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Abstract

We consider the following string matching problem. Pattern p0p1p2 . . . pm−1 (δ, α)-matches
the text substring ti0ti1ti2 . . . tim−1 , if |pj − tij

| ≤ δ for j ∈ {0, . . . ,m− 1}, where ij < ij+1,
and ij+1 − ij ≤ α + 1. The task is then to find all text positions im−1 that (δ, α)-match
the pattern. The best previously known algorithm for this string matching problem runs
in time O(nm) using O(αm) space, where n is the length of the text and m is the length
of the pattern. We develop several algorithms that improve the previous bounds. Our
techniques are based on novel combinations of sparse dynamic programming, pre-emptying
the computation early, bit-parallelism and finite automata. Our complexities vary from
O(n + |M|) worst case time to O(n) average time, where M = {(i, j) | pi =δ tj}, using
dynamic programming based approach. With bit-parallel dynamic programming we obtain
worst case time O(nδ+dn/wem) where w is the number of bits in machine word. Some of the
ideas can be combined to obtain good average case complexities while retaining good worst
case complexities. With bit-parallelism and nondeterministic finite automata we obtain
O(ndm log2(α)/we) worst case time, which is O(n) for short patterns. Finally, we show
that all our algorithms can be generalized to solve several other problem variants. Our
experimental results show that the algorithms work extremely well in practice.
Keywords: approximate string matching, music information retrieval, protein matching,
gaps, negative gaps, sparse dynamic programming, bit-parallelism, nondeterministic finite
automata.
ACM Classification: F.2.2 [Analysis of algorithms and problem complexity]: Non-
nunmerical algorithms and problems — Pattern matching, Computations on discrete struc-
tures; H.3.3 [Information storage and retrieval]: Information Search and Retrieval — Search
process.

1 Introduction

Background and problem setting. Many notions of approximateness have been proposed
in string matching literature, usually motivated by some real problems. One of seemingly un-
derexplored problems with applications in music information retrieval and molecular biology is
(δ, α)-matching [5]. In this problem, the pattern p0p1 . . . pm−1 is allowed to match a substring of
the text t0t1 . . . tn−1 with α-limited gaps, and the respective pairs of matching characters may
be different, only if their numerical values do not differ by more than δ. Translating this model
into a music (melody seeking) application, we say can that we allow for small distortions of the
original melody because the (presumably unskilled) human user may sing or whistle the melody
imprecisely. The gaps, on the other hand, allow to skip over ornamenting notes (e.g., arpeggios),
which appear especially in classical music. Other assumptions here, that is, monophonic melody
and using pitch values only (without note durations), are reasonable in most practical cases. In
biology, somewhat relaxed version of the α-matching problem is important for protein matching,
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especially together with allowing for matching classes of characters. Fortunately, in all the new
algorithms we are going to present in this paper, δ-matching can be straightforwardly changed
into matching classes of characters, without any penalty in the complexities if the size of the
character class is on the order of δ.

Previous work. There are not many algorithms for (δ, α)-matching. The ones we are aware
of are: by Crochemore et al. [5] and Cantone et al. [3, 4]. The algorithms in [5, 3] need O(nm)
time in the worst and the average case. The advantage of the algorithm by Cantone et al. is that
it needs O(αm) space as opposed to O(nm) needed by the previous algorithm. Also, Cantone
et al. claim that their algorithm is faster in practice (and give timings), but our experiments, as
the reader will see, do not confirm it. However, their algorithm have the advantage that it can
be extended to find all pattern occurrences, instead of only the positions where the occurrence
ends. This needs more time, however. The algorithm in [4] improves the average case of the one
in [3] to O(n).

For the α-matching with classes of characters there exists an efficient bit-parallel solution
[12]. In this algorithm the gap limits for each pattern character may be of different length, in
particular, it is assumed that for many characters it is zero. We note that this algorithm can
be generalized to handle (δ, α)-matching, but the time complexity becomes O(αmn/w) in the
worst case, where w is the length of the machine word. For small α the algorithm can be made
to run in O(n) time on average.

Note that there exist algorithms for the harder problem variant where transposition invari-
ance and character insertions, substitutions or mismatches are allowed together with (δ, α)-
matching [9].

Our results. The number of distinct symbols in the pattern and in the text are denoted by
σp and σt, respectively, and σp∩t denotes the number characters that occur both in P and T
simultaneously. Note that σp∩t ≤ σp, σt, m. Moreover, let M = {(i, j) ∣∣ |pi − tj | ≤ δ}. The
number of bits in machine word is w. Our results can then be summarized as follows:

Plain dynamic programming with ’cut-off’ trick: O(n) and O(nm) average and worst
case complexities, respectively.

Sparse dynamic programming: O(n + |M|) time, where M = {(i, j) ∣∣ |pi − tj | ≤ δ}.
Row-wise sparse dynamic programming with ’cut-off’ trick: O(n(δσp∩t/σt + 1)) aver-

age case time, and O((nδ + |M|) log log n) worst case time.

Column-wise sparse dynamic programming: O(m+n) average case time, and O(m+n+
|M|) worst case time.

Bit-parallel dynamic programming: O(dn/weσp + n(δσp∩t/σt + 1)) and O(nδ + dn/wem)
average and worst case time, respectively.

Simple algorithm: O(n) average case time, and O(min{α|M|, nm}) worst case time. (But in
practice this is one of the best alternatives).

Nondeterministic finite automaton: O(ndm log2(α)/we) worst case time, i.e. O(n) worst
case time for m = O(w/ log2(α)).

Some of these bounds can still be improved. In particular, we show how to improve O(nδ)
and O(nδσp∩t/σt) terms to O(n). In some cases this makes the worst case search complexity
higher. The nondeterministic finite automaton based algorithm can be improved to run in
sublinear time on average. These algorithms can be generalized to handle some other problem
variants as well, as discussed in Sec. 10.
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Alg. 1 DA-dp(T, n, P, m, δ, α).
1 for i ← 0 to m− 1 do Di,0 ← −1
2 if |p0 − t0| ≤ δ then D0,0 ← 0
3 for i ← 0 to m− 1 do
4 for j ← 1 to n− 1 do
5 if |pi − tj | ≤ δ and (i = 0 or Di−1,j−1 ≥ 0) then
6 Di,j ← j
7 if i = m− 1 then report match
8 else if Di,j−1 ≥ j − α then Di,j ← Di,j−1

9 else Di,j ← −1

Throughout the paper we assume σ = O(n). Efficient variations of the presented algorithms
for the case of large alphabets may require different preprocessing and modified search routines.
Note added to the report. This report is a significantly extended version of our paper [7].
When writing it we did not know the paper [4] where an idea analogous to the one described in
Sec. 3 was presented. Still, in details our algorithms differ.

2 Preliminaries

Let the pattern P = p0p1p2 . . . pm−1 and the text T = t0t1t2 . . . tn−1 be numerical strings, where
pi, tj ∈ Σ for some integer alphabet Σ of size σ. The number of distinct symbols in the pattern
and in the text are denoted by σp and σt, respectively. Moreover, we use σp∩t to denote the
number characters that occur both in P and T simultaneously. Note that σp∩t ≤ σp, σt,m.

In δ-approximate string matching the symbols a, b ∈ Σ match, denoted by a =δ b, iff |a−b| ≤
δ. Pattern P (δ, α)-matches the text substring ti0ti1ti2 . . . tim−1 , if pj =δ tij for j ∈ {0, . . . , m−1},
where ij < ij+1, and ij+1 − ij ≤ α + 1. If string A (δ, α)-matches string B, we sometimes write
A =α

δ B.
In all our analyses we assume uniformly random distribution of characters in T and P , and

constant α and δ/σ, unless otherwise stated. Moreover, we often write δ/σ to be terse, but the
reader should understand that we mean (2δ+1)/σ, which is the upper bound for the probability
that two randomly picked characters match.

The dynamic programming solution to (δ, α)-matching is based on the following recurrence
[5, 3]:

Di,j =





j tj =δ pi and (i = 0 or (i, j ≥ 1 and Di−1,j−1 ≥ 0))
Di,j−1 tj 6=δ pi and j > 0 and j −Di,j−1 < α + 1
−1 otherwise

(1)

In other words, if Di,j = j, then the pattern prefix p0 . . . pi has an occurrence ending at text
character tj , i.e. pi =δ tj and the prefix p0 . . . pi−1 occurs at position Di−1,j−1, and the gap
between this position and the position j is at most α. If pi 6=δ tj , then we try to extend the
match by extending the gap, i.e. we set Di,j = Di,j−1 if the gap does not become too large.
Otherwise, we set Di,j = −1. The algorithm then fills the table D0...m−1,0...n−1, and reports an
occurrence ending at position j whenever Dm−1,j = j. This is simple to implement, and the
algorithm runs in O(mn) time using O(mn) space. Alg. 1 gives the pseudo code.

