing

sensitive and reliable multiple choice questions (Good andBrna, 2004). In program

summary analysis, the interest is not in the correctness of the summary; the abstraction

level and the types of information are more important characterizations of the mental

model than a memorization of the program code details.

In order to analyze program summaries, some analysis schememust be used. Earlier

studies used Pennington’s scheme (Pennington, 1987a) which is based on information

types and levels of detail. Later, Good (1999) devised another scheme based also on

information types, but more finely-grained and fully specified than in Pennington’s

scheme; and object descriptions, which is a restricted version of Pennington’s level of

detail. Hughes and Buckley (2004) have extended Good’s scheme to cover informa-

tion types and detail levels needed in summaries of concurrent programs; Burkhardt

et al. (1997) have extended Pennington’s scheme to cover newinformation types in

object-oriented programming but they are using the scheme for question classification

32

instead of program summary analysis. Hoadley et al. (1996) used a simple classifi-

cation based on abstraction level similar to Good’s object descriptions but consisting

of fewer categories. von Mayrhauser and Lang (1999) and O’Brien et al. (2001) have

developed schemes for coding program comprehension protocols but these schemes

cannot be used to analyze program summaries; Hughes and Buckley (2004) have ex-

tended Good’s scheme to cover program comprehension protocols.

Good’s scheme has been used in some studies (Good, 1999; Goodand Brna, 2004;

O’Shea and Exton, 2004; Sajaniemi and Kuittinen, 2005) but its replicability has not

been analyzed (Good and Brna, 2004), e.g., there is no knowledge of its inter-rater

reliability nor of reasons for possible differences among raters. In this chapter we

report an investigation where three raters used Good’s scheme to analyze real program

summary data. The problems in using the scheme as well as differences between the

raters were recorded and analyzed.

The rest of the chapter is structured as follows. Section 2 gives an introduction to

Good’s scheme. Section 3 describes the investigation and its results are discussed in

Section 4.

4.2 Good’s Scheme

Good’s program summary analysis scheme has been described in two documents.

Good’s PhD dissertation (Good, 1999) gives detailed instructions including Coding

Manuals and coding examples whereas an article by Good and Brna (Good and Brna,

2004) describes various categories of the scheme with few examples. We will now

give a short summary of Good’s scheme; see the above references for more exact defi-

nitions.

Good’s program summary analysis scheme consists of two independent classifications

of program summary segments. The first is based oninformation types(IT), i.e., what

kind of information about the program a statement reveals. The other classification is

based onobject description categories(ODC) that look at the way individual objects

are described in summaries. The interesting items are different in these two classifi-

cations and consequently program summaries are segmented differently for these two

purposes.

33

For the purposes of IT coding, program summaries are segmented to short passages

consisting of a subject and a predicate (either of which may be implied). The classifi-

cation comprises eleven categories:� Function (FUN): The overall aim of the program, described succinctly.� Actions (ACT): Events occurring in the program described at a lower level than

Function.� Operations (OPE): Small-scale events which occur in the program, such as

tests, assignments etc.� State-high (SHI): Describes the current state of a program when a condition has

been met (and upon which an action is dependent).� State-low (SLO): A lower-level version ofState-high. State-highdescribes an

event at a more abstract level thanState-lowwhich usually describes the direct

result of a test on a single data object.� Data (DAT): Inputs and outputs to programs, data flow through programs, and

descriptions of objects and data states.� Control (CON): Information having to do with control structures and with se-

quencing.� Elaborate (ELA): Further information about a process, event or data object

which has already been described. This also includes examples.� Meta (MET): Statements about the participant’s own reasoning process.� Unclear (UNC): Statements which cannot be coded because their meaning is

ambiguous or uninterpretable.� Incomplete (INC): Statements which cannot be coded because they are incom-

plete.

IT categories are related in terms of level of granularity.Functiondescribes the highest

level of abstraction, i.e., the purpose of the program whichcan be described with no

reference to how it is achieved;ActionsandState-highdescribe in an abstract manner

34

This program checks a basketball players height from the list given. Actions

If the height of the player is over 180 State-high

then he is selected for the team. Function

Once there are five players State-high

the program is terminated. Control

Figure 4.1: An example of IT coding (Good, 1999).

the way that the program works;OperationsandState-lowcorrespond to single lines

of code. Figure 4.1 gives an example of IT coding.

For the purposes of the ODC coding, the interesting objects must first be selected and

only then the program summaries can be segmented. ODC codingis applied to data

objects only, and program summaries are segmented so that there is exactly one data

object per segment. The classification comprises seven categories:� Program only (PON): References to items which can occur only in the program

domain.� Program (PRO): References to objects, which could be described at various

levels, described in program terms.� Program—real-world (PRR): Object descriptions using terminology which is

valid in both real-world and program domains, and is abstract and shared across

various problem domains.� Program—domain (PRD): Object descriptions containing a mixture of pro-

gram and problem domain references, or a reference which is equally valid in

the program and problem domains.� Domain (DOM): References to objects described in problem domain terms.� Indirect reference (IND): An anaphoric reference to an object.� Unclear (UNO): Object references that cannot be coded because they are am-

biguous or unclear, or because the object which is being referred to cannot be

identified.

Figure 4.2 gives an example of ODC coding.

35

The program wantsall marks over 65 listed Domain

andall marks over 66will pass Domain

the exam. Domain

The output will state Program

the mark Domain

and whetherthe personhas passed. Domain

Figure 4.2: An example of ODC coding (Good, 1999). The coded object descriptions

are marked inboldface.

4.3 Investigation

This Section describes an investigation into inter-rater reliability of Good’s scheme and

the main reasons for differences among raters.

4.3.1 Method

Three raters learned to use Good’s program summary analysisscheme and coded real

program summary data. Problems in learning and using the scheme as well as differ-

ences between the raters were recorded and analyzed.

Raters: There were three raters, two male and one female, out of whom two were

postgraduate students and one was a postdoc researcher. Allraters had majored in

computer science.

Materials: Forty-four program summaries were gathered as part of another study (Sa-

janiemi and Kuittinen, 2005). They consisted of students’ answers to a program com-

prehension question in an exam at an university level introductory Pascal programming

course. Students’ task was to “describe what is the purpose of the given program and

how it works”, i.e., to write a program summary. Figure 4.3 gives an English trans-

lation of the program; in the original program both output strings and variable names

were Finnish words or abbreviations. All other variable names were single-letter mean-

ingful abbreviations except the variableweight which was a problem domain word

(paino in the Finnish version). In the English version, the variablex should bed for

“day” but this would clash withd for “dose”; in the Finnish version this problem did

36

program task4 (input, output);

var weight,x,d,t: integer;

begin

t := 0;

write(’Enter patient’’s weight (kg): ’); readln(weight);

for x := 1 to 3 do

begin

d := weight * 3;

writeln(’Day ’, x, ’morning and evening ’, d, ’ml.’);

t := t + 2*d

end;

for x := 4 to 7 do

begin

d := weight * 4;

writeln(’Day ’, x, ’morning ’, d, ’ml.’);

t := t + d

end;

writeln(t)

end.

Figure 4.3: English translation of the program summarized by students.

not arise.

Eight program summaries were selected for training the raters and the remaining 36

summaries were used for the inter-rater validation. Table 4.1 gives statistics of the

program summary sizes measured in words. (Due to the absenceof articles and prepo-

sitions, and to the use of compound words1 in Finnish, the same information contents

is usually achieved with less words in Finnish than in English.) The training material

was selected to include a diverse set of summary statements;therefore, they tended to
1In Finnish, words can be combined in the same style as “textbook” or “database” in English. How-

ever, in Finnish this is much more common than in English, e.g., “annosteluohje” for “dosage instruc-

tions”. Because raters are not willing to split a single wordinto two separate segments, we will use the

notation “dosage-instructions” when compound words appear in our examples. As a compound word

refers usually to a single object, this will probably not introduce language-dependent differences.

37

Table 4.1: Descriptive statistics of the program summariesused in the training and

validation phases. Lengths are measured as word counts.

Training Validation

Number of program summaries 8 36

Minimum length 114 42

Maximum length 349 285

Mean length 199.0 137.6

Std dev of length 74.6 57.5

be longer than summaries on average. Moreover, the longest summary was included in

the training set because of its anomalous nature: it consisted mainly of program code

fragments. Excluding this summary, the longest program summary in the training set

was 276 words long.

Procedure: There was a training period for segmenting and coding; first for IT and

then for ODC. The training started by a meeting where the classification instructions

were explained to the raters. The raters then segmented the training material individu-

ally on their own time. The resulted segments were compared in a meeting, differences

were discussed and segmenting rules for the validation phase were agreed. The train-

ing phase continued with the raters coding individually thetraining material using the

agreed segments. The codings were compared and discussed ina meeting and coding

rules for the validation phase were agreed. The training phase was followed by the val-

idation phase where raters segmented and coded the validation material independently

on their own time.

The training and validation phases for ODC were similar to the IT case described

above. In addition, in the training phase the set of objects to be used for segmenting

was agreed, also. During the whole investigation, all meetings were lead by a fourth

person.

Problems were gathered by the raters, who made notes during training and validation,

and by the meeting leader during meetings. Sources of problems and differences in the

numeric results were discussed in several meetings after the validation phase.

38

4.3.2 Results

In addition to the IT categories in Good’s scheme, we used thecategoryContinuation

(CUT) to cover cases where one segment is embedded in another segment. For

example, in Figure 4.4 the information (lines 1 and 3) that the variablet is increased

by a certain amount is interrupted by another information describing the variable (line

2). Hence, only the first line is given a proper IT category, and the third line is coded

as a continuation to the first line.

The variablet, Operations

which gives the total drug amount, Data

is increased by the morning and evening doses. Continuation

Figure 4.4: An information segment embedded in another segment. The latter part of

the surrounding segment is coded asContinuation.

Table 4.2 gives the distribution of IT categories by each rater. The first part of the table

gives mean percentages of the 36 program summaries for each IT category. The second

part is obtained by grouping categories describing high-level program information,

low-level program information, and other IT categories. Finally, the last row gives

the proportion of high-level information when other, program-unrelated information is

discarded.

For each category, the probability of linear correlation ofthis magnitude to occur by

change was calculated for each pair of raters. Categories for which the probability is

at least 0.001 for any two raters are marked withy and probabilities being at least 0.05

with yy. For the grouped categories all probabilities are smaller than 0.0001.

The number of IT segments for each rater varied between 883 and 892. There were 811

segments that were common to all three raters, i.e., 8.6% disagreement in segmenting.

