Attention and Program Knowledge in Visualising
Roles of Variables

Seppo Nevalainen

Licenciate Thesis

May 16, 2006

Department of Computer Science,
University of Joensuu, Finland

Abstract

One application area for visualisations in computer s@esdeaching of computer
programming. So far, the effectiveness of these visuadisatas been evaluated em-
pirically mostly by measuring their long-term effects omareing programming, ex-
cluding possible short-term effects of visualisations tair relation to the long-term
effects. In our research, we will study short-term effectew visualising the roles
of variables with PlanAni program animator to novices l&grprogramming. This
thesis presents the research methodology and its evalyatio describes the first of
the experiments we will carry out during our research.

First, we conducted an experiment comparing the use of thyeetracking devices
in the psychology of programming. On the basis of the reswts selected Tobii

1750 for measuring the eye movements in our research. Sgeandnalysed the
replicability of Good’s program summary analysis scheme ihvestigation brought
forth some problems, that are reported. Third, we studied agerson targets her
visual attention, and what kind of a mental model she con&tmmoncerning a computer
program, when the program and especially its variables mgepted using either a
textual or a graphical program visualisation tool.

Preface

| would like to thank ...

My supervisors professor Jorma Sajaniemi and senior kexckdiarja Kuittinen for their
valuable guidance through these years without which thengrof this thesis would
not have been possible.

Pauli Byckling and Petri Gerdt for enjoyable and educaticoaversations about life,
the universe and everything, and for the collaboration gnave science studies and
various research questions.

People at the department office and at the department libyargaking all the practi-
cal matters much easier.

Faculty of science at the University of Joensuu for prowgdirgrant to support my post-
graduate studies, and the department of computer scietice dhiversity of Joensuu
for providing several short-term positions to support mgtgoaduate studies.

This work was supported by the Academy of Finland under graniber 206574.

Contents

1 Introduction 1
2 Roles of Variables 6
2.1 Background on Rolesof Variables 6
2.2 TheRoleConcept 9
2.3 VisualisingtheRoles 10
2.4 Roles of Variables in Teaching Elementary Programming. 14
2.5 Empirical Evaluation of the Role Concept 15
3 Visual Attention and Eye Tracking 19
3.1 Introduction 19
3.2 Eye Tracking Methodology 20
3.3 Experiment 23
331 Method 24
332 Results 27
3.4 DISCUSSION 28
3.5 Eye Tracking in Psychology of Programming Research 29
4 Mental Models and Program Summary Analysis 31

4.1

4.2

4.3

4.4

Introduction 31

Good'sScheme 33
Investigation. 36
431 Method 36
432 Results 39
4.3.3 Differences in Information Types 41

4.3.4 Differences in Object Description Categories 48

DiSCUSSION 53

5 Short-term Effects of Graphical versus Textual Visualiséion of Variables 56

5.1 Introduction 56

5.2 Experiment 57

521 Method 58

522 Results 61

5.3 DIiSCUSSION o e 65
6 Conclusion 69
Bibliography 72
Appendixes 81
A List of Roles of Variables (Sajaniemi and Kuittinen, 2003). 81

Chapter 1
Introduction

People have used visualisations for achieving variousstsioughout their history.
For example generals have utilised maps in warfare andrsdiéve utilised star charts
during their travels. During the computer era, numerousalisation tools have been
developed to be used in computer science education forsasksas teaching program-
ming and algorithms (e.g., ALADDIN (Helttula et al., 1982EUS (Brown, 1991),
Jeliot (Haajanen et al., 1997), Eliot (Lahtinen et al., J9E3SCOVER (Ramadhan,
2000), ANIMAL (Réssling and Freisleben, 2002)), and in tloéware industry for
tasks such as debugging and maintaining large programs FéEd.D (Reiss, 1998),
ZStep 95 (Lieberman and Fry, 1998), SeeSoft (Eick, 1998),(Rivhelman et al.,
1998)).

In computer science, the term visualisation can refer teasihns, where people form
mental representations concerning for example algorithnmmputer programs on
the basis of information provided by a visualisation toalt@ the representation of
the information in the tool, depending on the context (Baecknd B.Price, 1998;
Hundhausen et al., 2002; Price et al., 1993).

One application area for visualisations in computer s@esdeaching of computer
programming, where the goal is to help students in evolvirmgnf programming
novices to experts. This is challenging, because prograalsith abstract entities—
formal looping constructs, pointers going through arralgs—ethat have little to do
with everyday issues, and that make learning to prograncdifffor many students.
Visualisation tools can be used for example to make progragpnfanguage constructs
and program constructs more comprehensible (Hundhausdn 2002; Mulholland,

1998), and to illustrate expert programmers’ reasoninggsses to the novices (Petre
et al., 1998).

A designer of an effective visualisation tool has to calgfahoose the target of a vi-
sualisation, and decide how it should be presented to theevie/ariables are a good
candidate for the target of visualisation, since they ardraéto the comprehension
of computer programs. Programs consist of variables, tipason variables, and
larger program constructs, such as functions, classespaddles. In a study by von
Mayrhauser and Vans (1995), information about variablestiva most frequent infor-
mation need type among professional maintenance prograni@everal taxonomies
and frameworks (Myers, 1990; Stasko and Patterson, 198& Bral., 1993; Green
and Petre, 1996; Ainsworth and Labeke, 2002) can be utilisegarching answers
for the question how information should be presented inrdiatea visualisation to be
effective.

Visualisation tools’ effectiveness depends on their gbtlb guide people’s thinking
into a desired direction by transforming information intmaaningful and useful (usu-
ally pictorial) representation, that helps the viewer tingaore understanding of the
target. Creating effective representations is not sttéagivard, since the human mind
is a “black box”, often even to the people themselves. Thégdes of the visualisa-

tions has to rely therefore on methods from for example psipgly of programming

and cognitive psychology when evaluating the visualisei@bility to produce the

desired mental representations in the viewer.

So far, visualisations have been evaluated empiricallytimbg measuring the perfor-
mance of participants that have been shown the visualisaticelation to other par-

ticipants, who have been shown similar material withouti@ising it. Performance

has been measured either by comparing the scores of partisipfter the viewing, or
by comparing the change in the scores of the participantgdset before and after the
viewing. These post-tests and pre- versus post-tests ti¢ipants’s performance have
resulted in a body of evidence suggesting that properlygdesi visualisations can
have beneficial effects on the learning in the students (Hauasen et al., 2002; Byrne
et al., 1999b; Hansen et al., 2000; Kann et al., 1997). Howévese post-test or pre-
versus post-test evaluations do not provide clear insigfiot the possible short-term
effects of visualisations and their relation to the longrteffects. In other words, the
results tell us if the visualisations of an individual viigation tool are being helpful

of unhelpful, but they do not tell us much about what effeatsetplace during the use

Visualisation Mental Model

N

Visual
Attention

Figure 1.1: Interaction between visualisation, visuation and mental model. The
content of the mental model may be influenced both by the obofehe visualisation,
and by the distribution of the visual attention betweenedéht parts of the visualisa-
tion.

of the visualisation tool and how these effects build up thi overall helpfulness or
unhelpfulness of the tool.

In our research, we will study these short-term effects wisnalising the roles of

variables. Roles of variables is a cognitive concept thatlheen developed by Sa-
janiemi (2002), and that can be utilized in teaching progrémg to novices. Roles of
the variables can be visualised with PlanAni program aromg&ajaniemi and Kuit-

tinen, 2004), in which the data contained in the variableksthe code of a computer
program are animated concurrently. The goal of the visaidia is to portray expert’s

tacit knowledge concerning the behavior of variables duprogram execution in a
way that is accessible to novice programmers.

Earlier research has found support for positive long-teffiects of the visualisation
of roles for learning (Byckling and Sajaniemi, 2005; Sagani and Kuittinen, 2005).
Our aim is to find answers to the questions what short-tereteffthe visualisation of
roles has on the viewer and how these relate to the overadfiverf the visualisation.
This would help us understand better the detailed mechartisrough which the visu-
alisation of roles gains its usefulness and would provideespossible answers to the
general question of which visualisations are truly helfpdullearning programming.

The context in which we conduct our research will be the \isafion of the roles of
variables during introductory programming courses. Tlesvers of the visualisations

will be novice-level students, who are at the start of theagpamming studies. We
will concentrate on investigating the interaction betwées form of visualisations,

the visual attention of the students, and the mental modetkests form concerning
computer programs when they view programs with PlanAni mowganimator (Figure

1.1). As Figure 1.1 indicates, the content of the mental miods be influenced both

by the content of the visualisation, such as images usedtesent the roles, and by
the distribution of the visual attention between differpatts of the visualisation, such
as animations and code.

Information concerning visual attention will be measurathg eye tracking, and it
can be used to provide insight into what the students foutedasting, and possibly
even to provide a clue as to how they perceived whatever dtwyewere viewing

(Duchowski, 2003). The contents of the students’ mentaletsdill be investigated
by using Good’s program summary analysis scheme (Good,)18%halyse the pro-
gram summaries students form concerning the visualisegramws. The contents of
the students’ mental models can be used to characterizauttiéycpf comprehension
(Byckling et al., 2004).

In this thesis, | will give a description of the roles of vdiies that will be used as the
main target of visualisation in our research. | will alsogmet our research method-
ology, that is eye tracking and program summary analysisingwur research, | will
conduct a series of experiments, in which the interactiawéen visual attention and
program knowledge in visualising roles of variables willibeestigated in detail. In
this thesis, first of these experiments is described.

My research contributions are to:
e Provide an empirical analysis concerning the appropregeif eye tracking as
a psychology of programming research method.
e Evaluate the inter-rater reliability of Good’s program suary analysis scheme.
e Conduct an empirical investigation of the short-term afeaf visualising vari-

ables with a textual and a graphical visualisation tool.

The rest of the thesis is organised as follows. In chapter Bl jpnesent the roles of
variables, PlanAni program animator that visualises themd, earlier results concern-
ing the long-term effects of visualising the roles. Cha@tércuses on visual attention,

on utilisation of eye tracking in measuring visual attentiand on the question how
appropriate eye tracking is as a psychology of programmnesgarch method. Chap-
ter 4 speaks about mental models, about program summargémaans for studying

mental models, and about Good’s program summary analysese, that will be a

part of our research methodology. In chapter 5 | will descah empirical experiment
that we carried out in order to study the short-term effe€tgisualising the roles of

variables and will present the results. Chapter 6 conthiesdonclusion.

Chapter 2
Roles of Variables

The roles of variables are chosen as the main target of \éstiains in our research on
visual attention and program knowledge. The purpose ottapter is to give reasons
that support this choice and to familiarise the reader vinéhrble concept. First, | will
provide some background for the roles of variables and ptetsecentral ideas. Then
I will discuss the visualisation of the roles and their uséeiaching elementary pro-
gramming. | will end the chapter with a presentation of themnasults from the em-
pirical evaluation of the roles of variables concept as agedical tool. This chapter
is based on the work of Sajaniemi (2002), Sajaniemi and eitt (2003), Sajaniemi
and Kuittinen (2004), Kuittinen and Sajaniemi (2004), 8&ai and Kuittinen (2005),
Byckling and Sajaniemi (2005), and Sajaniemi et al. (Sutad)t

2.1 Background on Roles of Variables

The knowledge about variables is central to the comprebemdicomputer programs.
Programs consist of variables, operations on variables|aager program constructs,
such as functions, classes, and modules. The importanegiables in comprehension
of programs is supported by for example a study by von Mayseaand Vans (1995),
in which information about variables was found to be the nfiegjuent information
need type among professional maintenance programmers.

In the research literature, the knowledge about variakdassbieen presented either as
related to unique variables in unique programs or as relatedriables on a general

PROGRAM Bl ueAl pha;

var Sum Count, Num : | NTECGER;

Aver age : REAL,
Count er Vari abl e BEG N

Plan --------- > Count := 0;
| ---> Sum:= 0; Runni ng Total Loop Pl an
| | Read(Num); <-------------------

Runni ng Total | | VWH LE Num <> 99999 DO <------- |

Vari able Plan | | BEG N |

------------- > Count := Count + 1; |
Read(Num) ; N
END Ski p Guard Pl an

If Count > 0 THEN <-------------mmmmmmmmaa oo

Average : = Sumf Count; <------ |

Witel n(Average); <---------- |

Witeln(’'no legal inputs’); <---|
END

Figure 2.1: A sample program: The running total loop planriieh and Soloway,
1984).

programming knowledge -level, in such a way that the knoggedpplies to theoreti-
cally all variables in all programs. For example Brooks (1,91083), von Mayrhauser
and Vans (1995), and Pennington (1987b) have used the fpsbagh. General de-
scriptions of the latter type are typically referred as paogming plans, or schemas
(von Mayrhauser and Vans, 1995; Ehrlich and Soloway, 19&hnigton, 1987b).

Prior to the research on the roles of variables by Sajani2@tiZ), programming plans
and schemas related to variables have been studied by fopéx&hrlich and Soloway
(1984), Rist (1991), and Green and Cornah (1985).

According to Ehrlich and Soloway (1984), variable planssisihof such aspects as
the variable’s role in the program (i.e. the function it &%) the way the variable
is initialised and updated, and a guard that possibly ptethe variable from invalid
updates. A program example with variable plans is given gufé 2.1.

In the example program, the variatlfl®untserves as a counter variable, keeping track
of the number of numbers read in, aBdmhas a role of a running total variable, be-
cause it is accumulating the sum of the numbers readNlnmberserves as a new
value variable, holding the new number read in each timeutjindhe loop. Variables
CountandSumare initialised to 0. Howeve€ountis updated by 1 through an assign-
ment, andSumis updated by the value of the new value variable through sig@ent;
Numberis initialised and updated through a Read commadoluntand Sumneed to

be protected from including the sentinel value (99999) girthespective totals. This
guard is implemented by the test in the “while” loop of thegmam.

Table 2.1: Basic Pascal plan schemas (Rist, 1991).

Initialization Calculation Output
Prompt write (‘Enter...)); read (number); value of number
Label write (‘Outputis...’); write (number); display
Running total count :=0; count :=count + 1, value of count
Found found := false; ifestthen found := true; value of found
Loop fori:=1to30do read(rainfall); all rainfall values

Rist (1991) has developed the idea further and defines a plarsat of actions, that
achieve a specific goal. Goal is defined by Rist as a state totbevad, for example
when calculating a value or a series of values. Rist definesplans concerning the
actions related to variableBrompt planto obtain inputJabel planto produce output,
running total planto accumulate informatioriound planto register an event, aridop
planto achieve iteration using loop counter variable. Theséhaans are shown in
Table 2.1. Neither Ehrlich and Soloway nor Rist claim thetsl of examples to be
exhaustive.

The approaches presented above have a strong cognitigedmakthey are supported
by empirical experimentation. A more practical approachkategorise variables has
been given by Green and Cornah (1985), who have presentgdaRtmer’s Torch -
tool with an effort to clarify the mental processes of maiiiece programmers. One
of the goals of the tool was to reveal different roles of Valea. The variables were
tentatively listed as: constant, counter, loop countestanecent holder, best-of holder,
control variable, and subroutine variable.

The approaches discussed above consider both utilisatdbbehaviour of a variable
in their descriptions. Later, Sajaniemi (2002) has defitedrole of a variable to be
dependent purely on the behaviour, not the use, of the \ariabd found the following
nine roles in novice-level procedural programs: conststefper, most-recent holder,
most-wanted holder, gatherer, follower, one-way flag, t@rary, and organizer. The
role list has been supplemented later with a role calledstormation (Ben-Ari and
Sajaniemi, 2004).

2.2 The Role Concept

The roles of variables (Sajaniemi, 2002) is a new concepilbgh the tacit knowledge
experts have concerning the behaviour of variables can dmepted explicitly. The
roles of variables describe the use of variables on a gepesglamming knowledge
level, in such a way that it applies to theoretically all mags.

The purpose of the research on the roles of variables hastbekavelop a small but
at the same time extensive list of roles, that covers in arev@avay all the variables
found in novice-level programs, and which could be used f@mple in teaching
elementary programming, or in analyzing large-scale @og.

The variables are used to handle the dataflow of a program.plifEose of an in-
dividual variable in a computer program is to work as a dymadata element, that
typically receives new values depending on other variabtesexternal events. The
role describes the nature and the behaviour of the varialvlaglits lifetime and is not
related to the use of the variable. Each role describes eneatypical behaviour. In
short, the role of a variable can be defined to be the dynanacacter of a variable
embodied by the succession of values the variable obtamtshaw the new values

assigned to the variable relate to other variables (Sajan002).

To illustrate the roles of variables concept, consideofsihg two lines of code, that
output a one-dimensional array:

for i :=1to 12 do
wite(Array[i]);

Here, variable i receives values from 1 to 12, known in adeaméhen the value of
the variable is incremented in the for-loop. The role of aalae i, stepping through a
systematic, predictable succession of values, is calégapst.