3 Dynamic programming with cut-off trick

It should be stressed that both cited algorithms from the literature have quadratic time com-
plexity even in the best case. We propose two algorithms which are also O(nm) time in the worst
case, but are faster in practice. The first of them has O(n) time in the average case, the second
runs in O(n + |M|) worst case time, where M = {(i, j) | pi =δ tj} (note that |M| = O(nm) in
the worst case).
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Alg. 2 DA-dpco(T, n, P,m, δ, α).
1 for i ← 0 to m− 1 do D′

i ← −1
2 if |p0 − t0| ≤ δ then D′

0 ← 0
3 top ← m− 1
4 for j ← 1 to n− 1 do
5 for i ← 0 to top do
6 if |pi − tj | ≤ δ and (i = 0 or D′

i−1 ≥ 0) then
7 Di ← j
8 if i = m− 1 then report match
9 else if D′

i ≥ j − α then Di ← D′
i

10 else Di ← −1
11 while top ≥ 0 and Dtop = −1 do top ← top− 1
12 if top < m− 1 then top ← top + 1
13 Dt ← D; D ← D′; D′ ← Dt

As already mentioned in [5] the space requirement of Alg. 1 can be made O(n) by noticing
that the computation of the current row of D depends only on the previous row. However,
it is also true that the computation of the current column of D depends only on the previous
column. This can be used to make the space complexity just O(m), by computing the matrix
column-wise, instead of row-wise, and storing only the current and previous columns.

The authors of the cited work [5] note that the average time can be made just O(n), but
they do know explain explicitly how, so we do it now. A similar algorithm was obtained in [4],
where the authors apply the same idea to a different but related algorithm.

We make the following observation: if Di...m−1,j = −1, for some i, j, then Di+1...m−1,j+1 =
−1. This is because there is no way the recurrence can introduce any other value for those
matrix cells. In other words, if p0 . . . pi does not (δ, α)-match th . . . tj−k for any k = 0 . . . α, then
the match at the position j + 1 cannot be extended to p0 . . . pi+1.

This can be utilized by keeping track of the highest row number top of the current column j
such that Dtop,j 6= −1, and computing the next column only up to row top + 1. More formally,
we define

topj = argmaxi{Di,j−1 = −1 and Di−1,j−1 6= −1}, (2)

and at text position j compute the column j only up to row topj . We call this a cut-off trick.
This technique was first used (in a different context) by Ukkonen [14].

Alg. 2 gives the pseudo code to implement these two tricks. The space complexity is clearly
O(m), and we show that the average case time complexity is O(n). First consider the time taken
for keeping track of the last active row top. For each text position top can increase only by at
most 1, giving a total of O(n) increments. While top can decrease by O(m) for a processed
column, which costs O(m) time, the total number of decrements cannot be larger than the
number of increments plus m− 1, so the amortized cost of decrements is at most O(n) as well.
In total top can be maintained in O(n) worst case time during the whole computation.

We now show that the average value of top is O(1), which gives a total O(n) average time.
The average value of top is the same as the average length i + 1 of the longest prefix p0 . . . pi

that matches at some text position. The probability that a =δ b for some a, b ∈ Σ is O(δ/σ)
assuming uniform Bernoulli model of probability. We assume that δ/σ is constant here. Hence
the probability that p0 . . . pi (δ, α)-matches th . . . tj is

Pr(i) = O((1− (1− δ/σ)α+1)i(δ/σ)), (3)

and the expected value of top is

m−1∑

i=0

i Pr(i) = O

( ∞∑

i=0

i Pr(i)

)
=

δ

σ(1− δ/σ)α+1
, (4)
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Alg. 3 DA-sdp-preprocess(T, n, P, m, δ, α).
1 for i ← 0 to m− 1 do A[pi] ← 0
2 for i ← 0 to m− 1 do
3 if A[pi] = 0 then
4 A[pi] ← 1
5 for j ← −δ to δ do
6 c ← max(0, min(pi + j, σ − 1))
7 L′[c] ← L′[c] ∪ {pi}
8 for i ← 0 to n− 1 do
9 for j ← 0 to |L′[ti]| − 1 do
10 c ← L′[ti][j]
11 L[c] ← L[c] ∪ {i}
12 return L

as the sum is a geometric series, which does not depend on m, and is O(1) for constant α. A
similar analysis can be found in [4] for the Sequential Sampling algorithm.

Note that the average case analysis may have little practical value for music, which is far
from random and most of its pitch alphabet is hardly ever used. Hence, practical evaluation of
this algorithm (see Sec. 11) will make more sense.

4 Sparse dynamic programming

We now aim at good worst case complexity. From the recurrence of D it is clear that the
interesting computation in Alg. 1 happens when tj =δ pi, and otherwise the algorithm just
copies previous entries of the matrix or fills some of the cells with a constant.

Let M = {(i, j) | pi =δ tj} be the set of indexes of the δ-matching character pairs in P
and T . For every (i, j) ∈ M we compute a value di,j . For the pair (i, j) where di,j is defined,
it corresponds to the value of Di,j . If (i, j) 6∈ M, then di,j is not defined. Note that dm−1,j is
always defined if P occurs at th...j . The new recurrence is

di,j =
{

j (i− 1, j′) ∈M and 0 < j − j′ ≤ α + 1 and di−1,j′ 6= −1
−1 otherwise

(5)

Computing the d values is easy once M is computed. As we have an integer alphabet, we can
use table look-ups to compute M efficiently. We first compute a table L′, such that for all c ∈ Σ
the list L′[c] contains all the characters pi that satisfy pi =δ c. Using this table another table L
is computed so that L[c] = {j | c =δ tj}. This can be done by scanning through the text, and
adding to L[c] the index j for all c ∈ L′[tj ]. This takes O(m + σ + δσp + δn) = O(δn) worst case
time and space. Note that |M| = O(mn) in the worst case. The probability that two characters
δ-match is O(δ/σ), and hence the expected number of matching pattern characters for each
text character is O(δσp∩t/σt). Therefore, the average case complexity of the preprocessing is
O(n(δσp∩t/σt + 1)). We will use L as a terse representation of M. Note that L[pi] corresponds
to the set {(i, j) | pi =δ tj} for a fixed i, i.e. L[pi] = {j | pi =δ tj}. Alg. 3 gives the pseudo
code for computing L. The text positions in L[c] are computed in increasing order, that is
L[c][h] < L[c][h + 1], which will be crucial for computing d.

Consider a row-wise computation of d. The values of the first row d0,j correspond one to
one to the list L[p0], that is, the text positions j where p0 =δ tj . The subsequent rows di

correspond to L[pi], with the additional constraint that j − j′ ≤ α + 1, where j′ ∈ L[pi−1] and
di−1,j′ 6= −1. Since the values in L[pi] and di−1 are in increasing order, we can compute the
current row i by traversing the lists L[pi] and di−1 simultaneously, trying to enforce the condition
that L[pi][h] − di−1,k ≤ α + 1 for some h, k. If the condition cannot be satisfied for some h,
we store −1 to di,h, otherwise we store the text position L[pi][h]. Alg. 4 gives the pseudo code.
The algorithm processes each (i, j) ∈M in O(1) time, and hence runs in O(n+ |M|) worst case
time.

6



Alg. 4 DA-sdp(T, n, P,m, δ, α).
1 L ← DA-sdp-preprocess(T, n, P, m, δ, α)
2 for i ← 0 to m− 1 do
3 for j ← 0 to |L[pi]| − 1 do Di,j ← −1
4 for i ← 0 to |L[p0]| − 1 do D0,i ← L[p0][i]
5 for i ← 1 to m− 1 do
6 c ← pi; pc ← pi−1; k ← 0; h ← 0
7 while h < |L[c]| and k < |L[pc]| do
8 j ← L[c][h]
9 do j′ ← Di−1,k

10 if j − j′ > α + 1 and k < |L[pc]| then k ← k + 1
11 while j − j′ > α + 1 and k < |L[pc]|
12 if j′ < j and k < |L[pc]| and Di−1,k 6= −1 then
13 Di,h ← L[c][h]
14 if i = m− 1 then report match
15 h ← h + 1

Alg. 5 DA-sdpco(T, n, P, m, δ, α).
1 L ← DA-sdp-preprocess(T, n, P, m, δ, α)
2 for i ← 0 to |L[p0]| − 1 do D′

i ← L[p0][i]
3 h ← |L[p0]|
4 for i ← 1 to m− 1 do
5 c ← pi; pl ← h; k ← 0; h ← 0; u ← 0
6 while u < |L[c]| and k < pl do
7 j ← L[c][u]
8 do j′ ← D′

k

9 if j − j′ > α + 1 and k < pl then k ← k + 1
10 while j − j′ > α + 1 and k < pl
11 if j′ < j and k < pl then
12 Dh ← L[c][u]
13 h ← h + 1
14 if i = m− 1 then report match
15 if k < pl then u ← min{v | D′

k < L[c][v], v > u}
16 Dt ← D; D ← D′; D′ ← Dt

4.1 Adapting the cut-off trick

Alg. 4 still does some redundant computation. To compute the values di,j for the current row
i, it laboriously scans through the list L[pi], for all positions, even for the positions close to
where p0 . . . pi−1 did not match. In general, the number of text positions with matching pattern
prefixes decreases exponentially on average when the prefix length i increases. Yet, the list
length |L[pi]| will stay approximately the same. The goal is therefore to improve the algorithm
so that its running time per row depends on the number of matching pattern prefixes on that
row, rather than on the number of δ-matches for the current character on that row.

