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Abstract

In speaker verification, cohort refers to a speaker-depended set of “anti-
speakers” that are used in match score normalization. A large number of
heuristic methods have been proposed for the selection of cohort models. In
this paper, we use genetic algorithm (GA) for minimizing a cost function
for a given security-convenience cost balance. The GA jointly optimizes
the cohort sets and the global verification threshold. Our motivation is
to use GA as an analysis tool. When comparing with heuristic selection
methods, GA is used for obtaining a lower bound to error rates reachable
by MFCC-GMM verification system. On the other hand, we analyze the
models selected by GA, attempting to gain understanding into how cohort
models should be selected for an application with given security-convenience
tradeoff. Our findings with a subset of the NIST-1999 corpus suggest that
in user-convenient application, the cohort models should be selected more
close to the target than in secure application. The lower bounds in turn show
that that there is a lot of room for further studies in score normalization,
especially in the user-convenient end of the detection error tradeoff (DET)
curve.

1 Introduction

Speaker verification [1] is the task of deciding whether a given speech utterance
was produced by a claimed person (target). In biometric verification, two errors
are possible: false acceptance (FA) and false rejection (FR). The former means
accepting an impostor, and the latter refers to rejecting a genuine speaker. By
adjusting the verification threshold, the system administrator can balance be-
tween the error types. By lowering the threshold, the number of false rejections
can be reduced (“user-convenient” applications), but with the cost of increased
number of false acceptances. By setting a high threshold, the number of false
acceptances can be reduced (“secure” application).

In state-of-the-art verification systems, the features extracted from the un-
known speaker’s utterance are matched against the target and nontarget models.
Normalized score [2, 3, 4, 5] is a function of the two scores, and it is compared
with the verification threshold. The rationale is to make the match score relative
to other models so that it is more robust against acoustic mismatches between
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training and recognition. Setting of speaker independent verification threshold
becomes also easier because the scores are in common range.

The nontarget hypothesis represents the possibility that anyone else expect
the target produced the unknown utterance. Thus, in principle the nontarget
model should be composed of all possible speakers. Two popular approaches
for approximating the nontarget likelihood are world modeling [5] and cohort
modeling [6, 3, 7, 8, 9, 4, 10, 11], see Fig. 1. The world model, or universal
background model (UBM), represents “the world of all possible speakers”, and it
is represented by a single model, which is same for all speakers. In the cohort
approach, nontarget likelihood is approximated using a small number of speaker-
depended “antispeakers”, called the cohort set of the speaker.

The UBM normalization is straightforward and computationally efficient, but
there are two motivations to study cohort selection more closely. Firstly, since
the normalization depends on the speaker, it can change speaker rankings and
could be also applied in the identification task (1:N matching); the UBM nor-
malization does not help in this because the match scores are scaled by the same
number. The second motivation comes from the field of forensic speaker identi-
fication [12]. In forensic cases, the acoustic evidence must be contrasted against
a relevant background population (e.g. speakers of same gender and dialectal
region) to estimate the likelihood of a random match. Cohort selection could
be applied to find the background population automatically from a database of
several thousands of speakers.

In addition to the verification threshold, the selection of cohort models has
influence on the accuracy. Traditionally, the balancing between FA/FR errors has
been tackled by adjusting the verification threshold. However, the FA and FR
errors are functions of both the score distributions and the verification threshold,
and therefore, should be optimized jointly when setting up the verification system
for a certain application.

Our goal is to gain some insight into the selection of the cohort models for a
given secure-convenience balance. We approach the problem from two directions.
Firstly, we give experimental comparison of existing cohort selection methods by
comparing their performance at three different operating points. Secondly, we
consider the cohort selection as a combinatorial optimization problem which we
attack by a genetic algorithm. Both the cohort sets and the verification threshold
are jointly optimized to minimize detection cost function (DCF). In this way, we
can estimate a lower bound reachable by the acoustic features and model if the
cohort models would be selected optimally. We also analyze the distances of the
selected cohort models to the target speaker.

The rest of the paper is organized as follows. In Section 2 we review the back-
ground of GMM-based speaker verification. In Section 3 we define the optimiza-
tion problem and formula the GA for solving it. Section 4 includes experiments
and discussion. Finally, conclusions are drawn in Section 5.
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Figure 1: Illustration of the world and cohort modeling approaches.