In another example, the two lines of code illustrate a tylpicay of collecting total
sum:

Total Rainfal | : =0

Total Rainfall:= Total Rai nfall + Rai nfall

Here, the TotalRainfall variable receives a new value whestleer value is added to
its previous value. In other words, the variable gatherga ganount equal to the sum
of several individual values. Therefore, the TotalRainfaliable can be said to have
the role of a gatherer.

Ten roles presented in the Table 2.2 cover 99% of all varsatdend in novice-level
imperative programs.

2.3 Visualising the Roles

There exists several different visualisation and aninmatowmls that have been devel-
oped for facilitating teaching of programming (e.g., ZEUWB8dwn, 1991), Jeliot (Haa-
janen et al., 1997), Eliot (Lahtinen et al., 1998), DISCOV@E&amadhan, 2000), AN-
IMAL (Rossling and Freisleben, 2002)). The notion that éhesols help the student
in her struggle to learn programming is supported by for eparivayer (2001), who
suggests that the power of animation in enhancing learrsirigased on its ability to

10

Table 2.2: The role set for novice-level programming (Siajam et al., Submitted).

Role Informal description

Fixed value A variable that does not get a new proper valu @ft initial-
ization.

Stepper A variable stepping through a systematic, preduetsucces-

sion of values.

Most-recent holder A variable holding the latest value emtered in going
through a succession of values, or simply the latest valde ob
tained as input.

Most-wanted holder A variable holding the best or otherwiest appropriate value
encountered so far.

Gatherer A variable accumulating the effect of individualines.

Follower A variable that gets its new value always from theé\@lue of
some other variable.

One-way flag A two-valued variable that cannot get its ihigue once the
value has been changed.

Temporary A variable holding some value for a very short tons.
Transformation A variable that gets its new value alway#lie same calcu-
lation from value(s) of other variable(s).

Organizer An array used for rearranging its elements.

provide both verbal and pictorial information that are greed in working memory
to provide deeper understanding. Other suggested berefitgisualisations can pro-
vide for learning include for example the illustration opext programmers’ reasoning
processes to the novice (Petre et al., 1998) and making tiggganming language con-
structs and program constructs more comprehensible (Hursdm et al., 2002; Mul-
holland, 1998).

Current program visualisation tools can be divided into tategories: semi-automatic
tools and hand-crafted tools (Sajaniemi and Kuittinen, 20 his division is based
on how much a program visualisation tool allows the user tio@mce the visual ap-

11

SRR & KRoihe

Figure 2.2: Two variable roles, most-recent holder (datej stepper (count), and
animations representing the comparison operatieme_variable > 0" (Sajaniemi
and Kuittinen, 2004).

pearance of variables. In semi-automatic tools, userstsakalisations for variables
from a set of ready-made visualisations. In hand-craftetstausers make choices to
reflect the value of a variable by choosing for example the@pyate size, color, and
orientation for the visualisation. Program visualisatioals can use also predefined
visualisations selected by the designer of the visuatisatihe main effect of allow-
ing users to participate in deciding the visual appearardbeovisualisations is the
increased interaction between the visualisation tool Aediser; there is no guarantee
of the appropriateness of the visualisation.

Many of the current visualisation tools represent variallled operations on variables
in the program or programming language level. That is, thewswhat variables a
program includes and the change of the values of these \esidring program ex-
ecution, treating each variable as an individual having @strprogramming language
level abstractions (such as the type of the variable). Atiogrto Petre and Blackwell
(1999), visualisations should not, however, work in thegoamming language level
because within-paradigm visualisations, i.e., thosegalith programming language
constructs, are uninformative.

The roles of variables represent knowledge that is not withe programming lan-
guage paradigm but at an upper level, and they can be visdaligh PlanAni program
animator (Sajaniemi and Kuittinen, 2004). In PlanAni, \@bsations of variables are
predefined: each variable has a role image which is used@sbd animation of op-
erations on the variable. These role images representlibatsatereotypical features
of variables’ behavior, and animations are focused on tlelike behavior of vari-
ables. For example, the role images of two roles, most-tdeader and stepper, and
animations representing the comparison operatiome_variable > 07, are shown

12

Fle Setlings Controls
[T #include <stdioh>
"~ #inchude <math Ji>

=)

#lefine sentinel (-999) .
#lefine maxCownt 10 ¢
Hefine true 1 mmmel)nxmeml
#lefine false 0

masC
;:l::l;r]nien,lmq; . "
int nOxde;
Sowost =senthdle 1 i@ 4 & B 7 F g 10
intf(*Anna hiku: %
QJLJQJLJ‘.JLJIJIJ&JIJ
s g‘,:g

-7

" ‘vhw‘ ,w"-c‘

inOrder =false;

o ; e e t, o o
D imicsmns e o\ Joe e
;t]nn&u 2

printf('5% 08w’ o 15
oy ‘nOvder
puints(*#% 4w, 0.5* (o~ 1] + i)
esi0);
H

| E e

Stoj B Reset Speed
V=i T = | Stop esel peed
% @ 5 7 @ cspelos: home | @ Aninfroductior st snevalaic | X Planani - Univ ke 2] - EREITINNN « RN & ¢ O3 231

Figure 2.3: Graphical user interface of PlanAni.

in Figure 2.2.

PlanAni is designed to illustrate expert programmers’ttRobwledge related to the
variables’ behaviour during program execution in pictioftam, alongside the pro-
gram code. These stereotypical features of behaviour ardifiéd also by program-
ming experts, who used them as one of their criteria, wheaging variables together
(Sajaniemi and Navarro Prieto, 2005). The role images usBthnAni have been eval-
uated empirically and found to enhance learning when coetpaith neutral control

images (Stutzle and Sajaniemi, 2005).

Figure 2.3 shows the user interface of PlanAni. The progradeds located on the
left side of the display. The role images and their animateetations are placed on
the right side of the program code. The current phase of thgram execution is

higlighted with a blue rectangle, which is connected to theable that is operated on
with a blue arrow. The inputs and outputs of the program aspldyed by a paper
and a plate in the I/O area located on the bottom part of th@adisThe animation in

PlanAni is controlled by buttons that are located below flkedrea. The buttons can
be used to start, pause, stop or restart the animation, twexthe program lines one

13

at a time, and to change the speed of the animation.

2.4 Roles of Variables in Teaching Elementary Pro-

gramming

Knowledge about computer programming covers the follovihrge categories (Sa-
janiemi, 2004):

e programming language knowledge:the syntax and semantics of some certain
language (e.g., how an assignment statement is written hatleffect it has).

e program knowledge: knowledge about a specific program.

e programming knowledge: how to construct programs from abstract concepts
within the programming paradigm in use (e.g., variablesation etc. in proce-
dural programming). The most important type of knowledgeafprogrammer.

At the elementary stage of her studies, a student needsrease her knowledge in
several of the above levels. Usually, however, teachingadm@mmming to novices con-
centrates around the syntax and semantics of a specificgmnoging language, which
can be categorised as low-level knowledge. The highet-pregramming knowledge
is usually not explicitly taught. The roles of variablesnegent higher-level program-
ming knowledge and they can be applied to teaching elemeptagramming. Fur-
thermore, the roles have been found to be easy to adopt ihitgaKuittinen and
Sajaniemi, 2004).

Figure 2.4 illustrates the relationships between the wifferoles of variables. Literal
and constant are structures of a programming language,taed modes in the figure
represent different roles. When roles are used in teachirmgnstructivist approach,
suggested by the order present in the figure, can be appti¢hislapproach, new infor-
mation is constructed upon previously learned informaté@can be seen from Figure
2.4. For example, if variables’s value does not change dfteset in initialisation, it
can be described as a fixed value. However, if variable’'segadue set repeatedly in a
loop, the variable can be described as a most-recent héldeher, if the values set in
the loop form a series, whose values are known in advancexXtmple in the case of

14

Literal
naming,L
Constant

setting at run time ,L
collecting q
—_—

. . requires
Fixed value Organizer ———Temporary

repetition,L
countin Most-recent calculatin .
Stepper«—g holder S, Transformation
accumula:ing/ Nﬁlaying
Gatherer pickin%/ \Checkmg Follower
Most-wanted One-way
holder flag

Figure 2.4: Relations between the roles (Kuittinen andrgeyai, 2004).

counting the number of some objects), the variable can berides as a stepper. The
roles of variables have been used in teaching elementagrgroning as a part of a
classroom experiment. The results supporting the usefslagthe roles of variables
as a teaching aid are presented and discussed in Sectioft#&5use of the roles of
variables as a teaching aid in elementary programming esussdiscussed in more
detail by Kuittinen and Sajaniemi (2004).

2.5 Empirical Evaluation of the Role Concept

The roles of variables concept has been evaluated empyrinaeveral studies (Ben-
Ari and Sajaniemi, 2004; Sajaniemi and Navarro Prieto, 2@2§aniemi and Kuitti-
nen, 2005; Byckling and Sajaniemi, 2005). In this Sectionill shortly describe the
main results of these studies.

Ben-Ari and Sajaniemi (2004) studied understandability aoceptability of roles of
variables as seen by teachers of procedural programmirtgfcamd that teachers
learn and internalise the role concept quickly and effedlig Similar results have
been found by Byckling et al. (2005), who repeated the stuidly teachers of object-
oriented programming, and by Kulikova (2005), who repeabedstudy with teachers
of functional programming.

In another study, Sajaniemi and Navarro Prieto (2005) tiyated the roles of vari-
ables as a part of expert programmer’s tacit knowledge amidfevidence suggesting
that expert programmers did group variables accordingdio behaviour, and that the

15

L
100—
80 —
% subjects Traditional
60 —
40 — Animation
Roles
20 —
0 * >

Program Cross-referenced Domain

Type of program summary

Figure 2.5: Mental representation of programs in three gsdq®ajaniemi and Kuitti-
nen, 2005).

roles used in the experimental materials existed in thegings the participants made.
The studies presented above suggest that the roles of leeviedn be regarded as a
part of experts’ tacit programming knowledge.

Sajaniemi and Kuittinen (2005) have carried out a classremperiment in order to
analyse the effects of teaching roles of variables on laegrof programming. In the
experiment, 91 students in an introductory Pascal progragueourse were divided
evenly into three groups. The traditional group was givermrad lectures without the
introduction of the role concept and had exercises with ation that was not role-
based. The roles group was given lectures that introducedaolle concept, but had
exercises with animation that was not role-based. Fin#ily,animation group was
given lectures that introduced the role concept, and hatises, in which role-based
animation was used.

Based on the classroom experiment, both Sajaniemi andik@nt{2005), and Byck-
ling and Sajaniemi (2005) have found results suggestirtg/thaalisation of roles with
PlanAni has positive long-term effects on learning prograng when compared with
textual Turbo Pascal environment. The results of theseys@eslare summarised in
Table 2.3, and in Figures 2.5 and 2.6.

16

Table 2.3: Number of roles used by pairs of students in a pragronstruction protocol
task (Byckling and Sajaniemi, 2005).

Pair MRH TRN MWH ONE STP OTH Total Optimal
TRAD-E1 2 1 - - - - 3 no
TRAD-E2 2 2 2 2 - - 8 no
TRAD-E3 2 1 - - 1 - 4 no
RoLE-E1 2 1 - - - - 3 no
RoOLE-E2 2 1 2 1 - 1 7 no
ROLE-E3 2 2 1 - - - 5 no
ANIM-E1 2 1 1 1 - - 5 yes
ANIM-E2 2 1 1 1 - - 5 yes
ANIM-E3 2 1 1 1 - - 5 yes
ANIM-E4 2 1 1 1 - - 5 yes
OPTIMAL 2 1 1 1 - - 5

In their analysis, Sajaniemi and Kuittinen (2005) sorteappam summaries into three
types depending on the amount of domain versus progranmstats in object descrip-
tions. Summaries with at least 67% domain statements @atiind unclear statements
excluded) were calledomain-level summariesummaries with at least 67% program
and program only statements were classifiedragram-level summarieand all oth-
ers were calledross-referenced summaribscause they had a more even distribution
of domain and program information. As can be seen from Figugthe roles and an-
imation groups used significantly more cross-referencednam summaries than the
traditional group. According to Pennington (1987a), thided of program summaries
are typical to high comprehension programmers.

Table 2.3 shows that the animation group was able to use timma@mount of vari-
ables when constructing a new program more often than ther étvo groups, in-
dicating the possession of more programming schemas. Aiomgroup also used
forward development in writing new programs more often ttientraditional or roles
group (Figure 2.6). This can be seen as indication of skglegramming (Rist, 1989).

17

f
100—
80 — 80 %
60 — 60 %
% variables
40 —
(i) 29 %
20 — 17 % 17 %
13 %
0 o 9%
Traditional Roles Animation

Forward development

Figure 2.6: Use of forward development in a program constragrotocol task in
three groups (Byckling and Sajaniemi, 2005).

18

Chapter 3
Visual Attention and Eye Tracking

In our research, we will use eye tracking for collecting mf@tion about the visual
attention of participants when they are viewing visual@ad. This information can be
used to investigate cognitive processes of participanes) though visual attention is
not a direct implication of the focus of participants’ cotie activities. In this chapter,
| will consider the role of visual attention in studying cdtiye processes of program-
mers, utilisation of eye tracking in measuring visual aitem and the appropriateness
of eye tracking as a psychology of programming research adetfihis chapter has
been published in proceedings of the 16th Annual WorkshapePsychology of Pro-
gramming Interest Group (PPIG 2004) as a joint paper by Méwah and Sajaniemi
under the title “Comparison of Three Eye Tracking DeviceBsgchology of Program-
ming Research” (Nevalainen and Sajaniemi, 2004).

3.1 Introduction

In the focus of psychology of programming research is theetstdnding of mental
representations and cognitive processes of programmes thiey are writing, reading
and learning computer programs. The cognitive processeshmobserved directly.
Instead, the researcher has to collect secondary datagthrehich the processes can
be inferred, for example by making observations of the pieint’s actions. These ob-
servations can consist of for example errors the partitipakes, time the participant
uses or location of the point of gaze (POG) of the participant

19

In eye tracking, the collection of POG data can be performétont the need of

the participant performing any action. This can be seen asnefth when studying

cognitive processes that can be easily disturbed. TheotetlePOG data provides
information of participant’s attention, and it can be usedapportive evidence when
studying cognitive processes.

An overview of eye tracking as a research method is given{amgple in Duchowski
(2003) and in Hyonéa et al. (2003). Eye tracking has been usseMeral usability stud-
ies (Goldberg and Kotval, 1999; Byrne et al., 1999a; Sibeditdacob, 2000; Goldberg
et al., 2003), studies related to eye-based interactiviesyss(Jacob, 1990; Majaranta
et al., 2004; Ashmore et al., 2005), and cognitive psychpkigdies related to differ-
ent search and reading strategies (Rayner, 1992, 1998akin®92; Kennedy, 1992).
In psychology of programming research, eye tracking has losed by Crosby and
Stelovsky (1989), who studied the code viewing strategfat® participants. Bed-
narik and Tukiainen (2004) have compared eye tracking withréd display.

Despite the potential usefulness of eye tracking in psyatholof programming re-

search, there exists only few instances where eye trackasgabtually been used.
Therefore experience concerning the benefits, disadvasitagd problems of eye
tracking in psychology of programming research is needethd experiment reported
in this chapter, we used three eye tracking devices to reganticipants’ POG when

studying short computer programs using PlanAni programmator. We studied the
easiness of use and accuracy of the three devices. We alstwvetisind estimated the
amount of disturbance the devices caused to the partigpant

The rest of the chapter is organized as follows. Next Segfies an introduction to the
eye tracking process and to the devices used in this expetifiben the experiment
is described and results are presented and discussed.

3.2 Eye Tracking Methodology

Eye tracking process can be divided roughly into the follaysteps: participant set-
up, adjustments, participant calibration, and monitaring
In the participant set-up phase, the participant is seatddar location in relation to

the eye-tracking device is adjusted. If head mounted opicsed, the eye tracking

20

device is placed on participant’s head and its position jssted.

The adjustments phase includes adjusting the settingseoéyth tracking program,
detecting and ensuring the recognition of the particigaeye(s), and opening the file
used for the recording of the eye tracking data.

In the calibration phase, a calibration pattern consistth@ number of calibration

points is shown to the participant. The participant is agketirect her gaze to each of
the calibration points and the location of the POG for eadibicdion point is recorded.

The values from the calibration are used in calculating tiwations of points of gaze
from the values received from the eye tracking device. Thibregion phase is re-

peated until satisfactory calibration values are recofdedach calibration point. One
significant problem in eye tracking is the drift effect, wihimdicates a deterioration
of the calibration over time (Tobii 2003). The drift effecircbe reduced by ensuring
the stability of the light conditions of the environment atheé equal light intensity

between calibration stimuli and the experiment stimuli.

The monitoring phase consists of viewing the status of tleetecking and, if neces-
sary, readjusting the settings during the tracking of thea@xperiment tasks.

