
UNIVERSITY OF JOENSUU

DEPARTMENT OF COMPUTER SCIENCE

Report Series A

Efficient parameterized string matching

Kimmo Fredriksson and Maxim Mozgovoy

A-2006-2

ACM F.2.2, H.3.3

ISBN 952-458-807-2

ISSN 0789-7316

Sublinear parameterized single and multiple string matching

Kimmo Fredriksson∗ and Maxim Mozgovoy
Department of Computer Science

University of Joensuu
{kfredrik,mmozgo}@cs.joensuu.fi

Abstract

We consider the following pattern matching problem. We have pattern P [0 . . . m−1] and text
is T [0 . . . n−1], where the symbols of P and T are taken from two disjoint finite alphabets Σ
of size σ and Λ of size λ. The pattern Pmatches the text substring T [j . . . j+m−1], iff for all
i ∈ {0 . . .m−1} it holds that Mj(P [i]) = T [j+i], where Mj(·) is one-to-one mapping on Σ∪Λ
such that the mapping is identity on Σ, but on Λ can be different for each text position j. We
give efficient algorithms that find all parameterized occurrences of P in T . The algorithms
are based on generalizing Shift-Or and Backward DAWG Matching (BDM) algorithms. The
latter can be used for searching r patterns simultaneously. The Shift-Or based algorithm
runs in O(ndm/we) worst case time, while the average case for fixed alphabets and under
some mild and realistic assumptions is O(n logσ(m)/w), where w is the number of bits in
computer word. The BDM based algorithm runs in O(n logσ(rm)/m) average time. This
is optimal within a constant factor. For general alphabets the times increase by a factor
O(log(m)).

Keywords: algorithms, parameterized string matching, bit-parallelism, suffix automaton

ACM Classification: F.2.2 [Analysis of algorithms and problem complexity]: Non-nume-
rical algorithms and problems — Pattern matching, Computations on discrete structures;
H.3.3 [Information storage and retrieval]: Information Search and Retrieval — Search process.

1 Introduction

In traditional string matching problem one is interested in finding the occurrences of a pattern
P from a text T , where P and T are strings over some alphabet Σ. Many variations of this basic
problem setting exist, such as searching multiple patterns simultaneously, and/or allowing some
limited number of errors in the matches, and indexed searching, where T can be preprocessed
to allow efficient queries of P . See e.g. [9, 11, 6] for an overview and references. Yet another
variation is parameterized matching [4]. In this variant we have two disjoint alphabets, Σ for fixed
symbols, and Λ for parameter symbols. In this setting we search parameterized occurrences of
P , where the symbols from Σ must match exactly, while the symbols in Λ can be also renamed.
This problem has important applications e.g. in software maintenance and plagiarism detection
[4], where the symbols of the strings can be e.g. reserved words and identifier or parameter
names of some (possibly tokenized) programming language source code. Hence one might be
interested in finding code snippets that are the same up to some systematical variable renaming.

A myriad of algorithms have been developed for the classical problem, but only a few exist
for parameterized matching. Linear exact on-line matching matching algorithms have been
developed for single [3, 1] and multiple patterns [10]. Sublinear algorithm on average for single
pattern was developed in [3]. Other algorithms exist for the off-line problem [4, 5]. In this
paper we develop algorithms that run in sublinear time on average, are simple to implement and

∗Supported by the Academy of Finland, grant 202281.

perform well in practice. Our algorithms are based on generalizing the well known Shift-Or [2]
and Backward DAWG Matching algorithms [7]. Our algorithms generalize for the multipattern
matching as well.

2 Preliminaries

We use the following notation. The pattern is P [0 . . .m − 1] and the text is T [0 . . . n − 1]. The
symbols of P and T are taken from two disjoint finite alphabets Σ of size σ and Λ of size
λ. The pattern Pmatches the text substring T [j . . . j + m − 1], iff for all i ∈ {0 . . . m − 1}
it holds that Mj(P [i]) = T [j + i], where Mj(·) is one-to-one mapping on Σ ∪ Λ. Moreover,
the mapping must be identity on Σ, but on Λ can be different for each text position j. For
example, assume that Σ = {a,b}, Λ = {x,y,z} and P = aazyzabxyzax. Then P matches
the text substring aazyzabxyzax with identity mapping, and aaxyxabzyxaz with parameter
mapping x 7→ z, y 7→ y, and z 7→ x. This mapping is simple with prev encoding [4]. For a
string S, prev(S) maps all parameter symbols s in S to a non-negative integer p, where p is
the number of symbols since the last occurrence of symbol s in S. The first occurrence of the
parameter is encoded as 0. If s belongs to Σ, it is mapped to itself (s). For our example pattern,
prev(P) = aa002ab055a4. This is the same as the encoding for the two example substrings,
i.e. prev(aazyzabxyzax) = prev(aaxyxabzyxaz). Hence the problem is reduced to exact
string matching, where we match prev(P) against prev(T [j . . . j + m− 1]) for all j = 0 . . . n−m.
The string prev(S) can be easily computed in linear time for constant size alphabets. The
only remaining problem then is how to maintain prev(T [j . . . j + m − 1]) (and any algorithmic
parameters that depend on it) efficiently as j increases. The key is the following Lemma [4].