Out of these 811 common segments the three raters coded 65.5%similarly and 94.0%

of the segments were given the same category by at least two raters. Looking at the

coding of each of the raters separately, each rater agreed with at least one of the other

two raters in from 84.1 to 85.2% of the common segments.

Table 4.3 gives the distribution of ODC categories by each rater calculated as means

of the percentages of the 36 program summaries. Probabilities of linear correlation are

39

Table 4.2: Percentages of IT categories by rater. HIG refersto high-level program

information, LOW to low-level program information, and OTHto program-unrelated

information. HIP is the proportion of high-level segments of all program-related seg-

ments. y: probability of linear correlation of this magnitude between any two raters� 0.001;yy: probability� 0.05.

Rater

A B C

Code Information Type Mean S.D. Mean S.D. Mean S.D.

FUN yy Function 9.3 7.6 8.1 5.5 10.5 8.5

ACT yy Actions 20.7 12.0 18.2 12.4 14.6 12.1

OPEy Operations 10.6 9.9 7.3 8.4 7.7 6.6

SHI State-high 1.5 3.4 1.5 3.1 1.2 2.7

SLO State-low 0.1 0.7 0.1 0.8 0.1 0.4

DAT Data 24.5 11.1 27.4 12.2 29.9 15.4

CON Control 4.9 5.3 3.8 4.8 4.8 5.3

ELA Elaborate 21.6 14.9 26.3 17.1 20.4 16.6

MET y Meta 1.5 2.7 1.4 2.8 2.7 5.7

UNC yy Unclear 0.0 0.0 0.8 3.4 0.8 3.0

INC yy Incomplete 1.0 4.8 1.1 1.9 2.3 4.9

CUT Continuation 4.2 4.1 3.9 4.5 5.0 4.9

HIG FUN+ACT+SHI+DAT 56.0 18.2 55.2 20.6 56.2 20.2

LOW OPE+SLO+CON 15.6 12.2 11.3 11.5 12.6 10.5

OTH 100-HIG-LOW 28.4 16.4 33.4 18.0 31.2 18.7

HIP HIG / (HIG+LOW) * 100 78.1 15.4 82.4 16.9 80.9 13.8

marked as in Table 4.2. Probabilities for unmarked categories are smaller than 0.0001.

The number of ODC segments for each rater varied between 712 and 734. There were

570 object descriptions that were common to all three raters, i.e., 21.0% disagreement

in segmenting. Out of these 570 common segments the three raters coded 73.2% sim-

ilarly and 99.3% of the objects were given the same category by at least two raters.

Looking at the coding of each of the raters separately, each rater agreed with at least

one of the other two raters in from 81.1 to 98.8 % of the common segments.

40

Table 4.3: Percentages of ODC categories by rater.y: probability of linear correlation

of this magnitude between any two raters� 0.001;yy: probability� 0.05.

Rater

A B C

Code Object Description CategoryMean S.D. Mean S.D. Mean S.D.

PON Program only 3.0 6.1 5.8 8.2 4.4 7.9

PRO Program 15.8 15.1 22.5 16.3 20.5 16.6

PRRy Program—real-world 1.6 3.2 3.1 4.7 2.4 4.0

PRD yy Program—domain 7.1 8.1 16.9 9.9 6.1 7.6

DOM Domain 63.1 16.8 49.6 19.6 59.5 17.8

IND y Indirect reference 6.6 6.0 2.1 3.7 7.1 7.7

UNO yy Unclear 2.9 6.5 0.1 0.8 0.0 0.0

4.3.3 Differences in Information Types

This Section first lists reasons for inter-rater IT differences obtained by recording the

problems experienced by the raters during the training, andby analyzing the differ-

ences observed in the validation. We start with problems in segmenting, i.e., what

constitutes a segment, and continue with problems in selecting IT categories for seg-

ments. We conclude this Section by looking at the frequencies of the problems in

inter-rater differences.

Problems in Segmenting

The basic rule of segmenting program summaries to “short phrases consisting of a sub-

ject and a predicate (either of which may be implied)” (Good,1999, p. 313) appears

to be clear and unambiguous. However, the examples in (Good,1999) and (Good and

Brna, 2004) (which will be together called asscheme defining documentsor SDD) con-

tain exceptions to this rule, e.g., “by adding the adjustacent ones together” suggesting

that non-finite clauses can be segments, and ‘[and then joinsit to the other value it

would have created if it had done what I just said] (complicated)” suggesting that even

a single adjective, i.e., “complicated”, referring to a different context than the rest of

the sentence can be a segment. We found many occasions where the basic rule would

41

lead to segments containing several information types; these will be described in detail

below.

One might be tempted to suggest that several segments shouldbe used only if the

passage contains several IT categories. However, segmenting is supposed to be done

first—independently of IT coding— which means that segmenting cannot depend on

the number of IT categories present in the passage. Hence, the question of segmenting

must be determined by the presence ofinformation itemsindependently of their types.

The “and” problem: The SDD contains contradicting examples of the effect of the

word “and” on segmenting. The passage

the program is selecting ... and allowing them to ...

is coded as a single segment (Good and Brna, 2004) whereas

It takes the numbers in the list and adds up numbers next to each other

is coded as two segments (Good, 1999, p. 320). However, in both examples, there

is a predicate on both sides, and the subject is implied on theright-hand side. In our

summaries, we found cases where both the subject and the predicate are implied:

program tells how much and how many times a day

Contrasted with a slightly longer version:

program tells how much and it also tells how many times a day

it becomes unclear whether one should use one or two segments.

The non-finite clause problem:Non-finite clauses and other similar linguistic con-

structs give rise to passages that contain several information items even though there is

no new subject or predicate:

once adjusted the numbers are added

which tellsusing the value of xthe number of the day

42

Special cases of this problem are specifications of time or other condition where the

wording may contain a subject and a predicate or they may be absent:

When we are at the beginning of the for-loop

vs.

At the beginning of the for-loop

If the input is 0 [...]vs.With input 0 [...]

Time specifications can be even shorter and still carry an information item, e.g., “This

time” or “Then”, making it problematic to decide when a time specification should

have its own segment.

Another special case of this problem is formed byMetapassages that may consist of a

single word:

presumably

probably

clearly

The information–dense passage problem:Some passages of text contain several in-

formation items and, indeed, several IT categories even though there is a single subject

and predicate. For example, the following passage describes both data (the meaning of

the variablet) and control (the assignment):

The total drug amount is stored into the variablet at every round.

The example problem:Examples (that should be coded asElaborate) may be very

short or consist of tens of lines. The SDD notes that “(65 in this case)” is a single

segment (Good and Brna, 2004) but it is unclear how many segments should be made

out of a long example. Furthermore, examples rarely have a subject or predicate, e.g.,

(kg)

i.e., single-dose,

43

Problems in Selecting IT Category

Coding problems considered either discrimination betweentwo (or even three) IT cat-

egories, or were more general and not connected to any specific categories. Moreover,

we found a need for two new IT categories. We start with the latter problem types.

The atmosphere problem:The SDD suggests (Good, 1999, p. 314) that coding can be

carried out by category, i.e., by several passes through thesummary in order to identify

all segments of a particular type. In this style of coding, each segment is coded almost

independently of the surrounding segments. However, a certain passage, e.g.,

Finally the amount of agent needed for doses is output.

may have a very different interpretation depending of its context. If this segment ap-

pears at the beginning of a summary where the function of the program is described, it

representsFunctioninformation. If it appears at the end of a summary as an explana-

tion of the final output statement, it representsData. Thus overlooking the context, or

atmosphere, of the passage leads to incorrect coding.

The not-done problem:Program summaries contain passages that describe what the

program doesnotdo. The SDD does not explain how to code these. Examples are:

input cannot contain letters

and accepts even a negative value [i.e., there is no input check]

The missing “continuation” category problem:We found the need for a new IT cate-

goryContinuationdescribed at the beginning of this Section.

The missing “irrelevant” category problem:We found the need for a new IT cate-

gory Irrelevant to code information that is not related to the activity or results of the

program, e.g.,

else the program works.

The name of the program istask4.

The program starts with the word “begin”.

The program contains twofor-loops.

44

Irrelevant information is usually valid—it just is not related to activities of the program

or to its results.

The Operations vs. Actions problem:Activity within a loop that is described based

on a single round (i.e., it should be coded asOperations) may appear to the reader as

describing the effect of all rounds (i.e., an activity at theActionslevel). The reader may

even change the way the segment appears to him or her. Examples of this type are:

the variablet is increased again

The total drug amount is stored into the variablet at every round

The Data vs. Operations/Actions problem:There are many occasions where an

information item may be interpreted to describe a variable (i.e., Data) or an activity

(i.e., Operationsor Actions). First, the specific words used to refer to an object may

make a difference:

Finally the variablet is increased again Operations/Actions ?

Finally the dose-totalt is increased again Data ?

Finally the gatherert is increased again Data ?

Even though these examples are very similar, the use of a natural language concept

(“dose-total”) or role name (“gatherer”2) seems to change the information from oper-

ation to data flow.

Second, individual verbs seem to be attached to different levels of abstraction even

though the information content is basically the same, e.g.,

the size of the dose is assigned to the variabled Operations

the size of the dose is computed into the variabled Operations/Data ?

the variabled holds the size of the dose Data

Third, it is not clear how to code an abstract activity (whichshould be coded as

Actions) that refers at the same time to the total life-cycle of a variable (which should
2Gatherer is one of the roles taught to the students in the original study. It can be compared to the

concept of counter. While a counter counts something, a gatherer gathers the net effect of something,

e.g., the sum of individual values.

45

be coded asData). A reference to the total life-cycle of a variable may even be indirect

(“This time”), e.g.,

For the fourth day the dose changes Actions/Data ?

The dose is determined by Operations

This time the dose is determined by Operations/Data ?

The Data vs. Control problem: Passages concerning control variables contain

information about both control and the life-cycle of a variable:

wherex steps from the value 1 to the value 3 Data/Control ?

The State-low vs. State-high problem:According to the SDDState-highrelates to

state described at an abstract level andState-lowto state described at a low level (Good,

1999, p. 315). However, in the SDD examplesState-highseems to be connected to

loop termination conditions andState-lowtoif-conditions, independently of the level

of the description, e.g. (Good, 1999, p. 196, p. 321),

[program should terminate] when counter is greater than

4

State-high

if the head is greater than 180 ... State-low

The Elaborate vs. some other category problem:Passages coded asElaborateare

examples or restatements of facts that have already been described. It is, however,

unclear how far away the original fact is allowed to be, i.e.,may the elaboration follow,

say, 10 segments after the original fact, and how much can be deduced from earlier

facts, i.e., may an elaboration contain a fact that is not explicitly said before but that

can be easily deduced from earlier segments.