2 Verification Background

2.1 GMM Speaker Modeling

The state-of-the-practise text-independent speaker model is the Gaussian mixture
model (GMM) [13, 5]. GMM is well-suited for modeling of short-term spectral
features like mel-frequency cepstral coefficients (MFCC) and linear predictive
cepstral coefficients (LPCC) (see [14]), possibly appended with the corresponding
dynamic features [15, 16].

A GMM of speaker i, denoted as R(i), consists of a linear mixture of K

Gaussian components. Its density function is

p(x|R(i)) =
K∑

k=1

P
(i)
k N (x|µ(i)

k ,Σ(i)
k ), (1)

where N (x|µ(i)
k ,Σ(i)

k ) denotes multivariate Gaussian density function with mean
vector µ

(i)
k and covariance matrix Σ(i)

k . P
(i)
k are the component prior probabilities

(mixing weights) and they are constrained by P
(i)
k ≥ 0,

∑K
k=1 P

(i)
k = 1.

Assuming independent and identically distributed (i.i.d.) observations X =
{x1, . . . ,xT }, the likelihood given a GMM R(i) is

p(X|R(i)) =
T∏

t=1

p(xt|R(i)) =
T∏

t=1

K∑

k=1

P
(i)
k N (xt|µ(i)

k ,Σ(i)
k ), (2)

and the log-likelihood is

log p(X|R(i)) =
T∑

t=1

log
K∑

k=1

P
(i)
k N (xt|µ(i)

k ,Σ(i)
k ). (3)

Usually GMM is trained with maximum a posteriori adaptation (MAP) from
a universal background model (UBM) [5]. The UBM is a GMM trained from a
large pool of different speakers and it is supposed to represent the distribution
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of speech parameters in general. In this way, the amount of training data can
be small since the parameters are not estimated from scratch. A relevance factor
parameter is used for balancing between the background model and the new data.

2.2 Bayesian Framework

In speaker verification, we are given an input sample X = {x1, . . . ,xT }, and an
identity claim. The verification is defined as a two-class classification problem
(or hypothesis testing) with the following possible decisions:

{
Accept identity claim, i.e. classify X → Target
Reject identity claim, i.e. classify X → Nontarget.

We set nonnegative decision costs CFR and CFA for the FA and FR error
types. As an example, for a high security system, we might set CFR = 1 and
CFA = 10, i.e. accepting an impostor is ten times more costly than rejecting
a true speaker. According to Bayes’ rule for minimum risk classification [17],
speaker is accepted if

p(X|Target)
p(X|Nontarget)

≥ P (Nontarget)
P (Target)

· CFA

CFR
, (4)

where p(X|·) are the likelihoods and P (·) are the prior probabilities. Notice that
the right hand side of (4) does not depend on X, and therefore, decision rule is
of the form l(X) ≥ Θ, where

l(X) =
p(X|Target)

p(X|Nontarget)
(5)

is the likelihood ratio and Θ is the verification threshold. Equivalently, for the
log likelihood ratio, we accept speaker if

log p(X|Target)− log p(X|Nontarget) ≥ log Θ. (6)

The likelihood ratio concept is intuitively easy to understand: when the evidence
in favor of the target hypothesis is large while the evidence for the nontarget
hypothesis is small, we are confident that the speaker is the one who he claims
to be. On the other hand, when l(X) ¿ 1, we are confident that the speaker is
not the claimed one, and the case l(X) = 1 corresponds to the most uncertain
case (“no decision”).

The likelihood ratio l(X) is called normalized score as it is a relative score
computed by normalizing the target score by the nontarget score. Score nor-
malization is expected to reduce the acoustic mismatch between training and
testing. When the acoustic conditions change, both the target and nontarget
scores change but the relative score is expected to remain unchanged [18]. The
same idea can be applied to other than likelihood scores. In addition to cohort
and world modeling approaches, the scores can be normalized using impostor
score distribution mean and variance [2, 4]. Some of the various background
normalization methods have been compared experimentally in [19, 20, 10, 21].
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2.3 World and Cohort Normalization

In the world modeling (UBM) approach, nontarget likelihood is computed using
a single world model p(X|RUBM). Thus, the log likelihood ratio for speaker i is
simply

log l(X) = log p(X|R(i))− log p(X|RUBM). (7)

In the cohort approach, each speaker has a set of personal cohort1 models which
we index by Ci. In addition to the target likelihood p(X|R(i)), we have the
cohort likelihoods p(X|R(j)), where j ∈ Ci. The nontarget likelihood can be
approximated by applying geometric mean [7], arithmetic mean [3] or maximum
[18] to the cohort likelihoods. For cohort size M = |Ci|, the log likelihood ratios
for these are given respectively by

log l(X) = log p(X|R(i))− 1
M

∑

j∈Ci

log p(X|R(j)) (8)

log l(X) = log p(X|R(i))− log
1
M

∑

j∈Ci

p(X|R(j)) (9)

log l(X) = log p(X|R(i))−max
j∈Ci

log p(X|R(j)). (10)

Different normalization approaches have been proposed e.g. in [22, 23, 24].
The world model approach is more popular because of the following reasons.