Lemma 1 . Let S′ = prev(S). Then for S′′ = prev(S[j . . . j+m−1]) for all i such that S[i] ∈ Λ
it holds that S′′[i] = S′[i] iff S′[i] < m. Otherwise S′′[i] = 0.

We are now ready to present our algorithms. For simplicity we assume that Σ and Λ are finite
constant size alphabets. For large alphabets all our time bounds hold if we multiply them by
O(log(m)). Moreover, without loss of generality, we assume the symbols to be atomic, i.e. they
can be accessed in constant time.

3 Parameterized bit-parallel matching

In this section we present bit-parallel approach for parameterized matching, based in Shift-Or
algorithm [2]. For the bit-parallel operations we adopt the following notation. A machine word
has w bits, numbered from the least significant bit to the most significant bit. We use C–like
notation for the bit-wise operations of words; & is bit-wise and, | is or, ∧ is xor, ∼ negates
all bits, << is shift to left, and >> shift to right, both with zero padding. For brevity, we make
the assumption that m ≤ w, unless explicitly stated otherwise. We first review the standard
Shift-Or algorithm, and then show how it can be adapted to parameterized matching, and finally
improve its average case running time.

3.1 Standard Shift-Or

The standard Shift-Or automaton is constructed as follows. The automaton has states 0, 1, . . . , m.
The state 0 is the initial state, state m is the final (accepting) state, and for i = 0, . . . , m − 1
there is a transition from the state i to the state i + 1 for character P [i]. In addition, there is
a transition for every c ∈ Σ from and to the initial state, which makes the automaton nonde-
terministic. The preprocessing algorithm builds a table B, having one bit-mask entry for each
c ∈ Σ. For 0 ≤ i ≤ m − 1, the mask B[c] has ith bit set to 0, iff P [i] = c. These correspond
to the transitions of the implicit automaton. That is, if the bit i in B[c] is 0, then there is a

2

Alg. 1 Shift-Or(T, n, P, m).
1 for i ← 0 to σ − 1 do B[i] ← ∼0 >> (w −m)
2 for i ← 0 to m− 1 do B[P [i]] ← B[P [i]] & ∼(1 << i)
3 D ← ∼0; mm ← 1 << (m− 1)
4 for i ← 0 to n− 1 do
5 D ← (D << 1) | B[T [i]]
6 if (D & mm) 6= mm then report match

Alg. 2 Encode(P,m).
1 for i ← 0 to m− 1 do if P [i] ∈ Λ then prv[P [i]] ← −1
2 for i ← 0 to m− 1 do
3 if P [i] ∈ Λ then
4 if prv[P [i]] = −1 then P ′[i] ← σ else P ′[i] ← i− prv[P [i]] + σ
5 prv[P [i]] ← i
6 else
7 P ′[i] ← P [i]
8 return P ′

transition from the state i to the state i + 1 with character c. The bit-vector D encodes the
states of the automaton. The ith bit of the state vector is set to 0, iff the state i is active,
i.e. the pattern prefix P [0 . . . i] matches the current text position. Initially each bit is set to 1.
For each text symbol c the vector is updated by D ← (D << 1) | B[c]. This simulates all the
possible transitions of the nondeterministic automaton in a single step. If after the update the
mth bit of d is zero, then there is an occurrence of P . Alg. 1 gives the code. If m ≤ w, then the
algorithm runs in time O(n).