The modifications are simple: (1) the values di,j = −1 are not maintained explicitly, they
are just not stored since they do not affect the computation; (2) the list L[pi] is not traversed
sequentially, position by position, but binary search is used to find the next value that may
satisfy the condition that L[pi][h]− di−1,k ≤ α + 1 for some h, k.

Alg. 5 gives the code. It also uses the previous trick to make the space complexity
smaller by storing only the current and previous rows. The total space complexity is there-
fore O(n(δσp∩t/σt + 1)).

Consider now the average search time of this algorithm. The average length of each list L[pi]
is O(nδ/σ). Hence this is the time needed to compute the first row of the matrix, i.e. we just
copy the values in L[p0] to be the first row of d. For the subsequent rows we execute one binary
search per each stored value in row i of the matrix. Hence in general, computing the row i of the
matrix takes time O(|di−1| log2(nδ/σ)), where |di| denotes the number of stored values in row i.
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For i > 0 this decreases exponentially as |di| = O(|di−1| × γi), where γ = 1− (1− δ/σ)α+1 < 1
is the probability that a pattern symbol δ-matches in a text window of length α symbols.
Summing up, the total average time is then dominated by the time for the two first rows,
i.e. this is a geometric series and can be bounded as in Eq. (4). Hence the average search time
is O(nδ/σ log2(nδ/σ)) = O(|M|/m log2(|M|/m)). However, the worst case search time is also
increased to O(|M| log2(|M|/m)).

Note that this analysis assumes constant δ/σ, i.e. the time would grow if we let δ/σ grow,
but the time does not depend on m.

We now consider several approaches to improve the binary search stage.

Combining linear and binary searches. The binary search stage can be improved as fol-
lows. Assume that at first we used a linear search, skipping the list by s entries in each step,
until we see that we have gone past the correct item. Then the correct item must be among
the last s entries in the list. This interval is binary searched with cost O(log2 s). Hence the
(amortized) worst case search time is just O(|M|/s + |M| log2 s). By setting s = |M|/n we
obtain O(n + |M| log2(|M|/n)). This means O(n/m + |M|/m log2(|M|/n)) average time. The
value of |M| must be known before the search, but this is no problem, since |M| =

∑
i |L[pi]|

and thus can be computed in O(m) time after the preprocessing (i.e., when the lengths of the
lists L[pi] are known). Note that it is not a good idea to set s = O(1), which improves the worst
case but also prevents any gain in the average case, and effectively leads back to the original
sparse dynamic programming algorithm.

Combining binary and interpolation searches. If the distribution of the δ-matching char-
acter positions in M is “regular” [16], then interpolation search [17, 16] can be used to reduce
the log(x) factors to log log(x) on average. The worst case remains the same as with binary
search by using the following trick [13]: the binary and interpolation searches are interweaved
so that in even iterations of the search one step of the binary search is executed, and in odd
iterations one step of interpolation search is executed. This guarantees O(log(x)) worst case
time, without destroying the O(log log(x)) average time.

Using efficient priority queues. Van Emde Boas priority queues [15] support insertions
and successor searches of integers in O(log log u) time, where u is the size of the universe, i.e. n
in our case. By using this structure we can obtain average and worst case times (including
preprocessing) of O((nδσp∩t/σt + nδ/σ) log log n) and O((nδ + |M|) log log n), respectively. The
penalty is O(nδ) additional space in the worst case. Unfortunately the trick of linear search and
skipping by s positions does not work with this approach.

However, we can use Johnson’s data structure [8], which supports a homogeneous sequence of
insertions and successor searches in time O(log log ∆), where ∆ is the gap between the successive
values inserted or searched. Note that all the successive operations must be of the same type,
i.e. insertions and searches cannot be mixed. Fortunately this is not a problem in our case, since
the preprocessing phase consists of just inserting all the lists L[pi] into the queue and in the
search phase we have only successor searches. For insertions ∆ = σ/δ on average, and hence the
preprocessing takes O(nδσp∩t/σt×log log(σ/δ)) time on average. in the search phase the value of
∆ depends on the row. For the row 1 it is again σ/δ, but then grows exponentially (up to O(n))
on average. However, this is because the length of di decreases exponentially, i.e. ∆ = n/|di−1|
for row i on average. This does not affect the average complexity, i.e. by using the same
argument as for the binary search, the average search time is O(nδ/σ log log(σ/δ)). This is O(n)
if δ = O(σ/ log log σ). In this case the preprocessing cost is O(nσ log log log log σ/ log log σ).

The above bound can still be improved with exponential search trees [1]. The O(log log ∆)
bound can be improved to O(

√
log q/ log log q), where q is the number of stored keys between

two subsequent searches, rather than the absolute value of the difference of the keys (∆). Note
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that q ≤ ∆ holds always, and in our case q = 1 in the preprocessing phase and O(1) while
searching in the first row of the matrix.

5 Column-wise sparse dynamic programming

In this section we present another cut-off variant. This algorithm does not depend on any
complex helper data structures, and runs in O(σ +mσt +n) and O(σ +mσt + |M|) average and
worst case time, respectively.

The algorithm processes the dynamic programming matrix column-wise. Let us define Last
Prefix Occurrence LPO as

LPOi,j =
{

j′ max j′ ≤ j | p0 . . . pi =α
δ th . . . tj′

−α− 1 otherwise
(6)

Note that LPO0,j = j if p0 =δ tj . Note also that LPOi,j is just an alternative definition of Di,j

(Eq. (1)). The pattern matching task is then to report every j such that LPOm−1,j = j. As
seen, this is easy to compute in O(mn). In order to do better, we maintain a list of window prefix
occurrences WPOj that contains for the current column j all the rows such that j−LPOi,j ≤ α
where i ∈ WPOj .

Assume now that we have computed LPO and WPO up to column j − 1, and want to
compute LPO and WPO for the current column j. The invariant is that ∀i ∈ WPOj−1 :
j − LPOi,j−1 ≤ α + 1, and moreover ∀i /∈ WPOj−1 : j − LPOi,j−1 > α + 1. In other words, if
i ∈ WPOj−1 and j′ = LPOi,j−1, then p0 . . . pi =α

δ th . . . tj′ for some h. Therefore, if tj =δ pi+1,
then the (δ, α)-matching prefix from LPOi,j−1 can be extended to text position j and row i+1.
In such case we update LPOi+1,j to be j, and put the row number i + 1 into the list WPOj .
This is repeated for all values in WPOj−1. After this we check if also p0 δ-matches the current
text character tj , and in such case set LPO0,j = j and insert j into WPOj . Finally, we must
put all the values i ∈ WPOj−1 to WPOj if the row i was not already there, and still it holds
that LPOi,j ≤ α. This completes the processing for the column j.

Alg. 6 gives the code. Note that the additional space we need is just O(m), since only the
values for the previous column are needed for LPO and WPO.

The average case running time of the algorithm depends on how many values there on average
in the list WPO, i.e. O(1). Each value is clearly processed in constant worst case time, and
hence the algorithm runs in O(n) average time. In the worst case the total length of the lists
for all columns is O(|M|), and therefore the worst case running time is O(n + |M|), since every
column must be visited. The preprocessing phase only needs to initialize LPO, which takes
O(m) time.

6 Bit-parallel dynamic programming

The worst case complexity of all the previous algorithms is O(mn). In this section we show how
bit-parallelism can be used to bring the worst case complexity down to O(nδ + dn/wem) and
the average case complexity to O(dn/weσp + n(δσp∩t/σt + 1)), where w is the number of bits in
computer word (typically 32 or 64). We number the bits from the least significant bit (0) to the
most significant bit (w − 1). C–like notation is used for the bit-wise operations of words; & is
bit-wise and, | is or, ∼ negates all bits, << is shift to left, and >> shift to right, both with
zero padding.

