o
Report Series A
.]OENSUUN”
YLIOPISTO

Teaching Programming:
Going beyond “Objects First”

Jorma Sajaniemi and Chenglie Hu

Report A-2006-1

UNIVERSITY OF JOENSUU
Department
of
Computer Science

UNIVERSITY OF JOENSUU
DEPARTMENT OF COMPUTER SCIENCE

Report Series A
Teaching Programming:
Going beyond “Objects First”
Jorma Sajaniemi and Chenglie Hu
Report A-2006-1
ACM K.32

ISSN 0789-7316
ISBN 952-458-801-3

Teaching Programming:
Going beyond “Objects First”

Jorma Sajaniemi
Department of Computer Science, University of Joensuuaiah

Chenglie Hu
Department of Computer Science, Carroll College, WI, USA

March 3, 2006

Abstract

The prevailing paradigm in teaching elementary prograngniises Java as the first
programming language and the “objects first” approach asdheeptual basis. This ap-
proach has several shortcomings, e.g., high drop-out eatésoor skills in basic con-
structs like loops. This paper suggests an alternativeoagprthat combines a strong start
in basic constructs with early object-orientation. Themlative approach is also com-
pared with the ACM Computing Curricula.

1 Introduction

The prevailing paradigm in teaching elementary programgmises Java as the first program-
ming language and the “objects first” approach as the conakptsis. The use of Java is
motivated by its extensive use in industry and studentshwidearn a “real” language that can
“guarantee” them a job in future. The objects first approacsied to avoid negative transfer
effects from procedural programming that make the traorsitio object-oriented programming
hard. Thus the widespread use of object-oriented progragnimisoftware industry has lead to
the abandonment of the previous teaching paradigm: Pastatdirst programming language
and procedural programming as the conceptual basis.

However, most students do not become professional progeasiput will need only basic
understanding of programming and an elementary skill tosirs@le end-user programming
tools. Moreover, the relatively high complexity of Java dhe abstract nature of objects first
approach have been criticized as demonstrated by receelspam this topic in computer sci-
ence education conferences [1, 2, 19].

This paper makes a literature survey on the problems of thremuapproaches, suggests
an alternative approach, and compares it with the ACM Coimg@urricula. The alternative
approach combines a strong start in basic constructs wilh @gject-orientation.

2 Current Problems

There are several shortcomings of the current “objectsWiitst Java” paradigm. The objects
first approach means that programming courses start witihtfoeluction of objects that model
some application domain, the attributes of these objdutsasponsibilities of objects and their

relationships with other objects, and finally the implenag¢ion of the responsibilities by the
use of methods. As a result, learners have to work with atigires for several weeks before
they can base those abstractions to program code—anotsteactton even though at a more
concrete level. The high drop-out rates of objects first @ogning courses may be due to
problems in acquiring correct understanding of the abstnag that those courses start with
[14].

Modeling an application domain without knowledge of theht@ques needed in the im-
plementation of the model is like designing a bridge withkbwing the limitations of steel
constructs, or designing knitting models without knowihg limitations of knitting techniques.
However, knitting is not taught by starting with knitting aels but with practicing the use of
knitting needles in order to first obtain a basic understagadif what can be done and how it is
accomplished. Likewise, one can’t expect engineers tqdtas meaning of actual constructs
just by having them seated in front of a CAD screen; nor caniorgine that programming
novices could design and comprehend models of applicatamaihs if they do not understand
the constituents of the models. Only by knowing the basitdmg blocks and by understand-
ing the basic techniques needed in combining them it is plessd make designs that can
actually be implemented.

The question of the first programming language is not freerablpms, either. Whereas
Pascal was originally designed for educational purposdsvas simple and consistent, Java is
designed for professional use, uses cryptic notation ghabi always consistent, and contains
versatile class libraries that are too complex for noviae[@% It is symptomatic that in a learn-
ing object designed to teach the concept of arrays [12] thlkestander the heading “test your
understanding” require knowledge of Java syntax detaflerahan real understanding of the
array concept. Similarly, in a Java-based CS1 course fatemsirally diverse students [5] the
purpose of many programming assignments is to introduckests to the functionality of com-
ponents in a specific Java library rather than to promote nstefleding of object-orientation.