Furthermore, it is unclear whether descriptions of manner should always be coded as

Elaborateas suggested by the examples in the SDD, e.g., (Good, 1999, p.320):

46

It adds two successive numbers in the list Function

putting a zero at the start Elaborate

Rater Differences

The above list of problems in IT segmenting and coding was collected during the train-

ing and validation phases of the investigation. We devisedad-hocsolutions to prob-

lems that were found during training and the raters were advised to work accordingly.

Nevertheless, there were differences between raters in thevalidation as described in

Section 4.3.2.

Two problems accounted for more than half of thedifferences in segmenting: theMeta

passages form of the Non-finite Clause Problem covered 27.7%and the “And” Problem

covered 23.8% of the 231 non-common segments. Another 11.7%of the non-common

segments were caused by segments coded asContinuationby some rater(s) but not

considered to cause segments by other(s). However, these are side effects of other

differences in segmenting and do not explain anything by themselves.

Most interestingdifferences in codingthe 811 common segments regard the 49 seg-

ments coded differently by all raters. Two cases accounted for a majority of these dif-

ferences. The first was the MissingIrrelevantCategory Problem that covered 30.6%

of the segment. The second was a combination of theOperationsvs. ActionsProblem

and theData vs. Operations/ActionsProblem that covered 32.7% of the segments.

These segments were of the form

The total drug amount is stored into the variablet at every round

where a single assignment isOperations, the total effect of these assignments during

all rounds of the loop isActions, and the information that the variablet holds the total

amount isData.

Table 4.4 gives frequencies of information types in the 231 segments agreed by two

raters but not by the third one. Taking the overall frequencies of the categories (Table

4.2) into account, the categoriesActions, Operations, andIncompleteoccur as codes

for the problematic segments more often than expected, and the categoriesFunction,

Data, andContinuationoccur less often than expected.

47

Table 4.4: Frequencies of information types in segments agreed by two raters only.

Information Type Frequency

Function 7.6

Actions 25.3

Operations 12.4

State-high 0.0

State-low 0.0

Data 20.8

Control 4.6

Elaborate 19.5

Meta 1.5

Unclear 1.3

Incomplete 5.7

Continuation 1.2

The most common problems were theData vs. Operations/ActionsProblem (22.5%),

theElaboratevs. Some Other Category Problem (19.9%), and theOperationsvs. Ac-

tionsProblem (11.7%).

4.3.4 Differences in Object Description Categories

We now turn to ODC inter-rater differences. We will first lookat the problems in iden-

tifying objects, and then continue with problems in segmenting and coding followed

by an analysis of differences observed in the validation.

Problems in Recognizing Objects

The data object definition problem:According to the SDD (Good, 1999, p. 316) ODC

coding is applied to data objects; any other objects (e.g., the program, actions/events

within the program, such as recursive call, iteration) should not be used for segmenting.

During the training phase we looked at the differences between the raters and realized

that the raters did not, however, agree on what objects should be used for segmenting.

As a consequence, we decided that coding should be based on the following objects:

48

weight, day, dose, total-amount, course-of-medication, and dosage-instructions. This

decision was based on our idea of dividing objects into the following four categories:� proper data objects, e.g., total-amount,t� aggregate data objects, e.g., dosage-instructions, output� control objects, e.g., beginning-of-the-week, firstfor-loop� other/external, e.g., patient

The first example of each category above is aDomaindescription while the second is a

Programdescription—for the fourth category noProgramdescription is possible. The

first two categories cover data objects and we selected them to be used as the basis for

segmentation in the validation phase.

The synonym problem:Having decided the exact list of objects to look for, it was not

always evident what words should be considered as synonyms for the selected objects.

For example, under what conditions should the word “patient” be considered to be a

synonym for the object “weight”, or is the word “reading” a synonym for the object

“dose” in the following:

morning and eveningreading in milliliters

The natural object problem:As with the Synonym Problem, it is not always clear

whether natural language data references should be understood as a representative of

some object included in the analysis, e.g.,

plainnumber is multiplied by three

right amount of medicine

The “value” problem: The word “value” is an object by itself in all the examples of

the SDD. However, in several cases we were unsure if this really should be the case

because we could not found any grounds for considering “value” as an object, e.g.,

49

accepts a negative value

its value

that value

the value of the variable

Problems in Segmenting

Problems in deciding what constitutes a segment are of two types: whether a sequence

of words should be split into several segments, and whether single-word references

should be skipped under some circumstances totally.

The qualification problem:It is common to have an object qualified by another object.

In the SDD, these result in a single segment except when the qualifier is the word

“value”, e.g., (Good, 1999, p. 323):

The valueof

the element of heightsis preserved with that iteration.

In some cases references to two objects seem to represent those objects themselves

rather than the qualified unity. The following example set starts with this kind of sit-

uation and proceeds gradually to references where a single segment might be more

appropriate:

dose of the third day

dose of the day [in the first round of the second loop]

dose of the day [in any round of the second loop]

dose of a day [some day]

dose-of-the-day

daily dose

These examples demonstrate that the wording itself does notalways explain the per-

ceived presence of one or two objects, but the context of the reference counts also.

50

The multi-word reference problem:Objects are often referred to by several words

representing different ODCs leading to a need to segment each passage as a separate

segment, e.g.,

total-amount (m)

m, the total-amount, ...

m, which is the total-amount, ...

m — m is the total-amount — ...

total-amount, which is kept in the variablem, ...

the total-amount contained inm

the total-amount is assigned tom

The variability is huge, and it is not at all clear how many segments should be used

in each case. The categoryProgram—domainmay be used when there is a mixture

of program and problem domain references (Good and Brna, 2004), but the examples

in the SDD, e.g., “a list of marks”, are cases where both partsof the reference are

compulsory to make the passage understandable. Furthermore, there are no special

categories for other combinations.

The pronoun problem:In the SDD, all examples ofIndirect referencesare personal

pronouns. It is unclear whether other pronouns, e.g., “which” and “that”, are anaphoric

references.

The verbatim problem:Examples and code segments may contain verbatim references

to objects, e.g.,

writeln(’Day ’, x, ’morning and evening ’, d,

’ml.’);

Then the dosage-instructions is output: “Day 1. morning andevening 150

ml.”

The expressions “x”, “ d”, “Day”, and “150 ml.” do not actually refer to the objects but

are verbatim copies of program or output text. It is unclear whether they should cause

segmenting.

51

Problems in Selecting ODC Category

The context problem:This is similar to the Atmosphere Problem in IT coding but

considers a single sentence rather than a larger context. Inour material, sentences

were much longer than those in the examples of the SDD, and theraters had different

views of whether context should be taken into account.

The input coding problem:The SDD says that input is coded asProgram—real-world

but Program seemed to be more natural to the raters yielding differencesbetween

raters.

The Unclear-eagerness problem:The SDD does not state how eagerly the category

Unclearshould be applied: eager use will result in more reliable data but, of course,

with fewer segments having a category that can be used in further analysis.

The natural language variable name problem:The name of one variable,weight,

happened to be a natural language word carrying the meaning of the variable. This

made it very hard to detect the correct category unless the context was obvious.

Rater Differences

Differences between raters were summarized in Section 4.3.2. Theoretically, there

should have beenno differences in selecting the objects for segmentingbecause we

agreed on the set before the validation phase begun. However, differences in segment-

ing indicate that the recognition of even pre-defined objects isnot easy: out of the 458

non-common segments, 63.6% were due to the Synonym and Natural Object Problems.

The Pronoun Problem covered 17.9% of the non-common segments.

The vast majority ofdifferences in codingwere due to the Natural Language Vari-

able Name Problem caused by the variable namedweight. Out of the 570 common

segments, only four were coded differently by all raters andthey all referred to this

variable. Out of the 149 segments coded similarly by two raters, 79.9% referred to this

variable. Half of the rest were results of the Multi-word Reference Problem: the raters

had used a single segment but based their coding on differentaspects of the multi-word

reference.

52

4.4 Discussion

Largest inter-rater differences in the IT category frequencies in Table 4.2 are over 5.0%

(Actions6.1%,Elaborate5.9%, andData 5.4%) but differences in the proportion of

high-level information of program-related segments (HIP)were, however, smaller with

the largest difference being 4.3%. The linear correlation coefficients of HIP values

between two raters varied from 0.673 to 0.835, the probability of linear correlation of

this magnitude to occur by change being smaller than 0.0001.In practice (Corritore

and Wiedenbeck, 1991; Good, 1999; Hoadley et al., 1996; Sajaniemi and Kuittinen,

2005; Pennington, 1987a), individual IT category frequencies are usually grouped to

high-level and low-level information making the smaller variability in HIP important

for research purposes.

Inter-rater differences in the ODC category frequencies (Table 4.3) were even larger:

13.5% forDomain, 10.8% forProgram—domain, and 6.7% forProgram. The vast

majority of the coding differences (80.4%) were, however, caused by the poor selection

of a natural language word for one of the variables in the program to be summarized.

Segmenting was more problematic for ODC than for IT.

In explaining differences among raters, the problems listed in Sections 4.3.3 and 4.3.4

are more important than their frequencies: many problems did not manifest themselves

as differences in the validation phase because we devised solutions to them during

the training phase. Our solutions were, however,ad-hocand cannot be considered as

general solutions if the scheme is to be applied in more general settings. Table 4.5 lists

the problems together with our suggestions for solution types: whether a revision of the

scheme is required, whether the problem can be solved by moredetailed documentation

of the scheme, whether the problem is due to problems in programs to be summarized,

or whether the problem is still open.

In general, the documentation of the scheme should be improved by increasing

consistency of examples and by including the summarized programs in order to make

the relationship between coding examples and the programs explicit. For example, in

the segment (Good, 1999, p. 316):

and whetherthe personhas passed Domain

53

Table 4.5: Suggested solution types for the problems. Scheme: revise the program

summary scheme; Document.: revise the documentation of thescheme; Mater.: use

appropriate experimental materials; Open: an open problem. The upper part contains

problems related to information types (IT), and the lower part problems related to

object description categories (ODC). S: segmenting problems; C: category selection

problems; O: object recognition problems.

Problem Scheme Document. Mater. Open

IT
S “and” �

non-finite clause � �
information–dense passage � �
example �

C
atmosphere �
not-done �
missing “continuation” categ. �
missing “irrelevant” categ. �
Operations vs. Actions �
Data vs. Operations/Actions �
Data vs. Control �
State-low vs. State-high �
Elaborate vs. some other categ. �

ODC
O data object definition � �

synonym �
natural object � �
“value” �S qualification � �
multi-word reference � �
pronoun �
verbatim �C context �
input coding �
Unclear-eagerness �
natural language variable name � �

it is unclear whether persons are explicitly mentioned in the program (e.g., “Enter

person’s mark:”) or only inferred (e.g., “Enter mark:”). This distinction is important in

54

explaining the correct solution to the Synonym Problem.