Firstly, in the MAP adaptation [5], the world model is needed anyway, so it in-
tegrates into the GMM framework naturally without extra storage requirements.
Secondly, there is no ambiguity in defining the normalized score, whereas the
cohort approach requires selection of the cohort speakers and fixing both the
normalization formula and the cohort size. However, the cohort approach is intu-
itively reasonable, and because of the flexibility, it is potentially more accurate.

2.4 Cohort Selection

A large number of cohort selection methods have been proposed [6, 3, 7, 8, 25, 9, 4,
26, 10, 11]. Closest speakers to the target are the most competitive ones, and they
are good candidates for the cohort speakers. This approach [6, 25, 8, 27, 4, 21] is
the most commonly used one, and will referred here to as the closest impostors
(CI) method. One problem with this approach is that it prepares for impostor
attacks only against “similar” speakers. However, if the impostor is dissimilar
(e.g. another gender), the data will be in the tails of both target and nontarget
distributions, giving rise to poorly estimated likelihood ratio [28]. Thus, the
cohort should include models both from close and far from the target [3].

1According to Oxford English Dictionary, cohort was a body of infantry in the Roman army,

of which there were ten in a legion, each consisting of from 300 to 600 men. In demography,

cohort refers to a group of persons having a common statistical characteristic, for instance, being

born in the same year.
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Figure 2: Problem of redundant cohort models.

If the cohort size is small, selection of redundant models should be avoided,
see Fig. 2 for an illustration. Approaches presented in [3, 10] prevent adding
redundant models into the cohorts. In both studies, initial cohort candidate set
is first constructed, and the final cohort set is obtained by pruning out similar
models [3] or by clustering them [10].

Cohort speakers are usually selected in the training phase because of computa-
tional reasons. Unconstrained cohort selection (UCN) that selects the competing
models based on the test utterance likelihood is proposed in [8]. This method is
computationally expensive, but it can be made more efficient by clustering the
test sequence [11]. Usually cohort sets are composed of full speaker models; an
alternative approach has been proposed in [9, 29], in which the impostor model
is built from the individual Gaussian components of different speakers.

In the model selection algorithms, a similarity or distance measure between
two GMMs is needed. Rosenberg et al. [6] propose the following similarity
measure:

s(R(i),R(j)) =
1
2

{
log p(Xi|R(j)) + log p(Xj |R(i))

}
, (11)

where Xi and Xj are the training data used for constructing the models Ri and
Rj , respectively. Reynolds [3] proposes the following divergence-like dissimilarity
measure:

d(R(i),R(j)) = log
p(Xi|R(i))
p(Xi|R(j))

+ log
p(Xj |R(j))
p(Xj |R(i))

. (12)

3 Optimization Framework

We assume that the speaker models R(i), i = 1, . . . , N have already been trained.
In general, these can be other than GMMs since we operate on the score space.
All cohort sets are denoted collectively as C = (C1, . . . , CN ). We consider each
speaker’s model Ri and the cohort models {R(j)|j ∈ Ci} together as a one model,
called the compound model. The compound model for speaker i is denoted as
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M(i) = (R(i), {R(j)|j ∈ Ci}), and we will denote the normalized match score as
s(X,M(i)). The task is to optimize the compound models M(i) from the existing
single models so that a cost function is minimized. In a sense, cohort selection
can be seen as discriminative training of speaker models.

3.1 False Acceptance and Rejection

The match score s(X,M(i)) ∈ R is a continuous random variable with an un-
known probability distribution p(s) which can be divided into genuine and im-
postor distributions p(s|genuine), p(s|impostor), see upper panel of Fig. 3. These
represent the distributions obtained by matching a random utterance X against
genuine speaker model (the speaker who actually produced X) and someone else’s
model, respectively.

Figure 3: Increasing Θ decreases false acceptances and increases false rejections.