Let us first redefine the matrix D. Let Di,j = 1 if p0p1 . . . pi =α
δ thth+1 . . . tj . Otherwise,

Di,j = 0. This can be expressed as:

Di,j =
{

1 pi =δ tj and ∃j′ : 0 < j − j′ ≤ α + 1 and Di−1,j′ = 1
0 otherwise

(7)
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Alg. 6 DA-sdpco-columns(T, n, P, m, δ, α).
1 for i ← 0 to m− 1 do LPOi ← −α− 1
2 top ← 0
3 for i ← 0 to n− 1 do
4 c ← ti; h ← 0
5 for j ← 0 to top− 1 do
6 pr ← WPO′

j

7 pc ← LPOpr

8 if |c− ppr+1| ≤ δ then
9 if pr + 1 < m− 1
10 WPOh ← pr + 1
11 h ← h + 1
12 else
13 report match
14 if |c− p0| ≤ δ then
15 WPOh ← 0
16 h ← h + 1
17 for j ← 0 to h− 1 do LPOWPOj ← i
18 for j ← 0 to top− 1 do
19 if LPOWPOj 6= i and i− LPOWPOj ≤ α then
20 WPOh ← WPO′

j

21 h ← h + 1
22 top ← h
23 Lt ← WPO; WPO ← WPO′; WPO′ ← Lt

This definition can be used instead of the definition in Sec. 2. However, at a first glance it seems
that this recurrence would lead to O(αnm) time, i.e. by far to the worst complexity. However,
we show how to compute O(w) columns in each row of the new matrix in O(α/w) time, i.e. in
O(1) time for small α.

To this end, assume that in the preprocessing phase we have computed a helper bit-matrix
(whose efficient computation we will consider later) V :

Vi,j =
{

1 pi =δ tj
0 otherwise

(8)

The computation of D will proceed column-wise, w columns at once. Each matrix element
takes only one bit of storage, so we can store w columns into a single machine word. Assume
that we have computed all rows of the columns (j−1)w . . . jw−1, and columns jw . . . (j+1)w−1
up to row i− 1, and we want to compute the columns jw . . . (j + 1)w− 1 at row i. Assume also
that α < w. We adopt the notation Dw

i,j = Di,jw...(j+1)w−1, and analogously for V . The goal is
then to produce Dw

i,j from V w
i,j and Dw

i−1,j and Dw
i−1,j−1. Dw

i,j does not depend on any other Dw

element, according to the definition of D, and given our assumption that α < w.
Now, according to Eq. (7), the kth bit in Dw

i,j should be set iff (i) the kth bit in V w
i,j is

set (i.e. pi =δ tjw+k), and (ii) any of the bits k − α − 1 . . . k − 1 in Dw
i−1,j or any of the bits

k + w − α − 1 . . . w − 1 in Dw
i−1,j−1 is set (i.e. the gap length to the previous match is at most

α). To compute item (ii) efficiently we assume that we have available function M(x), that for
a binary number x is defined as:

M(x) = (x << 1) | (x << 2) | . . . | (x << (α + 1)) (9)

In other words, M(x) copy-propagates all bits in x to left 1 . . . α + 1 positions. This means that
if the 1 bits in x correspond to the matching positions of a pattern prefix, then M(x) will have
those 1 bits aligned in all positions where the matching prefix could be extended. We can now
write the recurrence for Dw:

Dw
i,j = V w

i,j & (M(Dw
i−1,j) | (M(Dw

i−1,j−1) >> w)) (10)
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Figure 1: Tiling the dynamic programming matrix with w × 1 vectors (w = 8). The dark gray
cell of the current tile depends on the light gray cells of the two tiles in the previous row (α = 4).

Fig. 1 illustrates the bits in the previous row affecting the bits in the current row.
We are not able to compute M(x) in constant time, hence we use a precomputed look-up

table instead1. Since w can be too large to make this approach feasible, we can precompute
the answers e.g. to only w/2 or w/4 bit numbers, and correspondingly compute M(x) in 2 or
4 pieces without affecting the time complexity (in our implementation we used w/2 = 16 bit
numbers for computing M(x)).

Finally, the preprocessing of V can be done in the same way as the preprocessing of the list
L in Alg. 3. However, the preprocessing has O(dn/weσp + n(δσp∩t/σt + 1)) cost now, since V
must be initialized to all zeros. Searching clearly takes only O(dn/wem) time.

6.1 Adapting the cut-off trick

The cut-off trick given in Sec. 3 can be applied even if we are computing w columns in parallel.
The new definition for the maximum row topw

j for the column j is:

topw
j = argmaxi {(Dw

i,j−1 & a = 0 and Dw
i−1,j−1 & a 6= 0) (11)

or Dw
i−1,j 6= 0} (12)

where the bitmask a = ∼0 << (w − α− 1). Consider first the part

Dw
i,j−1 & a = 0 and Dw

i−1,j−1 & a 6= 0.

The rationale is as follows. When we are computing Dw
i,j , only the α + 1 highest non-zero bits

of Dw
i−1,j−1 can affect the bits in Dw

i,j . These are selected by the & a operation. However, since
we are computing w columns in parallel, the non-zero bits in Dw

i−1,j (the second part), i.e. in
the previous row of the current set of columns, can affect the bits in Dw

i,j as well. Obviously,
this second part cannot be computed at column j − 1.

We solve this problem simply by computing the first part (11) of topw
j after the column j−1

have been computed, and when processing the column j, we increase topw
j if needed according

to the second part (12).
Alg. 7 gives the pseudo code. It uses w′ = w/2 bits for the precomputed table for the M(·)

function. For simplicity, the code also assumes that α < w′ (but w columns are still processed
in parallel).

6.2 Handling large α in O(1) time

Alg. 7 assumes that α < w. For larger α the time increases by O(α/w) factor, as the gap may
span over several machine words. We now show how to remove this limit while maintaining the
O(1) cost for processing w columns.

1M(x) obviously belongs to AC0, and hence in principle could be computed in O(1) time with a constant
depth polynomial size circuit.
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Alg. 7 DA-bpdp(T, n, P,m, δ, α).
1 for i ← 0 to m− 1 do A[pi] ← 0
2 for i ← 0 to m− 1 do
3 if A[pi] = 0 then
4 A[pi] ← 1
5 for j ← −δ to δ do
6 c ← max(0, min(pi + j, σ − 1))
7 L′[c] ← L′[c] ∪ {pi}
8 for j ← 0 to dn/we − 1 do V [pi][j] ← 0
9 for i ← 0 to n− 1 do
10 for j ← 0 to |L′[ti]| − 1 do
11 c ← L′[ti][j]
12 V [c][i/w] ← V [c][i/w] | (1 << (i % w))
13 w′ ← w/2; msk ← (1 << w′)− 1
14 for i ← 0 to (1 << w′)− 1 do
15 M [i] ← 0
16 for j ← 0 to α do M [i] ← M [i] | (i << (j + 1))
17 top ← m− 1
18 D0 ← V [p0][0]
19 for i ← 1 to top do
20 Di ← V [pi][0] & (M [Di−1 & msk] | (M [Di−1 >> w′] << w′))
21 if Dm−1 6= 0 then report matches
22 for j ← 1 to dn/we do
23 D′

0 ← V [p0][j]
24 i ← 1
25 while i ≤ top do
26 x ← M [D′

i−1 & msk] | (M [D′
i−1 >> w′] << w′)

27 y ← M [Di−1 >> w′] >> w′

28 D′
i ← V [pi][j] & (x | y)

29 if i = top and top < m− 1 and D′
i 6= 0 then

30 Di ← 0
31 top ← top + 1
32 i ← i + 1
33 if top = m− 1 and D′

m−1 6= 0 then report matches
34 while top > 0 and D′

top & (∼0 << (w − α− 1)) = 0 do top ← top− 1
35 if top < m− 1 then top ← top + 1
36 Dt ← D; D ← D′; D′ ← Dt;

Let us define Last Prefix Occurrence:

LPOi,j =
{

j′ Dw
i,j′ 6= 0 | max j′ ≤ j

−α− 1 otherwise
(13)

I.e. for LPOi,j = j′, Dw
i,j′ is the vector that corresponds to the last (δ, α)-match(es) of the prefix

p0 . . . pi in the text area t0 . . . twj−1. If such vector does not exist (e.g. when j = 0) we set
LPOi,j = −α− 1.

Assume that α ≥ w and consider the computation of Dw
i,j . The recurrence becomes

Dw
i,j = V w

i,j & (M(Dw
i−1,j) | ov) (14)

The vector ov is computed according to the last prefix occurrence information. Let j′ =
LPOi−1,j−1. We have the following four cases (see also Fig. 2):

1. j′ = −1: no matching prefixes have been found, hence ov = 0.