IT problems that require changes in the scheme are the addition of two new categories,

and the abandonment of the subject–predicate requirement.As the SDD already con-

tains examples with no subject or predicate, the latter solution can be considered not to

be a change in the scheme but a documentation problem only. Another suggestion for

improving the documentation is to use the new conceptinformation itemintroduced in

Section 4.3.3 to clarify the process of segmenting for IT analysis.

Other suggested IT documentation additions concern borderlines between individual

categories, the atmosphere problem, and some special cases. The only open problem

is theData vs. Operations/Actionsproblem which covered 28.9% of the differences

among segments common to all raters and depends on delicate interpretation of the

true meaning of object descriptions.

ODC problems requiring changes in the scheme concern the selection of objects and

the detection of object references. The documentation should be more precise on these

problems, and furthermore suggest that the objects are listed before segmenting the

summaries—particular, if there are more than a single rater. The scheme could be

extended to include an option to use a limited set of objects only, e.g., objects that are

explicitly mentioned in the program text both with a domain name and with a program

name in order to avoid theUnclear-eagerness Problem, or to allow the use of a limited

set of reference utterances for segmentation in order to avoid the Synonym and Natural

Object Problems.

Other ODC documentation problems concern the context problem, and some special

cases. The Natural Language Variable Name Problem can be avoided by careful design

of programs to be summarized. The scheme cannot solve this problem although the

documentation should mention it.

55

Chapter 5

Short-term Effects of Graphical versus

Textual Visualisation of Variables

In this chapter, I describe an empirical experiment we carried out in order to study the

short-term effects of visualising the roles of variables and present the results from the

experiment. The experiment was first of a series of experiments in our research, and its

purpose was to verify the existence of differences in the short-term effects of different

visualisations and to work as a starting point for further studies. This chapter has been

published in proceedings of the 17th Annual Workshop of the Psychology of Program-

ming Interest Group (PPIG 2005) as a joint paper by Nevalainen and Sajaniemi under

the title “Short-Term Effects of Graphical versus Textual Visualisation of Variables on

Program Perception” (Nevalainen and Sajaniemi, 2005).

5.1 Introduction

To verify the effectiveness of a visualisation tool, it needs to be properly evaluated.

Empirical evaluation of program visualisations has been based mostly on post-tests or

pre- versus post-tests of participants’ performance. These evaluations have resulted in

a body of evidence suggesting that visualisations can have beneficial long-term effects

on learning, when designed and used properly (Hundhausen etal., 2002; Byrne et al.,

1999b; Hansen et al., 2000; Kann et al., 1997). Evaluation ofpost-test or pre- versus

post-test performance of participants does not, however, provide clear insight into the

56

possible short-term effects of visualisations and their relation to the long-term effects.

In order to study these issues more rigorously, we conductedan experiment, in which

we studied two visualisation tools for presenting program variables and their execution-

time behavior. The first tool, PlanAni program animator (Sajaniemi and Kuittinen,

2004), presents pictorial metaphors for variables, operations on variables are animated,

and information concerning the roles of the variables (Sajaniemi, 2002) is incorporated

into the visualisation. The second tool, Turbo Pascal programming environment, pro-

vides textual representations of variables, operations onvariables simply replace the

value of the variable in the representation, and no role information is present. Previous

studies (Sajaniemi and Kuittinen, 2004; Byckling and Sajaniemi, 2005) have reported

the differences in long-term effects of the use of these two tools.

In order to determine the level of viewers’ visual attentionon program code and on

visualisation of variables with the two visualisation tools, the locations of the partic-

ipants’ gaze on the screen were measured. Possible differences in the participants’

mental models of the studied programs between the two visualisation tools were in-

vestigated by analysing participants’ program summaries.In order to control possible

differences between the participants, field-indepence of each participant was also mea-

sured.

In the following Sections, the experiment is described, andits results are presented and

discussed.

5.2 Experiment

In order to study short-term effects of variable visualisations, we conducted an ex-

periment where two visualisation tools for presenting information about variables and

their values during program execution were used. The tools were used in the classroom

experiment (Sajaniemi and Kuittinen, 2005), in which the long-term effects of the vi-

sualisations were investigated. The current study concentrates on possible differences

in the locations of participants’ visual attention and in participants’ mental models of

the studied programs between the two visualisation tools.

For control reasons, the level of field-independence of eachparticipant was measured.

Witkin (1971) defines field-dependence and field-independence as follows: “in a field-

57

dependent mode of perceiving, perception is strongly dominated by the overall orga-

nization of the surrounding field, and parts of the field are experienced as “fused”. In

a field-independent mode of perceiving, parts of the field areexperienced as discrete

from organized ground.” Field-independence has been foundto correlate positively

with learning to program (Mancy and Reid, 2004), especiallyin computerised text-

based and web-based environments (Parkinson and Redmond, 2002). Parkinson et al.

(2004) have shown that the difference in performance between field-dependent and

field-independent learners in computerised text-based andweb-based environments

can be diminished by accommodating field-dependence in the design of the environ-

ments.

The experiment consisted of 4 phases. In the first phase, the participants were asked

to perform a test measuring participants’ level of field-independence. In the second

phase, the participants studied a recap material on roles ofvariables. The third phase

consisted of viewing Pascal programs with the visualisation tools and of writing down

program summaries. In the fourth phase, the participants filled a questionnaire about

the visualisation tools.

5.2.1 Method

The experiment was a within-subject design with one independent variable (the vi-

sualisation tool) and two dependent variables (locations of the participant’s gaze and

the program summary provided by the participant). Locations of gaze were recorded

using an eye-tracking camera (Tobii, 2004), and program summaries were analysed

using Good’s program summary analysis scheme (Good, 1999).The level of field-

independence of the participants was measured using Group Embedded Figures Test

(GEFT) (Witkin, 1971). The order of the visualisation toolsand the order of the studied

programs were counterbalanced.

Participants: Twelve participants, 7 male and 5 female, took part in the experiment.

The participants were students who had taken an introductory programming course

facilitating the roles of variables and continued their studies 1-2 years thereafter.

Materials: In the first phase, participants’ level of field-independence was measured

using GEFT test set (Witkin, 1971).

58

Figure 5.1: User interface of PlanAni program animator. (Dashed rectangles represent

the code area and the variable visualisation area used in theanalysis of gaze locations.)

In the second phase, written material from an earlier experiment (Sajaniemi and Stüt-

zle, Submitted) was used. The material consisted of descriptions of all roles and exam-

ples of their use. It included also a practice material consisting of three small Pascal

programs with 14 variables, whose roles participants were asked to determine.

In the third phase, participants studied four simple Pascalprograms. The programs

were short (11-29 lines, empty lines omitted) and similar tothe more difficult programs

used in the introductory programming course of the earlier classroom experiment (Sa-

janiemi and Kuittinen, 2005). Participants entered predefined inputs for the programs.

The use of fixed inputs enabled a participant to focus her attention to understanding the

program, instead of wondering what inputs would be proper tothe programs.

The visualisation tools used were PlanAni program animator(version 0.55) and the

Turbo Pascal programming environment (version 5.5). In PlanAni (Figure 5.1), visual-

isations are graphical, operations on variables are animated, and information concern-

ing the roles of variables is incorporated into the visualisations. Variable visualisations

are located on the right side of the program code. PlanAni displays also notifications

of each program action and has a separate area for input and output. In Turbo Pascal

(Figure 5.2), visualisations are textual, operations on variables simply replace the old

value of the variable with the new value, and no role information is presented. Variable

visualisations are located below the program code. Turbo Pascal displays no notifica-

59

Figure 5.2: User interface of the Turbo Pascal programming environment. (Dashed

rectangles represent the code area and the variable visualisation area used in the anal-

ysis of gaze locations.)

tions, and input and output are handled through command prompt. In the Turbo Pascal

environment, watches displaying each variable and its values during execution were

initialised in advance, and they served as textual visualisations of variables. Both visu-

alisation tools display code and variables and were prepared so that participants were

able to execute each program once, step by step. This limitation was used because the

tools differed in many other aspects and we wanted to minimise differences having an

influence on the participants.

In the fourth phase, participants were asked to evaluate thevisualisation tools with an

evaluation form including Likert scale questions and open questions about the tools

and their use. In the Likert scale questions, participants were asked to use a scale of 1-

5 (1 = totally disagree, 5 = totally agree) to statements concerning five characteristics

of the visualisations: originality, pleasure, salience, understandability, and usefulness.

For example, the understandability of the visualisations was evaluated by proposition “I

found this representation easy to understand”. These characteristics were derived from

experiments carried out by Hübscher-Younger and Narayanan(2003) who used them

to characterise student visualisations of algorithms. In the open questions, participants

were asked to report what issues the two visualisations did and did not highlight. The

evaluation form included also a possibility for free commentary.

60

Procedure: Participants were run individually. Each participant’s level of field-

independence was measured with the GEFT test consisting of three phases that lasted

2 minutes, 5 minutes, and 5 minutes. After this, the participant was given 15 minutes

to study the roles of variables recap material and perform the practice task. Then, after

a short break, the participant was seated in front of a computer monitor that has an eye-

tracking camera embedded in the panels. The procedure of measuring the movement

of her eyes was explained to the participant, and she was advised about the locations of

all available information on the screen for both visualisation tools. The participant had

then an unlimited time to study each program. After the participant had finished study-

ing a program, the program was dismissed from the screen, andshe was instructed to

give a written description of the program. Again, the time todo this was not limited,

and the participant was not instructed in any way on what the program description

should comprise of. The first two programs were shown with onevisualisation tool

and the next two with the other tool. The first program with each visualisation tool was

used to familiarise the participant with the tool, and data from the second program only

was analysed. When all four programs had been studied, the participant was asked to

evaluate the visualisation tools.

5.2.2 Results

GEFT test results of participants’ levels of field-independence are shown in Table 5.1.

In the GEFT test, higher score means higher level of field-independence, and the theo-

retical maximum is 18.

Table 5.1: Results of GEFT test measuring participants’ levels of field-independence.

n Min Max Mean SD

GEFT score 12 7 18 14.75 3.22

The participants used on an average 26 minutes and 18 secondsto study a program

with PlanAni. Standard deviation was 5 minutes and 58 seconds. With Turbo Pascal,

mean time to study a program was 6.08 (SD 1.57). Due to the difference in the speed

of the animation between the two tools, the minimum time it takes to view the shorter

of the two analysed programs with the tools is 11.30 for PlanAni and 1.00 for Turbo

Pascal.