In the experiment we used the following three devices: Tbbi0 from Tobii Technol-
ogy, ASL 504 Pan/Tilt Optics from Applied Science Laboraerand ASL 501 Head
Mounted Optics from Applied Science Laboratories. All #hdevices use video based
combined pupil and corneal reflection eye tracking.

In Tobii 1750 (Tobii, 2004), the eye tracking device is emibedl into the panels of
the monitor that the participant is viewing (Figure 3.1).eTdevice uses a wide-angle
camera to capture images of the participant and near infitaglet emitting diodes for
eye illumination. The device uses both eyes of the partitifa tracking. Tobii 1750
records data at the rate of 30 Hz (30 gaze data points/sedfmdn the device does not
detect the participant’s eye(s), the recording rate is stbdown until proper detection
is regained. The theoretical accuracy of POG coordinateaged by the device is 1
degree visual angle (approximately 1 cm error when the @patit is seated at 50 cm
distance from the display).

In ASL 504 Pan/Tilt Optics (ASL, 2003b), the eye tracking idevis placed below
the monitor the participant is viewing (Figure 3.2). Theidewhas an adjustable wide
angle camera that repositions itself according to the mevesof the participant. The

21

Figure 3.1: Tobii 1750.

device uses the wide angle camera to capture an image of theigant's eye and
near infra-red light emitting diodes for eye illuminatiolfhe device uses one eye
for tracking. ASL 504 Pan/Tilt Optics records data at the raft 50 or 60 Hz. The
theoretical accuracy of POG coordinates provided by thécdes 0.5 degree visual
angle (approximately 0.5 cm error when the participant etest at 50 cm distance
from the display).

In ASL 501 Head Mounted Optics (ASL, 2003a), the optics devégplaced on partic-
ipant’s head (Figure 3.3). The device uses one wide angler@ata capture image of
the participant’s eye and another wide angle camera to m&afita participant’s field of
view (the scene camera). The device uses near infra-retdigltting diodes for eye
illumination. The device uses one eye of the participantrfacking. ASL 501 Head

22

Figure 3.2: ASL 504 Pan/Tilt Optics.

Mounted Optics records data at the rate of 50 Hz. The theateiccuracy of POG
coordinates provided by the device is 0.5 degree visuakang|

3.3 Experiment

In the experiment, we studied the easiness of use of eyarigadkvices by measuring
the total amount of time needed for the preparations of thiécgaant. The prepa-
rations consist of participant set-up, adjustments anitbregion. We also observed
and estimated the effort these activities required fronptnéicipant. The accuracy of
the devices was measured by calculating mean distancesdmt@corded points of
gaze (in the data files) and requested points of gaze (mehsiitte the eye tracking
software). The experimenters were using eye-trackingede\wior the first time.

23

Figure 3.3: ASL 501 Head Mounted Optics.

3.3.1 Method

Design: A within-subject design was used with one independent bkeiéthe eye
tracking device used for collecting the data) and two depehgariables (the time
needed for the preparation of the participant, and the acguwf the device).

All participants were measured using all three eye trackiegces (Tobii 1750, ASL
504 Pan/Tilt Optics, and ASL 501 Head Mounted Optics) andbtider of the devices
was counterbalanced. Each device occurred in each of tbealogical position (1st,
2nd or 3rd measuring device) equal number of times. In themx@nt we used two

24

=1Elx|
Help

@ [0:Z oz

Figure 3.4: PlanAni with code view only.

different versions of PlanAni. The order of the versions wased so that with each
tracking device and each of the viewed programs two of the fatticipants used the
animator with code view first and the other two used the anonatiew first.

Participants: Twelve participants, eight male and four female, partitgdan the ex-
periment. The participants were required to have at least gogramming skills
and some experience in programming. They were recruited fhard year courses in
computer science and were given a coffee ticket for thetigpation.

Materials: For the purpose of the experiment, PlanAni was modified saitthowed
either only the code-view that is located on the top left eowf the animator (Figure
3.4) or only variable animation-view that is located on tbp tenter of the animator
(Figure 3.5). All variables were depicted by the same néutrage. Both versions
showed notifications for the participant and the input/atigoea. For the task of fo-
cusing at specific targets on the screen, screenshots &hilaere used. The PlanAni
version was v0.53.

Procedure: The participants used PlanAni to comprehend six short coenpu
programs—two programs with each eye tracking device. Thenewallowed to view
each program one time step by step. The POG of participamtsgdilhese tasks was

25

@ [0 o2

Figure 3.5: PlanAni with animation view only.

measured. With each device, the participant was first seatddhe eye tracking de-
vice’s location in relation to the participant was adjudieatticipant set-up phase). The
movement of the participant was minimized by using a chaihait wheels, by set-
ting the chair close enough to the desk to minimize the hatedootation and advising
the participant to avoid quick and wide movements of her h@de participant was
not explicitly demanded to stay perfectly immobile durihg task. After set-up, the
settings of the interface program were adjusted, detecfitime participant’s eyes was
performed and the file used for storing the POG data was op@d@gstments phase).
Then the calibration of the participant was performed fration phase). Time needed
for these preparations was measured by the experimentey asipecial program that
required a single key-press to start and stop time measuiith each device, the par-
ticipant performed two program comprehension tasks soghatused both versions
of PlanAni. After each viewing task, the participants wes&etl to give a short pro-
gram summary. The program summaries were collected foruhmope of motivating
the participants to study the program but they were not aedlyurther in this exper-
iment. After studying the programs, participants were dgkelook at eight specific
targets on the screen before proceeding to the next eyangadkvice.

26

Table 3.1: Times (means in seconds and standard deviatieadid for the preparation
and execution phases of the tasks.
Phase Device

Tobii 1750 ASL 504 ASL 501

Mean SD Mean SD Mean SD
Preparation 471.8 128.9 548.3 126.8 953.5 164.4
Execution 502.6 112.1 525.0 122.9 476.6 68.4

Table 3.2: Amount of valid, uncertain and invalid data froircallected gaze data and
the percentage of invalid data.

Amount of Device
Tobii 1750 ASL 504 ASL 501
Valid data 104101 182177 198812
Uncertain data 16486 - -
Invalid data 10629 17722 6099
Percentage of invalid data 8.1 8.7 3.0
3.3.2 Results

Table 3.1 gives the mean times (in seconds) needed for tipagatoon phase and the
execution phase of the program comprehension tasks. Tipanatéeon time is mea-
sured from the beginning of the set-up to the end of calibratiThe difference in
preparation times between Tobii 1750 and ASL 501 (patretest,t = 8.187,

df = 11,p < 0.0001), and the difference between Tobii ASL 504 and ASL 501
(pairedt -test,t = 6.417,df = 11,p < 0.0001) are both statistically significant.

Table 3.2 gives the amounts of valid, uncertain and invadithdas reported by the
devices, and the percentage of invalid data. Tobii 1750igesvvalidity codes 0-4
(0 =valid, 1-3 = uncertain and 4 invalid) for the data. For &%l devices, the validity
of the data is determined by value in the pupil size field (Ovaiid, otherwise valid).

Table 3.3 gives the mean distances (in centimeters) of medqoints of gaze from
the requested points of gaze, and the corresponding viegé avhen the participant
is seated at 50 centimeters distance from the display. Wtardie was measured for
points within a threshold of 2.5 cm from the center point of thrget. The thresh-

27

Table 3.3: Distances (means in centimeters and standaiatioes) of measured points
of gaze from the requested points of gaze, and the corresppaégrees of visual
angle.

Device
Tobii 1750 ASL 504 ASL 501
Mean SD Mean SD Mean SD
Distance 1.134 0.203 1.391 0.351 1.609 0.314
Visual Angle 1.3 1.6 1.8

old was selected so that the theoretical accuracies of tieegeand the microscopic
movements of the eye fitted within the threshold. ASL 501 mtes the POG coordi-
nates on a plane that is in relation to the field of view of theigi@ant, while the other
two devices provide the coordinates on a fixed plane. With ASL, the location of
the screen in the field of view shifts when the participamsurer head. This shift was
visually detected and measured, and the correspondingatimms were calculated and
applied to the coordinates before calculating the distantle difference between To-
bii 1750 and ASL 501 (paired-test,t = 3.707,df = 8,p = 0.006) is statistically
significant.

3.4 Discussion

The time needed for preparation when using 501 was approeiyniavice as long as
the time needed for Tobii 1750 or ASL 504 (see Table 3.1). irexperience, there are
two main reasons that explain this difference. Firstly,ghgicipant set-up phase with
ASL 501 consisted of more steps and required more effortwhtmTobii 1750 or ASL
504. One time consuming step was locating the image of thepant’s eye through
the visor so that it was in correct angle and the visor wasmiooint of the participant’s
field of view. Secondly, the calibration with the ASL 501 wasmatroublesome and
needed to be repeated more often than with Tobii 1750 or ASL, Binly because
the participants were required to keep their heads peyfstitl during the calibration
phase. One possibility to make the calibration easier asirfavith the ASL 501 is
to use a bite bar or chin rest during calibration. This mayyéwer, cause discomfort
to the participant and its applicability in a psychology obgramming experiment is

28

guestionable.

Table 3.2 shows the amounts of collected valid, uncertathiavalid data. All the
devices reported invalid data under 10%. The differencevdeh ASL 501 compared
to Tobii 1750 and ASL 504 occurred most probably becausewbddst mentioned
devices lost the eye easily when the participant used thiedaag to provide input to
the program and the eye moved out of the reach of the deviae®r@as. ASL 504 also
had difficulties in automatically relocating the eye andamg cases it needed to be
aided by relocating the eye manually.

Table 3.3 shows the accuracies of the three devices. Thewatdicate that Tobii
1750 has the highest accuracy, ASL 504 provides secondstiglseuracy, and ASL
501 the lowest accuracy. Only the difference between TomsiOland ASL 501 is,
however, statistically significant. One factor in the lowa@cy of the ASL 501 is
probably an inaccuracy in the visually estimated correctioe to head movements.
The need for this correction can be removed by using magheé#d tracker with ASL
501. Tobii 1750’s measured accuracy is quite near to the¢tieal accuracy given in
Section 3.2. The measured accuracy is 1 - 1.6 degrees fotieipant sitting at 40 -
60 centimeters distance from the screen. ASL 504 and ASL albtlearly behind
the theoretical accuracy given in Section 3.2. For ASL 5@rttreasured accuracy is
1.3 - 2 degrees for a participant sitting at 40 - 60 centinsadéstance from the screen.
For ASL 501 the measured accuracy is 1.5 - 2.25 degrees fatiaipant sitting at 40

- 0 centimeters distance from the screen

3.5 Eye Tracking in Psychology of Programming Re-
search

In psychology of programming research eye tracking can bd as an implication of
the focus of participants’ attention. The POG is not, howere same as the focus of
attention, because attention is not necessarily alwaysedsd with the visual scene,
even though POG is. The participant can also voluntarilgeghis attention slightly
off the POG (Posner et al., 1980).

The general unobtrusiveness of an eye tracking device caedre as a factor when
using this technology in psychology of programming reseaRarticipants’ cognitive

29

processes can be easily disturbed with objects in the fielieof, sounds in the room,
and extra activities required by the experimental settin§eme of the participants
commented that the scene camera of the ASL 501, positiormedding to the manual,
was disturbingly in their field of view. The visor of the ASL 5@emained in the lower
part of the participant’s field of view during the measurinthis did not, however,
invoke any comments from the participants. With ASL 504, dldgustable camera
produced a buzzing sound when it repositioned itself, cautie participant to be
aware of the device’s existence. Tobii 1750 looks like a rardisplay device and
makes no visible or audible interference.

When considering the required effort and caused distudgdrabii 1750 seemed to be
the most unobtrusive for the participants. With ASL 504, pheticipant was required
to keep her head perfectly still during the detection of the, since the auto-follow
property of the camera could be turned on only after the parmil corneal reflection
were found. The positioning of the optics device of ASL 50X participant’'s head
was time consuming and caused physical discomfort to thecjpamt.

Tobii 1750 enabled a participant to easily observe the ingctatus before the calibra-
tion phase, and to take part in the detection of the eye. Tii@aton was not dictated

by the operator but the tracking program performed the cliin by showing the

participant calibration points in random locations at avsb@ce.

In eye tracking, the quality and amount of recorded dataflsenced by the amount
of participants’ motions. The more immobile the participan the better data eye
tracking devices usually record (Tobii 2003, ASL 2003a). aWleye tracking is used
in psychology of programming research, however, the imiisibg of the participant
can disturb the cognitive processes that are being studteseems that there is a
trade off between the accuracy and the ecological validitlata. With the participant
seating used in our experiment, we reached an accuracy tmguite near to the
theoretical accuracy of Tobii 1750. With ASL devices, hoaethe measured accuracy
was considerably behind the theoretical values.

Tobii 1750 and ASL 504 require the participant to be seateldalerate limited move-
ments of the head, only. ASL 501 allows the participant to enawund — an activity
needed in some experimental settings in psychology of progring.

30

Chapter 4

Mental Models and Program
Summary Analysis

Mental models of novice programmers will be evaluated inregearch with the help
of program summaries, which will be analysed using Goodigam summary anal-
ysis scheme (Good, 1999). Since the replicability of the @»scheme has not been
analysed earlier, we carried out an inter-rater religb#gibalysis on the scheme. In
this chapter, | will first consider shortly mental models ebgrammers, and program
summaries as a means for studying them. Then | will deschibenvestigation con-
cerning the inter-rater reliability of Good’s scheme. Tthspter has been published in
proceedings of the 16th Annual Workshop of the Psycholog3rogramming Interest
Group (PPIG 2004) as a joint paper by Byckling, KuittinenyBlainen, and Sajaniemi
under the title “An Inter-Rater Reliability Analysis of Gds Program Summary Anal-
ysis Scheme” (Byckling et al., 2004).

4.1 Introduction

In research into the psychology of programming and compmdience education one
central question is the problem of measuring the qualitgaifriing and comprehension
of programming concepts. There is no universally agreemhupeasure of comprehen-
sion (Dillon and Gabbard, 1998) but the following methodghaeen applied: written

or verbal tests on recall, recognition (e.g., multipleickauestions), and relationships

31

between concepts; problem solving exercises (i.e., pnogriag tasks); essays evalu-
ated by their correctness or by qualitatively analyzingletis’ mental models; and
interviews. In the context of programming, essays may aésprogram summaries,
i.e., free-form explanations of programs.

Program summary analysis has been used in the psychologyogfgmming and

computer science education to characterize mental modeiswice (Corritore and

Wiedenbeck, 1991) and expert (Pennington, 1987a) progeamattaining high lev-

els of comprehension; to characterize mental models oestisdcapable of reusing
program code (Hoadley et al., 1996); to describe how mentalais depend on under-
lying programming paradigm (Good, 1999) or task type of tregpammer (O’Shea
and Exton, 2004); and to evaluate learning outcome in ngwiogrammers (Hughes
and Buckley, 2004; Sajaniemi and Kuittinen, 2005). Theseist suggest that pro-
gram summary analysis can be utilized in revealing novickexpert programmers’
mental models and that the contents of the mental modelseasdd to characterize
the quality of comprehension.

The basic idea of program summary analysis is to ask paatitgoto provide a free-

form explanation, or summary, of a program just studied. Bytting detailed instruc-

tions about the form of the summary, participants’ own peafees guide the selec-
tion of information in the summary and a wide variation in tesponses is usually
achieved. The program summary methodology avoids the @mubbf false positive

results often associated with binary choice questions tlaadiifficulties in designing

sensitive and reliable multiple choice questions (Good Bndh, 2004). In program

summary analysis, the interest is not in the correctnedseaditmmary; the abstraction
level and the types of information are more important charamations of the mental

model than a memorization of the program code details.

In order to analyze program summaries, some analysis schersebe used. Earlier
studies used Pennington’s scheme (Pennington, 1987ahwehiiased on information
types and levels of detail. Later, Good (1999) devised aratbheme based also on
information types, but more finely-grained and fully spedfithan in Pennington’s
scheme; and object descriptions, which is a restrictedored Pennington’s level of
detail. Hughes and Buckley (2004) have extended Good’snselie cover informa-
tion types and detail levels needed in summaries of concum®grams; Burkhardt
et al. (1997) have extended Pennington’s scheme to coverinfemwnation types in
object-oriented programming but they are using the schemguestion classification

32

instead of program summary analysis. Hoadley et al. (1996} & simple classifi-

cation based on abstraction level similar to Good’s objestcdptions but consisting
of fewer categories. von Mayrhauser and Lang (1999) and iérBat al. (2001) have

developed schemes for coding program comprehension pietbat these schemes
cannot be used to analyze program summaries; Hughes andeB{2k04) have ex-

tended Good’s scheme to cover program comprehension pistoc

Good’s scheme has been used in some studies (Good, 1999;aadddrna, 2004;
O’Shea and Exton, 2004; Sajaniemi and Kuittinen, 2005) tsutaplicability has not
been analyzed (Good and Brna, 2004), e.g., there is no kdgelef its inter-rater
reliability nor of reasons for possible differences amoatgrs. In this chapter we
report an investigation where three raters used Good'sisele analyze real program
summary data. The problems in using the scheme as well &satitfes between the
raters were recorded and analyzed.