3.2 Parameterized Shift-Or

In order to generalize Shift-Or for parameterized matching, we must take care of three things:
(i) Pmust be encoded with prev; (ii) prev(T [j . . . j + m − 1]) must be maintained in O(1)time
per text position; (iii) the table Bmust be built so that all parameterized pattern prefixes can
be searched in parallel. The items (i) and (ii) are trivial, while (iii) is a bit more tricky. To
compute prev(P) we just maintain an array prv[c] that for each symbol c ∈ Λ stores the position
of its last occurrence. Then prev(P) can be computed in O(m) time by a linear scan over P . To
simplify indexing in the array B, we assume that Σ = {0 . . . σ − 1}, and map the prev encoded
parameter offsets into the range {σ . . . σ + m − 1}. Alg. 2 gives the pseudo code. The text is
encoded in the same way, but the encoding is embedded into the search code, see Alg. 3. The
only difference is that we apply Lemma 1 to reset offsets that are greater than m−1 (i.e. offsets
that are for parameters that are outside of the current text window) to zero. Otherwise the
search algorithms is exactly the same as for normal Shift-Or.

The tricky part is the preprocessing phase. We denote the prev encoded pattern as P ′. At
first P ′ is preprocessed just as P in the normal Shift-Or algorithm. This includes the parameter
offsets, which are handled as any other symbol. However, this is not enough. We illustrate
the problem by an example. Let P = xaxax and T = zzazazaz. In encoded forms these are
P ′ = 0a2a2 and T ′ = 01a2a2a2. Clearly P has two (overlapping) parameterized matches in
T . However, P ′ does not match in T ′ at all.

The problem is that as the algorithm searches all the m prefixes of the pattern in parallel,
then some non-zero encoded offset p (of some text symbol) should be interpreted as zero in some
cases. These prefixes have lengths from 1 to m, and in able to successfully apply Lemma 1 we
should be able to apply it in parallel to all m substrings. In other words, any non-zero parameter
offset p must be treated as zero for all pattern prefixes whose length h is less than p, since by
Lemma 1 the parameter with offset p is dropped out of the window of length h.

This problem can be solved as follows. The bit-vector B[σ + i] is the match vector for offset
i. If the j bit of this vector is zero, it means by definition that P ′[j] = i. If any of the i
least significant bits of B[σ] are zero, we clear the corresponding bits of B[σ + i] as well. More

3

Alg. 3 P-Shift-Or(T, n, P, m).
1 P ′ ← Encode(P, m)
2 for i ← 0 to σ + m− 1 do B[i] ← ∼0 >> (w −m)
3 for i ← 0 to λ− 1 do prv[σ + i] ← −∞
4 for i ← 0 to m− 1 do B[P ′[i]] ← B[P ′[i]] & ∼(1 << i)
5 for i ← 1 to m− 1 do B[σ + i] ← B[σ + i] & (B[σ] | (∼0 << i))
6 D ← ∼0; mm ← 1 << (m− 1)
7 for i ← 0 to n− 1 do
8 c ← T [i]
9 if c ∈ Λ then
10 c ← i− prv[T [i]] + σ
11 if c > σ + m− 1 then c ← σ
12 prv[T [i]] ← i
13 D ← (D << 1) | B[c]
14 if (D & mm) 6= mm then report match

precisely, we set
B[σ + i] ← B[σ + i] & (B[σ] | (∼0 << i)).

This means that the offset i is treated as offset i for prefixes whose length is greater than i, and
as zero for the shorter prefixes, satifying the condition of Lemma 1.

Alg. 3 gives the complete code. The algorithm clearly runs in O(ndm/we) worst case time.
For long patterns one can search just a length w prefix of the pattern, and verify with the whole
pattern whenever the prefix matches, giving O(n) average time. However, note that a long
variable name (string) is just one symbol (token) in typical applications, hence w bits is usually
plenty. Finally, note that for unbounded alphabets we cannot use arrays for prv and B. We can
use balanced trees instead, but then the time bounds must be multiplied by O(log(m)).

3.3 Skipping text symbols

Standard Shift-Or can be improved to run in optimal O(n logσ(m)/m) average time [8]. The
algorithm takes a parameter q, and from the original pattern generates a set P of q new patterns
P = {P 0, . . . , P q−1}, each of length m′ = bm/qc, where P j [i] = P [j + iq] for i = 0 . . . bm/qc −
1. In other words, the algorithm generates q different alignments of the original pattern P ,
each alignment containing only every qth character. The total length of the patterns in P is
qbm/qc ≤ m. For example, if P = abcdef and q = 3, then P 0 = ad, P 1 = be and P 2 = cf.
Assume now that P occurs at T [i..i + m− 1]. From the definition of P j it directly follows that
P j [h] = T [i + j + hq], where j = i mod q and h = 0 . . .m′− 1. This means that we can use the
set P as a filter for the pattern P , and that the filter needs only to scan every qth character of
T . All the patterns must be searched simultaneously. Whenever an occurrence of P j is found
in the text, we must verify if P also occurs, with the corresponding alignment.