The true distributions p(s|target), p(s|nontarget) are not available, so we need
to estimate them empirically. For this, we use a labeled development set Z =
{(Xj , Yj)|j = 1, 2, . . . , L}, including at least one segment per speaker (L ≥ N).
Here, Xj ’s are the test segments, and Yj ’s are the correct class labels (Yj ∈
{1, . . . , N}).
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First, we define the error counts FRi and FAi for each speaker i as follows:

FRi =
L∑

j=1

I{Yj = i ∧ s(Xj ,Mi) < Θ} (13)

FAi =
L∑

j=1

I{Yj 6= i ∧ s(Xj ,Mi) ≥ Θ}, (14)

where I{A} = 1, if proposition A is true and 0 otherwise. False rejection rate
(FRR) and false acceptance rate (FAR) can now be calculated as

FRR(C, Θ) =
1

N · L
N∑

i=1

FR(Ci, Θ) (15)

FAR(C, Θ) =
1

N · L
N∑

i=1

FA(Ci, Θ), (16)

where we used the notation to emphasize their dependence on both the cohort
sets and the verification threshold Θ. Because the errors depend on both, they
should be jointly optimized.

By keeping the cohort sets fixed and sweeping the verification threshold over
the real line, we can calculate FRR and FAR at every threshold. By plotting
FRR as a function of FAR, we get a curve that shows the trade-off between the
two error types. On the other hand, by varying the cohort sets, we get different
score distributions. Again, we get a new error trade-off curve by sweeping the
threshold over the real line. Each point at each curve corresponds to a certain
(C, Θ) pair, and the error values FRR(C,Θ), FAR(C, Θ) for this pair are known.
The optimization task can be formulated as finding the pair (C,Θ) for which an
objective function depending on FRR and FAR is minimized.

3.2 Detection Cost Function

Decreased FAR implies increased FRR, and vice versa. In most applications,
either one of the error types can be considered more costly than the other one.
Following the detection cost function (DCF) defined by NIST [30], we define the
optimization problem as finding (C,Θ) for which the weighted sum of errors is
minimized:

min
(C,Θ)

{
γ · FRR(C, Θ) + (1− γ) · FAR(C, Θ)

}
, (17)

where 0 < γ < 1 is a design parameter controlling the tradeoff between the errors.
An illustration of the cost function is shown in Fig. 4.

Since the cohort sets Ci do not depend on each other, the cost function can
be written as a sum of cost functions over different speakers:

min
(C,Θ)

N∑

i=1

{
γ · FR(Ci, Θ) + (1− γ) · FA(Ci,Θ)

}
(18)
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Figure 4: Illustration of the cost function along with the error tradeoff curve in the
xy-plane.

We can separate C and Θ by defining the optimal threshold Θ∗(C) for a given C
as

Θ∗(C) = arg min
Θ

N∑

i=1

{
γ · FR(Ci, Θ) + (1− γ) · FA(Ci,Θ)

}
, (19)

which can be found by linear search by sweeping Θ over the genuine and impostor
score distributions. The optimization problem becomes

min
C

N∑

i=1

{
γ · FR

(
Ci,Θ∗(C)

)
+ (1− γ) · FA

(
Ci, Θ∗(C)

)}
. (20)

3.3 Genetic Algorithm for Minimizing DCF

Brute force optimization requires evaluating an exponential number of cohort
sets and is out of question. We use a genetic algorithm (GA) [31] to minimize
DCF. We maintain a separate population for each speaker, see Fig. 5 for the data
structures. Individuals are integer vectors of dimensionality M (cohort size). The
jth individual for speaker i is denoted as Cj

i .
Pseudocode for the GA is given in Algorithm 1. Initialization is done by

selecting M disjoint random integers as the individuals. New candidates are
generated using crossover and mutation operators, which doubles the sizes of
the cohort populations. Next, we compute the normalized match scores using a
labeled tuning set Z.

Since computation of the fitness values DCF(Cj
i , Θ) requires the common

threshold, we must pool together all genuine and impostor trial scores over all
speakers and cohorts. In practise, we use histograms for reducing the number op-
erating points before pooling. As a result, we have the genuine and impostor trial
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Figure 5: Basic data structures in the GA-based cohort optimization.