There is a considerable amount of evidence that novicerifgaprogramming have se-
vere problems in understanding the basic concepts of prograg (see [15] for a review).
For example, the notion of a variable has been proven to lbtbarnderstand; basic control
structures like iteration are often misunderstood; and ¢ve use of special notation like semi-
colons poses problems. A study in four universities [13]atoded that “many students do not
know how to program at the conclusion of their introductooyises” and that “many students
have not even acquired the technical skills needed forngetiprogram ready to run”. It is
no wonder that students have faulty mental models conapoiijects, attributes, and methods
[8, 9], when their mental models of much simpler structurks Variables and basic control
structures are often faulty.

A classic overview of programming pedagogy [20] notes tiaxé wonders, for example,
about teaching sophisticated material to CS1 students whugly after study has shown that
they do not understand basic loops” and stresses the inmgertd teaching valid mental models
because “if the instructor omits them, the students will enaf their own models of dubious
quality”. The objects first approach tries to provide valiéntal models of object-oriented
design, class hierarchies etc but this is too sophistidatelovices who do not understand the
basic building blocks of programs.

3 TheAlternative Approach

The objects first approach tries to avoid the negative teareffects by avoiding teaching pro-
cedural programming before object-orientation. At the sdime it sacrifices concreteness of

programs and uses abstractions that are overly hard tomowivaces’ existing knowledge [10].
There is, however, an alternative solution that starts siitipler—although yet hard for many
learners—concepts: the concept of variables, their respitities (like keeping track of the
number of input items), and the implementation of respalitséis by assignment statements
and basic control structures (e.g., conditional, itergti@only then the concept of objects and
attributes, their responsibilities, and the implementatf responsibilities by methods are in-
troduced. This “variables first, objects then” approachtstaith more concrete concepts than
the objects first approach but still avoids the introductibprocedural programming. Further-
more, the same basic ideas of responsibility and its impttatien are applied twice: first to
variables and then to objects.

The responsibilities of variables can be treated by thentgcmtroduced notion of “roles of
variables” [16]. The role set consists of a small number te#fgtike “stepper”—a role covering
the notion of counting items. Roles give a vocabulary fopoesibilities of variables and
provide a sound basis for the variables first part. Rolesnigeto experts’ tacit programming
knowledge [18] and their use in teaching elementary prastguwogramming has been found
to enhance learners’ programming skills [3, 17]. In objadented programming, roles apply to
attributes, local variables and method parameters. Thausdhsition from variables to objects
is conceptually simple and means only a shift in the abstmadével.

The set of basic control structures introduced in the véegafirst part of the course should
include sequence, selection, and iteration but other gbstiructures common to both object-
oriented and procedural programming may be considered, &lar example, exception han-
dling and concurrency (or multithreading) are central epis in object-orientation [6] and
their basic ideas can be introduced apart from objects aambes. Similarly, for the intro-
duction of the common parts of methods and procedures weestiggnew notionpamed
compounds that covers parameter passing and recursion but that wib@aoased for structured
design as such. Named compounds are motivated by the needdere-use (“define once—
use several times”) and clarity (“separate different paftthe code”) that are required both
in object-oriented and in procedural programming. In obg@ented programming, named
compounds turn into constructors and methods whereas aeguoal programming they turn
into hierarchical procedures and functions.

The variables first part of the suggested new approach magarse mini language in
order to avoid complicated syntax requirements of, e.ga.J&hen the basic programming
constructs are mastered, a new language using a differésiaromay be introduced. This
could even emphasize the unimportance of notational detaih the other hand, an educational
situation might best be served by a language specially dedigising pedagogic principles
[7]. This supports the idea that a (new) educational progmarg language should be used
throughout the approach.