This method clearly works for parameterized matching as well. We generate the set of
patterns P, and also prev-encode them. For example for P = aazyzabxyzax and q = 3 we
process the pattern set prev({aybz,azxa,zayx}) = {a0b0,a00a,0a00}. In the search phase
the text is also encoded on-line, encoding only every qth symbol, but assuming that they are
consecutive. In other words, every parameter offset is effectively divided by q to agree with the
encoding of the patterns. Finally, the verification phase checks if prev(P) = prev(T [v . . . v +m−
1], where v is the starting position of a potential match.

The search of the pattern set can be done using the parameterized Shift-Or algorithm. This
is possible by concatenating and packing the set of patterns into a single machine word [8, 2].
Another alternative is to use the parameterized version [10] of Aho-Corasic algorithm. Both
lead to the same average case running time, but the latter does not require that m ≤ w, as it
is not based on bit-parallelism. We denote the Shift-Or based algorithm as PFSO. Alg. 4 shows
the pseudo code for the filtering phase, and Alg. 5 the verification code.

The filtering time is O(n/q). The filter searches the exact matches of q patterns, each of
length bm/qc. We are not able to analyze the exact effect of the parameter alphabet to the

4

Alg. 4 Average-Optimal-P-Shift-Or(T, n, P, m, q).
1 P ′ ← Encode(P, m)
2 h ← 0; mm ← 0
3 for j ← 0 to q − 1 do
4 for i ← 0 to bm/qc − 1 do
5 P[j][i] ← P [iq + j]
6 h ← h + bm/qc
7 mm ← mm | (1 << (h− 1))
8 P[j] ← Encode(P[j], bm/qc)
9 for i ← 0 to σ + bm/qcq − 1 do B[i] ← ∼0 >> (w − bm/qcq)
10 for j ← 0 to q − 1 do
11 for i ← 0 to bm/qc − 1 do
12 B[P[j][i]] ← B[P[j][i]] & ∼(1 << (jbm/qc+ i))
13 for j ← 0 to q − 1 do
14 msk ← ∼0
15 for i ← 1 to bm/qc − 1 do
16 msk ← msk ∧ (1 << (jbm/qc+ i− 1))
17 B[σ + i] ← B[σ + i] & (B[σ] | msk)
18 for i ← 0 to λ do prv[σ + i] ← −∞
19 D ← ∼0; i ← 0
20 while i < n do
21 c ← T [i]
22 if c ∈ Λ then
23 c ← i/q − prv[T [i]] + σ
24 if c > σ + bm/qc − 1 then c ← σ
25 prv[T [i]] ← i/q
26 D ← ((D & ∼mm) << 1) | B[c]
27 if (D & mm) 6= mm then Verify(T, i, n, P ′, m, q, D, mm)
28 i ← i + q

Alg. 5 Verify(T, i, n, P,m, q, D, mm).
1 D ← (D & mm) ∧ mm
2 while D 6= 0 do
3 s ← blog2(D)c
4 c ← −(bm/qc − 1) q − bs/bm/qcc
5 if P = Encode(T [i + c . . . i + c + m− 1], m) then report match
6 D ← D & ∼(1 << s)

probability that two randomly picked symbols match. However, if we assume that a constant
fraction ε of the pattern positions are randomly selected to have a randomly selected symbol
from Σ, then the probability that P j occurs in a given text position is O((1/σ)bεm/qc). A brute
force verification cost is in the worst case O(m) (but only O(1) on average). To keep the total
time at most O(n/q) on average, we select q so that n/q = mn/σεm/q, i.e. q = O(m/ logσ(m)).
The total average time is therefore O(n logσ(m)/m). This is optimal [12] within a constant
factor.