Algorithm 1 Outline of the GA-based cohort optimization.
P ← InitializePopulations() ;

for g = 1, 2, . . . ,NumGenerations do

Pcand ← GenerateNewCandidates(P) ;

(G,I) ← ComputeNormalizedScores(R,P ∪ Pcand,Z);
Θopt ← ComputeOptimalThreshold(G,I,CFA, CFR) ;

F ← ComputeDCFValues(G,I,Θopt) ;

(P,F) ← SelectSurvivors(P ∪ Pcand,F) ;

end for

return (P,Θopt) ;

score distributions (G, I). Using these, we find the optimal threshold as (19). After
the threshold Θ∗(C) is found, the fitness values are calculated as DCF(Cj

i , Θ).
New candidates are generated by pairing the vectors randomly and performing

crossover. The parents and the offspring are pooled, and for the pooled popula-
tion, every vector is mutated with a probability Pm. Crossover is implemented
by duplicating the parent vectors into the offspring vectors and swapping their
elements with probability Pc. In mutation, we replace a randomly selected index
by a random number.

For selection, we sort the vectors according to their fitness (DCF) values.
The best individual (smallest DCF) is always selected to the next generation.
For the remaining ones, we compare successive pairs, and select the better one.
The worst individual dies out.
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Table 1: Summary of the corpus.
Language English
Speakers 207
Speech type Conversational
Quality Telephone
Sampling rate 8.0 kHz
Quantization 8-bit µ-law
Training speech (avg.) 119.0 sec.
Evaluation speech (avg.) 30.4 sec.

4 Experiments

4.1 Corpus, Feature Extraction, and Modeling

For the experiments, we use the male subset of NIST 1999 Speaker Recognition
Evaluation corpus [32]. Both the “a” and “b” files are used for training the 64
component diagonal covariance GMMs, whereas the 1-speaker male test segments
are used as the tuning set Z for the cohorts.

In the current implementation, we use a simple MFCC front end without
channel normalization, so we decided to restrict the experiments to matched
telephone lines case. There are 230 male speakers in total, and from these 207
fulfill the matched telephone line case.

The UBM is trained by using all the two-speaker detection task files from the
same corpus, including both males and females. From this, speaker-depended
GMMs are derived by adapting the mean vectors using the MAP procedure [5].
MFCC features are computed from Hamming-windowed and pre-emphasized 30
ms frame with 10 ms overlap. We retain the 12 lowest MFCC coefficinets (ex-
cluding c0) from the log-compressed 27-channel filterbank outputs using DCT.

Throughout the experiments, we consider three operating points correspond-
ing to the following application scenario:

• Secure scenario (low FAR)

• 50-50 scenario (low EER)

• User-convenient (low FRR)

For the secure scenario, we require false acceptance rate to be at most 3 %, and
compare the obtained FRRs for different approaches. Similarly, for the user-
convenient scenario, we require the FRR to be at most 3 % and compare the
obtained FARs.

11



  1     2     5     10    20    40  

  5   

  10  

  20  

False acceptance rate

F
al

se
 r

ej
ec

tio
n 

ra
te

Geometric mean

M
=1 

N
o cohort 

M
=5 

M
=10 

M
=20 

M
=100 

All speakers (M
=207)

(a) Geometric mean method

  1     2     5     10    20    40  

  5   

  10  

  20  

False acceptance rate

F
al

se
 r

ej
ec

tio
n 

ra
te

Arithmetic mean

M
=1 

N
o cohort 

M
=5 

M
=10 

M
=20 M

=100 

All speakers (M
=207)

(b) Arithmetic mean method

  1     2     5     10    20    40  

  5   

  10  

  20  

False acceptance rate

F
al

se
 r

ej
ec

tio
n 

ra
te

Maximum

M
=1 

N
o cohort 

M
=5 

M
=10 

M
=20 

M=100 

All speakers (M=207)

(c) Maximum method

Figure 6: The effect of the normalization formula and cohort size (randomly
selected cohorts, averaged DET curves for 100 repetitions).

Table 2: Standard deviations of errors using random cohort (100 repetitions).
Secure 50-50 User convenient

FRR @ FAR = 3 % EER FAR @ FRR = 3 %

Cohort size 5 10 20 5 10 20 5 10 20

Geometric mean 3.9 3.1 2.9 1.0 0.8 0.8 9.1 8.8 8.7
Arithmetic mean 3.8 2.4 1.7 0.9 0.6 0.7 9.6 8.2 8.3
Maximum 3.6 3.0 4.6 1.8 1.0 0.6 10.0 9.9 9.3

12



4.2 Normalization Formula

First, we study the behavior of the normalization formulae (8)-(10), with the
focus on their robustness. For this, we select the cohort models randomly and
repeat the procedure 100 times. In this way, we get an idea about the average
performance and variance. The average detection error tradeoff (DET) curves [33]
for the three normalization methods are shown in Fig. 6 for different cohort sizes.
For comparative purposes, we also show the baseline (no score normalization) and
the case where all speakers are included in the cohort. Table 2 shows the standard
deviations for the three application scenarios and cohort sizes M = 5, 10, 20.