61

Table 5.2: Mean proportions of viewing times on the three areas of the

screen (*** =p < 0:001).

Code Screen Area Condition

PlanAni Turbo Pascal

Mean SD Mean SD

COD Code *** 20.36 3.27 38.75 2.13

VAR Variables *** 15.43 3.59 3.11 2.38

OTH Other *** 64.21 2.89 58.14 2.52

For the purpose of the analysis, the screen was divided into three areas. The code area

and the variable area were formed by taking the smallest bounding box that includes the

symbols used in the code or the variable visualisations. These areas are illustrated by

the dashed rectangles in Figures 5.1 and 5.2. Other parts of the screen formed the third

area. A two-way within-subject Analysis of Variance was carried out. The ANOVA on

absolute viewing times showed that there was a significant main effect of visualisation

tool (F (1; 9) = 156:956, p < 0:001), and of screen area (F (2; 9) = 78:125,p < 0:001), and also a significant two-way interaction of visualisation tool and screen

area (F (2; 9) = 55:984, p < 0:001). The mean proportions of viewing times on

these three areas are presented in Table 5.2. Pairedt-test with Bonferroni correction

was used for follow-up testing. The difference between PlanAni and Turbo Pascal is

significant in the proportional viewing time on code (t = � 17:036, df = 11,p < 0:001), variables (t = 8:721, df = 11, p < 0:001), and other parts of the

screen (t = 5:708, df = 11, p < 0:001).

In order to study participants’ mental models of the studiedprograms, we used Good’s

program summary analysis scheme (Good, 1999) that consistsof two classifications:

one based on information types (IT) and the other based on object descriptions (ODC).

The information types classification is used to code summarystatements on the basis of

the information types they contain. Table 5.3 contains the distribution of information

type statements in each condition. The object descriptionsclassification looks at the

way in which objects are described. Table 5.4 contains the distribution of object de-

scription statements in each condition. No statistically significant differences between

the conditions were found in information types or object description classifications.

We analysed the distribution of domain versus program information in participants’

62

Table 5.3: Mean proportions of IT categories used in programsummaries.

Code Information Type Condition

PlanAni Turbo Pascal

Mean SD Mean SD

FUN Function 14.73 32.96 8.33 21.62

ACT Actions 17.98 18.12 16.08 16.98

OPE Operations 13.16 15.42 10.64 12.83

SHI State-high 4.42 5.15 2.38 5.79

SLO State-low 3.84 5.92 3.68 6.18

DAT Data 36.69 25.56 41.40 25.41

CON Control 3.70 6.35 6.86 10.88

ELA Elaborate 3.45 5.69 8.15 17.34

MET Meta 0.52 1.79 0.38 1.30

IRR Irrelevant 1.13 3.93 1.07 2.62

UNC Unclear 0.00 0.00 0.00 0.00

INC Incomplete 0.00 0.00 0.00 0.00

CUT Continuation 0.00 0.00 0.38 1.30

HIG FUN+ACT+SHI+DAT 73.80 25.54 68.18 24.55

LOW OPE+SLO+CON 21.08 22.97 21.86 19.93

OTH 100-HIG-LOW 5.12 8.86 9.96 17.61

HIP HIG / (HIG+LOW) * 100 77.35 23.78 76.08 22.11

program summaries further by using a similar strategy as Sajaniemi and Kuittinen

(2005). We sorted program summaries into three types depending on the amount of do-

main versus program statements in object descriptions. Summaries with at least 67%

domain statements (indirect and unclear statements excluded) were calleddomain-level

summaries, summaries with at least 67% program and program only statements were

classified asprogram-level summaries, and all others were calledcross-referenced

summariesbecause they had a more even distribution of domain and program infor-

mation. The number of cross-referenced summaries was two inPlanAni condition and

four in Turbo Pascal condition. This difference is not statistically significant (Fisher’s

exact test).

Participants’ evaluation of the visualisation tools is presented in Table 5.5. The differ-

ence between PlanAni and Turbo Pascal is significant in both originality (t = 7:374,

63

Table 5.4: Mean proportions of ODC categories used in program summaries.

Code Object Description Category Condition

PlanAni Turbo Pascal

Mean SD Mean SD

PON Program only 0.98 3.41 1.89 6.55

PRO Program 1.96 6.78 2.25 6.56

PRR Program—real-world 18.19 26.10 16.22 18.74

PRD Program—domain 2.19 4.23 1.81 6.26

DOM Domain 74.92 29.41 77.13 22.23

IND Indirect reference 1.78 2.64 0.69 2.40

UNO Unclear 0.00 0.00 0.00 0.00

Table 5.5: Participants’ evaluation of different characteristics of the two visualisation

tools (scale 1-5); the best is 5 (*** =p < 0:001, ** = p < 0:01).

Characteristic Condition

PlanAni Turbo Pascal

Mean SD Mean SD

Originality *** 3.92 0.79 2.00 0.60

Pleasure 2.58 1.00 3.42 1.00

Salience ** 4.00 0.43 3.00 0.74

Understandability 4.25 0.75 3.50 0.91

Usefulness 3.00 1.04 2.50 0.80df = 11, p < 0:001) and salience (t = 4:690, df = 11, p = 0:001).

The correlations between participants’ levels of field-independence and the dependent

variables—the proportions of time used for viewing the program variables, and the

proportions of different information types and object description categories in partici-

pants’ program descriptions—were analysed using the Pearson correlation coefficient.

Variables having statistically significant correlation with proportion of time used for

viewing the visualisations of program variables (VAR) are shown in Table 5.6. There

were no statistically significant correlations between proportion of time used for view-

ing the code and any of the variables.

In PlanAni condition, the Pearson correlation coefficient between proportion of vari-

64

Table 5.6: Variables having statistically significant correlation with time used for view-

ing the visualisations of program variables (** =p < 0:01, * = p < 0:05).

Correlation Condition

PlanAni Turbo Pascal

VAR versus GEFT score 0.688 * -0.071

VAR versus HIP 0.601 * -0.084

VAR versus OPE -0.655 * 0.042

VAR versus SLO -0.725 ** 0.025

VAR versus PRR -0.445 -0.747 **

able viewing and the GEFT-score isr = 0:688, the two-tailed probability for a corre-

lation of such magnitude to occur by chance being statistically significant (t = 3:001,df = 10, p = 0:0133). In PlanAni, correlation is statistically significant also be-

tween proportion of variable viewing and high-level IT-descriptions (HIP) (r = 0:601,t = 2:377, df = 10, p = 0:0388), proportion of variable viewing and operation level

IT-descriptions (OPE) (r = �0:655, t = �2:741, df = 10, p = 0:0208), and pro-

portion of variable viewing and state-low level IT-descriptions (SLO) (r = � 0:725,t = � 3:331, df = 10, p = 0:0076). In Turbo Pascal, statistically significant

correlation occurs between proportion of variable viewingand program—real-world

object descriptions (PRR) (r = � 0:747, t = � 3:556, df = 10, p = 0:0052).

5.3 Discussion

The purpose of this experiment was to investigate how a person targets her visual at-

tention, and what kind of a mental model she constructs of a computer program, when

the program is presented using a textual or a graphical program visualisation tool. The

experiment is first in a series of experiments that will studyin detail the effects of the

visualisation of roles of variables in PlanAni. Two completely different visualisation

tools were selected for the current experiment in order to bring forth clearly different

effects that different visualisation tools might produce and to provide this way a start-

ing point for a more detailed investigation in future. Furthermore, the long-term effects

of these two tools have been studied earlier (Sajaniemi and Kuittinen, 2004; Byckling

and Sajaniemi, 2005).

65

The results indicate that participants spent more time viewing both the code and the

variables with PlanAni than they did with Turbo Pascal. Partof this can be explained

by the difference in the speed of the animation. Another explaining factor may be the

difference in the graphical richness and amount of details between the two tools.

The variable visualisations were viewed proportionately more with PlanAni than with

Turbo Pascal (p < 0:001) which means that the animation tool has an effect on

visual attention. One explaining factor is the location of animation: in PlanAni, most

animations appear within the variable visualisations, whereas in Turbo Pascal they

appear in the code area. The effect of other factors, e.g., the pleasantness of the images

must be studied separately. The other area of the screen was viewed proportionately

more with PlanAni than with Turbo Pascal (p < 0:001). This was probably because

the area was substantially larger in PlanAni, and because itdisplayed input and output

of the program to the viewer constantly, instead of displaying them only in command

prompt.

Program summaries were used to study the mental models of theparticipants. No

statistically significant differences were found between the two tools. However, in

PlanAni the proportion of variable viewing correlated positively with high-level infor-

mation (r = 0:601) and negatively with operations (r = � 0:655) and state-low

(r = �0:725) in program summaries. Thus the increase of visual attention in the vari-

able visualisation area increased high-level data-related information; and the increase

of visual attention to the code area increased low-level code-related information. In

Turbo Pascal these effects could not be found. Thus either the smaller absolute time

increase was not sufficient to cause changes in mental model or the Turbo Pascal inter-

face did not provide the information required for the high-level mental model because

it lacks role information.

In Turbo Pascal, proportion of variable viewing correlatednegatively with program-

real world object descriptions (r = �0:747; PlanAnir = �0:445). The program-real

world object descriptions typically contained expressions such as “value” and “num-

ber”, which were used in a similar way as program object descriptions in describing the

low-level operations of the programs. With both tools the increase of visual attention

in variable visualisations decreased the participants useof low-level descriptions of the

programs.

PlanAni has earlier been found to have positive long-term effects on programming

66

skills and content of mental models (Sajaniemi and Kuittinen, 2004; Byckling and Sa-

janiemi, 2005), but in this experiment such an overall effect could not be found. In

addition to the location of visual attention, a person’s mental model is influenced by

other factors also. Hübscher-Younger and Narayanan (2003)have used six characteris-

tics of visualisation tools and studied their effect on learning. They found pleasure and

salience to be the two most important characteristics influencing learning. We asked

our participants to evaluate both visualisation tools withfive of these characteristics:

originality, pleasure, salience, understandability and usefulness. The evaluation form

included also open questions and a possibility for free commentary. In our experiment,

participants judged PlanAni to be more salient (p = 0:001) than Turbo Pascal, but

also more unpleasant (p = 0:096). One possible reason for the small effect on mental

models in this experiment is that even though PlanAni was judged more salient, it was

also found unpleasant to use.