4 Parameterized backward trie matching

We now present an algorithm based on Backward DAWG Matching (BDM) [7]. BDM is optimal
on average, i.e. it runs in O(n logσ(m)/m) average time. We call our parameterized version of
BDM as Parameterized Backward Trie Matching, PBTM for short. In the preprocessing phase
PBTM builds a trie for the encoded suffixes of the reversed pattern. Trie is a rooted tree, where
each edge is labeled by a symbol. The edges of the path from the root node to some leaf node
then spells out the string of symbols stored into that leaf. The pattern in reverse is denoted
by P r. The set of its suffixes is {P r[i . . . m − 1] | 0 ≤ i < m} (note that this corresponds to
the prefixes of the original pattern). Each suffix is then encoded with prev, and the encoded
strings are inserted into a trie. For example, if P = azbzxbxy, then the set of stored strings
is {00b20b2a, 0b20b2a, b00b2a, 00b2a, 0b2a, b0a, 0a, a}, The trie allows efficient searching of any
pattern substring that occurs in P r. A brute force algorithm for this takes O(m2) time, but
can be improved to O(m) by using efficient suffix tree construction algorithms for parameterized

5

Alg. 6 PBTM(T, n, P, m).
1 root ← EncSTrie(P r)
2 for i ← 0 to λ− 1 do prv[σ + i] ← −∞
3 i ← 0
4 while i < n−m do
5 j ← m; shift ← m; u ← root
6 while u 6= null do
7 c ← T [i + j − 1]
8 if c ∈ Λ then
9 c ← m− j − prv[T [i + j − 1]] + σ
10 if c > σ + m− 1 then c ← σ
11 prv[T [i + j − 1]] ← m− j
12 j ← j − 1
13 u ← child(u, c)
14 if u 6= null and issuffix(u) then
15 if j > 0 then shift ← j else report match
16 for k ← i + j to i + m− 1 do if T [k] ∈ Λ then prv[T [k]] ← −∞
17 i ← i + shift

strings [5]. An alternative to the trie is suffix array, i.e. the trie can be replaced with sorted
array of prev encoded suffixes of the reverse pattern. Following an edge in the trie can then be
simulated by a binary search in the array. We call the resulting algorithm PBAM. The benefit
is that the array based method is easy to implement space efficiently since only one pointer is
needed for each suffix.

We now show how this can be used for efficient search. Assume that we are scanning the
text window T [i . . . i + m− 1] backwards. The invariant is that all occurrences that start before
the position i are already reported. The text window is prev-encoded (backwards as well) as
we go, and the read substring of this window is matched against the trie. This is continued
as long as the substring can be extended without a mismatch, or we reach the beginning of
the window. If the whole window can be matched against the trie, then the pattern occurs in
that window. If the pattern does not match, some of the occurrences may still overlap with the
current window. However, in this case one of the suffixes stored into the trie must match, since
the reverse suffixes are also the prefixes of the original pattern. The algorithm remembers the
longest such suffix, that is not the whole pattern, found from the window. The window is then
shifted so that its starting position will become aligned with the last symbol of that suffix. This
is the position of the next possible pattern occurrence. If the length of that longest suffix was
`, the next window to be searched is T [i + m− ` . . . i + m− 1 + m− `]. This process is repeated
until the whole text is scanned.

Some care must be taken to be able to do the encoding of the text window in O(1) time per
read symbol. To achieve constant time per symbol we must use an auxiliary array prv (as before)
to store the position of the last occurrence for each symbol. We cannot afford to initialize the
whole array for each window, so before shifting the window we rescan the symbols just read in
the current window, and reinitialize the array only for those symbols. This ensures O(1) total
time for each symbol read. Alg. 6 gives the code.

The average case running time of this algorithm depends on how many symbols x are exam-
ined in each window. Again, if we make the simplifying assumption that a constant fraction of
the pattern positions are randomly selected to have a randomly selected symbol from Σ, then
the original analysis of BDM holds for PBTM as well, and the average case running time is
O(n logσ(m)/m). For general alphabets and for the PBAM version the time must be multiplied
by O(log(m)). Finally, this algorithm can be easily modified to search r patterns simultaneously.
Basically, if all the patterns are of the same length, this generalization requires just storing all
the suffixes of all the patterns into the same trie. This results in O(n logσ(rm)/m) average time.
With modest additional complexity patterns of different lengths can be handled as well in the
same way as with regular BDM [6].

6

 1

 10

 100

 1000

 4 8 12 16 20 24 28 32

×
10

6 to
ke

ns
 /

se
co

nd

m

PSO
PFSO
PBTM
PBAM

PBAM (r=100)
PBAM (r=100, amortized)

predicted time (r=100)

 0

 4

 8

 12

 16

 20

 24

 28

 32

 4 8 12 16 20 24 28 32

to
ke

ns

m

avg shift (r=1)
avg shift (r=10)

avg shift (r=100)
avg tokens (r=1)

avg tokens (r=10)
avg tokens (r=100)

Figure 1: Left: the search speed in 106 tokens / second. Right: the average shift and average
number of tokens inspected in each window of length m.