We observe that increasing the cohort size improves accuracy for all methods,
except for cohort size M = 1, for which the baseline gives similar or better
results. However, the performance increases rapidly with increasing cohort size
in both “secure” and “user-convenient” ends of the curve for all three methods.
Increased cohort size reduces also variance, which is due to the fact that larger
cohorts include more and more tge same models as the models are selected among
the targets.

Regarding the three methods, the ordering is consistent: geometric mean
performs the worst and maximum the best on average. However, the variance
of the arithmetic mean is smallest, and thus it is expected to be most robust.
Because of larger variance, we expect that the geometric mean and maximum
methods require more careful selection of the cohort.

Geometric mean and maximum operators are in a sense opposites to each
other. Geometric mean gives high nontarget score if the test data yields high like-
lihood for all cohort models (“AND” operator). In contrast, maximum method
indicates high nontarget score if there is a single cohort model that has high like-
lihood (“OR” operator). The arithmetic mean is in between the two extremes,
and all the three formulae are special cases of generalized mean [34].

Even though performance increases with the cohort size, it must be remem-
bered that large cohort size implies a large number of likelihood calculations
and it becomes computationally unfeasible. For this reason, we are interested in
smaller cohort sizes.

Table 3: Verification thresholds optimized by GA (log likelihood ratio domain).
Secure 50-50 User convenient
γ = 0.1 γ = 0.5 γ = 0.9

Cohort size 5 10 20 5 10 20 5 10 20

Geometric mean 1.37 1.39 1.4 0.89 0.95 0.97 0.27 0.37 0.42
Arithmetic mean 1.09 1.11 1.11 0.73 0.75 0.77 0.12 0.19 0.21
Maximum 0.56 0.41 0.27 0.25 0.00 0.00 -0.35 -0.50 -0.64
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4.3 Selection Algorithms

Next, we compare the following heuristic approaches:

Random Random cohort
CI Closest impostors selected using (12)
MSC Maximally spread close [3]
MSCF Maximally spread close + far [3]
UCN Unconstrained cohort normalization [8]

Genetic algorithm is optimized for the test data, and its purpose is to provide
a lower bound to the error rates reachable by MFCC/GMM combination. It
presents an “oracle selection” scheme - the oracle knows exactly what the targets
are going to say during verification trial and selects the optimal cohorts for future.

GA finds a single operating point from the error tradeoff curve and is subop-
timal in the other regions, see Fig. 7. Examples of thresholds optimized found by
GA are listed in Table 3. It can be observed that the threshold increases when
moving towards secure applications, which is expected.

The “corner” points in Fig. 7 are the minimum cost function operating points.
We set γ = 0.1, γ = 0.5, and γ = 0.9 for the secure, 50-50, and the user-
convenient scenarios, respectively. After preliminary experimentation, we fixed
the GA parameters as follows: population size 100, the number of generations
500, mutation probability 0.01, and crossover probability 0.5.

The results for the three normalization methods are given in Tables 4-6. The
results for baseline (no score normalization) and the UBM [5] are also shown as
a reference. Several observations can be made. Firstly, arithmetic mean and
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Table 4: Results for geometric mean normalization.
Secure 50-50 User-convenient

FRR @ FAR = 3 % EER FAR @ FRR = 3 %

Baseline 69.4 20.2 56.1
UBM 17.2 8.4 45.8

Cohort size 5 10 20 5 10 20 5 10 20

Random 38.6 29.6 24.3 12.1 10.5 9.7 45.9 43.2 43.5
CI 20.8 16.7 14.8 9.7 8.1 7.7 41.6 31.6 39.5
MSC 20.7 16.6 14.5 9.2 8.3 7.9 42.6 36.6 35.5
MSCF 34.7 32.1 27.2 12.1 11.0 10.3 49.3 52.7 50.3
UCN 60.9 55.4 47.8 17.6 15.8 14.6 52.7 50.2 44.7

GA reference 3.7 2.6 4.3 3.1 2.8 3.1 13.4 5.0 19.1

Table 5: Results for arithmetic mean normalization.
Secure 50-50 User-convenient

FRR @ FAR = 3 % EER FAR @ FRR = 3 %

Baseline 69.4 20.2 56.1
UBM 17.2 8.4 45.8

Cohort size 5 10 20 5 10 20 5 10 20

Random 27.3 18.5 14.8 10.1 8.9 8.3 44.2 41.9 40.6
CI 17.5 13.6 11.3 8.8 7.8 7.4 40.8 36.4 40.1
MSC 15.1 11.4 10.2 8.1 7.9 7.2 41.1 35.4 32.8
MSCF 18.4 13.2 11.1 9.2 8.0 7.9 43.2 48.2 49.3
UCN 56.1 48.8 39.5 15.9 14.3 12.7 51.1 49.0 48.7