2. w(j− j′)−w + 1 > α + 1: no bit of Dw
i−1,j′ can affect any bit in Dw

i,j , hence we set ov = 0.

3. w(j − j′) + w − 1 ≤ α + 1: any set bit in Dw
i−1,j′ is close enough to affect any bit in Dw

i,j ,
hence we set ov = ∼0.
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Dw
i,j

Dw
i−1,j′

w(j − j′) + w − 1

w(j − j′)− w + 1

α + 1

α + 1

Figure 2: Some bit distances illustrated.

4. Otherwise some bits of Dw
i−1,j′ or Dw

i−1,j′−1 can be close enough to affect some bits of Dw
i,j .

The condition 4 is the tricky one. Assume that the function M(·) uses the value α′ = w+α mod w
instead of α. Note that in Eq. (14) M(Dw

i−1,j) is still correctly computed as we assume that
α ≥ w. The contribution of Dw

i−1,j′ is therefore ov = M(Dw
i−1,j′) >> w. If Dw

i−1,j′−1 is not zero,
then its high order bits may contribute as well, and we set

ov = (M(Dw
i−1,j′) >> w) | (M(Dw

i−1,j′−1) >> 2w). (15)

Obviously, LPOi,j can be easily maintained in constant time for each i, j. LPO(i,−1) is
initialized to −α − 1 for all i, which takes O(m) time. Then, the computation of Dw proceeds
column-wise. After Dw

i,j is computed, we simply set LPOi,j = j iff Dw
i,j 6= 0, otherwise we set

LPOi,j = LPOi,j−1. In practice we can store only the latest value of LPO for each row, so only
O(m) space is needed.

Finally, note that since α ≥ w, and hence w ≤ α′ < 2w, the function M(·) is now much
simpler to compute. That is, M(x) = 22w − LSB(x) − LSB(x), where LSB(x) extracts the
least significant set bit of x. The first subtraction operation then propagates the LSB to every
higher position as well, while the second subtraction then clears the least significant bit of the
result. The last obstacle is the computation of LSB(·). However, the solution is part of the
computing folklore, and can be computed as LSB(x) = (x & (x− 1)) ∧ x in O(1) time. Thus,
for α ≥ w we can compute M(·) in O(1) time without table look-ups.

Hence we can conclude that the value of α does not affect the running time of the algorithm.

7 Linear time preprocessing

For the “cut-off” variants of our algorithm the O(δn) (worst case) preprocessing time can be the
dominating factor in some cases. In this section we present a preprocessing variant not dependent
on the pattern or δ in time and space. The idea is to partition the alphabet into dσ/δe disjoint
intervals of width δ. With each interval a list of character occurrences will be associated. Namely,
each list L[i], i = 0 . . . dσ/δe − 1, corresponds to the characters iδ . . .min{(i + 1)δ − 1, σ − 1}.
During the scan over the text in the preprocessing phase, we append each index j to up to three
lists: L[k] for such k that kδ ≤ tj ≤ (k + 1)δ − 1, L[k − 1] (if k − 1 ≥ 0), and L[k + 1] (if
k + 1 ≤ dσ/δe − 1). Note that no character from the range [tj − δ . . . tj + δ] can appear out of
the union of the three corresponding intervals. Such preprocessing clearly needs O(n) space and
time in the worst case. Alg. 8 gives the pseudo code.

The search in the original sparse dynamic programming algorithm with the “cut-off” idea
is based (at least in the simple practical implementation) on binary searching over a list of all
δ-occurrences of a current pi character. The variant with linear preprocessing is also based on
binary search, namely it runs the binary search over the list L[k] for such k that kδ ≤ pi ≤
(k + 1)δ − 1, as any j such that tj =δ pi must have been stored at L[k]. Still, the problem is
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Alg. 8 DA-sdp-preprocess(T, n, P, m, δ, α).
1 for j ← 0 to n− 1 do
2 for c ← max{0, btj/δc − 1} to min{b(σ − 1)/δc, btj/δc+ 1} do
3 L[c] ← L[c] ∪ {j}
4 return L

there can be other text positions stored on L[k] too, as the only thing we can deduce is that for
any j in the list L[k], tj is (2δ−1)-match to pi. To overcome this problem, we have to verify if tj
is a real δ-match. If tj 6=δ pi, we read the next value from L[k] and continue analogously. After
at most α + 1 read indexes from L[k] we either have found a δ-match prolonging the matching
prefix, or we have fallen off the (α+1)-sized window. As a result, the worst case time complexity
is O(n + |M|(log2 n + α)), or O(n log log n + |M|(log log n + α)) if van Emde Boas trees [15] are
used. The average time in this variant becomes O(n log2 n) or O(n log log n), respectively. The
other alternatives to binary search can be adapted analogously.

Note this idea in principle could be used also for SDP without the cut-off trick, but there it
is of little value as in that algorithm the preprocessing (Alg. 4) either takes O(n) time or it takes
no more time (in the complexity terms) than the successive search routine. The only benefit of
this variant for the plain SDP algorithm is reducing the worst case space complexity to O(n).

For the bit-parallel algorithm the preprocessing takes O(dn/weσp + n(δσp∩t/σt + 1)) time.
Using the above idea this can be reduced to O(dn/weσp/δ + n). However, the search algorithm
becomes a filter, since we are not able to verify the δ-matches bit-parallelly. This means that the
candidate pattern occurrences must be verified using e.g. plain dynamic programming algorithm,
which increases the worst case cost to O(mn). The good average case performance is preserved.
Finally, note that we can use any interval h = 1 . . . σ, instead of h = δ, for partitioning the
alphabet. Using larger intervals decreases the preprocessing cost, but as a trade-off makes the
filter slower and triggers more verifications.

8 Simple algorithm

In this section we will develop a simple algorithm that in practice performs very well on small
(δ, α). The algorithm inherits the main idea from the the cut-off variant of the sparse dynamic
programming (Sec. 4.1), and actually can be seen as its brute-force variant. The algorithm has
two traits that distinguish it from Alg. 5: (i) the preprocessing phase is interweaved with the
searching (lazy evaluation); (ii) binary search of the next qualifying match position is replaced
with a linear scan in an α + 1 wide text window. These two properties make the algorithm
surprisingly simple and efficient on average, but impose an O(α) multiplicative factor in the
worst case time bound.

The algorithm begins by computing a list L of δ-matches for p0:

L0 = {j | tj =δ p0}.

This takes O(n) time (and solves the (δ, α)-matching problem for patterns of length 1). The
matching prefixes are then iteratively extended, subsequently computing lists:

Li = {j | tj =δ pi and j′ ∈ Li−1 and 0 < j − j′ ≤ α + 1}.

List Li can be easily computed by linearly scanning list Li−1, and checking if any of the text
characters tj′+1 . . . tj′+α+1, for j′ ∈ Li−1 δ-matches pi. This takes O(α|Li−1|) time. Clearly, in
the worst case the total length of all the lists is

∑
i Li = |M|, and hence the algorithm runs in

O(α|M|) worst case time.
With one simple optimization the worst case can be improved to O(min{α|M|,mn}) (im-

proving also the average time a bit). When computing the current list Li, Simple algorithm may
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Alg. 9 DA-simple(T, n, P, m, δ, α).
1 h ← 0
2 for j ← 0 to n− 1 do
3 if |tj − p0| ≤ δ then
4 L[h] ← j; h ← h + 1
5 for i ← 1 to m− 1 do
6 pn ← h; h ← 0; L[pn] = n− 1
7 for j ← 0 to pn− 1 do
8 for j′ ← L[j] + 1 to min(L[j + 1], L[j] + α + 1) do
9 if |tj′ − pi| ≤ δ then
10 L′[h] ← j′; h ← h + 1
11 if i = m− 1 then report match
12 Lt ← L; L ← L′; L′ ← Lt

inspect some text characters several times, because the subsequent text positions stored in Li−1

can be close to each other, in particular, they can be closer than α + 1 positions. In this case
the α+1 wide text windows will overlap, and same text positions are inspected more than once.
Adding a simple safeguard to detect this, each value in the list Li can be computed in O(α)
worst case time, and in O(1) best case time. In particular, if |M| = O(mn), then the overlap
between the subsequent text windows is O(α), and each value of Li is computed in O(1) time.
This results in O(mn) worst case time. The average case is improved as well. Alg. 9 shows the
pseudo code, including this improvement.

Consider now the average case. List L0 is computed in O(n) time. The length of this list is
O(nδ/σ) on average. Hence the list L1 is computed in O(αnδ/σ) average time, resulting in a
list L1, whose average length is O(nδ/σ × αδ/σ). In general, computing the list Li takes

O(α|Li−1|) = O(nαi(δ/σ)i) = O(n(αδ/σ)i) (16)

average time. This is exponentially decreasing if αδ/σ < 1, i.e. if α < σ/δ, and hence, summing
up, the total average time is O(n).