On the basis of the open questions, it is obvious that the unpleasantness of PlanAni was

mostly due to the slowness of the animation. Eight participants commented negatively

about the slowness of PlanAni, and four commented positively about the fast use of

Turbo Pascal. The salience of PlanAni was contributed mostly to the illustration of

variables’ roles and tasks in the program. These were commented positively by the

participants five times (roles of the variables) and four times (tasks of the variables). In

some of the free commentary by the participants, PlanAni wasdeemed to be appropri-

ate for teaching elementary programming, not for intermediates. Because we had 2nd

and 3rd year students in the experiment, the programs were easy for the participants

and therefore properties highlighted by animation may havenot shown up in the pro-

gram summaries. This can also partly explain the unpleasantness the participants felt

in using PlanAni, a tool designed for true novices.

The proportion of variable viewing correlated with the GEFTscore in PlanAni

(r = 0:688), but not in Turbo Pascal (r = � 0:071). This can be explained by

the difference in graphical richness between the two visualisation tools. Following the

textual visualisation of Turbo Pascal does not require the viewer to be able to separate

items from organised perceptual field in the same way as with PlanAni, which uses col-

orful graphical images and animations. This is consistent with previous experiments

(Mancy and Reid, 2004; Parkinson and Redmond, 2002) that have studied the relation-

ship between field-independence and learning. Thus, the level of field-independence

influenced the targeting of visual attention, which influenced the mental model being

67

constructed. Therefore, the level of field-independence has direct implications on the

usefulness of visualisations.

68

Chapter 6

Conclusion

In this thesis, I have reported a research in which we study the short-term effects of vari-

able visualisation by investigating the interaction between the form of visualisations,

the visual attention of the students, and the mental models students form concerning

computer programs when they view programs with PlanAni program animator. This

way, we try to find out how the students perceive the visualisations they are viewing,

and how this relates to the quality of their comprehension ofthe visualised variables

and programs.

We will use eye tracking to measure visual attention of the students. To provide veri-

fication for our methodology, we conducted an experiment comparing the use of three

eye tracking devices in a psychology of programming experiment in which partici-

pants studied short computer programs using a program animator. The devices were

ASL 501 Head Mounted Optics, ASL 504 Pan/Tilt Optics, and Tobii 1750.

The results show that there are significant differences in the accuracy and easiness

of use between the three devices. For example, the ASL 501 Head Mounted Optics

required approximately twice as much time for the preparation of a tracking process

than the other two devices. The ASL 501 was also the least accurate of the devices

when it was used for the task in which the participant viewed acomputer screen. This

can be partly explained by inaccuracies in the manual correction of the shifting effect,

which can be removed by using magnetic head tracker with ASL 501.

When considering the amount of effort the devices required from the participant and

the amount of disturbance they caused to the participant, Tobii 1750 seemed to be the

69

least obtrusive. The device allowed the participant to takepart in the detection of the

eyes and the process of calibration was performed without step-by-step dictation of

the operator. The monitoring process didn’t contain any clear differences between the

devices. The ASL 504 needed to be aided by relocating the eye manually in some

cases. On the basis of these results, we selected Tobii 1750 for measuring the eye

movements of participants in our research.

Novice programmers’ mental models can be studied using Good’s program summary

analysis scheme (Good, 1999), which can also be used to assess the quality of compre-

hension. To analyse the replicability of the scheme, we carried out an investigation of

the inter-rater reliability of the scheme.

The investigation consisted of a training phase and a validation phase. The differences

in ratings were analyzed, and all problems encountered during the whole investigation

were recorded. Finally, possible solution types for the problems were discussed. In

spite of the training and the mutual agreement on coding rules there were noticeable

differences among the raters. Even though the correlation between the raters was high,

the results suggest that absolute frequencies obtained in separate experiments should

not be compared with each other. The findings do however indicate that by improving

the scheme and its documentation, most of the observed inter-rater differences can be

avoided. The only open problem concerns making the distinction between descriptions

of data and activities in cases where the specific words that are used, or the abstractness

of expression may affect the interpretation and hence the selection of the appropriate

information type. These problems do not, however, prevent the use of the scheme

in situations, where there is only one rater, as in the case ofthe experiments in our

research.

Using the presented research methodology, we will conduct aseries of empirical ex-

periments. In the first experiment, we studied how a person targets her visual attention,

and what kind of a mental model she constructs concerning a computer program, when

the program and especially its variables are presented using either a textual or a graph-

ical program visualisation tool. PlanAni program animatoruses role images and ani-

mations on these images to highlight program variables, while Turbo Pascal displays

variables and their values textually and without role information. These two tools were

selected because their long-term effects on learning had been analysed previously in

Sajaniemi and Kuittinen (2005), and in Byckling and Sajaniemi (2005).

70

The results indicate that visual attention of the participants was targeted on the vari-

able visualisations clearly more with PlanAni than with Turbo Pascal. In PlanAni, the

increase of visual attention to variables increased the proportion of high-level data-

related information in program summaries and decreased low-level code-related infor-

mation, thus effecting the mental models of the participants. In Turbo Pascal, these

effects could not be found. Moreover, with PlanAni the proportion of variable view-

ing correlated positively with the level of field-independence. Thus field-independent

students benefit more by the graphically rich PlanAni program animator than field-

dependent students. PlanAni has earlier been found to have positive long-term effects

on programming skills and content of mental model (Sajaniemi and Kuittinen, 2005;

Byckling and Sajaniemi, 2005), but in this experiment such an overall effect could not

be found.

The experiment established that there exists differences in short-term effects of dif-

ferent visualisations and works as a starting point for further studies. In forthcoming

experiments, we will investigate the differences in the short-term effects in more de-

tail, utilising classifications of factors of graphics and animation in visualisations. Pos-

sible classifications include for example eight visual variables introduced by Bertin

(1983), that can be identified in an image, and algorithm animation taxonomy by

Brown (1998). Our goal is to gather information on the contribution of the factors

to the overall attractiveness of visualisations, and the effects of these factors on visual

attention and mental models of the viewers.

71

Bibliography

Ainsworth, S. E., Labeke, N. V., 2002. Using a multi-representational design frame-

work to develop and evaluate a dynamic simulation environment. In: Dynamic In-

formation and Visualisation Workshop.

Ashmore, M., Duchowski, A. T., Shoemaker, G., 2005. Efficient eye pointing with a

fisheye lens. In: Proceedings of the 2005 conference on Graphics interface. Canadian

Human-Computer Communications Society, pp. 203–210.

ASL, 2003a. Eye Tracking System Instruction Manual - Model 501 Head Mounted

Optics. Applied Science Laboratories.

ASL, 2003b. Eye Tracking System Instruction Manual - Model 504 Pan/Tilt Optics.

Applied Science Laboratories.

Baecker, R., B.Price, 1998. The early history of software visualization. In: Stasko,

J. T., Domingue, J., Brown, M. H., Price, B. A. (Eds.), Software Visualization –

Programming as a Multimedia Experience. The MIT Press, pp. 29–34.

Bednarik, R., Tukiainen, M., 2004. Visual attention and representation switching in

java program debugging: a case study using eye movement tracking. In: Dunican,

E., Green, T. (Eds.), The 16th Annual Workshop of the Psychology of Programming

Interest Group (PPIG 2004). pp. 159–169.

Ben-Ari, M., Sajaniemi, J., 2004. Roles of variables as seenby cs educators. In: The

9th Annual Conference on Innovation and Technology in Computer Science Educa-

tion (ITiCSE 2004). Association for Computing Machinery, pp. 52–56.

Bertin, J., 1983. Semiology of Graphics. University of Wisconsin Press.

Brooks, R., 1977. Towards a theory of the cognitive processes in computer program-

ming. International Journal of Man-Machine Studies 9, 737–751.

72

Brooks, R., 1983. Towards a theory of the comprehension of computer programs. In-

ternational Journal of Man-Machine Studies 18, 543–554.

Brown, M., 1998. A taxonomy of algorithm animation displays. In: Stasko, J. T.,

Domingue, J., Brown, M. H., Price, B. A. (Eds.), Software Visualization – Pro-

gramming as a Multimedia Experience. The MIT Press, pp. 35–42.

Brown, M. H., 1991. ZEUS: A system for algorithm animation and multi-view editing.

In: Proceedings of the 1991 IEEE Workshop on Visual Languages. IEEE Computer

Society Press, pp. 4–9.

Burkhardt, J.-M., Détienne, F., Wiedenbeck, S., 1997. Mental representations con-

structed by experts and novices in object-oriented programcomprehension. In:

Howard, S., Hammond, J., Lindgaard, G. (Eds.), Human-Computer Interaction IN-

TERACT ‘97. Chapman & Hall, Ltd, pp. 339–346.

Byckling, P., Gerdt, P., Sajaniemi, J., 2005. Roles of variables in object-oriented pro-

gramming. In: Companion to the 20th Annual ACM SIGPLAN Conference on

Object-oriented Programming, Systems, Languages, and Applications (OOPSLA

2005). Association for Computing Machinery, pp. 350–355.

Byckling, P., Kuittinen, M., Nevalainen, S., Sajaniemi, J., 2004. An inter-rater reliabil-

ity analysis of good’s program summary analysis scheme. In:Dunican, E., Green,

T. (Eds.), Proceedings of the 16th Annual Workshop of the Psychology of Program-

ming Interest Group (PPIG 2004). pp. 170–184.

Byckling, P., Sajaniemi, J., 2005. Using roles of variablesin teaching: Effects on pro-

gram construction. In: Romero, P., Good, J., Bryant, S., Chaparro, E. A. (Eds.),

Proceedings of the 17th Annual Workshop of the Psychology ofProgramming Inter-

est Group (PPIG 2005). pp. 278–292.

Byrne, M. D., Anderson, J. R., Douglass, S., Matessa, M., 1999a. Eye tracking the

visual search of click-down menus. In: Human Factors in Computing Systems:

CHI’99 Conference Proceedings. ACM Press, pp. 402–409.

Byrne, M. D., Catrambone, R., Stasko, J. T., 1999b. Evaluating animations as student

aids in learning computer algorithms. Computers & Education 33, 253–278.

Corritore, C. L., Wiedenbeck, S., 1991. What do novices learn during program com-

prehension? International Journal of Human-Computer Interaction 3 (2), 199–222.

73

Crosby, M., Stelovsky, J., 1989. The influence of user experience and presentation

medium on strategies of viewing algorithms. In: Vol. II: Software Track, Proceed-

ings of the Twenty-Second Annual Hawaii International Conference on System Sci-

ences. pp. 438–446.

Dillon, A., Gabbard, R., 1998. Hypermedia as an educationaltechnology: A review

of the quantitative research literature on learner comprehension, control and style.

Review of Educational Research 68 (3), 322–349.

Duchowski, A. T., 2003. Eye Tracking Methodology - Theory and Practice. Springer-

Verlag.