The rest of the chapter is structured as follows. Sectionv2sgan introduction to
Good’s scheme. Section 3 describes the investigation arrésults are discussed in
Section 4.

4.2 Good’'s Scheme

Good’s program summary analysis scheme has been descrbtg idocuments.
Good’s PhD dissertation (Good, 1999) gives detailed isiwas including Coding
Manuals and coding examples whereas an article by Good arad(Bood and Brna,
2004) describes various categories of the scheme with famples. We will now
give a short summary of Good’s scheme; see the above reterémcmore exact defi-
nitions.

Good’s program summary analysis scheme consists of twertkent classifications
of program summary segments. The first is baseshfmrmation typegIT), i.e., what
kind of information about the program a statement reveah® dther classification is
based orobject description categorig®©DC) that look at the way individual objects
are described in summaries. The interesting items arereliffen these two classifi-
cations and consequently program summaries are segmaeafitedrdly for these two
purposes.

33

For the purposes of IT coding, program summaries are seg@eéatshort passages
consisting of a subject and a predicate (either of which neiiplied). The classifi-
cation comprises eleven categories:

e Function (FUN): The overall aim of the program, described succinctly.

e Actions (ACT): Events occurring in the program described at a lower lea th
Function

e Operations (OPE): Small-scale events which occur in the program, such as
tests, assignments etc.

e State-high (SHI): Describes the current state of a program when a condition has
been met (and upon which an action is dependent).

e State-low (SLO): A lower-level version ofState-high State-highdescribes an
event at a more abstract level th&8tate-lowwhich usually describes the direct
result of a test on a single data object.

e Data (DAT): Inputs and outputs to programs, data flow through progrant, a
descriptions of objects and data states.

e Control (CON): Information having to do with control structures and with se
quencing.

e Elaborate (ELA): Further information about a process, event or data object
which has already been described. This also includes exampl

e Meta (MET): Statements about the participant’s own reasoning process.

e Unclear (UNC): Statements which cannot be coded because their meaning is
ambiguous or uninterpretable.

e Incomplete (INC): Statements which cannot be coded because they are incom-
plete.

IT categories are related in terms of level of granulafynctiondescribes the highest
level of abstraction, i.e., the purpose of the program wicah be described with no
reference to how it is achievedrtionsand State-highdescribe in an abstract manner

34

This program checks a basketball players height from thgiken. | Actions

If the height of the player is over 180 State-high
then he is selected for the team. Function
Once there are five players State-high
the program is terminated. Control

Figure 4.1: An example of IT coding (Good, 1999).

the way that the program work§perationsand State-lowcorrespond to single lines
of code. Figure 4.1 gives an example of IT coding.

For the purposes of the ODC coding, the interesting objectst first be selected and
only then the program summaries can be segmented. ODC cdapplied to data
objects only, and program summaries are segmented so #ratithexactly one data
object per segment. The classification comprises sevegaras:

e Program only (PON): References to items which can occur only in the program
domain.

e Program (PRO): References to objects, which could be described at various

levels, described in program terms.

e Program—real-world (PRR): Object descriptions using terminology which is
valid in both real-world and program domains, and is abstaad shared across
various problem domains.

e Program—domain (PRD): Object descriptions containing a mixture of pro-
gram and problem domain references, or a reference whictuigllg valid in
the program and problem domains.

e Domain (DOM): References to objects described in problem domain terms.

¢ Indirect reference (IND): An anaphoric reference to an object.

e Unclear (UNO): Object references that cannot be coded because they are am-

biguous or unclear, or because the object which is beingregfdo cannot be
identified.

Figure 4.2 gives an example of ODC coding.

35

The program wantall marks over 65 listed Domain
andall marks over 66 will pass Domain
the exam. Domain
The output will state Program
the mark Domain
and whethethe personhas passed. Domain

Figure 4.2: An example of ODC coding (Good, 1999). The codgdat descriptions
are marked irboldface

4.3 Investigation

This Section describes an investigation into inter-raggability of Good's scheme and
the main reasons for differences among raters.

4.3.1 Method

Three raters learned to use Good’s program summary analysgésne and coded real
program summary data. Problems in learning and using thensetas well as differ-
ences between the raters were recorded and analyzed.

Raters: There were three raters, two male and one female, out of whanwere
postgraduate students and one was a postdoc researchamateki had majored in
computer science.

Materials: Forty-four program summaries were gathered as part of ansthdy (Sa-
janiemi and Kuittinen, 2005). They consisted of students\veers to a program com-
prehension question in an exam at an university level inkctaty Pascal programming
course. Students’ task was to “describe what is the purpode@iven program and
how it works”, i.e., to write a program summary. Figure 4.8eg an English trans-
lation of the program; in the original program both outpuingts and variable names
were Finnish words or abbreviations. All other variable eamwere single-letter mean-
ingful abbreviations except the variabei ght which was a problem domain word
(pai no in the Finnish version). In the English version, the vamabkhould bed for
“day” but this would clash withd for “dose”; in the Finnish version this problem did

36

programtask4 (input, output);

var wei ght,x,d,t: integer;
begi n
t 1= 0;

wite(’Enter patient’’s weight (kg): ’); readl n(weight);
for x :=1 to 3 do
begi n
d := weight * 3;
witeln(’Day ', x, "nmorning and evening ', d, 'nm.");
t 1=t + 2*d
end;
for x :=4 to 7 do
begin
d := weight * 4,
witeln('’Day ', x, 'nmorning ', d, 'm.");
t =t +d
end;

witeln(t)
end.

Figure 4.3: English translation of the program summarizedtbdents.

not arise.

Eight program summaries were selected for training thesaed the remaining 36

summaries were used for the inter-rater validation. Tablegdves statistics of the

program summary sizes measured in words. (Due to the abséadgcles and prepo-

sitions, and to the use of compound wdridsFinnish, the same information contents

is usually achieved with less words in Finnish than in Erm)isThe training material
was selected to include a diverse set of summary statenikatsfore, they tended to

Yn Finnish, words can be combined in the same style as “tektbor “database” in English. How-
ever, in Finnish this is much more common than in English., éannosteluohje” for “dosage instruc-
tions”. Because raters are not willing to split a single wint two separate segments, we will use the
notation “dosage-instructions” when compound words appeaur examples. As a compound word

refers usually to a single object, this will probably notaduce language-dependent differences.

37

Table 4.1: Descriptive statistics of the program summauged in the training and
validation phases. Lengths are measured as word counts.

Training Validation
Number of program summaries 8 36
Minimum length 114 42
Maximum length 349 285
Mean length 199.0 137.6
Std dev of length 74.6 57.5

be longer than summaries on average. Moreover, the long@shary was included in
the training set because of its anomalous nature: it catsistinly of program code
fragments. Excluding this summary, the longest programnsam in the training set
was 276 words long.

Procedure: There was a training period for segmenting and coding; fostT and
then for ODC. The training started by a meeting where thesdlaation instructions
were explained to the raters. The raters then segmentechthgg material individu-
ally on their own time. The resulted segments were comparadneeting, differences
were discussed and segmenting rules for the validationeplvase agreed. The train-
ing phase continued with the raters coding individuallytiiagning material using the
agreed segments. The codings were compared and discusseukieting and coding
rules for the validation phase were agreed. The training@has followed by the val-
idation phase where raters segmented and coded the vafidgasterial independently
on their own time.

The training and validation phases for ODC were similar t® ki case described
above. In addition, in the training phase the set of objexrtset used for segmenting
was agreed, also. During the whole investigation, all ngstiwere lead by a fourth
person.

Problems were gathered by the raters, who made notes dwingg and validation,
and by the meeting leader during meetings. Sources of prabdad differences in the
numeric results were discussed in several meetings aftardiidation phase.

38

4.3.2 Results

In addition to the IT categories in Good’s scheme, we useddbegoryContinuation
(CUT) to cover cases where one segment is embedded in another reegiffer
example, in Figure 4.4 the information (lines 1 and 3) thatvhriablet is increased
by a certain amount is interrupted by another informatioscdeing the variable (line
2). Hence, only the first line is given a proper IT category] #re third line is coded
as a continuation to the first line.

The variabld , Operations
which gives the total drug amount, Data
is increased by the morning and evening doses. Continuation

Figure 4.4: An information segment embedded in another sagnT he latter part of
the surrounding segment is codedGmtinuation

Table 4.2 gives the distribution of IT categories by eachrrakthe first part of the table
gives mean percentages of the 36 program summaries for €aaltdgory. The second
part is obtained by grouping categories describing higkt@rogram information,

low-level program information, and other IT categoriesndfly, the last row gives

the proportion of high-level information when other, pragr-unrelated information is
discarded.

For each category, the probability of linear correlatiortto§ magnitude to occur by
change was calculated for each pair of raters. CategonesHtizh the probability is
at least 0.001 for any two raters are marked withnd probabilities being at least 0.05
with tt. For the grouped categories all probabilities are smatian 0.0001.

The number of IT segments for each rater varied between 888% There were 811
segments that were common to all three raters, i.e., 8.6&gdement in segmenting.
Out of these 811 common segments the three raters coded 85rbRarly and 94.0%
of the segments were given the same category by at least teus.rd_ooking at the
coding of each of the raters separately, each rater agrdbdatleast one of the other
two raters in from 84.1 to 85.2% of the common segments.

Table 4.3 gives the distribution of ODC categories by eatér raalculated as means
of the percentages of the 36 program summaries. Probabitifilinear correlation are

39

Table 4.2: Percentages of IT categories by rater. HIG rdfetsgh-level program
information, LOW to low-level program information, and OTbl program-unrelated
information. HIP is the proportion of high-level segmentsalh program-related seg-
ments. {: probability of linear correlation of this magnitude betmeany two raters
> 0.001;1: probability > 0.05.

Rater
A B C
Code | Information Type Mean S.D.| Mean S.D.| Mean S.D.
FUN {1 | Function 93 76| 81 55 105 85
ACT 11 | Actions 20.7 12.0) 18.2 124 146 12.1
OPETf | Operations 106 99| 73 84 7.7 6.6
SHI State-high 15 34, 15 31| 12 27
SLO State-low 01 07/ 01 108 01 04
DAT Data 245 111 274 1220 299 154
CON Control 49 53| 38 48| 48 53
ELA Elaborate 21.6 149 26.3 17.1] 20.4 16.6
MET t | Meta 15 27| 14 28| 27 57
UNC {1 | Unclear 00 00/ 08 34 08 30
INC 7T | Incomplete 1.0 48 1.1 19| 23 49
CuT Continuation 42 41| 39 45| 50 49
HIG FUN+ACT+SHI+DAT 56.0 18.2| 55.2 20.6| 56.2 20.2
LOW OPE+SLO+CON 156 12.2| 11.3 11.5| 126 105
OTH 100HIG-LOW 28.4 16.4| 334 18.0f 31.2 18.7
HIP HIG / (HIG+tLOW) * 100 | 78.1 15.4| 82.4 16.9] 80.9 13.8

marked as in Table 4.2. Probabilities for unmarked categare smaller than 0.0001.

The number of ODC segments for each rater varied between®tl234. There were

570 object descriptions that were common to all three raters 21.0% disagreement
in segmenting. Out of these 570 common segments the thes mtded 73.2% sim-
ilarly and 99.3% of the objects were given the same categprgtbeast two raters.

Looking at the coding of each of the raters separately, eaiehn agreed with at least
one of the other two raters in from 81.1 to 98.8 % of the comnegymeents.

40

Table 4.3: Percentages of ODC categories by ratgsrobability of linear correlation
of this magnitude between any two rater€.001;}71: probability> 0.05.

Rater
A B C
Code | Object Description CategoryMean S.D.| Mean S.D.| Mean S.D.
PON Program only 30 6.1 58 8.2 44 7.9
PRO Program 15.8 15.1] 225 16.3] 20.5 16.6
PRR} | Program—real-world 16 32| 31 47| 24 40
PRD ft | Program—domain 71 81 169 99 6.1 7.6
DOM Domain 63.1 16.8) 49.6 19.6) 59.5 17.8
IND f} Indirect reference 66 6.0 21 37 71 7.7
UNO 1 | Unclear 29 65| 01 08 00 o0.0

4.3.3 Differences in Information Types

This Section first lists reasons for inter-rater IT differes obtained by recording the
problems experienced by the raters during the training,@ndnalyzing the differ-
ences observed in the validation. We start with problemsegneenting, i.e., what
constitutes a segment, and continue with problems in $etetl categories for seg-
ments. We conclude this Section by looking at the frequenofethe problems in
inter-rater differences.

Problems in Segmenting

The basic rule of segmenting program summaries to “shoaga® consisting of a sub-
ject and a predicate (either of which may be implied)” (Gob@99, p. 313) appears
to be clear and unambiguous. However, the examples in (G®@88) and (Good and
Brna, 2004) (which will be together called ssheme defining documeisSDD) con-
tain exceptions to this rule, e.g., “by adding the adjustihoees together” suggesting
that non-finite clauses can be segments, and ‘[and then ifoiaghe other value it
would have created if it had done what | just said] (compé&ddit suggesting that even
a single adjective, i.e., “complicated”, referring to afelie€nt context than the rest of
the sentence can be a segment. We found many occasions Wwadrasic rule would

41

lead to segments containing several information typesgtnll be described in detail
below.

One might be tempted to suggest that several segments sheulded only if the

passage contains several IT categories. However, segrgestsupposed to be done
first—independently of IT coding— which means that segnmgntiannot depend on
the number of IT categories present in the passage. Herecqudstion of segmenting
must be determined by the presencéendérmation itemsndependently of their types.

The “and” problem: The SDD contains contradicting examples of the effect of the
word “and” on segmenting. The passage

the program is selecting ... and allowing them to ...

is coded as a single segment (Good and Brna, 2004) whereas

It takes the numbers in the list and adds up numbers next toaher

is coded as two segments (Good, 1999, p. 320). However, imda@mples, there
is a predicate on both sides, and the subject is implied onighéhand side. In our
summaries, we found cases where both the subject and thiegdeedre implied:

program tells how much and how many times a day

Contrasted with a slightly longer version:

program tells how much and it also tells how many times a day

it becomes unclear whether one should use one or two segments

The non-finite clause problem:Non-finite clauses and other similar linguistic con-
structs give rise to passages that contain several infaymégms even though there is
no new subject or predicate:

once adjusted the numbers are added
which tellsusing the value of xthe number of the day

42

Special cases of this problem are specifications of time logratondition where the
wording may contain a subject and a predicate or they may erdb

When we are at the beginning of the for-loop
VS.
At the beginning of the for-loop

If the input is O [...]Jvs. With input O [...]

Time specifications can be even shorter and still carry arimdtion item, e.g., “This
time” or “Then”, making it problematic to decide when a timgesification should
have its own segment.

Another special case of this problem is formed\bgtapassages that may consist of a
single word:

presumably
probably
clearly

The information—dense passage problerBome passages of text contain several in-
formation items and, indeed, several IT categories evamgihthere is a single subject
and predicate. For example, the following passage descoibh data (the meaning of
the variable) and control (the assignment):

The total drug amount is stored into the variablat every round.

The example problem:Examples (that should be coded Elsaborate may be very

short or consist of tens of lines. The SDD notes that “(65 is ttase)” is a single
segment (Good and Brna, 2004) but it is unclear how many setgséould be made
out of a long example. Furthermore, examples rarely havéjgsior predicate, e.g.,

(kg)
I.e., single-dose,

43

Problems in Selecting IT Category

Coding problems considered either discrimination between(or even three) IT cat-
egories, or were more general and not connected to any speaifigories. Moreover,
we found a need for two new IT categories. We start with thedgtroblem types.

The atmosphere problenithe SDD suggests (Good, 1999, p. 314) that coding can be
carried out by category, i.e., by several passes througsutmenary in order to identify

all segments of a particular type. In this style of coding:resegment is coded almost
independently of the surrounding segments. However, aicgrassage, €.g.,

Finally the amount of agent needed for doses is output.

may have a very different interpretation depending of itstegt. If this segment ap-
pears at the beginning of a summary where the function oftbgrpm is described, it
representgunctioninformation. If it appears at the end of a summary as an esplan
tion of the final output statement, it represeDtta. Thus overlooking the context, or
atmosphere, of the passage leads to incorrect coding.

The not-done problemProgram summaries contain passages that describe what the
program doesotdo. The SDD does not explain how to code these. Examples are:

input cannot contain letters
and accepts even a negative value [i.e., there is no inpakthe

The missing “continuation” category problemWe found the need for a new IT cate-
gory Continuationdescribed at the beginning of this Section.

The missing “irrelevant” category problemMWe found the need for a new IT cate-
gory Irrelevantto code information that is not related to the activity orules of the
program, e.g.,

else the program works.

The name of the programisask4.

The program starts with the word&gi n”.
The program contains twioor -loops.

44

Irrelevant information is usually valid—it just is not rédal to activities of the program
or to its results.