9 Non-deterministic finite automata based approaches

In this section we present two algorithms based on non-deterministic finite automaton. The first
algorithm is a trivial adaptation of the algorithm in [12] and uses m+(m−1)α bits to represent
the automaton, and hence runs in O(ndmα/we) time. This observation was done also in [4], but
our adaptation is somewhat simpler and more efficient. The second algorithm is more complex
but uses only O(m log2 α) bits, and therefore runs in O(nd(m log2 α)/we) time.

9.1 (δ, α)-matching with O(mα) bits

In [12] the authors present a bit-parallel algorithm for string matching with bounded gaps and
character classes, the motivating application being protein searching. The algorithm handles
patterns of form p0g(a0, b0)p1g(a1, b1)p2 . . . g(am−2, bm−2)pm−1, where pi ⊂ Σ and g(ai, bi) ∈
{Σ` | ai ≤ ` ≤ bi}. In other words, ai and bi are the minimum and maximum gap lengths (ai ≤ bi)
between pi and pi+1. This algorithm can be trivially adapted to (δ, α)-matching: δ-matching
is just a special case of matching with character classes, and we can use g(ai, bi) = g(0, α).
The original algorithm runs in O(ndL/we) worst case time, where L = m +

∑
i bi. In our case

L = m + (m− 1)α. Preprocessing for (δ, α)-matching takes O(σ + mδ) time (the preprocessing
in [4] takes O(mασ) time). While the original technique is trivial to modify for our purposes,
we briefly review the (modified) algorithm here for completeness. For more details refer to [12].
This also serves as the base of our new more efficient algorithm, see Sec. 9.2.

The algorithm is based on simulating a nondeterministic finite automaton with bit-
parallelism, namely with the Shift-And [2] algorithm. The standard Shift-And automaton is
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Σ
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Figure 3: Shift-And automaton.

[pi − δ, pi + δ] Σ Σ

ε
ε

ε

α + 1

Figure 4: A building block for a Shift-And automaton allowing δ-matches and α-bounded gaps.

constructed as follows. The automaton has states 0, 1, . . . , m. The state 0 is the initial state,
state m is the final (accepting) state, and for i = 0, . . . , m−1 there is a transition from the state
i to the state i+1 for character pi. In addition, there is a transition for every c ∈ Σ from and to
the initial state, which makes the automaton nondeterministic. Fig. 3 illustrates the resulting
automaton.

The preprocessing algorithm builds a table B, having one bit-mask entry for each c ∈ Σ. For
0 ≤ i ≤ m− 1, the mask B[c] has ith bit set to 1, iff pi = c. These correspond to the transitions
of the implicit automaton. That is, if the bit i in B[c] is 1, then there is a transition from the
state i to the state i + 1 with character c.

We also need a bit-vector D for the states of the automaton. The ith bit of the state vector
is set to 1, iff the state i is active. Initially each bit is set to 0. For each text symbol c the vector
is updated by

D ← ((D << 1) | 1) & B[c].

This simulates all the possible transitions of the nondeterministic automaton in a single step. If
after the update the mth bit of D is one, then there is an occurrence of P . If m ≤ w, then the
algorithm runs in time O(n).

To handle δ-matches, we can simply modify the definition of B so that now B[c] has ith
bit set to 1, iff |pi − c| ≤ δ. Handling the gaps is more complicated, and requires adding new
states into the automaton. Let s be the state that recognizes prefix of length i of the pattern.
To allow a gap of length α after this prefix, we add a sequence of α states so that there is
transition from state s + j − 1 to state s + j with all characters in Σ, where j ∈ {1 . . . α}. This
forces a gap of exactly length α. The state s is called gap initial and the state s + α gap final
state. To allow a gap of length 0 . . . α, we add ε transitions from s to all states s + j, i.e. 0 . . . α
states can be skipped, and hence the gap is correctly processed. Fig. 4 shows a building block
to handle one character of the pattern, while the automaton for the whole pattern is obtained
by concatenating the building blocks for all characters (the final gap may be omitted).

To handle the new Σ transitions is trivial, since these can be handled as any normal tran-
sition, i.e. we update the states as D ← ((D << 1) | 1) & B[c]. The ε transitions need special
treatment. If the state s recognizing a pattern prefix becomes active, then the states s+j, where
j ∈ {1 . . . α} should be activated as well. These transitions are handled as a second step, after
the normal Shift-And step. Subtraction operation can be used to copy-propagate the activated
bit to all these states as follows. Let I be a bit mask that has 1 in all positions corresponding
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Alg. 10 DA-ma-bits(T, n, P, m, δ, α).
1 ` ← m + (m− 1)× α
2 for i ← 0 to σ − 1 do B[i] ← 0
3 I ← 0; h ← 0; msk ← 0
4 for i ← 0 to m− 1 do
5 for j ← −δ to δ do
6 c ← max(0, min(pi + j, σ − 1))
7 B[c] ← B[c] | (1 << h)
8 h ← h + 1
9 if i < m− 1 then
10 I ← I | (1 << (h− 1))
11 msk ← msk | (((1 << α)− 1) << h)
12 h ← h + α
13 for c ← 0 to σ − 1 do B[c] ← B[c] | msk
14 M ← 1 << (`− 1); D ← 0;
15 for i ← 0 to n− 1 do
16 D ← ((D << 1) | 1) & B[ti]
17 AI ← D & I
18 D ← D | (((AI << (α + 1))−AI)
19 if (D & M) 6= 0 then report match

1 if input activated and tj ∈ [pi − δ, pi + δ] then
2 c ← 0

4 c ← c + 1
5 activate output

3 if c < α + 1 then

Figure 5: A building block for a systolic array detecting δ-matches with α-bounded gaps.

to the gap initial states. Then AI ← D & I is the bit mask that has 1 in all position where the
gap initial state is active. To propagate the active bits in all gap states we use

D ← D | ((AI << (α + 1))−AI).

If AI has 0 in the gap initial state, then this has no effect to the gap states. If the bit is 1, then
it is propagated to all gap states due to carry effect of the subtraction, and zeroes the overflowed
bits (AI << (α + 1)).

Note that this solution is slightly simpler than the one given in [12]. Our solution is possible
as the automaton has more regular structure now. Alg. 10 gives the pseudo code for the complete
algorithm.

9.2 (δ, α)-matching with O(m log2 α) bits

The problem of Alg. 10 is that it needs m + (m− 1)α bits to represent the search search state.
Our goal is to reduce this to O(m log2 α).

On very high level, the algorithm can be seen as a novel combination of Shift-And and Shift-
Add algorithms [2]. The ’automaton’ has two kinds of states: Shift-And states and Shift-Add
states. The Shift-And states keep track of the pattern characters, while the Shift-Add states
keep track of the gap length between the characters. The result is a systolic array rather than
automaton; a high level description of a building block for character pi is shown in Fig. 5. The
final array is obtained by concatenating one building block for each pattern character. We call
the building blocks as counters.

To efficiently implement the systolic array in sequential computer, we need to represent each
counter with as few bits as possible while still being able to update all the counters bit-parallelly.

We reserve ` = dlog2(α + 1)e+1 bits for each counter, and hence we can store bw/`c counters
into a single machine word. We use the value 2`−1 − (α + 1) to initialize the counters, i.e. to
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represent the value 0. (This representation has been used before, e.g. in [6].) This means that
the highest bit (`th bit) of the counter becomes 1 when the counter has reached a value α + 1,
i.e. the gap cannot be extended anymore. Hence the lines 3—4 of the algorithm in Fig. 5 can
be computed bit-parallelly as

C ← C + ((∼C >> (`− 1)) & msk),

where msk selects the lowest bit of each counter. That is, we negate and select the highest bit
of each counter (shifted to the low bit positions), and add the result the the original counters.
If a counter value is less than α+1, then the highest bit position is not activated, and hence the
counter gets incremented by one. If the bit was activated, we effectively add 0 to the counter.

To detect the δ-matching characters we use the plain Shift-And step:

D′ ← ((D << `) | 1) & B[ti],

where we have reserved ` bits per character in D as well. Only the lowest bit of each field has
any significance, the rest are only for aligning D and C appropriately. The reason is that a state
in D may be activated also if the corresponding gap counter has not exceeded α + 1. In other
words, if the highest bit of a counter in C is not activated (the gap condition is not violated),
then the corresponding bit in D should be activated:

D ← D′ | ((∼C >> (`− 1)) & msk).