Ehrlich, K., Soloway, E., 1984. An empirical investigationof the tacit plan knowledge

in programming. In: Thomas, J. C., Schneider, M. L. (Eds.), Human Factors in

Computer Systems. Norwood, NJ: Ablex Publishing Company, pp. 113–133.

Eick, S. G., 1998. Maintenance of large systems. In: Stasko,J. T., Domingue, J.,

Brown, M. H., Price, B. A. (Eds.), Software Visualization – Programming as a Mul-

timedia Experience. The MIT Press, pp. 315–328.

Findlay, J. M., 1992. Programming of stimulus-elicited saccadic eye movements. In:

Rayner, K. (Ed.), Eye Movements and Visual Cognition: ScenePerception and

Reading. Springer Verlag, pp. 8–30.

Goldberg, J. H., Kotval, X. P., 1999. Computer interface evaluation using eye move-

ments. International Journal of Industrial Ergonomics 24,631–645.

Goldberg, J. H., Stimson, M. J., Lewenstein, M., Scott, N., Wichansky, A. M., 2003.

Eye tracking in web search tasks: design implications. In: Proceedings of the sym-

posium on Eye tracking research & applications. ACM Press, pp. 51–58.

Good, J., 1999. Programming paradigms, information types and graphical represen-

tations: Empirical investigations of novice program comprehension. Ph.D. thesis,

University of Edinburgh.

Good, J., Brna, P., 2004. Program comprehension and authentic measurement: A

scheme for analysing descriptions of programs. International Journal of Human-

Computer Studies 61, 169–185.

74

Green, T. R. G., Cornah, A. J., 1985. The programmer’s torch.In: Human-Computer

Interaction - INTERACT’84. IFIP, Elsevier Science Publishers (North-Holland), pp.

397–402.

Green, T. R. G., Petre, M., 1996. Usability analysis of visual programming environ-

ments: A ’cognitive dimensions’ framework. Journal of Visual Languages and Com-

puting 7, 131–174.

Haajanen, J., Pesonius, M., Sutinen, E., Tarhio, J., Teräsvirta, T., Vanninen, P., 1997.

Animation of user algorithms on the Web. In: VL’97, IEEE Symposium on Visual

Languages. IEEE Computer Society Press, pp. 360–367.

Hansen, S. R., Narayanan, N. H., Schrimpsher, D., 2000. Helping learners visu-

alize and comprehend algorithms. Interactive Multimedia Electronic Journal of

Computer-Enhanced Learning 1.

Helttula, E., Hyrskykari, A., Räihä, K., 1989. Graphical specification of algorithm

animations with ALADDIN. In: Proceedings of the Hawaii International Conference

on Systems and Software. IEEE, pp. 892–901.

Hoadley, C. M., Linn, M. C., Mann, L. M., Clancy, M. J., 1996. When, why and how

do novice programmers reuse code? In: Gray, W. D., Boehm-Davis, D. A. (Eds.),

Empirical Studies of Programmers: Sixth Workshop. Ablex Publishing Company,

pp. 109–129.

Hübscher-Younger, T., Narayanan, N. H., 2003. Dancing hamsters and marble statues:

Characterizing student visualizations of algorithms. In:ACM 2003 Symposium on

Software Visualization (SoftVis 2003). Association for Computing Machinery, pp.

95–104.

Hughes, C., Buckley, J., 2004. Evaluating algorithm animation for concurrent systems:

A comprehension-based approach. In: Dunican, E., Green, T.(Eds.), Proceedings of

the 16th Annual Workshop of the Psychology of Programming Interest Group. pp.

193–205.

Hundhausen, C. D., Douglas, S. A., Stasko, J. T., 2002. A meta-study of algorithm

visualization effectiveness. Journal of Visual Languagesand Computing 13, 259–

290.

75

Hyönä, J., Radach, R., Deubel, H., 2003. The Mind’s Eye : Cognitive and Applied

Aspects of Eye Movement Research. North-Holland.

Jacob, R. J., 1990. What you look at is what you get: Eye movement-based interac-

tion techniques. In: Human Factors in Computing Systems: CHI ’90 Conference

Proceedings. ACM Press, pp. 11–18.

Kann, C., Lindeman, R. W., Heller, R., 1997. Integrating algorithm animation into a

learning environment. Computers & Education 28, 223–228.

Kennedy, A., 1992. The spatial coding hypothesis. In: Rayner, K. (Ed.), Eye Move-

ments and Visual Cognition: Scene Perception and Reading. Springer Verlag, pp.

379–396.

Kimelman, D., Rosenburg, B., Roth, T., 1998. Visualizationof dynamics in realword

software systems. In: Stasko, J. T., Domingue, J., Brown, M.H., Price, B. A. (Eds.),

Software Visualization – Programming as a Multimedia Experience. The MIT Press,

pp. 293–314.

Kuittinen, M., Sajaniemi, J., 2004. Teaching roles of variables in elementary program-

ming courses. In: The 9th Annual Conference on Innovation and Technology in

Computer Science Education (ITiCSE 2004). Association forComputing Machin-

ery, pp. 57–61.

Kulikova, Y., 2005. Roles of variables in functional programming. Master’s Thesis,

Department of Computer Science, University of Joensuu, Finland.

Lahtinen, S.-P., Sutinen, E., Tarhio, J., 1998. Automated animation of algorithms with

Eliot. Journal of Visual Languages and Computing 9, 337–349.

Lieberman, H., Fry, C., 1998. ZStep 95: A reversible, animated source code stepper.

In: Stasko, J. T., Domingue, J., Brown, M. H., Price, B. A. (Eds.), Software Visual-

ization – Programming as a Multimedia Experience. The MIT Press, pp. 277–292.

Majaranta, P., Aula, A., Räihä, K., 2004. Effects of feedback on eye typing with a short

dwell time. In: Proceedings of the Eye tracking research & applications symposium.

ACM Press, pp. 139–146.

Mancy, R., Reid, N., 2004. Aspects of cognitive style and programming. In: Dunican,

E., Green, T. (Eds.), Proceedings of the Sixteenth Annual Workshop of the Psychol-

ogy of Programming Interest Group (PPIG 2004). pp. 1–9.

76

Mayer, R. E., 2001. Multimedia learning. Cambridge University Press, U.K.

Mulholland, P., 1998. A principled approach to the evaluation of SV: A case study in

Prolog. In: Stasko, J. T., Domingue, J., Brown, M. H., Price,B. A. (Eds.), Software

Visualization – Programming as a Multimedia Experience. The MIT Press, pp. 439–

451.

Myers, B., 1990. Taxonomies of visual programming and program visualisation. Jour-

nal of Visual Languages and Computing 1, 97–123.

Nevalainen, S., Sajaniemi, J., 2004. Comparison of three eye tracking devices in psy-

chology of programming research. In: Dunican, E., Green, T.(Eds.), Proceedings of

the 16th Annual Workshop of the Psychology of Programming Interest Group (PPIG

2004). pp. 151–158.

Nevalainen, S., Sajaniemi, J., 2005. Short-term effects ofgraphical versus textual vi-

sualization of variables on program perception. In: Romero, P., Good, J., Bryant, S.,

Chaparro, E. A. (Eds.), Proceedings of the 17th Annual Workshop of the Psychology

of Programming Interest Group (PPIG 2005). pp. 77–91.

O’Brien, M. P., Shaft, T. M., Buckley, J., 2001. An open-source analysis schema for

identifying software comprehension processes. In: Kadoda, G. (Ed.), Thirteenth

Workshop of the Psychology of Programming Interest Group. pp. 129–146.

O’Shea, P., Exton, C., 2004. Investigating patterns and task type correlations in open

source mailing lists for programmer comprehension. In: Dunican, E., Green, T.

(Eds.), Proceedings of the 16th Annual Workshop of the Psychology of Program-

ming Interest Group. pp. 185–192.

Parkinson, A., Redmond, J. A., 2002. Do cognitive styles affect learning performance

in different computer media? In: The 7th Annual Conference on Innovation and

Technology in Computer Science Education (ITiCSE 2002). Association for Com-

puting Machinery, pp. 39–43.

Parkinson, A., Redmond, J. A., Walsh, C., 2004. Accommodating field-dependence: A

cross-over study. In: The 9th Annual Conference on Innovation and Technology in

Computer Science Education (ITiCSE 2004). Association forComputing Machin-

ery, pp. 72–76.

77

Pennington, N., 1987a. Comprehension strategies in programming. In: Olson, G. M.,

Sheppard, S., Soloway, E. (Eds.), Empirical Studies of Programmers: Second Work-

shop. Norwood, NJ: Ablex Publishing Company, pp. 100–113.

Pennington, N., 1987b. Stimulus structures and mental representations in expert com-

prehension of computer programs. Cognitive Psychology 19,295–341.

Petre, M., Blackwell, A., Green, T. R. G., 1998. Coqnitive questions in software visual-

isation. In: Stasko, J. T., Domingue, J., Brown, M. H., Price, B. A. (Eds.), Software

Visualization – Programming as a Multimedia Experience. The MIT Press, pp. 453–

480.

Petre, M., Blackwell, A. F., 1999. Mental imagery in programdesign and visual pro-

gramming. International Journal of Human-Computer Studies 51 (1), 7–30.

Posner, M. I., Snyder, C. R. R., Davidson, B. J., 1980. Attention and the detection of

signals. Experimental Psychology:General 109, 160–174.

Price, B., Baecker, R., Small, I., 1993. A principled taxonomy of software visualisa-

tion. Journal of Visual Languages and Computing 4, 211–266.

Ramadhan, H. A., 2000. Programming by discovery. Journal ofComputer Assisted

Learning 16, 83–93.

Rayner, K., 1992. Eye Movements and Visual Cognition: ScenePerception and Read-

ing. Springer-Verlag.

Rayner, K., 1998. Eye movements in reading and information processing: 20 years of

research. Psychological Bulletin 124, 372–422.

Reiss, S. P., 1998. Visualisations for software engineering — programming environ-

ments. In: Stasko, J. T., Domingue, J., Brown, M. H., Price, B. A. (Eds.), Software

Visualization – Programming as a Multimedia Experience. The MIT Press, pp. 259–

276.

Rist, R. S., 1989. Schema creation in programming. Cognitive Science 13, 389–414.

Rist, R. S., 1991. Knowledge creation and retrieval in program design: A comparison

of novice and intermediate student programmers. Human-Computer Interaction 6,

1–46.

78

Rössling, G., Freisleben, B., 2002. ANIMAL: A system for supporting multiple roles

in algorithm animation. Journal of Visual Languages and Computing 13, 341–354.