The Operations vs. Actions problenmActivity within a loop that is described based
on a single round (i.e., it should be coded@seration$ may appear to the reader as
describing the effect of all rounds (i.e., an activity at &ationslevel). The reader may
even change the way the segment appears to him or her. Exaofples type are:

the variablé is increased again
The total drug amount is stored into the variablat every round

The Data vs. Operations/Actions problemThere are many occasions where an
information item may be interpreted to describe a variabée, Data) or an activity
(i.e., Operationsor Actiong. First, the specific words used to refer to an object may
make a difference:

Finally the variabléd is increased again Operations/Actions ?
Finally the dose-total is increased again Data ?
Finally the gatherer is increased again Data ?

Even though these examples are very similar, the use of aahddnguage concept
(“dose-total”) or role name (“gatheref) seems to change the information from oper-
ation to data flow.

Second, individual verbs seem to be attached to differemideof abstraction even
though the information content is basically the same, e.g.,

the size of the dose is assigned to the variable Operations
the size of the dose is computed into the variable Operations/Data ?
the variabled holds the size of the dose Data

Third, it is not clear how to code an abstract activity (whsfould be coded as
Actiong that refers at the same time to the total life-cycle of aatae (which should

2Gatherer is one of the roles taught to the students in thénatigtudy. It can be compared to the
concept of counter. While a counter counts something, aegatlyathers the net effect of something,
e.g., the sum of individual values.

45

be coded aBata). A reference to the total life-cycle of a variable may evenrlirect
(“This time”), e.g.,

For the fourth day the dose changes Actions/Data ?
The dose is determined by Operations
This time the dose is determined by Operations/Data ?

The Data vs. Control problem: Passages concerning control variables contain
information about both control and the life-cycle of a vatea

wherex steps from the value 1 to the value 3 Data/Control ?

The State-low vs. State-high problemAccording to the SDDState-highrelates to
state described at an abstract level &tate-lowto state described at a low level (Good,
1999, p. 315). However, in the SDD exampltmte-highseems to be connected to
loop termination conditions arfstate-lowto i f -conditions, independently of the level
of the description, e.g. (Good, 1999, p. 196, p. 321),

[program should terminate] when counter is greater th&tate-high
4
if the head is greater than 180 ... State-low

The Elaborate vs. some other category problefAassages coded &aborateare

examples or restatements of facts that have already beenls It is, however,
unclear how far away the original fact is allowed to be, neay the elaboration follow,
say, 10 segments after the original fact, and how much carebdacgd from earlier
facts, i.e., may an elaboration contain a fact that is notieidy said before but that
can be easily deduced from earlier segments.

Furthermore, it is unclear whether descriptions of manheukl always be coded as
Elaborateas suggested by the examples in the SDD, e.g., (Good, 19890}

46

It adds two successive numbers in the list Function
putting a zero at the start Elaborate

Rater Differences

The above list of problems in IT segmenting and coding waectdd during the train-
ing and validation phases of the investigation. We devasdhocsolutions to prob-

lems that were found during training and the raters weresadvio work accordingly.
Nevertheless, there were differences between raters iaaligation as described in
Section 4.3.2.

Two problems accounted for more than half of tiéerences in segmentinthe Meta
passages form of the Non-finite Clause Problem covered 2&ritihe “And” Problem
covered 23.8% of the 231 non-common segments. Another 14f 78 non-common
segments were caused by segments codegdoaginuationby some rater(s) but not
considered to cause segments by other(s). However, thesada effects of other
differences in segmenting and do not explain anything bgndedves.

Most interestingdifferences in codinghe 811 common segments regard the 49 seg-
ments coded differently by all raters. Two cases accourtded fmajority of these dif-
ferences. The first was the Missitgelevant Category Problem that covered 30.6%
of the segment. The second was a combination o&tperationsvs. ActionsProblem
and theData vs. Operations/Action®roblem that covered 32.7% of the segments.
These segments were of the form

The total drug amount is stored into the variablat every round

where a single assignment@perations the total effect of these assignments during
all rounds of the loop i#\ctions and the information that the varialileholds the total
amount isData.

Table 4.4 gives frequencies of information types in the 28jnsents agreed by two
raters but not by the third one. Taking the overall frequesaf the categories (Table
4.2) into account, the categori@stions Operations andincompleteoccur as codes
for the problematic segments more often than expected, r@ndategoriesunction
Data, andContinuationoccur less often than expected.

a7

Table 4.4: Frequencies of information types in segmentseahby two raters only.

Information Type| Frequency,
Function 7.6
Actions 25.3
Operations 12.4
State-high 0.0
State-low 0.0
Data 20.8
Control 4.6
Elaborate 19.5
Meta 15
Unclear 1.3
Incomplete 5.7
Continuation 1.2

The most common problems were thata vs. Operations/Action®roblem (22.5%),
theElaboratevs. Some Other Category Problem (19.9%), andQperationsvs. Ac-
tionsProblem (11.7%).

4.3.4 Differences in Object Description Categories

We now turn to ODC inter-rater differences. We will first loakthe problems in iden-
tifying objects, and then continue with problems in segnmgnand coding followed
by an analysis of differences observed in the validation.

Problems in Recognizing Objects

The data object definition problemAccording to the SDD (Good, 1999, p. 316) ODC
coding is applied to data objects; any other objects (ehg.ptogram, actions/events
within the program, such as recursive call, iteration) $thaot be used for segmenting.
During the training phase we looked at the differences betwibe raters and realized
that the raters did not, however, agree on what objects dhmutised for segmenting.
As a consequence, we decided that coding should be base@ @olldwing objects:

48

weight, day, dose, total-amount, course-of-medicatiod, @osage-instructions. This
decision was based on our idea of dividing objects into tlieviang four categories:

proper data objects, e.g., total-amount,

aggregate data objects, e.g., dosage-instructions, outpu

control objects, e.g., beginning-of-the-week, firstr -loop

other/external, e.g., patient

The first example of each category above Bamaindescription while the second is a
Programdescription—for the fourth category myogramdescription is possible. The
first two categories cover data objects and we selected thém tised as the basis for
segmentation in the validation phase.

The synonym problemHaving decided the exact list of objects to look for, it was no
always evident what words should be considered as synorgmtise selected objects.
For example, under what conditions should the word “pdtibatconsidered to be a
synonym for the object “weight”, or is the word “reading” aneyym for the object
“dose” in the following:

morning and eveningeading in milliliters

The natural object problem:As with the Synonym Problem, it is not always clear
whether natural language data references should be uodéras a representative of
some object included in the analysis, e.g.,

plainnumber is multiplied by three
right amount of medicine

The “value” problem: The word “value” is an object by itself in all the examples of
the SDD. However, in several cases we were unsure if thisyrelabuld be the case
because we could not found any grounds for considering &/ads an object, e.g.,

49

accepts a negative value
its value

that value

the value of the variable

Problems in Segmenting

Problems in deciding what constitutes a segment are of tpestywhether a sequence
of words should be split into several segments, and whethgtesword references
should be skipped under some circumstances totally.

The qualification problem:It is common to have an object qualified by another object.
In the SDD, these result in a single segment except when thkfiguis the word
“value”, e.g., (Good, 1999, p. 323):

The valueof
the element of heightds preserved with that iteration.

In some cases references to two objects seem to represaet dbfects themselves
rather than the qualified unity. The following example sattstwith this kind of sit-
uation and proceeds gradually to references where a siegl@ent might be more
appropriate:

dose of the third day

dose of the day [in the first round of the second loop]
dose of the day [in any round of the second loop]
dose of a day [some day]

dose-of-the-day

daily dose

These examples demonstrate that the wording itself doealways explain the per-
ceived presence of one or two objects, but the context ofefezence counts also.

50

The multi-word reference problem:Objects are often referred to by several words
representing different ODCs leading to a need to segmeht g@&gsage as a separate
segment, e.g.,

total-amount i)

m the total-amount, ...

m which is the total-amount, ...

m— mis the total-amount — ...
total-amount, which is kept in the variabie ...
the total-amount contained m

the total-amount is assignedno

The variability is huge, and it is not at all clear how manyreegts should be used
in each case. The categdPyogram—domainmay be used when there is a mixture
of program and problem domain references (Good and Brna)200t the examples
in the SDD, e.g., “a list of marks”, are cases where both pairthe reference are
compulsory to make the passage understandable. Furtherthere are no special
categories for other combinations.

The pronoun problem:In the SDD, all examples dhdirect referencesre personal
pronouns. Itis unclear whether other pronouns, e.g., “iWhaad “that”, are anaphoric
references.

The verbatim problemExamples and code segments may contain verbatim references
to objects, e.g.,

witeln(’Day ', X, 'norning and evening ', d,
'mL);
Then the dosage-instructions is output: “Day 1. morning@rehing 150

ml.

The expressions<”, “d”, “Day”, and “150 ml.” do not actually refer to the objectstbu
are verbatim copies of program or output text. It is unclelhetlier they should cause
segmenting.

51

Problems in Selecting ODC Category

The context problem:This is similar to the Atmosphere Problem in IT coding but
considers a single sentence rather than a larger contexburlmaterial, sentences
were much longer than those in the examples of the SDD, anctées had different
views of whether context should be taken into account.

The input coding problemThe SDD says that input is codedRsmgram—real-world
but Program seemed to be more natural to the raters yielding differebetseen
raters.

The Unclear-eagerness problenThe SDD does not state how eagerly the category
Unclearshould be applied: eager use will result in more reliable dwit, of course,
with fewer segments having a category that can be used imgiuainalysis.

The natural language variable name problenThe name of one variablegei ght ,
happened to be a natural language word carrying the meaiithge variable. This
made it very hard to detect the correct category unless thiexbowas obvious.

Rater Differences

Differences between raters were summarized in Sectior2.4.Bheoretically, there

should have beeno differences in selecting the objects for segmernitiecause we

agreed on the set before the validation phase begun. Hoydifferences in segment-
ing indicate that the recognition of even pre-defined objeat®isasy: out of the 458
non-common segments, 63.6% were due to the Synonym anddN@foject Problems.

The Pronoun Problem covered 17.9% of the non-common segment

The vast majority ofdifferences in codingvere due to the Natural Language Vari-
able Name Problem caused by the variable namesdght . Out of the 570 common
segments, only four were coded differently by all raters #rey all referred to this
variable. Out of the 149 segments coded similarly by twarsafé9.9% referred to this
variable. Half of the rest were results of the Multi-word Befnce Problem: the raters
had used a single segment but based their coding on diffaspects of the multi-word
reference.

52

4.4 Discussion

Largest inter-rater differences in the IT category frequesin Table 4.2 are over 5.0%
(Actions6.1%, Elaborate5.9%, andData 5.4%) but differences in the proportion of
high-level information of program-related segments (Hifeye, however, smaller with
the largest difference being 4.3%. The linear correlatioefficients of HIP values
between two raters varied from 0.673 to 0.835, the proligtufilinear correlation of
this magnitude to occur by change being smaller than 0.000practice (Corritore
and Wiedenbeck, 1991; Good, 1999; Hoadley et al., 1996 n&aja and Kuittinen,
2005; Pennington, 1987a), individual IT category freques@are usually grouped to
high-level and low-level information making the smalleriadility in HIP important
for research purposes.

Inter-rater differences in the ODC category frequenciedld 4.3) were even larger:
13.5% forDomain 10.8% forProgram—domainand 6.7% forProgram The vast
majority of the coding differences (80.4%) were, howevaused by the poor selection
of a natural language word for one of the variables in the faogto be summarized.
Segmenting was more problematic for ODC than for IT.

In explaining differences among raters, the problemsdigieSections 4.3.3 and 4.3.4
are more important than their frequencies: many problechaali manifest themselves
as differences in the validation phase because we devidaetiosis to them during
the training phase. Our solutions were, howeadrhocand cannot be considered as
general solutions if the scheme is to be applied in more gésettings. Table 4.5 lists
the problems together with our suggestions for solutioes$ypvhether a revision of the
scheme is required, whether the problem can be solved byadeataied documentation
of the scheme, whether the problem is due to problems in gnogito be summarized,
or whether the problem is still open.

In general, the documentation of the scheme should be inegrdoy increasing
consistency of examples and by including the summarizegrams in order to make
the relationship between coding examples and the prograpigie For example, in
the segment (Good, 1999, p. 316):

and whethethe personhas passed Domain

53

Table 4.5: Suggested solution types for the problems. Sehesvise the program

summary scheme; Document.: revise the documentation cscheme; Mater.: use
appropriate experimental materials; Open: an open prabldra upper part contains
problems related to information types (IT), and the lowert paioblems related to

object description categories (ODC). S: segmenting probjeC: category selection

problems; O: object recognition problems.

Problem

Scheme Document.

Mater.

Op¢

2N

“and”
non-finite clause
information—dense passage

example °
atmosphere °
not-done °
; missing “continuation” categ.
missing “irrelevant” categ.
Operations vs. Actions °
Data vs. Operations/Actions °
Data vs. Control °
State-low vs. State-high .
Elaborate vs. some other categ. .
data object definition °
synonym o
natural object °
“value”
gualification °
g multi-word reference °
C pronoun o
verbatim o
context o
input coding

Unclear-eagerness

natural language variable nan

ne

it is unclear whether persons are explicitly mentioned i@ pinogram (e.g., “Enter

person’s mark:”) or only inferred (e.g., “Enter mark:”). iShistinction is important in

54

explaining the correct solution to the Synonym Problem.

IT problems that require changes in the scheme are the aalditiwo new categories,
and the abandonment of the subject—predicate requirerAsrthe SDD already con-
tains examples with no subject or predicate, the lattert®wican be considered not to
be a change in the scheme but a documentation problem ongthAnsuggestion for
improving the documentation is to use the new conadptrmation itemintroduced in
Section 4.3.3 to clarify the process of segmenting for I Tigsis

Other suggested IT documentation additions concern blardsrbetween individual
categories, the atmosphere problem, and some special ddse®nly open problem
is the Data vs. Operations/Actionproblem which covered 28.9% of the differences
among segments common to all raters and depends on deltatpretation of the
true meaning of object descriptions.

ODC problems requiring changes in the scheme concern thet®el of objects and
the detection of object references. The documentationidib@umore precise on these
problems, and furthermore suggest that the objects asalliséfore segmenting the
summaries—particular, if there are more than a single .rafé®e scheme could be
extended to include an option to use a limited set of objechg e.g., objects that are
explicitly mentioned in the program text both with a domaamre and with a program
name in order to avoid thdncleareagerness Problem, or to allow the use of a limited
set of reference utterances for segmentation in order tid #ive Synonym and Natural
Object Problems.

Other ODC documentation problems concern the context enopand some special
cases. The Natural Language Variable Name Problem can meavoy careful design
of programs to be summarized. The scheme cannot solve thidepn although the
documentation should mention it.

55

Chapter 5

Short-term Effects of Graphical versus
Textual Visualisation of Variables

In this chapter, | describe an empirical experiment we edraut in order to study the
short-term effects of visualising the roles of variabled present the results from the
experiment. The experiment was first of a series of experisiamour research, and its
purpose was to verify the existence of differences in thetdleom effects of different
visualisations and to work as a starting point for furthedgts. This chapter has been
published in proceedings of the 17th Annual Workshop of tsycRology of Program-
ming Interest Group (PPIG 2005) as a joint paper by Nevateama Sajaniemi under
the title “Short-Term Effects of Graphical versus Textuaualisation of Variables on
Program Perception” (Nevalainen and Sajaniemi, 2005).

5.1 Introduction

To verify the effectiveness of a visualisation tool, it ned¢d be properly evaluated.
Empirical evaluation of program visualisations has beesetdanostly on post-tests or
pre- versus post-tests of participants’ performance. &legaluations have resulted in
a body of evidence suggesting that visualisations can heneflzial long-term effects
on learning, when designed and used properly (Hundhausan 2002; Byrne et al.,
1999b; Hansen et al., 2000; Kann et al., 1997). Evaluatiqrost-test or pre- versus
post-test performance of participants does not, howeveyjge clear insight into the

56

possible short-term effects of visualisations and theéatien to the long-term effects.

In order to study these issues more rigorously, we condwartegkperiment, in which
we studied two visualisation tools for presenting programables and their execution-
time behavior. The first tool, PlanAni program animator éaa&mi and Kuittinen,
2004), presents pictorial metaphors for variables, omerabn variables are animated,
and information concerning the roles of the variables (8ajai, 2002) is incorporated
into the visualisation. The second tool, Turbo Pascal @nogning environment, pro-
vides textual representations of variables, operationgamiables simply replace the
value of the variable in the representation, and no rolemétion is present. Previous
studies (Sajaniemi and Kuittinen, 2004; Byckling and Sigjen, 2005) have reported
the differences in long-term effects of the use of these twdst

In order to determine the level of viewers’ visual attentanprogram code and on
visualisation of variables with the two visualisation tealhe locations of the partic-
ipants’ gaze on the screen were measured. Possible difisan the participants’
mental models of the studied programs between the two vésui@n tools were in-
vestigated by analysing participants’ program summaitiesrder to control possible
differences between the participants, field-indepencadf @articipant was also mea-
sured.