The suggested approach provides students valid modelssiof fi@gramming knowledge
that can be applied both in object-oriented and procedu@rpmming. It does not stress
programming language features or any specific design tgeartio model the programming
problem. Thus problems of any specific perspective to progreg [4] can be avoided. The
first course is intended to give a good understanding of pragring constructs whereas the
design and composition of larger programs—including mtisuch as encapsulation, inheri-
tance, and polymorphism—is postponed until later counséisa curriculum.

4 Comparison with CC2001

ACM Computing Curricula CC2001 [11] offers several apptwg to introductory courses:
imperative-first, objects-first, functional-first, breladirst, algorithms-first, and hardware-first.
Each of these approaches consist of two courses (with amaiitee three-course implementa-
tion in some approaches). In the same vein, our approachecterined variables-first

The course contents suggested in the previous section keeame as the imperative-first
approach of CC2001 which introduces the whole traditiomat@dural model; our suggestion
avoids intentionally the procedural approach to progracodgosition. In fact, our approach
is closer to the algorithms-first approach where the basnceots of computer science are
introduced using pseudocode instead of an executabledgeguand which permits students
to work with a range of data and control structures. Howeawesur new approach we assume
that the programs are executable—even if written in someathnal programming language
that resembles pseudocode and has simple syntax.

Our “variables-first” approach does not try to give exact lengentations of two or
three introductory courses. However, a possible impleatem—presented in the style of
CC2001—-consists of , e.g., two courses: Fundamentals @frammming, and Abstraction
mechanisms with the following syllabi.

Fundamentals of programming:

e Background: History of computing, overview of programmiagguages and the com-
pilation process

e Simple data: Variables, types, and expressions; assignmen

e Simple control structures: Iteration; conditionals

¢ Algorithms: Problem-solving strategies; implementatsbrategies; roles of variables
e Simple data structures: Arrays; records; strings

e Machine level representation of data: Bits, bytes, and sjobihary representation of
integers; representation of character data; representatirecords and arrays

e Code re-use and functional decomposition: Named compoyadameter passing
e Recursion: The concept of recursion; divide-and-congtrategjies
e Advanced control structures: Exceptions, concurrency

e Software engineering issues: Tools; processes; requimsmeesign and testing; risks
and liabilities of computer-based systems

¢ Introduction to basic algorithmic analysis

As a terminological detail, CC2001 should rather use the tgrocedures-first” instead of “imperative-first”
because the imperative-first approach covers not only iatipercontrol structures (sequence, selection, and itera-
tion) but also procedural abstraction. The term “impegafikst” actually matches better our approach which starts
with the common parts of object-oriented and procedurayamming. For clarity, we have used a fresh name for
our approach (“variables-first”) although we would like tetthe term “imperative-first” instead.

Abstraction mechanisms;

¢ Principles of encapsulation: Encapsulation and inforamatiiding; separation of behav-
ior and implementation

e Abstraction in procedural programming: Procedures andtfons; structured decompo-
sition

e Abstraction in functional programming: Functions witheatiables; recursion over lists,
recursive backtracking

e Abstraction in object-oriented programming: Classes ani@ats; methods; message
passing; subclassing and inheritance; polymorphism

e Data abstraction: Classic data structures (list, stadk,qareue); procedural implemen-
tation; object-oriented implementation

e Object-oriented design: Fundamental design concepts @ndigles; introduction to
design patterns; object-oriented analysis and design

e Using APIs: Class libraries; event-driven programming;kzayes for graphics and GUI
applications

e Software engineering: Building a medium sized system,amtg with algorithmic effi-
ciency in mind

CC2001 defines the core contents for computer science boéymfledge. The core
consists of material that essentially everyone teachimgpeer science agrees is essential to
anyone obtaining an undergraduate degree in this field. Gmes correspond to the in-class
time required to present the material in a traditional lestoriented format. This time does not
include the instructor’'s preparation time or the time stigdespend outside of class. Table 1
presents a comparison of the core hours of three CC2001 agps (imperative-first, objects-
first and algorithms-first) and the suggested “variables*fapproach.