GA reference 3.9 2.6 4.0 3.1 2.7 4.0 12.0 2.7 30.2

Table 6: Results for maximum normalization.
Secure 50-50 User-convenient

FRR @ FAR = 3 % EER FAR @ FRR = 3 %

Baseline 69.4 20.2 56.1
UBM 17.2 8.4 45.8

Cohort size 5 10 20 5 10 20 5 10 20

Random 24.7 18.4 19.9 10.9 9.0 7.9 44.9 43.3 44.1
CI 13.9 11.7 10.4 9.2 8.3 7.7 42.8 40.8 49.4
MSC 13.8 11.8 10.8 8.9 8.6 7.9 40.5 51.5 49.5
MSCF 19.4 14.1 11.7 9.9 8.8 8.6 42.2 50.5 58.4
UCN 50.4 39.6 29.0 14.5 14.0 11.3 51.2 46.4 48.0

GA reference 2.8 2.0 3.6 2.9 2.2 3.6 2.9 5.3 24.8

maximum are more accurate than geometric mean. Secondly, comparing the
heuristic methods, CI, MSC and MSCF are similar in performance, whereas UCN
is worse. Thirdly, comparing the cohort and UBM approaches, UBM outperforms
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random cohort, MSCF and UCN in most cases, whereas CI and MSC outperform
UBM.

Some interesting observations can be made regarding the application scenario
and UBM versus cohort approaches. In the 50-50 case, the differences are small
between the methods. However, in the secure and user-convenient scenario, the
cohort approach clearly outperforms UBM. In the secure end, UBM reaches an
FRR of 17.2 %, whereas the best heuristic cohort selection method reaches 10.2
% (MSC with arithmetic mean, cohort size 20). In the user-convenient end,
UBM reaches a FAR of 45.8 %, whereas the best heuristic cohort method reaches
31.6 % (CI with geometric mean, cohort size 10). These observations stress the
importance of comparing methods using not only on the EER operating point
which is an arbitrary choice.

The reference performance given by GA shows that there is much room to
improve cohort selection algorithms. In particular, all the studied methods are
poor at the user-convenient end. The GA suggests that it would be possible to
reach a FAR of 2.7 % at FRR = 3.0 % if the cohorts were selected optimally.
The best heuristic reaches as poor as 31.6 % FAR, an order of magnitude worse
than GA suggests. Notice however that for GA, increased cohort size reduces the
performance, which is contradictory to the results for the heuristic methods. A
possible explanation for this is that the parameter space is larger for increased
cohort size and GA might not have converged yet. We did not make further
attempts in optimizing the number of generations as the simulations take rather
long time.

4.4 Analysis of Selected Cohorts

Next, we analyze the cohort sets selected by the genetic algorithm, with the hope
to gain understanding on the selection procedure. The GA was optimized for the
test data, and now we are interested to see if optimal selection could be predicted
from the training conditions only. We use the distance (12) for analyzing the
model proximities. We also experimented with the similarity measure (11), and
the results were similar.

The distribution of means and standard deviations of the distances from the
target to his cohort models are shown in Fig. 8 for the arithmetic mean method
and cohort size M = 20. The CI, MSC and MSCF are also shown for compari-
son. We make the following observations. Regarding the distribution of means,
the models selected using CI and MSC are closer to target models than for other
methods as expected. The models selected using MSCF are further away, and the
GA selected models in between. The order of the standard deviations is the same,
and holds for all the three application scenarios. These observations suggest that
the optimal cohort should contain not “too close” or “too far” models but some-
thing in between. Similarly, the optimal cohort should not be too concentrated
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or too spread but something in between.
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Figure 8: Distributions of mean and standard deviation of cohort model distances
from the target.

According to Fig. 8, in user-convenient scenario, the cohort models should
be selected closer to the target than in the secure scenario. Table 7 gives further
evidence of this by showing the the number of cases, in which speaker belongs to
his own cohort. We observe that in the user-convenient scenario, speaker belongs
to his own cohort in 74 % - 97 % of the cases, and the number decreases when
moving towards the secure end.