In the following Sections, the experiment is described,itswksults are presented and
discussed.

5.2 EXxperiment

In order to study short-term effects of variable visualmas, we conducted an ex-
periment where two visualisation tools for presenting infation about variables and
their values during program execution were used. The toete wsed in the classroom
experiment (Sajaniemi and Kuittinen, 2005), in which thegderm effects of the vi-
sualisations were investigated. The current study conatston possible differences
in the locations of participants’ visual attention and imtjggpants’ mental models of
the studied programs between the two visualisation tools.

For control reasons, the level of field-independence of @acticipant was measured.
Witkin (1971) defines field-dependence and field-indepecelas follows: “in a field-

57

dependent mode of perceiving, perception is strongly dateshby the overall orga-

nization of the surrounding field, and parts of the field anpegienced as “fused”. In

a field-independent mode of perceiving, parts of the fieldesqgerienced as discrete
from organized ground.” Field-independence has been fearmbrrelate positively

with learning to program (Mancy and Reid, 2004), especiallgomputerised text-

based and web-based environments (Parkinson and Redn@df), Parkinson et al.

(2004) have shown that the difference in performance betviiedd-dependent and
field-independent learners in computerised text-basedwaetdbased environments
can be diminished by accommodating field-dependence ingbig of the environ-

ments.

The experiment consisted of 4 phases. In the first phase atttieipants were asked
to perform a test measuring participants’ level of fielddpedndence. In the second
phase, the participants studied a recap material on rolear@bles. The third phase
consisted of viewing Pascal programs with the visualisetibmls and of writing down
program summaries. In the fourth phase, the participates fd questionnaire about
the visualisation tools.

5.2.1 Method

The experiment was a within-subject design with one inddpetvariable (the vi-
sualisation tool) and two dependent variables (locatidribe participant’s gaze and
the program summary provided by the participant). Locatiohgaze were recorded
using an eye-tracking camera (Tobii, 2004), and programnsames were analysed
using Good’s program summary analysis scheme (Good, 19889. level of field-
independence of the participants was measured using Gnolgedded Figures Test
(GEFT) (Witkin, 1971). The order of the visualisation toafed the order of the studied
programs were counterbalanced.

Participants: Twelve participants, 7 male and 5 female, took part in theegrpent.
The participants were students who had taken an introdughiargramming course
facilitating the roles of variables and continued theidsts 1-2 years thereafter.

Materials: In the first phase, participants’ level of field-independen@s measured
using GEFT test set (Witkin, 1971).

58

=18l x|

Figure 5.1: User interface of PlanAni program animator.qsd rectangles represent
the code area and the variable visualisation area used antidgsis of gaze locations.)

In the second phase, written material from an earlier erpant (Sajaniemi and Stit-
zle, Submitted) was used. The material consisted of degmmgpof all roles and exam-
ples of their use. It included also a practice material cxiimgj of three small Pascal
programs with 14 variables, whose roles participants wske@to determine.

In the third phase, participants studied four simple Pagoagrams. The programs
were short (11-29 lines, empty lines omitted) and simildaheomore difficult programs
used in the introductory programming course of the earlegsroom experiment (Sa-
janiemi and Kuittinen, 2005). Participants entered predefinputs for the programs.
The use of fixed inputs enabled a participant to focus hentieto understanding the
program, instead of wondering what inputs would be propénégrograms.

The visualisation tools used were PlanAni program anim@tersion 0.55) and the
Turbo Pascal programming environment (version 5.5). In/Rta (Figure 5.1), visual-

isations are graphical, operations on variables are aeohand information concern-
ing the roles of variables is incorporated into the viswiens. Variable visualisations
are located on the right side of the program code. PlanAmilays also notifications
of each program action and has a separate area for input &oait.otn Turbo Pascal
(Figure 5.2), visualisations are textual, operations ambées simply replace the old
value of the variable with the new value, and no role infolorais presented. Variable
visualisations are located below the program code. Turlse&@alisplays no notifica-

59

&t Command Prompt - turbo B i (m] 3
Breakiwatch

i o] i Inma ladant m —linimdant —C 03 ZFH"1 .PAS
program tehtava_B3<{input,outputy;

=
1t:integers i titulos x>
seiintegers vien tulosten ero =)

begin

(3 1te1n(Syuta b 10 tes tltl.llD.» 'y 1ead1n(tt)
1t (% Alussa en tulos on la]

while {p > B> do
hegin
et i= tt;
p o= - 1;
writeln(’8yitd *, 18-p, *. testitulos: ’>; readlnCttd;
if (ABSCtt—et> > se> then se := CABSCtt—et));
end;
writeln(’Lihimpdnd normaalia ', n, * oli ’. 13

writeln<’ Suurin perdkkiisten piivien tulosten ero oli *.
readln

Hatch

Fi-Help F5-Zoom F6-Suitch F7-Trace F8-Step F9-Make Fib-Menu Nl

Figure 5.2: User interface of the Turbo Pascal programmmgrenment. (Dashed
rectangles represent the code area and the variable gistiati area used in the anal-
ysis of gaze locations.)

tions, and input and output are handled through commandgirdmthe Turbo Pascal
environment, watches displaying each variable and itsegatiuring execution were
initialised in advance, and they served as textual visa@ias of variables. Both visu-
alisation tools display code and variables and were prepswehat participants were
able to execute each program once, step by step. This liantafas used because the
tools differed in many other aspects and we wanted to mimilerences having an
influence on the participants.

In the fourth phase, participants were asked to evaluateisii@lisation tools with an
evaluation form including Likert scale questions and opaasgons about the tools
and their use. In the Likert scale questions, participamievasked to use a scale of 1-
5 (1 = totally disagree, 5 = totally agree) to statements eorng five characteristics
of the visualisations: originality, pleasure, saliencaderstandability, and usefulness.
For example, the understandability of the visualisatioas evaluated by proposition I
found this representation easy to understand”. These ceaistics were derived from
experiments carried out by Hubscher-Younger and Naray&@08) who used them
to characterise student visualisations of algorithmshéxdpen questions, participants
were asked to report what issues the two visualisationsmtiddad not highlight. The
evaluation form included also a possibility for free commnaen

60

Procedure: Participants were run individually. Each participant'sde of field-
independence was measured with the GEFT test consistilgesf phases that lasted
2 minutes, 5 minutes, and 5 minutes. After this, the pamicipvas given 15 minutes
to study the roles of variables recap material and perfompthctice task. Then, after
a short break, the participant was seated in front of a coenpobnitor that has an eye-
tracking camera embedded in the panels. The procedure c&urieg the movement
of her eyes was explained to the participant, and she wasedlabout the locations of
all available information on the screen for both visualmatools. The participant had
then an unlimited time to study each program. After the pgodint had finished study-
ing a program, the program was dismissed from the screerstamdas instructed to
give a written description of the program. Again, the timaltothis was not limited,
and the participant was not instructed in any way on what tlegram description
should comprise of. The first two programs were shown with veealisation tool
and the next two with the other tool. The first program withheaisualisation tool was
used to familiarise the participant with the tool, and dabatthe second program only
was analysed. When all four programs had been studied, thieipant was asked to
evaluate the visualisation tools.

5.2.2 Results

GEFT test results of participants’ levels of field-indepemce are shown in Table 5.1.
In the GEFT test, higher score means higher level of fielégym@hdence, and the theo-
retical maximum is 18.

Table 5.1: Results of GEFT test measuring participant&lkeuf field-independence.
n Min Max Mean SD

GEFT score 12 7 18 14.75 3.22

The participants used on an average 26 minutes and 18 setmstigly a program

with PlanAni. Standard deviation was 5 minutes and 58 sexoWith Turbo Pascal,

mean time to study a program was 6.08 (SD 1.57). Due to therdiite in the speed
of the animation between the two tools, the minimum timeketato view the shorter
of the two analysed programs with the tools is 11.30 for Plarehd 1.00 for Turbo

Pascal.

61

Table 5.2: Mean proportions of viewing times on the threeasref the

screen (*** =p < 0.001).
Code Screen Area Condition

PlanAni Turbo Pascal

Mean SD Mean SD

COD Code *** 20.36 3.27 38.75 2.13
VAR \Variables *** 15.43 3.59 3.11 2.38
OTH Other *** 64.21 2.89 58.14 2.52

For the purpose of the analysis, the screen was dividedhinée tareas. The code area
and the variable area were formed by taking the smallestdingiox that includes the
symbols used in the code or the variable visualisationssé&laeeas are illustrated by
the dashed rectangles in Figures 5.1 and 5.2. Other patis stteen formed the third
area. A two-way within-subject Analysis of Variance wasie out. The ANOVA on
absolute viewing times showed that there was a significamt eféect of visualisation
tool (F(1,9) = 156.956, p < 0.001), and of screen are&(2,9) = 78.125,

p < 0.001), and also a significant two-way interaction of visualigatiool and screen
area ¢'(2,9) = 55.984, p < 0.001). The mean proportions of viewing times on
these three areas are presented in Table 5.2. Patesd with Bonferroni correction
was used for follow-up testing. The difference between Rfarand Turbo Pascal is
significant in the proportional viewing time on code & — 17.036, df = 11,

p < 0.001), variables{ = 8.721,df = 11,p < 0.001), and other parts of the
screen{ = 5.708,df = 11,p < 0.001).

In order to study participants’ mental models of the stugirmhrams, we used Good’s
program summary analysis scheme (Good, 1999) that comsist® classifications:
one based on information types (IT) and the other based @tbi¢scriptions (ODC).
The information types classification is used to code sumrsiatgments on the basis of
the information types they contain. Table 5.3 contains ik&itution of information
type statements in each condition. The object descriptitassification looks at the
way in which objects are described. Table 5.4 contains tegiblition of object de-
scription statements in each condition. No statisticatipsicant differences between
the conditions were found in information types or objectadiggion classifications.

We analysed the distribution of domain versus program médion in participants’

62

Table 5.3: Mean proportions of IT categories used in proggammaries.

Code Information Type Condition
PlanAni Turbo Pascal

Mean SD Mean SD
FUN Function 14.73 32.96 8.33 21.62
ACT Actions 17.98 18.12 16.08 16.98
OPE Operations 13.16 15.42 10.64 12.83
SHI State-high 442 5.15 2.38 5.79
SLO State-low 3.84 592 3.68 6.18
DAT Data 36.69 25.56 41.40 2541
coN Control 3.70 6.35 6.86 10.88
ELA Elaborate 3.45 5.69 8.15 17.34
MET Meta 0.52 1.79 0.38 1.30
IRR lrrelevant 1.13 3.93 1.07 2.62
UNC Unclear 0.00 0.00 0.00 0.00
INC Incomplete 0.00 0.00 0.00 0.00
cut Continuation 0.00 0.00 0.38 1.30
HIG FUN+ACT+SHI+DAT 73.80 25.54 68.18 24.55
LOW OPE+SLO+CON 21.08 22.97 21.86 19.93
OTH 100HIG-LOW 512 8.86 9.96 17.61

HIP HIG/ (HIG+LOW) * 100 77.35 23.78 76.08 22.11

program summaries further by using a similar strategy aarani and Kuittinen
(2005). We sorted program summaries into three types depgeod the amount of do-
main versus program statements in object descriptions.n&uras with at least 67%
domain statements (indirect and unclear statements eedjuekere calledlomain-level
summariessummaries with at least 67% program and program only s&tenwere
classified agprogram-level summariesand all others were calledross-referenced
summariedecause they had a more even distribution of domain and gmogrfor-
mation. The number of cross-referenced summaries was tR@amAni condition and
four in Turbo Pascal condition. This difference is not statally significant (Fisher’s
exact test).

Participants’ evaluation of the visualisation tools isgaeted in Table 5.5. The differ-
ence between PlanAni and Turbo Pascal is significant in begmality (t = 7.374,

63

Table 5.4: Mean proportions of ODC categories used in progr@ammaries.

Code Object Description Category Condition
PlanAni Turbo Pascal

Mean SD Mean SD
PON Program only 0.98 341 1.89 6.55
PRO Program 196 6.78 225 6.56
PRR Program—real-world 18.19 26.10 16.22 18.74
PRD Program—domain 219 4.23 181 6.26
DOM Domain 7492 29.41 77.13 22.23
IND Indirect reference 1.78 2.64 0.69 2.40
UNO Unclear 0.00 0.00 0.00 0.00

Table 5.5: Participants’ evaluation of different charastecs of the two visualisation
tools (scale 1-5); the bestis 5 (*** g < 0.001,** = p < 0.01).
Characteristic Condition
PlanAni Turbo Pascal
Mean SD Mean SD
Originality *** 3.92 0.79 2.00 0.60

Pleasure 2.58 1.00 3.42 1.00
Salience ** 4.00 0.43 3.00 0.74
Understandability 4.25 0.75 3.50 0.91
Usefulness 3.00 1.04 250 0.80

df = 11,p < 0.001) and saliencet(= 4.690,df = 11,p = 0.001).

The correlations between participants’ levels of fieldependence and the dependent
variables—the proportions of time used for viewing the paog variables, and the
proportions of different information types and object dgg#@n categories in partici-
pants’ program descriptions—were analysed using the Beaxmrelation coefficient.
Variables having statistically significant correlationtvproportion of time used for
viewing the visualisations of program variables (VAR) anewsn in Table 5.6. There
were no statistically significant correlations betweerpprtion of time used for view-
ing the code and any of the variables.

In PlanAni condition, the Pearson correlation coefficiestween proportion of vari-

64

Table 5.6: Variables having statistically significant eation with time used for view-
ing the visualisations of program variables (*=< 0.01,*=p < 0.05).

Correlation Condition

PlanAni Turbo Pascal
VAR versus GEFT score 0.688 * -0.071
VAR versus HIP 0.601 * -0.084
VAR versus OPE -0.655 * 0.042
VAR versus SLO -0.725 ** 0.025
VAR versus PRR -0.445 -0.747 **

able viewing and the GEFT-scoreris= 0.688, the two-tailed probability for a corre-
lation of such magnitude to occur by chance being statitisgnificant ¢ = 3.001,

df = 10,p = 0.0133). In PlanAni, correlation is statistically significant albe-
tween proportion of variable viewing and high-level IT-degtions (HIP) ¢ = 0.601,

t = 2.377,df = 10,p = 0.0388), proportion of variable viewing and operation level
IT-descriptions (OPE)(= —0.655,t = —2.741,df = 10,p = 0.0208), and pro-
portion of variable viewing and state-low level IT-destiops (SLO) ¢ = — 0.725,

t = —3331,df = 10,p = 0.0076). In Turbo Pascal, statistically significant
correlation occurs between proportion of variable viewamgl program—real-world
object descriptions (PRR) (= — 0.747,t = — 3.556,df = 10,p = 0.0052).

5.3 Discussion

The purpose of this experiment was to investigate how a pdesgets her visual at-
tention, and what kind of a mental model she constructs ofigpcer program, when
the program is presented using a textual or a graphical @nogrsualisation tool. The
experiment is first in a series of experiments that will studgetail the effects of the
visualisation of roles of variables in PlanAni. Two complgtdifferent visualisation
tools were selected for the current experiment in order itoghfiorth clearly different
effects that different visualisation tools might produoel &0 provide this way a start-
ing point for a more detailed investigation in future. Fermore, the long-term effects
of these two tools have been studied earlier (Sajaniemi anttiken, 2004; Byckling
and Sajaniemi, 2005).

65

The results indicate that participants spent more time wigwoth the code and the
variables with PlanAni than they did with Turbo Pascal. Réthis can be explained
by the difference in the speed of the animation. Anotherarpig factor may be the
difference in the graphical richness and amount of detaitwéen the two tools.

The variable visualisations were viewed proportionaterenwith PlanAni than with
Turbo Pascaly(< 0.001) which means that the animation tool has an effect on
visual attention. One explaining factor is the location pinaation: in PlanAni, most
animations appear within the variable visualisations, neage in Turbo Pascal they
appear in the code area. The effect of other factors, egpléasantness of the images
must be studied separately. The other area of the screenigw@sds/proportionately
more with PlanAni than with Turbo Pascal (< 0.001). This was probably because
the area was substantially larger in PlanAni, and becaussgtayed input and output
of the program to the viewer constantly, instead of displgyhem only in command
prompt.

Program summaries were used to study the mental models gfaftieipants. No
statistically significant differences were found betweka two tools. However, in
PlanAni the proportion of variable viewing correlated pivgly with high-level infor-
mation ¢ = 0.601) and negatively with operations (= — 0.655) and state-low
(r = —0.725) in program summaries. Thus the increase of visual atteimithe vari-
able visualisation area increased high-level data-reletf®rmation; and the increase
of visual attention to the code area increased low-levekaetated information. In
Turbo Pascal these effects could not be found. Thus eitleesrtialler absolute time
increase was not sufficient to cause changes in mental motted durbo Pascal inter-
face did not provide the information required for the higkidl mental model because
it lacks role information.