5 Experimental results

We have implemented the algorithms in C++, and compiled them with Borland C++Builder
6. We performed the experiments on the AMD Sempron 2600+ (1.88 GHz) machine with 768
MB RAM, running Windows XP. A tokenized string of concatenated Java source files (taken
from various open source projects, such as jPOS, smppapi, and TM4J) was used as a text to be
searched. The tokenization procedure (based on JavaCC1 parser) converted an input file into
a sequence of two-byte codes, representing single characters, reserved Java words and distinct
identifiers. The initial string had a size of 5.48MB, and after encoding it consisted of 1259799
tokens, including 51 reserved Java words and 10213 unique identifiers. A set of 100 patterns
for each length reported was randomly extracted from the input text. We report the average
number of tokens searched per second for each algorithm.

Fig. 1 summarizes the results. PSO denotes the basic parameterized shift-or algorithm, PFSO
the fast parameterized shift-or, PBTM the parameterized backward trie matching algorithm,
and PBAM the suffix array version of PBTM. For short patterns plain PSO and PBTM give
the best results. For longer patterns PFSO wins in case of optimal q selection. For m ∈
{8, 12, 16, 20, 24, 28, 32} we used q = {2, 3, 4, 4, 4, 5, 6}, respectively. For short patterns PBTM
is faster than PFSO. For long patterns PBTM suffers from the large alphabet size. In our
implementation we used arrays to implement the trie nodes and for long patterns the trie requires
a lot of inititalization time and memory, not fitting into the CPU cache. PBAM does not have
this flaw, but the binary search step needed for each accessed text symbol makes it comparatively
slow.

We also experimented with the multipattern version of PBAM, searching r = 100 patterns
simultaneously. The plot shows that while the raw speed is reduced, the amortized speed per
pattern is clearly better than for any of the single pattern matching algorithms. The time
also coincides nicely with the the theoretical curve O(n logσ(rm) log2(rm)/m), supporting our
analysis. This is also clear given the right plot, showing the average number of tokens inspected
in each text window, and the average shift for r = 1, 10, 100. These behave like in random texts
supporting our assumptions in the analysis.

6 Conclusions

We have shown how two well-known algorithms, namely Shift-Or and BDM, can be generalized
for parameterized matching. The algorithms are easy to implement, and work well in practice.

1https://javacc.dev.java.net/

7

We have concentrated on obtaining fast average case times. However, the worst case times can
be improved to O(n) using known results [7, 8] and standard tricks.

References

[1] A. Amir, M. Farach, and S. Muthukrishnan. Alphabet dependence in parameterized match-
ing. Inf. Process. Lett., 49(3):111–115, 1994.

[2] R. A. Baeza-Yates and G. H. Gonnet. A new approach to text searching. Commun. ACM,
35(10):74–82, 1992.

[3] B. S. Baker. Parameterized pattern matching by Boyer-Moore-type algorithms. In Proceed-
ings of ACM-SODA’95, pages 541–550, 1995.

[4] B. S. Baker. Parameterized duplication in strings: algorithms and an application to software
maintenance. SIAM J. Comput., 26(5):1343–1362, 1997.

[5] R. Cole and R. Hariharan. Faster suffix tree construction with missing suffix links. In
Proceedings of ACM-STOC’00, pages 407–415, Portland, Oregon, 2000.

[6] M. Crochemore and W. Rytter. Text algorithms. Oxford University Press, 1994.

[7] M. Crochemore et al. Speeding up two string matching algorithms. Algorithmica,
12(4/5):247–267, 1994.

[8] K. Fredriksson and Sz. Grabowski. Practical and optimal string matching. In Proceedings
of SPIRE’2005, LNCS 3772, pages 374–385. Springer–Verlag, 2005.

[9] D. Gusfield. Algorithms on strings, trees and sequences: computer science and computa-
tional biology. Cambridge University Press, Cambridge, 1997.

[10] R. M. Idury and A. A. Schäffer. Multiple matching of parameterized patterns. Theor.
Comput. Sci., 154(2):203–224, 1996.

[11] G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings. Cambridge University
Press, 2002.

[12] A. C. Yao. The complexity of pattern matching for a random string. SIAM J. Comput.,
8(3):368–387, 1979.

8