The only remaining difficulty to solve is how to reinitialize (bit-parallelly) some subset of
the counters to zero, i.e. how to implement the lines 1–2 of the algorithm in Fig. 5. The bit
vector D′ has value 1 in every field position that survived the Shift-And step, i.e. in every field
position that needs to be initialized in C. Then

C ← C & ∼(D′ × ((1 << `)− 1))

clears the corresponding counter fields, and

C ← C | (D′ × ((1 << (`− 1))− (α + 1)))

copies the initial value 2`−1 − (α + 1) to all the cleared fields. Note that the multiplication in
the clearing operation can be avoided by using C ← C & ∼((D′ << `)−D′) instead.

This completes the algorithm. Alg. 11 gives the pseudo code.

9.3 Handling long patterns

Both Alg. 10 and Alg. 11 run in O(n) worst case time, if m+(m−1)α ≤ w and m(dlog2(α + 1)e+
1) ≤ w, respectively. Otherwise, several machine words are needed to represent the search state,
and the time grows accordingly. However, to use the well-known folklore idea, it is enough to
update the machine words that are active, i.e. only those words of D (correspondingly C) that
are not zero (have counters that have not overflowed). On average only O(1) words need to be
updated for each text position.

Another solution is to search only a subpattern whose representation fits into a single machine
word, and verify the whole pattern only when the subpattern matches [12]. This is attractive
only if δ and α are small enough to keep the number of verifications small.

9.4 Backward searching

In [12] the authors combined their forward matching algorithm (i.e. their version of Alg. 10)
with Backward Nondeterministic Dawg Matching (BNDM) [11] algorithm. The adaptation is
straightforward, yet allows the algorithm to skip some text characters. We only note that exactly
the same technique can be used with our Alg. 11.
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Alg. 11 DA-mloga-bits(T, n, P,m, δ, α).
1 ` ← dlog2(α + 1)e+ 1
2 for i ← 0 to σ − 1 do B[i] ← 0
3 for i ← 0 to m− 1 do
4 for j ← −δ to δ do
5 c ← max(0, min(pi + j, σ − 1))
6 B[c] ← B[c] | (1 << (i× `))
7 msk ← 0
8 for i ← 0 to m− 1 do msk ← msk | (1 << (i× `))
9 am ← (1 << (`− 1))− (α + 1)
10 D ← 0; C ← (am + α + 1)×msk
11 msk ← msk >> `
12 mm ← 1 << ((m− 1)× `)
13 for i ← 0 to n− 1 do
14 C ← C + ((∼C >> (`− 1)) & msk)
15 D′ ← ((D << `) | 1) & B[ti]
16 D ← D′ | ((∼C >> (`− 1)) & msk)
17 C ← C & ∼((D′ << `)−D′)
18 C ← C | (D′ × am)
19 if (D & mm) = mm then report match

10 Extensions

Our algorithms can be extended in various ways, including the following cases.

10.1 Relaxing α and δ

All our dynamic programming algorithms can be generalized to the case where the gap limit
can be of different length for each pattern character, and where the δ-matching is replaced with
character classes, i.e. each pattern character is replaced with a set of characters. More precisely,
pattern p0p1p2 . . . pm−1, where pj ⊂ Σ, matches ti0ti1ti2 . . . tim−1 , if tij ∈ pj for j ∈ {0, . . . ,m−1},
where ij < ij+1, and ij+1− ij ≤ αj +1. This problem variant has important applications e.g. in
protein searching, see [12].

The dynamic programming algorithms can easily handle general α gaps. All is needed is to
use αi in the row i of the matrix. The time complexities are preserved if we (pessimistically)
consider that α = max{αi}.

Handling the character classes is slightly more complicated. For the basic dynamic program-
ming algorithms we can preprocess a table C[0 . . .m − 1][0 . . . σ − 1], where C[i][c] := c ∈ pi.
This requires O(σm) space and O(σ

∑
i |pi|) time, which is attractive for small σ, such as protein

alphabet. The search algorithm can then use C to check if tj ∈ pi in O(1) time. For large al-
phabets we can use e.g. hashing or binary search, to do the comparisons in O(1) or in O(log |pi|)
time, respectively.

The sparse dynamic programming algorithms become a bit more complicated, since we need
to have M preprocessed. Inspired by Alg. 3, we do this as follows. First compute lists L′[c] =
{i | c ∈ pi}. This can be done in one linear scan over the pattern, and takes O(m log σ) total
time. Then list L[i] is defined as L[i] = {j | tj ∈ pi}. This can be computed in one linear scan
over the text appending j into each list L[i] where i ∈ L′[tj ]. The total time is then O(nδ),
where we can consider δ as the average size of the character classes. The search algorithm can
now be used as is, the only modification being that where we used L[pi] previously, we now use
L[i] instead (and the new definition of L).

Finally, Alg. 10 as described in the original paper [12] handles just these extensions. Alg. 11
can trivially handle character classes. On the other hand, this algorithm makes an implicit
assumption of fixed α values. Generalizing for different length gaps seems to be possible, but
not worth the effort.
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10.2 Handling negative and range restricted gaps

The generalization of Sec. 10.1 to allow different gap lengths according to pattern position is
still restrictive. In fact, the algorithm in [12] allows gaps of the form g(ai, bi), where ai denotes
the minimum and bi the maximum (ai ≤ bi) gap length for the pattern position i. However,
this extension is easy or even trivial to handle in all our algorithms, i.e. in most algorithms it
is equally easy to check if the formed gap length satisfies g(ai, bi) as it is to check if it satisfies
g(0, αi). The column-wise sparse dynamic programming is a bit trickier, but still adaptable.

Yet a stronger model [10] allows gaps of negative lengths, i.e. the gap may have a form
g(ai, bi) where ai < 0 (it is also possible that bi < 0). In other words, parts of the pattern
occurrence can be overlapping in the text.

Consider first the situation where for each g(ai, bi): (i) ai ≥ 0; or (ii) bi ≤ 0. In either case we
have ai ≤ bi. Handling the case (i) is just what our algorithms already do. The case (ii) is just
the dual of the case (i), and conceptually it can be handled in any of our dynamic programming
algorithms by just scanning the current row from right to left, and using g(−bi,−ai) instead of
g(ai, bi).

The general case where we also allow ai < 0 < bi is trickier, and automata based approaches
do not work anymore. However, adapting the dynamic programming algorithms (with or without
the cut-off trick), and Simple algorithm of Sec. 8 to this setting is still quite straightforward.

In the following we consider the modification needed for some of the algorithms.

10.2.1 Dynamic programming

Basically, the only modification for the sparse algorithms is that we change all the conditions
of the form 0 ≤ g ≤ α, where g is the formed gap length for the current position, to form
ai ≤ g ≤ bi. Note that this does not require any backtracking, even if ai < 0.

Adapting the plain dynamic programming algorithm to the case ai < 0 < bi is quite simple
but requires scanning each row twice. The first pass, from left to right, follows exactly the original
dynamic programming recurrence (cf. Alg. 1), with positive gaps limited to bi. Immediately after
that, the same row is scanned from right to left. This time, each δ-match in rows 1 . . . m− 1 is
verified with respect to its upper-right neighboring cell (as opposed to the upper-left neighbor
during the first pass). Another difference is that the values −1 are never written in D during
this pass. It implies from the fact that any (δ, α)-match in a row using (for the current row)
a gap from 0 to bi is also a valid (δ, α)-match if the allowed gap for the current row is from a
negative ai to bi. In other words, the right-to-left scan may add some (δ, α)-matches but not
invalidate any. Clearly, this dynamic programming routine visits each cell twice, but the O(mn)
time complexity is preserved.

10.2.2 Bit-parallel dynamic programming

The core of Alg. 7 is the use of M(x) (Eq. (9)) to select the positions from the previous row
where a matching pattern ends. To handle gaps of the form g(ai, bi) where ai ≥ 0 we use

ML(x) = (x << (ai + 1)) | (x << (ai + 2)) | . . . | (x << (bi + 1)). (17)

For the negative gaps bi ≤ 0 we just align the bits from right, and hence define:

MR(x) = (x >> −bi) | (x >> (−bi + 1)) | . . . | (x >> −ai)). (18)

The general case ai < 0 < bi is handled as a combination of these:

M(x) = (x >> −ai)) | (x >> (−ai + 1)) | . . . | (x << 1) | . . . | (x << (bi + 1)). (19)
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Figure 6: Tiling the dynamic programming matrix with w × 1 vectors (w = 8). The dark gray
cell of the current tile depends on the lighter gray cells of the three tiles in the previous row (the
allowed gap is g(−7, 4)).