In Turbo Pascal, proportion of variable viewing correlatesjatively with program-
real world object descriptions (= —0.747; PlanAnir = —0.445). The program-real
world object descriptions typically contained expressisach as “value” and “num-
ber”, which were used in a similar way as program object desons in describing the
low-level operations of the programs. With both tools theréase of visual attention
in variable visualisations decreased the participant®tiesv-level descriptions of the
programs.

PlanAni has earlier been found to have positive long-terfece$ on programming

66

skills and content of mental models (Sajaniemi and Kuittjr004; Byckling and Sa-
janiemi, 2005), but in this experiment such an overall ¢ffamuld not be found. In
addition to the location of visual attention, a person’s taemodel is influenced by
other factors also. Huibscher-Younger and Narayanan (200&) used six characteris-
tics of visualisation tools and studied their effect onihéag. They found pleasure and
salience to be the two most important characteristics influgy learning. We asked
our participants to evaluate both visualisation tools itk of these characteristics:
originality, pleasure, salience, understandability asefulness. The evaluation form
included also open questions and a possibility for free centary. In our experiment,
participants judged PlanAni to be more saliemt £ 0.001) than Turbo Pascal, but
also more unpleasani (= 0.096). One possible reason for the small effect on mental
models in this experiment is that even though PlanAni waggddmore salient, it was
also found unpleasant to use.

On the basis of the open questions, it is obvious that theeagphtness of PlanAni was
mostly due to the slowness of the animation. Eight partitipaommented negatively
about the slowness of PlanAni, and four commented posjti@bbut the fast use of
Turbo Pascal. The salience of PlanAni was contributed mastthe illustration of
variables’ roles and tasks in the program. These were cortetigrositively by the
participants five times (roles of the variables) and fouesintasks of the variables). In
some of the free commentary by the participants, PlanAnidegsned to be appropri-
ate for teaching elementary programming, not for interratedi. Because we had 2nd
and 3rd year students in the experiment, the programs wesefeathe participants
and therefore properties highlighted by animation may heteshown up in the pro-
gram summaries. This can also partly explain the unpleasastthe participants felt
in using PlanAni, a tool designed for true novices.

The proportion of variable viewing correlated with the GEBGore in PlanAni
(r = 0.688), but not in Turbo Pascal(= — 0.071). This can be explained by
the difference in graphical richness between the two visaabn tools. Following the
textual visualisation of Turbo Pascal does not require teeer to be able to separate
items from organised perceptual field in the same way as vativhi, which uses col-
orful graphical images and animations. This is consistdtit previous experiments
(Mancy and Reid, 2004; Parkinson and Redmond, 2002) that$tadied the relation-
ship between field-independence and learning. Thus, tle ¢d\field-independence
influenced the targeting of visual attention, which influeth¢he mental model being

67

constructed. Therefore, the level of field-independencedir@ct implications on the
usefulness of visualisations.

68

Chapter 6
Conclusion

In this thesis, | have reported a research in which we stuglghlort-term effects of vari-
able visualisation by investigating the interaction betwéhe form of visualisations,
the visual attention of the students, and the mental modetkests form concerning
computer programs when they view programs with PlanAni mmoganimator. This
way, we try to find out how the students perceive the visutiddiea they are viewing,
and how this relates to the quality of their comprehensiothefvisualised variables
and programs.

We will use eye tracking to measure visual attention of thidents. To provide veri-
fication for our methodology, we conducted an experimentgamng the use of three
eye tracking devices in a psychology of programming expeninn which partici-
pants studied short computer programs using a program &iniehe devices were
ASL 501 Head Mounted Optics, ASL 504 Pan/Tilt Optics, andiiTdB50.

The results show that there are significant differences énaitcuracy and easiness
of use between the three devices. For example, the ASL 504 Mieainted Optics
required approximately twice as much time for the preparatif a tracking process
than the other two devices. The ASL 501 was also the leastaecaf the devices
when it was used for the task in which the participant viewedmaputer screen. This
can be partly explained by inaccuracies in the manual ctioreof the shifting effect,
which can be removed by using magnetic head tracker with AEL 5

When considering the amount of effort the devices requiredhfthe participant and
the amount of disturbance they caused to the participabij T650 seemed to be the

69

least obtrusive. The device allowed the participant to {ze in the detection of the
eyes and the process of calibration was performed witheyt-sy-step dictation of
the operator. The monitoring process didn’t contain angrctifferences between the
devices. The ASL 504 needed to be aided by relocating the eymially in some
cases. On the basis of these results, we selected Tobii br5@dasuring the eye
movements of participants in our research.

Novice programmers’ mental models can be studied using G@odgram summary
analysis scheme (Good, 1999), which can also be used tesdhsaguality of compre-
hension. To analyse the replicability of the scheme, wdexduout an investigation of
the inter-rater reliability of the scheme.

The investigation consisted of a training phase and a vaid@hase. The differences
in ratings were analyzed, and all problems encounteredgitine whole investigation
were recorded. Finally, possible solution types for thebfms were discussed. In
spite of the training and the mutual agreement on codingiilere were noticeable
differences among the raters. Even though the correlatbmd®en the raters was high,
the results suggest that absolute frequencies obtainezperate experiments should
not be compared with each other. The findings do howeveratelihat by improving
the scheme and its documentation, most of the observedraterdifferences can be
avoided. The only open problem concerns making the distinttetween descriptions
of data and activities in cases where the specific words thatsed, or the abstractness
of expression may affect the interpretation and hence tleetsen of the appropriate
information type. These problems do not, however, previeatuse of the scheme
in situations, where there is only one rater, as in the cagheo&xperiments in our
research.

Using the presented research methodology, we will condsetias of empirical ex-

periments. In the first experiment, we studied how a persgets.her visual attention,
and what kind of a mental model she constructs concerninggpuater program, when

the program and especially its variables are presented egimer a textual or a graph-
ical program visualisation tool. PlanAni program animaiees role images and ani-
mations on these images to highlight program variableslenmhirbo Pascal displays
variables and their values textually and without role infation. These two tools were
selected because their long-term effects on learning had aealysed previously in

Sajaniemi and Kuittinen (2005), and in Byckling and Sajami€2005).

70

The results indicate that visual attention of the partiotpavas targeted on the vari-
able visualisations clearly more with PlanAni than with BoiPascal. In PlanAni, the
increase of visual attention to variables increased thegtmn of high-level data-
related information in program summaries and decreaseddog code-related infor-
mation, thus effecting the mental models of the participahh Turbo Pascal, these
effects could not be found. Moreover, with PlanAni the pndjom of variable view-
ing correlated positively with the level of field-independe. Thus field-independent
students benefit more by the graphically rich PlanAni progemimator than field-
dependent students. PlanAni has earlier been found to twsitve long-term effects
on programming skills and content of mental model (Sajanem Kuittinen, 2005;
Byckling and Sajaniemi, 2005), but in this experiment sucloeerall effect could not
be found.

The experiment established that there exists differentehort-term effects of dif-

ferent visualisations and works as a starting point fortfairtstudies. In forthcoming
experiments, we will investigate the differences in thersherm effects in more de-
tail, utilising classifications of factors of graphics amdraation in visualisations. Pos-
sible classifications include for example eight visual abkes introduced by Bertin
(1983), that can be identified in an image, and algorithm ation taxonomy by

Brown (1998). Our goal is to gather information on the cdnttion of the factors

to the overall attractiveness of visualisations, and tfeces of these factors on visual
attention and mental models of the viewers.

71

Bibliography

Ainsworth, S. E., Labeke, N. V., 2002. Using a multi-repreaéional design frame-
work to develop and evaluate a dynamic simulation envirartma: Dynamic In-
formation and Visualisation Workshop.

Ashmore, M., Duchowski, A. T., Shoemaker, G., 2005. Effitieye pointing with a
fisheye lens. In: Proceedings of the 2005 conference on @sajplterface. Canadian
Human-Computer Communications Society, pp. 203-210.

ASL, 2003a. Eye Tracking System Instruction Manual - Mod&l $ead Mounted
Optics. Applied Science Laboratories.

ASL, 2003b. Eye Tracking System Instruction Manual - Moded $an/Tilt Optics.
Applied Science Laboratories.

Baecker, R., B.Price, 1998. The early history of softwarualization. In: Stasko,
J. T., Domingue, J., Brown, M. H., Price, B. A. (Eds.), Softevd/isualization —
Programming as a Multimedia Experience. The MIT Press, §p32.

Bednarik, R., Tukiainen, M., 2004. Visual attention andresgntation switching in
java program debugging: a case study using eye movemehirtgadn: Dunican,
E., Green, T. (Eds.), The 16th Annual Workshop of the Psyagnobf Programming
Interest Group (PPIG 2004). pp. 159-169.

Ben-Ari, M., Sajaniemi, J., 2004. Roles of variables as d®eos educators. In: The
9th Annual Conference on Innovation and Technology in CaepBcience Educa-
tion (ITICSE 2004). Association for Computing Machinerp, 52-56.

Bertin, J., 1983. Semiology of Graphics. University of \\iesin Press.

Brooks, R., 1977. Towards a theory of the cognitive procegseomputer program-
ming. International Journal of Man-Machine Studies 9, 7%/

72

Brooks, R., 1983. Towards a theory of the comprehension wipcter programs. In-
ternational Journal of Man-Machine Studies 18, 543-554.

Brown, M., 1998. A taxonomy of algorithm animation displays: Stasko, J. T.,
Domingue, J., Brown, M. H., Price, B. A. (Eds.), Software uatization — Pro-
gramming as a Multimedia Experience. The MIT Press, pp. 35-4

Brown, M. H., 1991. ZEUS: A system for algorithm animatiordanulti-view editing.
In: Proceedings of the 1991 IEEE Workshop on Visual LangsalgeEE Computer
Society Press, pp. 4-9.

Burkhardt, J.-M., Détienne, F., Wiedenbeck, S., 1997. Mlerdgpresentations con-
structed by experts and novices in object-oriented progcamprehension. In:
Howard, S., Hammond, J., Lindgaard, G. (Eds.), Human-Cdenpateraction IN-
TERACT ‘97. Chapman & Hall, Ltd, pp. 339-346.

Byckling, P., Gerdt, P., Sajaniemi, J., 2005. Roles of \@es in object-oriented pro-
gramming. In: Companion to the 20th Annual ACM SIGPLAN Caefece on
Object-oriented Programming, Systems, Languages, andicdgipns (OOPSLA
2005). Association for Computing Machinery, pp. 350-355.

Byckling, P., Kuittinen, M., Nevalainen, S., Sajaniem],2D04. An inter-rater reliabil-
ity analysis of good’s program summary analysis schemeDumican, E., Green,
T. (Eds.), Proceedings of the 16th Annual Workshop of theRsipgy of Program-
ming Interest Group (PPIG 2004). pp. 170-184.

Byckling, P., Sajaniemi, J., 2005. Using roles of variabteteaching: Effects on pro-
gram construction. In: Romero, P., Good, J., Bryant, S.,p@ha, E. A. (Eds.),
Proceedings of the 17th Annual Workshop of the Psycholodgdroframming Inter-
est Group (PPIG 2005). pp. 278-292.

Byrne, M. D., Anderson, J. R., Douglass, S., Matessa, M.949&ye tracking the
visual search of click-down menus. In: Human Factors in Cating Systems:
CHI'99 Conference Proceedings. ACM Press, pp. 402—4009.

Byrne, M. D., Catrambone, R., Stasko, J. T., 1999b. Evalganimations as student
aids in learning computer algorithms. Computers & Educesd, 253-278.

Corritore, C. L., Wiedenbeck, S., 1991. What do novicesnehrring program com-
prehension? International Journal of Human-Computeradoten 3 (2), 199-222.

73

Crosby, M., Stelovsky, J., 1989. The influence of user egpee and presentation
medium on strategies of viewing algorithms. In: Vol. II: 8eére Track, Proceed-
ings of the Twenty-Second Annual Hawaii International @Gsahce on System Sci-
ences. pp. 438—-446.

Dillon, A., Gabbard, R., 1998. Hypermedia as an educatitewinology: A review
of the quantitative research literature on learner comgmsion, control and style.
Review of Educational Research 68 (3), 322—-349.

Duchowski, A. T., 2003. Eye Tracking Methodology - Theoryldractice. Springer-
Verlag.

Ehrlich, K., Soloway, E., 1984. An empirical investigatiohthe tacit plan knowledge
in programming. In: Thomas, J. C., Schneider, M. L. (Edsydn Factors in
Computer Systems. Norwood, NJ: Ablex Publishing Compapyl1f3—133.

Eick, S. G., 1998. Maintenance of large systems. In: Stadkd,, Domingue, J.,
Brown, M. H., Price, B. A. (Eds.), Software Visualization foBramming as a Mul-
timedia Experience. The MIT Press, pp. 315-328.

Findlay, J. M., 1992. Programming of stimulus-elicitedcadic eye movements. In:
Rayner, K. (Ed.), Eye Movements and Visual Cognition: ScPeeception and
Reading. Springer Verlag, pp. 8-30.

Goldberg, J. H., Kotval, X. P., 1999. Computer interfacel@sthon using eye move-
ments. International Journal of Industrial ErgonomicsG31,—645.

Goldberg, J. H., Stimson, M. J., Lewenstein, M., Scott, Nichansky, A. M., 2003.
Eye tracking in web search tasks: design implications. hoc®edings of the sym-
posium on Eye tracking research & applications. ACM Pregs5p—58.

Good, J., 1999. Programming paradigms, information typesgraphical represen-
tations: Empirical investigations of novice program coefnsion. Ph.D. thesis,
University of Edinburgh.

Good, J., Brna, P., 2004. Program comprehension and aitheetisurement: A
scheme for analysing descriptions of programs. Internatidournal of Human-
Computer Studies 61, 169-185.

74

Green, T. R. G., Cornah, A. J., 1985. The programmer’s tdrchHuman-Computer
Interaction - INTERACT'84. IFIP, Elsevier Science Pubkss (North-Holland), pp.
397-402.

Green, T. R. G., Petre, M., 1996. Usability analysis of vissragramming environ-
ments: A 'cognitive dimensions’ framework. Journal of \@uanguages and Com-
puting 7, 131-174.

Haajanen, J., Pesonius, M., Sutinen, E., Tarhio, J., TetasV., Vanninen, P., 1997.
Animation of user algorithms on the Web. In: VL'97, IEEE Syosum on Visual
Languages. IEEE Computer Society Press, pp. 360-367.

Hansen, S. R., Narayanan, N. H., Schrimpsher, D., 2000.iktgllearners visu-
alize and comprehend algorithms. Interactive MultimediacEonic Journal of
Computer-Enhanced Learning 1.

Helttula, E., Hyrskykari, A., Raiha, K., 1989. Graphicalesfication of algorithm
animations with ALADDIN. In: Proceedings of the Hawalii Int@tional Conference
on Systems and Software. IEEE, pp. 892-901.

Hoadley, C. M., Linn, M. C., Mann, L. M., Clancy, M. J., 1996.Héh, why and how
do novice programmers reuse code? In: Gray, W. D., BoehnisDBv A. (Eds.),
Empirical Studies of Programmers: Sixth Workshop. AblexlRhing Company,
pp. 109-129.

Hubscher-Younger, T., Narayanan, N. H., 2003. Dancing kermand marble statues:
Characterizing student visualizations of algorithms.ACM 2003 Symposium on
Software Visualization (SoftVis 2003). Association for@puting Machinery, pp.
95-104.

Hughes, C., Buckley, J., 2004. Evaluating algorithm aniomefior concurrent systems:
A comprehension-based approach. In: Dunican, E., Gre€kds.), Proceedings of
the 16th Annual Workshop of the Psychology of Programmingrest Group. pp.
193-205.

Hundhausen, C. D., Douglas, S. A., Stasko, J. T., 2002. A-stetdy of algorithm
visualization effectiveness. Journal of Visual Languaged Computing 13, 259—
290.

75

Hyona, J., Radach, R., Deubel, H., 2003. The Mind’s Eye : @ignand Applied
Aspects of Eye Movement Research. North-Holland.

Jacob, R. J., 1990. What you look at is what you get: Eye monein&sed interac-
tion techniques. In: Human Factors in Computing Systems! ‘@8l Conference
Proceedings. ACM Press, pp. 11-18.

Kann, C., Lindeman, R. W., Heller, R., 1997. Integratingoaitnm animation into a
learning environment. Computers & Education 28, 223—-228.

Kennedy, A., 1992. The spatial coding hypothesis. In: RayKke(Ed.), Eye Move-
ments and Visual Cognition: Scene Perception and Readprinder Verlag, pp.
379-396.

Kimelman, D., Rosenburg, B., Roth, T., 1998. Visualizatidrdynamics in realword
software systems. In: Stasko, J. T., Domingue, J., BrowrkiMPrice, B. A. (Eds.),
Software Visualization — Programming as a Multimedia Egreze. The MIT Press,
pp. 293-314.