This result might seem counterintuitive at the first glance. In a user-
convenient application, it is important that the correct speaker is not rejected;
thus, it seems logical to assume that competing models should not be located
“too close” to the target. However, by including close models to the cohort, the
denominator of the LR will be accurately presented when a genuine speaker is
present (likelihood of X for both target and cohorts is accurately computed). In
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Table 7: Number of cases (%) where speaker belongs to his own cohort
Secure 50-50 User convenient
γ = 0.1 γ = 0.5 γ = 0.9

Cohort size 5 10 20 5 10 20 5 10 20

Geometric mean 11.0 20.0 24.0 25.0 38.0 46.0 86.0 74.0 74.0
Arithmetic mean 19.0 33.0 48.0 49.0 66.0 76.0 93.0 95.0 95.0
Maximum 0.00 0.00 0.48 0.00 99.0 99.5 95.0 95.0 97.0

the extreme case of cohort size M = 1 and speaker in his own cohort, LR for a
genuine speaker will be always close to 1 and the threshold is set easily around
this value by GA (see Table 3).

By excluding the target from his cohort in the secure scenario, the score for
a genuine speaker will be in general larger, which has the effect of shifting the
genuine distribution right. On the other hand, (casual) impostor data is far
away from the target model in general, and it does not matter if the target is
included in the denominator or not - the impostor data will far away from the
target model and not be affected by it much. Thus, the impostor distribution
will be relatively unchanged regardless of whether target is or is not included in
the cohort. Because the genuine distribution shifts up, the distributions will be
better separated.

In conclusion, the effect of including target in his own cohort in a user-
convenient application makes the genuine distribution centered around LR = 1,
and setting of threshold is easier. In the secure application, leaving the speaker
out from the cohort has the effect of shifting genuine distribution right while
retaining impostor distribution relatively unchanged.

5 Discussion and Conclusions

We have presented a step towards non-heuristic cohort selection based on min-
imizing a detection cost function. We find the following observations the most
interesting ones:

1. UBM and cohort approaches perform similar in 50-50 and user-convenient
scenario, whereas cohort is clearly better in the secure scenario.

2. There is lots of room for studying score normalization, especially in the
user-convenient end of the DET curve. The results of GA suggest that
the MFCC features can reach both low FAR and FRR if the cohorts are
well-selected.

The experiments suggest the following design rules for the cohort normalization
approach:
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1. Randomly selected cohort is better than no cohort. In this case, the cohort
size should be as large as possible.

2. In general, larger cohort is better because it reduces the variance of the
nontarget scores.

3. Arithmetic mean normalization is most robust and consistent over different
selection methods, and we recommend to use it by default.

4. Maximum normalization has the best potential according to the GA refer-
ence, but the difference with the arithmetic mean is not large.

5. Of the heuristic methods compared, CI and MSC are both good choices.

6. In a user-convenient and 50-50 applications, it is advantageous to include
nearby models into the cohort. In particular, the speaker’s own model.

From a practical point of view, we must ask how useful the cohort normalization is
in real applications. Sometimes cohort approach is criticized for its computational
complexity and memory requirements, which is true if cohort size is large or the
cohort models are selected from an external population. However, the results of
GA suggest that good cohorts can be selected among the other registrants; in this
case, we need to store only the lookup tables for the cohort indices in addition
to the models. The results also suggest that small error rates could be reached
if we knew how to select the cohorts; the methodology in this study presents an
“oracle selection” scheme where the oracle knows exactly what the targets are
going to utter during verification trial and selects good cohorts.

We have used GA here merely as an analysis tool. However, it might be used
also as a practical cohort selection method. We believe in its potential, because
it jointly optimizes the cohort sets and the verification threshold; usually these
two are designed independent from each other, although FAR and FRR errors
depend on both of them.

To apply GA as a practical cohort selection method, there are two princi-
pal issues that need to be studied. Firstly, as seen from Fig. 7, the algorithm
optimizes a single point on the tradeoff curve. However, from the system adminis-
trator’s perspective, it would be good to have the whole tradeoff curve optimized,
from which the desired optimal threshold can be selected. For this, the objective
function should be modified to minimize the total area under the DET curve for
example. The second challenge relates to computational complexity: the simula-
tions made in this study were time- and memory-consuming.

Finally, we wish to emphasize that the optimization was carried out entirely
in the score space by having fixed acoustic features and models. The result of the
optimization is a set of indices that merely tells against which models the features
are to be matched during the verification process. Similar optimization can be
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carried out for any biometric authentication problem, in which severe mismatches
are expected between training and testing.
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