5 Conclusion
ACM Computing Curricula 2001 states [11, Chapter 7]:

Throughout the history of computer science education, thetsire of the intro-
ductory computer science course has been the subject néatiebate. ... recom-
mending a strategy for the introductory year of a computense curriculum all
too often takes on the character of a religious war that geesfar more heat than
light.

In the interest of promoting peace among the warring fastidime CC2001 Task
Force has chosen not to recommend any single approach. uthéstthat no ideal
strategy has yet been found, and that every approach hagtsiseand weaknesses.
. Moreover, we must encourage institutions and individaeulty members to
continue experimentation in this area. Given a field thahgka as rapidly as
computer science, pedagogical innovation is necessagoftinued success.

Table 1: Comparison of the amount of core hours in differ@preaches. Imperative-first (IF),
objects-first (OF), and algorithms-first (AF) are suggedigd°CC2001; variables-first (VF) is
our new suggestion. CC2001 total core hours in parentheses.

Topic IF | OF | AF | VF
DS5 Graphs and trees (4) 2 - - -
PF1 Fundamental programming constructs (9) 9 9 9 9
PF2 Algorithms and problem-solving (6) 3 4 3 4
PF3 Fundamental data structures (14) 12| 11| 11| 11
PF4 Recursion (5) 5 5 5 5
PF5 Event-driven programming (4) - 2 3 3
AL1 Basic algorithmic analysis (4) 2 2 2 2
AL2 Algorithmic strategies (6) - 2 4 2
AL3 Fundamental computing algorithms (12) 6 6 6 6
ALA4. Distributed algorithms (3) - - - 1
AL5 Basic computability (6) 1 1 1 1
PL1 Overview of programming languages (2) | 2 2 2 2
PL2 Virtual machines (1) 1 1 1 1
PL3 Introduction to language translation (2) - - 2 -
PL4 Declarations and types (3) 3 3 3 3
PL5 Abstraction mechanisms (3) 3 3 3 3
PL6 Object-oriented programming (10) 10| 12| 8| 11
AR2 Machine level representation of data (3) 1 - - 1
AR3 Assembly level machine organization (9) | 2 - - -
HC1 Foundations of HCI (6) - 1 - -
GV1 Fundamental techniques in graphics (2) | 2 2 2 2
SP1 History of computing (1) 1 1 1 1
SP5 Risks and liabilities (2) - 1 - -
SE1 Software design (8) 4 4 4 4
SE2 Using APIs (5) 2 2 2 2
SE3 Software tools and environments (3) 2 2 2 2
SE5 Software requirements and specifications| (4] - 1 -
SEG6 Software validation (3) 1 1 1 1
SE7 Software evolution (3) - - 1

Total core hours 5| 77| 77| 77

In this paper, we have surveyed the problems of the currgarbaphes to teaching elemen-

tary programming and suggested a new approach, “varidipg’s- This approach combines
a strong start in basic constructs with early object-odtah. We have also sketched a two-
course implementation of this approach and compared it th#ghComputing Curricula 2001
approaches. In future we plan to try this approach in a realscbom setting.

Acknowledgments

This work was supported by the Academy of Finland under graniber 206574.

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

O. Astrachan, K. Bruce, E. Koffman, M. Kolling, and S. d&s. Resolved: Objects early
has failed (Panel). IRroceedings of the 36th S GCSE Technical Symposium on CS Edu-
cation, pages 451-452, 2005.

F. Bailie, M. Courtney, K. Murray, R. Schiaffino, and S.dhy. Objects first - does it
work? (Panel)Journal of Computing Sciences in Colleges, 19(2):303—-305, 2003.