Kuittinen, M., Sajaniemi, J., 2004. Teaching roles of Vialéa in elementary program-
ming courses. In: The 9th Annual Conference on Innovatich Bechnology in
Computer Science Education (ITICSE 2004). Associationdomputing Machin-
ery, pp. 57-61.

Kulikova, Y., 2005. Roles of variables in functional prognaing. Master’s Thesis,
Department of Computer Science, University of Joensuudahkah

Lahtinen, S.-P., Sutinen, E., Tarhio, J., 1998. Automatechation of algorithms with
Eliot. Journal of Visual Languages and Computing 9, 337-349

Lieberman, H., Fry, C., 1998. ZStep 95: A reversible, anedatource code stepper.
In: Stasko, J. T., Domingue, J., Brown, M. H., Price, B. A. $BdSoftware Visual-
ization — Programming as a Multimedia Experience. The MI&sBy pp. 277-292.

Majaranta, P., Aula, A., Raiha, K., 2004. Effects of feedbaic eye typing with a short
dwell time. In: Proceedings of the Eye tracking research gliaptions symposium.
ACM Press, pp. 139-146.

Mancy, R., Reid, N., 2004. Aspects of cognitive style andgpaonming. In: Dunican,
E., Green, T. (Eds.), Proceedings of the Sixteenth Annuak®¥mp of the Psychol-
ogy of Programming Interest Group (PPIG 2004). pp. 1-9.

76

Mayer, R. E., 2001. Multimedia learning. Cambridge UniugrBress, U.K.

Mulholland, P., 1998. A principled approach to the evalatf SV: A case study in
Prolog. In: Stasko, J. T., Domingue, J., Brown, M. H., PriBeA. (Eds.), Software
Visualization — Programming as a Multimedia Experiencee W"HT Press, pp. 439—
451.

Myers, B., 1990. Taxonomies of visual programming and paogvisualisation. Jour-
nal of Visual Languages and Computing 1, 97-123.

Nevalainen, S., Sajaniemi, J., 2004. Comparison of thredragking devices in psy-
chology of programming research. In: Dunican, E., Gree(Eds.), Proceedings of
the 16th Annual Workshop of the Psychology of Programmingrest Group (PPIG
2004). pp. 151-158.

Nevalainen, S., Sajaniemi, J., 2005. Short-term effectgabhical versus textual vi-
sualization of variables on program perception. In: RomergGood, J., Bryant, S.,
Chaparro, E. A. (Eds.), Proceedings of the 17th Annual Wagf the Psychology
of Programming Interest Group (PPIG 2005). pp. 77-91.

O’Brien, M. P., Shaft, T. M., Buckley, J., 2001. An open-smaianalysis schema for
identifying software comprehension processes. In: Kad@la(Ed.), Thirteenth
Workshop of the Psychology of Programming Interest Gropp129-146.

O’Shea, P., Exton, C., 2004. Investigating patterns arkltigee correlations in open
source mailing lists for programmer comprehension. In: iDam, E., Green, T.
(Eds.), Proceedings of the 16th Annual Workshop of the Raggy of Program-
ming Interest Group. pp. 185-192.

Parkinson, A., Redmond, J. A., 2002. Do cognitive stylesdiffearning performance
in different computer media? In: The 7th Annual Conferenodrmovation and
Technology in Computer Science Education (ITICSE 2002ko>ion for Com-
puting Machinery, pp. 39—-43.

Parkinson, A., Redmond, J. A., Walsh, C., 2004. Accommaoddteld-dependence: A
cross-over study. In: The 9th Annual Conference on Innowaéind Technology in
Computer Science Education (ITICSE 2004). Associationdomputing Machin-
ery, pp. 72-76.

77

Pennington, N., 1987a. Comprehension strategies in pmagmag. In: Olson, G. M.,
Sheppard, S., Soloway, E. (Eds.), Empirical Studies of Rirogners: Second Work-
shop. Norwood, NJ: Ablex Publishing Company, pp. 100-113.

Pennington, N., 1987b. Stimulus structures and mentaésgtations in expert com-
prehension of computer programs. Cognitive Psychology35;-341.

Petre, M., Blackwell, A., Green, T. R. G., 1998. Coqgnitivegtions in software visual-
isation. In: Stasko, J. T., Domingue, J., Brown, M. H., Pri8eA. (Eds.), Software
Visualization — Programming as a Multimedia Experiences THT Press, pp. 453—
480.

Petre, M., Blackwell, A. F., 1999. Mental imagery in progrdesign and visual pro-
gramming. International Journal of Human-Computer Stuéike (1), 7-30.

Posner, M. |., Snyder, C. R. R., Davidson, B. J., 1980. Aitenand the detection of
signals. Experimental Psychology:General 109, 160-174.

Price, B., Baecker, R., Small, I., 1993. A principled taxoryoof software visualisa-
tion. Journal of Visual Languages and Computing 4, 211-266.

Ramadhan, H. A., 2000. Programming by discovery. Journ&ahputer Assisted
Learning 16, 83-93.

Rayner, K., 1992. Eye Movements and Visual Cognition: Sé¢&reeption and Read-
ing. Springer-Verlag.

Rayner, K., 1998. Eye movements in reading and informatrongssing: 20 years of
research. Psychological Bulletin 124, 372-422.

Reiss, S. P., 1998. Visualisations for software engingerinprogramming environ-
ments. In: Stasko, J. T., Domingue, J., Brown, M. H., PriceAB(Eds.), Software
Visualization — Programming as a Multimedia Experiencee W"HT Press, pp. 259—
276.

Rist, R. S., 1989. Schema creation in programming. Cognisience 13, 389-414.

Rist, R. S., 1991. Knowledge creation and retrieval in pprogdesign: A comparison
of novice and intermediate student programmers. HumangDean Interaction 6,
1-46.

78

Rossling, G., Freisleben, B., 2002. ANIMAL.: A system for popting multiple roles
in algorithm animation. Journal of Visual Languages and @otimg 13, 341-354.

Sajaniemi, J., 2002. An empirical analysis of roles of vaega in novice-level proce-
dural programs. In: Proceedings of IEEE 2002 Symposia onafu@entric Com-
puting Languages and Environments (HCC’02). IEEE Compbibeiety, pp. 37—39.

Sajaniemi, J., 2004. Roles of variables home page.
http://www.cs.joensuu.fi/"saja/var_roles/, (Accessed.[14th, 2005).

Sajaniemi, J., Ben-Ari, M., Byckling, P., Gerdt, P., Kulia Y., Submitted. Roles of
variables in three programming paradigms.

Sajaniemi, J., Kuittinen, M., 2003. Program animation dasethe roles of variables.
In: ACM 2003 Symposium on Software Visualization (SoftVi@d8). Association
for Computing Machinery, pp. 7-16.

Sajaniemi, J., Kuittinen, M., 2004. Visualizing roles ofiadles in program animation.
Information Visualization 3, 137—-153.

Sajaniemi, J., Kuittinen, M., 2005. An experiment on usiolgs of variables in teach-
ing introductory programming. Computer Science Educaliil), 59-82.

Sajaniemi, J., Navarro Prieto, R., 2005. Roles of varialiesxperts’ programming
knowledge. In: Romero, P., Good, J., Bryant, S., ChaparrA, Eds.), Proceedings
of the 17th Annual Workshop of the Psychology of Programnimtgrest Group
(PPIG 2005). pp. 145-159.

Sajaniemi, J., Stiutzle, T., Submitted. Evaluation techegjfor animated software vi-
sualization metaphors.

Sibert, L. E., Jacob, R. J., 2000. Evaluation of eye gazeaot®n. In: Human Factors
in Computing Systems: CHI 2000 Conference Proceedings. ARtdds, pp. 281 —
288.

Stasko, J., Patterson, C., 1992. Understanding and charaat) software visualiza-
tion systems. In: Proceedings of the 1992 IEEE Workshop @waliLanguages.
IEEE Computer Society Press, pp. 3—10.

Stitzle, T., Sajaniemi, J., 2005. An empirical evaluatiérvisual metaphors in the
animation of roles of variables. Informing Science JouB)a7-100.

79

Tobii, 2004. User Manual - Tobii Eye Tracker, Clearview Aysa$ Software. Tobii
Technology AB.

von Mayrhauser, A., Lang, S., 1999. A coding scheme to suggstematic analysis of
software comprehension. IEEE Transactions on Softwarénéegng 25 (4), 526—
540.

von Mayrhauser, A., Vans, A. M., 1995. Industrial experemgth an integrated code
comprehension model. Software Engineering Journal 10;182.

Witkin, M. A., 1971. A Manual for the Embedded Figures Testn€ulting Psycholo-
gists Press.

80

Appendix

A List of Roles of Variables (Sajaniemi and Kuittinen,
2003)

Following ten roles cover 99% of all variables found in n@v+ievel imperative pro-
grams:

Fixed value (aka constant) A variable whose value does not change after initializa-
tion.

Technical definition: A variable whose value does not chaaftgr initialization
(e.g., an input value stored in a variable that is not chamafed) possibly done
in several alternative assignment statements (e.g., ablarihat is set to true if
the program is executed during a leap year, and false otbejvand possibly
corrected immediately after initialization (e.g., an ibpalue that is replaced by
its absolute value if it is negative).

Full program example:

The variable fuel is a fixed value in the following program:

program f uel Rat e;
var start, finish: integer;
fuel: real;
begi n
wite('Enter fuel ampunt: '); readl n(fuel);
wite(’'Enter odoneter at start: '); readln(start);
wite(’'Enter odoneter at finish: '); readl n(finish);
while finish <= start do begin
write(’ Odoneter cannot be smaller at finish. Re-enter: ');
readl n(finish)
end;
witeln(’ Average rate of fuel consuned was '’
fuel / (finish - start))
end.

Stepper. A variable stepping through a succession of values thabegiredicted as
soon as the succession starts.

81

Technical definition: A variable going through a successibvalues depending
on its own previous value and possibly on other steppergpstdollowers, and

fixed values (e.g., a counter of input values, a variable doatbles its value

every time it is updated, a variable that alternates betweenvalues, or an

index to an array that sweeps through the array using vamyamgities) even

though the selection of possibly alternative update assegrs may depend on
other variables (e.g., the search index in binary search).

Full program example:

The variable month is a stepper in the following program:

program nont hl ySal es;
var nmonth, |argest: integer;
sales: array [1..12] of integer;
begi n
for month := 1 to 12 do begin
wite('Enter sales of nmonth ', nonth, ': ");
readl n(sal es[nont h])
end;
| argest := sales[1];
for nonth := 2 to 12 do
if largest < sales[nobnth] then |l argest := sal es[nonth];
for month := 1 to 12 do begin
witeln(’Mnth ', nmonth, ' gave ', |argest-sales[nonth],
| ess than the best nmonth.")
end
end.

Most-recent holder. A variable holding the latest value encountered in goimgugh
a succession of values.

Technical definition: A variable holding the latest value@umntered in going
through a succession of values (e.g., the latest input maa copy of an array
element last referenced using a stepper) and possiblyotedanmediately after
obtaining a new value (e.g., to scale into internal dataesgmtation format).

Full program example:

The variable finish is a most-recent holder in the followimggram:
program f uel Rat e;
var start, finish: integer;

fuel: real;
begi n

82

wite('Enter fuel amount: '); readl n(fuel);
wite(’'Enter odoneter at start: '); readln(start);
wite(’'Enter odoneter at finish: '); readl n(finish);
while finish <= start do begin
wite(’' Cdoneter cannot be smaller at finish. Re-enter: ');
readl n(finish)
end;
witeln(’'Average rate of fuel consunmed was '’
fuel / (finish - start))
end.

Most-wanted holder. A variable holding the best value encountered so far ingoin
through a succession of values.

Technical definition: A variable holding the best value anttered so far in
going through a succession of values with no restriction@m to measure the
goodness of a value (e.g., largest input seen so far, or &x itedthe smallest
array element processed so far).

Full program example:

The variable largest is a most-wanted holder in the follgypnogram:

progr am nont hl ySal es;
var nmonth, largest: integer;
sales: array [1..12] of integer;
begi n
for month := 1 to 12 do begin
wite('Enter sales of nonth ', nonth, ': ');
readl n(sal es[nont h])
end;
| argest := sales[1];
for month := 2 to 12 do
if largest < sales[nobnth] then |l argest := sal es[nonth];
for month := 1 to 12 do begin
witeln(’Mnth ', nmonth, ' gave ', |argest-sales[nonth],
| ess than the best nmonth.’)
end
end.

Gatherer: A variable accumulating the effect of individual valuegiming through a
succession of values.

Technical definition: A variable accumulating the effeciradividual values in
going through a succession of values (e.g., a running totdahe total number
of cards in hand when the player may draw several cards ated.tim

83

Full program example:

The variable totalSales is a gatherer in the following paogr

program sal es;
var nmonth, nonthSal es, total Sal es: integer;
begi n
total Sales : = 0;
for month := 1 to 12 do begin
wite('Enter sales of nonth ', nonth, ': ');
readl n(nont hSal es) ;
total Sales : = total Sal es + nobnt hSal es
end;
witeln(’' Total sales were ', total Sal es)
end.

Transformer: A variable that gets its new value always with the same datlicun
from value(s) of other variable(s).

Technical definition: A variable going through a successibvalues depending
on, but being different from, one or more most-recent hadsteppers or their
followers, and possibly on fixed values (e.g., the kind oetgp an input item,

or a time given in hours, minutes and seconds converted tseabnds).

Full program example:

The variable rad is a transformation in the following progra

progr am si ne;
const DegToRad = 2.0 * 3.14159 / 360.0;
var i: integer;
rad: real;
spaces: integer;
begi n
for i := 0 to 36 do begin
rad := i * 10.0 * DegToRad;
spaces := trunc((sin(rad)+1.0) * 40);
witeln(’ ' : spaces, '*')
end
end.

One-way flag A two-valued variable that cannot get its initial value erits value
has been changed.

Technical definition: A two-valued variable that can be etifeely changed only
once (e.g., a variable stating whether the end of input hais becountered) even

84

though the new value may be re-assigned several timesde@riable initialized
to false and set to true each time an error occurs during a dangession of
operations).

Full program example:

The variable error is a one-way flag in the following program:

program dat eVal i dati on;
var day, nonth, year: integer;
error: Bool ean;
begi n
wite(’'Enter day: '); readl n(day);
error := (day < 1) or (day > 31);
wite('Enter nmonth: '); readl n(nonth);
error :=error or (nonth < 1) or (nonth > 12);
wite('Enter year: '); readl n(year);
case nonth of
1,3,5,7,8,10,12: (* ok *) ;
4,6,9,11: error := error or (day > 30);
2: if (year nod 400 = 0) or
((year nod 4 = 0) and (year nod 100 <> 0))
then error := error or (day > 29)
el se error := error or (day > 28)
end;
if error then witeln(’' Date incorrect.’)
else witeln(’' Date correct.’)
end.

Follower: A variable that gets its values by following another valgab

Technical definition: A variable which, apart from initizdition, goes through a
succession of values depending on the value of a singleblariat is updated
immediately after being used for updating the follower, @odsibly on fixed
values (e.g., the previous pointer when going through eelinlist, or the low
index in a binary search).

Full program example:

The variable previous is a follower in the following program

program di st ance;
var nmonth, current, previous, |argestDifference: integer;
begi n
wite('Enter 1. value: '); readl n(previous);
wite('Enter 2. value: '); readln(current);
| argestDi fference : = current - previous;

85

for nmonth := 3 to 12 do begin

previous := current;

wite('Enter ', nmonth, '. value: '); readln(current);

if current - previous > largestDi fference

then largestDifference := current - previous
end;
writeln(’ Largest difference was ', largestDifference)
end.

Temporary: A variable holding some value for a very short time only.

Technical definition: A variable holding the value of somieastvariable or input
value for a very short time only (e.g., in a swap operation).

Full program example:

The variable temp is a temporary in the following program:

program bubbl eSort;

var i, j, tenp: integer;
a: array [1..10] of integer;
begi n
for i :=1 to 10 do begin
wite('Enter nunber: '); readln(a[i]);
end;
for i :=1to 9 do
for j := i+l to 10 do
if a[i] > a[j] then begin
temp : = af[i];
a[i] = a[jl;
a[j] :=tenp
end;
for i :=1to 10 do witeln(afi])
end.

Organizer: An array which is only used for rearranging its elementsraftitializa-
tion.

Informal definition: An array which is only used for rearramgy its elements
after initialization (e.g., an array used for sorting ingatues).

Full program example:

The variable a is an organizer in the following program:

progr am bubbl eSort ;
var i, j, tenp: integer;

86

a: array [1..10] of integer

begi n
for i :=1 to 10 do begin
wite('Enter nunber: '); readln(a[i])
end;
for i :=1to 9 do
for j := i+l to 10 do
if a[i] > a[j] then begin
temp := a[i];
ali] :=a[jl;
a[j] = tenp
end;
for i :=1 to 10 do witeln(a[i])
end.

87