Sajaniemi, J., 2002. An empirical analysis of roles of variables in novice-level proce-

dural programs. In: Proceedings of IEEE 2002 Symposia on Human Centric Com-

puting Languages and Environments (HCC’02). IEEE ComputerSociety, pp. 37–39.

Sajaniemi, J., 2004. Roles of variables home page.

http://www.cs.joensuu.fi/˜saja/var_roles/, (Accessed Dec. 14th, 2005).

Sajaniemi, J., Ben-Ari, M., Byckling, P., Gerdt, P., Kulikova, Y., Submitted. Roles of

variables in three programming paradigms.

Sajaniemi, J., Kuittinen, M., 2003. Program animation based on the roles of variables.

In: ACM 2003 Symposium on Software Visualization (SoftVis 2003). Association

for Computing Machinery, pp. 7–16.

Sajaniemi, J., Kuittinen, M., 2004. Visualizing roles of variables in program animation.

Information Visualization 3, 137–153.

Sajaniemi, J., Kuittinen, M., 2005. An experiment on using roles of variables in teach-

ing introductory programming. Computer Science Education15 (1), 59–82.

Sajaniemi, J., Navarro Prieto, R., 2005. Roles of variablesin experts’ programming

knowledge. In: Romero, P., Good, J., Bryant, S., Chaparro, E. A. (Eds.), Proceedings

of the 17th Annual Workshop of the Psychology of ProgrammingInterest Group

(PPIG 2005). pp. 145–159.

Sajaniemi, J., Stützle, T., Submitted. Evaluation techniques for animated software vi-

sualization metaphors.

Sibert, L. E., Jacob, R. J., 2000. Evaluation of eye gaze interaction. In: Human Factors

in Computing Systems: CHI 2000 Conference Proceedings. ACMPress, pp. 281 –

288.

Stasko, J., Patterson, C., 1992. Understanding and characterizing software visualiza-

tion systems. In: Proceedings of the 1992 IEEE Workshop on Visual Languages.

IEEE Computer Society Press, pp. 3–10.

Stützle, T., Sajaniemi, J., 2005. An empirical evaluation of visual metaphors in the

animation of roles of variables. Informing Science Journal8, 87–100.

79

Tobii, 2004. User Manual - Tobii Eye Tracker, Clearview Analysis Software. Tobii

Technology AB.

von Mayrhauser, A., Lang, S., 1999. A coding scheme to support systematic analysis of

software comprehension. IEEE Transactions on Software Engineering 25 (4), 526–

540.

von Mayrhauser, A., Vans, A. M., 1995. Industrial experience with an integrated code

comprehension model. Software Engineering Journal 10, 171–182.

Witkin, M. A., 1971. A Manual for the Embedded Figures Test. Consulting Psycholo-

gists Press.

80

Appendix

A List of Roles of Variables (Sajaniemi and Kuittinen,

2003)

Following ten roles cover 99% of all variables found in novice-level imperative pro-

grams:

Fixed value (aka constant): A variable whose value does not change after initializa-

tion.

Technical definition: A variable whose value does not changeafter initialization

(e.g., an input value stored in a variable that is not changedlater) possibly done

in several alternative assignment statements (e.g., a variable that is set to true if

the program is executed during a leap year, and false otherwise) and possibly

corrected immediately after initialization (e.g., an input value that is replaced by

its absolute value if it is negative).

Full program example:

The variable fuel is a fixed value in the following program:

program fuelRate;

var start, finish: integer;

fuel: real;

begin

write(’Enter fuel amount: ’); readln(fuel);

write(’Enter odometer at start: ’); readln(start);

write(’Enter odometer at finish: ’); readln(finish);

while finish <= start do begin

write(’Odometer cannot be smaller at finish. Re-enter: ’);

readln(finish)

end;

writeln(’Average rate of fuel consumed was ’,

fuel / (finish - start))

end.

Stepper: A variable stepping through a succession of values that canbe predicted as

soon as the succession starts.

81

Technical definition: A variable going through a successionof values depending

on its own previous value and possibly on other steppers, stepper followers, and

fixed values (e.g., a counter of input values, a variable thatdoubles its value

every time it is updated, a variable that alternates betweentwo values, or an

index to an array that sweeps through the array using varyingdensities) even

though the selection of possibly alternative update assignments may depend on

other variables (e.g., the search index in binary search).

Full program example:

The variable month is a stepper in the following program:

program monthlySales;

var month, largest: integer;

sales: array [1..12] of integer;

begin

for month := 1 to 12 do begin

write(’Enter sales of month ’, month, ’: ’);

readln(sales[month])

end;

largest := sales[1];

for month := 2 to 12 do

if largest < sales[month] then largest := sales[month];

for month := 1 to 12 do begin

writeln(’Month ’, month, ’ gave ’, largest-sales[month],

’ less than the best month.’)

end

end.

Most-recent holder: A variable holding the latest value encountered in going through

a succession of values.

Technical definition: A variable holding the latest value encountered in going

through a succession of values (e.g., the latest input read,or a copy of an array

element last referenced using a stepper) and possibly corrected immediately after

obtaining a new value (e.g., to scale into internal data representation format).

Full program example:

The variable finish is a most-recent holder in the following program:

program fuelRate;

var start, finish: integer;

fuel: real;

begin

82

write(’Enter fuel amount: ’); readln(fuel);

write(’Enter odometer at start: ’); readln(start);

write(’Enter odometer at finish: ’); readln(finish);

while finish <= start do begin

write(’Odometer cannot be smaller at finish. Re-enter: ’);

readln(finish)

end;

writeln(’Average rate of fuel consumed was ’,

fuel / (finish - start))

end.

Most-wanted holder: A variable holding the best value encountered so far in going

through a succession of values.

Technical definition: A variable holding the best value encountered so far in

going through a succession of values with no restriction on how to measure the

goodness of a value (e.g., largest input seen so far, or an index to the smallest

array element processed so far).

Full program example:

The variable largest is a most-wanted holder in the following program:

program monthlySales;

var month, largest: integer;

sales: array [1..12] of integer;

begin

for month := 1 to 12 do begin

write(’Enter sales of month ’, month, ’: ’);

readln(sales[month])

end;

largest := sales[1];

for month := 2 to 12 do

if largest < sales[month] then largest := sales[month];

for month := 1 to 12 do begin

writeln(’Month ’, month, ’ gave ’, largest-sales[month],

’ less than the best month.’)

end

end.

Gatherer: A variable accumulating the effect of individual values ingoing through a

succession of values.

Technical definition: A variable accumulating the effect ofindividual values in

going through a succession of values (e.g., a running total,or the total number

of cards in hand when the player may draw several cards at a time).

83

Full program example:

The variable totalSales is a gatherer in the following program:

program sales;

var month, monthSales, totalSales: integer;

begin

totalSales := 0;

for month := 1 to 12 do begin

write(’Enter sales of month ’, month, ’: ’);

readln(monthSales);

totalSales := totalSales + monthSales

end;

writeln(’Total sales were ’, totalSales)

end.

Transformer : A variable that gets its new value always with the same calculation

from value(s) of other variable(s).

Technical definition: A variable going through a successionof values depending

on, but being different from, one or more most-recent holders, steppers or their

followers, and possibly on fixed values (e.g., the kind or type of an input item,

or a time given in hours, minutes and seconds converted to milliseconds).

Full program example:

The variable rad is a transformation in the following program:

program sine;

const DegToRad = 2.0 * 3.14159 / 360.0;

var i: integer;

rad: real;

spaces: integer;

begin

for i := 0 to 36 do begin

rad := i * 10.0 * DegToRad;

spaces := trunc((sin(rad)+1.0) * 40);

writeln(’ ’ : spaces, ’*’)

end

end.

One-way flag: A two-valued variable that cannot get its initial value once its value

has been changed.

Technical definition: A two-valued variable that can be effectively changed only

once (e.g., a variable stating whether the end of input has been encountered) even

84

though the new value may be re-assigned several times (e.g.,a variable initialized

to false and set to true each time an error occurs during a longsuccession of

operations).

Full program example:

The variable error is a one-way flag in the following program:

program dateValidation;

var day, month, year: integer;

error: Boolean;

begin

write(’Enter day: ’); readln(day);

error := (day < 1) or (day > 31);

write(’Enter month: ’); readln(month);

error := error or (month < 1) or (month > 12);

write(’Enter year: ’); readln(year);

case month of

1,3,5,7,8,10,12: (* ok *) ;

4,6,9,11: error := error or (day > 30);

2: if (year mod 400 = 0) or

((year mod 4 = 0) and (year mod 100 <> 0))

then error := error or (day > 29)

else error := error or (day > 28)

end;

if error then writeln(’Date incorrect.’)

else writeln(’Date correct.’)

end.

Follower: A variable that gets its values by following another variable.

Technical definition: A variable which, apart from initialization, goes through a

succession of values depending on the value of a single variable that is updated

immediately after being used for updating the follower, andpossibly on fixed

values (e.g., the previous pointer when going through a linked list, or the low

index in a binary search).

Full program example:

The variable previous is a follower in the following program:

program distance;

var month, current, previous, largestDifference: integer;

begin

write(’Enter 1. value: ’); readln(previous);

write(’Enter 2. value: ’); readln(current);

largestDifference := current - previous;

85

for month := 3 to 12 do begin

previous := current;

write(’Enter ’, month, ’. value: ’); readln(current);

if current - previous > largestDifference

then largestDifference := current - previous

end;

writeln(’Largest difference was ’, largestDifference)

end.

Temporary: A variable holding some value for a very short time only.

Technical definition: A variable holding the value of some other variable or input

value for a very short time only (e.g., in a swap operation).

Full program example:

The variable temp is a temporary in the following program:

program bubbleSort;

var i, j, temp: integer;

a: array [1..10] of integer;

begin

for i := 1 to 10 do begin

write(’Enter number: ’); readln(a[i]);

end;

for i := 1 to 9 do

for j := i+1 to 10 do

if a[i] > a[j] then begin

temp := a[i];

a[i] := a[j];

a[j] := temp

end;

for i := 1 to 10 do writeln(a[i])

end.

Organizer: An array which is only used for rearranging its elements after initializa-

tion.

Informal definition: An array which is only used for rearranging its elements

after initialization (e.g., an array used for sorting inputvalues).

Full program example:

The variable a is an organizer in the following program:

program bubbleSort;

var i, j, temp: integer;

86

a: array [1..10] of integer;

begin

for i := 1 to 10 do begin

write(’Enter number: ’); readln(a[i]);

end;

for i := 1 to 9 do

for j := i+1 to 10 do

if a[i] > a[j] then begin

temp := a[i];

a[i] := a[j];

a[j] := temp

end;

for i := 1 to 10 do writeln(a[i])

end.

87