Fig. 6 illustrates the bits, i.e. the matching prefix positions, selected by M(). The final simple
modification that we need is to take Dw

i−1,j+1 into account while computing Dw
i,j , since the

negative gaps may span into it. Hence we modify Eq. (10) to:

Dw
i,j = V w

i,j & (M(Dw
i−1,j) | (M(Dw

i−1,j−1) >> w) | (M(Dw
i−1,j+1 << w) >> w)). (20)

10.2.3 Simple

Finally, consider the Alg. 9 of Sec. 8. This algorithm can be adapted as follows. For computing
the list Li, the basic algorithm checks if any of the text characters tj′+1 . . . tj′+α+1, for j′ ∈ Li−1

δ-matches pi. We modify this to check the text characters tj′+ai+1 . . . tj′+bi+1. This clearly
handles correctly both the situations bi ≤ 0 and ai < 0 < bi. The scanning time for row i
becomes now O((bi − ai + 1)|Li−1|). The average time is preserved as O(n) if we now require
that (bi − ai + 1)δ/σ < 1.

The optimization to detect and avoid overlapping text windows clearly works in this setting
as well, and hence the worst case time remains O(min{(b−a+1)|M|, mn}), where for simplicity
we have considered that the gaps are of the same size for all rows.

10.3 Multiple patterns

The sparse and especially the bit-parallel dynamic programming algorithms have relatively high
preprocessing costs, O(δn) and O(δn + σpdn/we) in the worst case, respectively. Both have also
an O(m + σ + δσp) additional term, which does not affect the total complexity. However, if
we want to search a set of r patterns, instead of only one pattern, the preprocessing remains
essentially the same, since it depends only on the text and the pattern alphabet. The total (worst
case) preprocessing times increase only to O(δn+ rm) and O(δn+σpdn/we+ rm) for the sparse
and bit-parallel dynamic programming algorithms, respectively, where we have pessimistically
considered that m is the length of the longest pattern in the set, and that σp is the number
of distinct symbols in the whole pattern set. The search times have to be multiplied by r, of
course, but relative preprocessing cost per pattern is considerably reduced.

10.4 δ-occurrence of a set of strings with bounded gaps

In [5] another variant of multipattern matching was considered. Assume that we have a set of
r patterns, P1...r. Each pattern is searched with α = 0, and between the occurrence of Pi and
Pi+1 there can be a gap whose length is at most αi. If all the patterns are found this way, we
count an occurrence of the whole set. Note that the individual patterns must occur strictly in
order P1, P2, . . . , Pr. This variant can be easily solved by just concatenating all the r patterns,
forming a single pattern of length m, and applying the techniques of Sec. 10.1.
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10.5 Reducing space with block-wise computation

There is a simple way to save space in the algorithms based on a dynamic programming matrix,
without a loss in the worst and the average case time complexities. The idea is to perform the
preprocessing and the search in h-column blocks. Each block is processed only if the previous
block is finished. As the leftmost column of any block, except the first block, depends on the pre-
vious block, it is clear that this approach cannot achieve o(m) space complexity. Consequently,
this idea cannot improve the plain dynamic programming variants (Alg. 1 and 2).

The sparse dynamic programming (cf. Alg. 4) can be performed in h-column blocks. The
preprocessing is performed for each block separately, and in the search phase for each block k,
k ∈ {0, . . . , dn/he − 1}, we scan all the lists L[pi] and for each i ∈ {0, . . . ,m − 2} we store the
largest value on L[pi] which is less than h(k + 1). If the list L[pi] does not have any item in the
row i of the current h-column block, then the desired value is simply copied from the previous
block.

Hence, we have O(mn/h) penalty in time and O(hδ+m) overall space. By setting h = O(m)
we obtain O(n) time penalty, which never dominates, and only O(mδ) space in the worst case.
Still, this improvement can hardly be recommended to the sparse DP algorithm with the cut-off
trick, since its column-wise variant (Alg. 6) is faster and simpler (avoids complex search helper
structures).

Using h-column blocks makes more sense for Simple algorithm. In a crude way we could use
overlapping blocks, with the overlapping zones of (α + 1)(m− 1) columns. Setting h = O(αm)
does not deteriorate the time complexity of Simple algorithm but reduces the space complexity
if only αm = o(n), which is a realistic assumption. Moreover, in practice, a block of O(αm)
characters should easily fit an L2 (or even L1) cache of any modern CPU, which should make
this variant more cache friendly than the original one involving several (but O(1) on average)
scans over the entire text.

11 Experimental results

We have run experiments to evaluate the performance of our algorithms. The experiments were
run on Pentium4 2GHz with 512Mb of RAM, running GNU/Linux 2.4.18 operating system. We
have implemented all the algorithms in C, and compiled with icc 7.0.

For the text we used a concatenation of 7543 music pieces, obtained by extracting the pitch
values from MIDI files. The total length is 1,828,089 bytes. The pitch values are in the range
[0 . . . 127]. This data is far from random; the six most frequent pitch values occur 915,082 times,
i.e. they cover about 50% of the whole text, and the total number of different pitch values is
just 55. A set of 100 patterns were randomly extracted from the text. Each pattern was then
searched for separately, and we report the average user times. Fig. 7 shows the timings for
different pattern lengths. The timings are for the following algorithms:

DP: The plain Dynamic Programming algorithm [5], O(nm) time and O(m) space (a column-
wise variation of Alg. 1);

SS: Sequential Sampling algorithm [3], O(nm) time and O(αm) space;

DP Cut-off: “Cut-off” version of DP (Alg. 2);

SDP: Sparse Dynamic Programming (Alg. 4);

SDP Cut-off: “Cut-off” version of SDP (Alg. 5);

SDP Cut-off 3-L: O(n) preprocessing time variant of SDP Cut-off (Sec. 7);

CWSDP: Column-Wise Sparse Dynamic Programming (Alg. 6);
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BP Cut-off: Bit-parallel “cut-off” (Alg. 7);

BP Cut-off 3-L: Fast preprocessing time variant of BP Cut-off (Sec. 7).

Simple: Simple algorithm (Alg. 9).

NFA alpha: The nondeterministic finite automaton (Alg. 10).

NFA log alpha: The nondeterministic finite automaton (Alg. 11).

The experiments show that the new algorithms are substantially faster than the previous
methods. This is especially true for small (δ, α) and large m. The fastest algorithms are the
“cut-off” variants, the bit-parallel algorithm being the most efficient for large δ and α. Note
that for large (δ, α) the bit-parallel cut-off algorithm with the fast preprocessing becomes faster
for long patterns. This is because for long patterns the number of verifications decrease. The
sequential sampling method is a bit slower but comparable to the plain dynamic programming
algorithm, which is in contrast with the experimental results reported in [3].

For large (δ, α) the differences between the algorithms become smaller. The reason is that
a large fraction of the text begins to match the pattern. However, this means that these large
parameter values are not interesting anymore for this application.

We also repeated the experiments on uniformly random data, with σ = 128. The results
are shown in Fig. 7. In this case the basic cut-off algorithm (Alg. 2) is clearly the best for all
but very short patterns. Note however, that the bit-parallel cut-off variant (Alg. 7) has always
shorter search time (not shown in the plot), but the high preprocessing cost makes it quite slow
for if the pattern alphabet is large. Note that the performance of the algorithms with the linear
time preprocessing are very stable, independent of the pattern lengths, i.e. independent on σp,
as expected.

Fig. 8 shows timings for α = 1 . . . 8. For random data the times are quite insensitive to
increasing α, except for Simple, DP Cut-off, CWSDP and the two NFA algorithms. For the
NFA algorithms the explanation is that more computer words are needed for increasing α and
large m. For the others, the ’constant’ factor depends on α, but for large enough m and α the
constant should still converge. For MIDI data the situation is worse, but again this mainly is
due to the fact that for large α a significant portion of the text matches the pattern.

Finally, note that the performance is much more predictable for random than for MIDI data.
Also, Simple algorithm is always the best alternative for random data, while for MIDI data it
is useful mainly for relatively small δ and α.

12 Conclusions and future work

We have presented new efficient algorithms for string matching with bounded gaps and char-
acter classes. Our algorithms are based on sparse dynamic programming, pre-emptying the
computation early where the match cannot be extended, bit-parallelism, nondeterministic finite
automata, and the combination of these methods. Besides having theoretically good worst and
average case complexities, the algorithms are shown to outperform the previous methods in
practice as well.

We are working on several other algorithms to solve the present problem. Some of these
seem to be more efficient than our current algorithms, depending on the search parameters. Our
techniques can be used to obtain improved algorithms for some other related problems, such as
allowing transpositions, and restricting the total accumulated differences tj − pi to at most γ,
where γ < mδ. We are currently working on these problems.
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Figure 7: Running times in seconds for different pattern lengths. Top: MIDI data; bottom:
random data (σ = 128). Note the logarithmic scale.
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Figure 8: Running times in seconds for α = 1 . . . 8 and different pattern lengths. Top: MIDI
data; bottom: random data (σ = 128). Note the logarithmic scale.
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