P. Byckling and J. Sajaniemi. Using roles of variablesaaching: Effects on program
construction. In P. Romero, J. Good, S. Bryant, and E. A. @hapeditorsProceedings
of the 17th Annual Workshop of the Psychology of Programming Interest Group (PPIG
2005), pages 278-303. University of Sussex, U.K., 2005.

H. B. Christensen. Implications of perspective in tdaglobjects first and object design.
In Proceedings of the 10th Annual S GCSE Conference on Innovation and Technology in
Computer Science Education ITICSE’ 05, pages 94-98. ACM, 2005.

J. Comer and R. Roggio. Teaching a Java-based CS1 couesedcademically-diverse
environment. IrProceedings of the 33th S GCSE Technical Symposium on CSEducation,
volume 34(1) ofACM SIGCSE Bulletin, pages 142-146, 2002.

F. Culwin. Object imperatives! IFroceedings of the 30th S GCSE Technical Symposium
on CSEducation, volume 31(1) ofACM SIGCSE Bulletin, pages 31-36, 1999.

B. Du Boulay, T. O’'Shea, and J. Monk. The black box insitde glass box: Present-
ing computing concepts to novicelternational Journal of Human-Computer Studies,
51:265-277, 1999.

A. Eckerdal and M. Thuné. Novice Java programmers’ emtions of “object” and
“class”, and variation theory. [Proceedings of the 10th Annual SGCSE Conference
on Innovation and Technology in Computer Science Education ITICSE' 05, pages 89-93.
ACM, 2005.

S. Holland, R. Griffiths, and M. Woodman. Avoiding objatisconceptions.S GCSE
Bulletin, 29:131-134, 1997.

C. Hu. Rethinking of teaching objects-firsEducation and Information Technologies,
9:209-218, 2004.
Joint Task Force on Computing Curricula. Computing ricuta 2001.

http://www.sigcse.org/cc2001, 2001. (Accessed Nov. ,22005).

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

London Metropolitan University. Arrays learning obje
http://www.codewitz.org/demo/index.html, 2003. (Acsed Nov. 24th, 2005).

M. McCracken, T. Wilusz, V. Almstrum, D. Diaz, M. Guzdi®. Hagan, Y. Ben-David
Kolikant, C. Laxer, L. Thomas, and I. Utting. A multi-natiainp multi-institutional study
of assessment of programming skills of first-year CS studdntbrking Group Reports
from ITICSE on Innovation and Technology in Computer Science Education ITICSE 01,
pages 125-140. ACM, 2001.

I. Milne and G. Rowe. Difficulties in learning and teaei programming—views of
students and tutor€ducation and Information Technologies, 7:55-66, 2002.

A. Robins, J. Rountree, and N. Rountree. Learning aadhiag programming: A
review and discussiorComputer Science Education, 13:137-172, 2003.

J. Sajaniemi. An empirical analysis of roles of var@bin novice-level procedural pro-
grams. InProceedings of IEEE 2002 Symposia on Human Centric Computing Languages
and Environments (HCC’ 02), pages 37—-39. IEEE Computer Society, 2002.

J. Sajaniemi and M. Kuittinen. An experiment on usinggsoof variables in teaching
introductory programmingComputer Science Education, 15:59-82, 2005.

J. Sajaniemi and R. Navarro Prieto. Roles of varialtesxperts’ programming knowl-
edge. In P. Romero, J. Good, S. Bryant, and E. A. ChaparrtgredProceedings of the
17th Annual Workshop of the Psychology of Programming Interest Group (PPIG 2005),
pages 145-159. University of Sussex, U.K., 2005.

G. R. S. Weir, T. Vilner, A. J. Mendes, and M. Nordstromifficulties teaching Java in
CS1 and how we aim to solve them (Panel).Phoceedings of the 10th Annual SGCSE
Conference on Innovation and Technology in Computer Science Education ITICSE' 05,
pages 344-345. ACM, 2005.

L. E. Winslow. Programming pedagogy — a psychologiozreiew. S GCSE Bulletin,
28:17-22, 1996.

	saja_testi2.pdf
	Page 1

